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Abstract
The social brain hypothesis was proposed  
30 years ago as an explanation for the fact 
that primates have much larger brains than  
all other animals. The claim was that primates 
live in unusually complex societies, and hence 
need a large ‘computer’ to manage the  
relationships involved. The core evidence 
subsequently provided in support of this claim 
was a simple statistical relationship between 
the social group size characteristic of a species 
and the size of its brain, with humans fitting 
into this pattern. However, testing evolutionary 
hypotheses raises some challenging  
philosophical and statistical issues that are 
often overlooked, and great care is needed to 
ensure that we test the hypothesis we think we 
are testing. Here, I examine some of these  
challenges and illustrate the traps they can 
create for the unwary. 
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1. Introduction

The social brain hypothesis, and its use to 
predict a natural grouping size for humans 
(Dunbar’s Number), was established 
through a series of empirical and theoreti-
cal studies beginning thirty years ago 
(Dunbar 1992, 1993, 1998). Its origin lies 
in an attempt to understand why primate 
brains are so much larger than those of all 
other animals (Jerison 1973). The hypothe-
sis itself is based on the fact that primates 
live in much more complex societies than 
other animals, and hence need a bigger 
‘computer’ (i.e. brain) to handle the 
relationships involved (Byrne 1996; Byrne 
& Whiten 1988).

Over the decades, it has been estab-
lished that: (1) there exists a statistical 
relationship between the typical size of a 
species’ social group and the size of its 
neocortex, ostensibly derivative of selec-
tion for specialised cognition required for 
group-living (the social brain hypothesis) 
(Dunbar 1992, 1998; Shultz & Dunbar 
2022), (2) the quantitative form of this 
relationship applies only to primates (in 
most other mammals and birds, the 
hypothesis takes the much simpler form of 
a qualitative switch between pairbonded 
and non-pairbonded species) (Shultz & 
Dunbar 2007, 2010), (3) the relationship 
actually consists of a set of four (possibly 
five) grades arranged in a fractal series that 
explains the multilevel structure of 
primate (and human) social systems 
(Dunbar 1993, 1998; Kudo & Dunbar 
2001; Hill & Dunbar 2003; Zhou et al. 
2005; Hill et al. 2009; Sutcliffe et al. 2012; 
Dunbar & Shultz 2021a), (4) the grades 
differ in group size, brain size, social 
complexity, cognitive competences, and 
ecological context (Dunbar & Shultz 

2021a), (5) the regression equation for the 
social brain relationship predicts a value of 
~150 as the core group size for modern 
humans (Dunbar 1993), (6) there is now 
considerable empirical evidence that both 
the size of personal social networks and 
the size of natural social groups for 
humans is indeed ~150, and that this is 
nested within a fractal series of social 
layers (Dunbar 2020; Wang et al. 2016, 
2021; Bird et al. 2019), (7) 150 is a stable 
value (an ‘attractor’) because it turns out to 

be a criticality in the efficiency of informa-
tion flow in networks with the layers 
around it forming harmonics (West et al. 
2020, 2023), and (8) at least in humans, 
the fractal structure is the product of a 
trade-off between the time costs required 
to maintain different kinds of relationship 
and the benefits these provide (Sutcliffe et 
al. 2016; Tamarit et al. 2018, 2022).  

Most of these claims are uncontrover-
sial in that they are simply empirical facts, 

The social brain 
hypothesis was 
established through 
a series of empirical  
and theoretical 
studies beginning 
thirty years ago.
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though some are based on theoretical 
modelling from first principles. Two, 
however, have proved to be more conten-
tious in that contradictory findings have 
sometimes been reported. One is the 
question of whether the evolution of large 
brain size in the primate lineage was driven 
by sociality or some other more strictly 
ecological (usually dietary) benefit; the 
other focusses on whether or not the 
primate social brain relationship, even if 
true, allows us to predict social group size 
in modern humans (otherwise known as 
Dunbar’s Number). More interestingly, 
however, these two questions raise some 
deep philosophical issues, both about how 
we test evolutionary hypotheses and about 
the statistical methods we use. There are 
hidden traps for the unwary here that 
apply widely throughout the sciences and 
the humanities. These traps are both meth-
odologically illuminating and at the same 
time provide us with novel insights into 
the processes of evolution. To see why, we 
need to look at these two claims more 
closely.

2. How not to test 
evolutionary 
hypotheses

There has been a longstanding debate as to 
whether primate brain evolution has been 
the outcome of selection for ecologically 
relevant traits (principally foraging) or 
selection for the social environment. More 
specifically, the contrast lies between 
selection for the capacity to live in stable 
social groups so as to provide group-level 
benefits versus selection for the capacity to 

make individual-level optimal foraging 
decisions that maximise survival (Dunbar 
& Shultz 2017). The difference between 
these two (and there are many subdivisions 
of each) lies mainly in whether the 
selection pressure to increase brain size has 
been due to the need to solve the ecologi-
cal problems of survival and successful 
reproduction socially (i.e. as a group, with 
novel forms of cognition needed to enable 
group cohesion as an intervening step) or 
by individual trial-and-error learning (with 
group-living a cognitively costless irrele-
vance of limited functional significance) 
(Dunbar & Shultz 2017). The majority of 
studies so far come down strongly in 
favour of the social explanation: brain size 
is correlated with group size rather than 
ecological variables like diet (Shultz & 
Dunbar 2022). However, a handful of 
recent studies (notably DeCasien et al. 
2017; Powell et al. 2017) have come to the 
opposite conclusion, claiming that better 
data and new statistical methods have 
made the difference. How is this possible? 
The answer doesn’t, in fact, lie in either the 
data or the statistical methods, since these 
don’t actually differ at all from the 
previous studies. The answer lies in several 
traps for the unwary that lie at the heart of 
the biological world. 

First, there has been a surprising 
tendency to approach the problem of 
testing between evolutionary hypotheses 
with a psychologist’s mechanistic frame of 
mind rather than a biologist’s systems-ori-
ented mindset. This causes the alternative 
hypotheses to be seen as mutually exclu-
sive: one must be right and hence the 
other, by definition, wrong. Doing so 
makes it natural to test between the 
hypotheses using multiple regression 
analysis. Unfortunately, biological phe-
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nomena do not fit well into this format, 
especially when the data are based on 
naturalistic observations. Biology is a 
systems-based discipline, and most 
organismic phenomena consist of a 
mixture of causes and their resulting mech-
anistic effects (outcomes), constraints 
(things that need to be changed in order to 
make the effect possible, but do not select 
for it as such) and consequences (windows 
of evolutionary opportunity that emerge as 
added benefits for the main effect, but, 
again, do not select for it directly). Failing 
to appreciate the difference leads to a 
category error (a well known form of 
logical fallacy) in which different levels of 
Tinbergen’s (1963) “Four Why’s” are 
confounded. The Four Why’s refer to the 
four different kinds of questions a biologist 
might ask: why (function, or purpose), how 
(mechanisms), what (ontogeny, or develop-
ment) and when (phylogeny or evolution-
ary history). Since these identify different, 
but equally necessary, parts of a biological 
system, they are not mutually exclusive in 
the way a conventional regression analysis 
assumes. The question we end up asking is 
not which of two selection factors drove 
the evolution of large brains, but whether a 
functional explanation (group size) is more 
(or less) important than a mechanisms 
explanation (diet). As Tinbergen reminded 
us, such a contrast is meaningless, since 
both must in fact be simultaneously true: 
everything has a biological function, and 
every function needs a mechanism to allow 
it to happen. But – and here is the key 
point – we cannot equate the two types of 
explanation as logically equivalent alterna-
tives in a multiple regression analysis.

A second trap is set by Dobzhansky’s 
Dictum (Dobzhansky 1973). Dobzhansky 
reminded us that when biologists test an 

hypothesis about evolutionary adaptation, 
they can do so in either of two equally 
legitimate ways: by testing for goodness of 
fit (‘being adapted’: the eye is designed to 
allow an animal to see) or by testing for 
the process of adaptation (‘becoming 
adapted’ – the ‘baby-counting’ method 
familiar from behavioural ecology). The 
difference lies mainly in the timescale. For 
cases where the fitness benefit of a trait can 
be directly observed (e.g. optimal foraging 
or mate choice decisions where the 
outcome is immediate), testing the process 
of adaptation is appropriate because we 
can watch selection in action (do some 
individuals gain more fitness-related 
benefits than others do because of the trait 
they possess?). In this case, the outcome of 
selection is, in effect, instantaneous. But 
for hypotheses that involve the conse-
quences of selection in the past (on a time 
scale of millions of years), or for those 
where the fitness gain can only be directly 
measured in the distant future (e.g. at the 
end of a lifetime), then we have to use a 
goodness of fit approach. Here, the 
consequences of selection take a long time 
to become apparent, or at least longer than 
the average scientist or funding agency is 
prepared to wait before seeing a return on 
their investment. In this case, the hypothe-
sis we test is one about constraints: in the 
here-and-now, does the historical effect (or 
outcome of selection) impose a constraint 
on (i.e. statistically determine) the histori-
cal cause (putative selection variable). This 
harks back to the reason why the selection 
pressure originally occurred: a constraint 
on an outcome variable represents the cost 
an organism has to pay to move a trait in a 
given direction. In other words, the 
constraint is the resistance against which 
selection had to push the organism, and 
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this will always continue to exist into the 
future. A species will always resist increas-
ing its brain size beyond what is immedi-
ately necessary because doing so incurs 
energetic and other costs (Dunbar & 
Shultz 2017, 2021b). Remove the benefit of 
having a large brain, and there will be 
selection pressure (proportionate to the 
energetic costs of neural tissue) to reduce 
brain size. This kind of reversal seems to 
have happened several times in the course 
ungulate and carnivore evolution, but not 

at all during the course of primate evolu-
tion (Pérez-Barbería et al. 2007). In 
primates, it seems that the two variables 
are in a very tight evolutionary ratchet.

Although the underlying hypothesis is 
actually the same in the two versions of 
Dobzhansky’s Maxim (a cause has selected 
for an effect), the way we formulate it for 
testing is reversed in the two cases because 
of the limitations imposed by the time-
scales involved. From a process of adapta-
tion (‘becoming adapted’) perspective, the 

prediction we actually test is that group 
size (or diet) selects for (i.e. determines) 
brain size, but from a goodness of fit 
(‘being adapted’) perspective the predic-
tion is that brain size (or diet) constrains 
(i.e. determines) group size. In other 
words, the X and Y variables in the 
regression equation are reversed. This may 
not matter in a bivariate statistical model, 
but it can make a great deal of difference 
in a multivariate statistical model – so 
much so that it can in fact reverse the 
conclusion we draw. 

The third trap reflects just this and is a 
consequence of a widely unrecognised 
limitation in the design of multivariate 
regression. Most statistical tests were 
designed with the kind of psychological 
causality discussed above in mind: we have 
two variables that we assume are both 
bona fide candidates for being the causal 
determinant of some effect, and we wish to 
know which is the more important. The 
problem is that a regression model will 
only allow us to have one dependent, or 
outcome, variable. This means that we 
need to think very carefully about which 
variable we allocate to this position: 
different ways of combining our variables 
will result in very different questions being 
asked. If we identify brain size as the 
dependent variable, we are asking which 
variables constrain brain size; if we place 
group size in pole position, we are asking 
which variables constrain group size. It 
should be obvious that the answers are 
likely to be very different.  Wartel et al. 
(2019) confirmed that this is indeed so: 
run the regression a different way, and you 
get a completely different answer. Unfor-
tunately, not being biologists, Wartel et al. 
failed to appreciate the implications of 
their findings, and instead assumed it was 

A species will always 
resist increasing its 
brain size beyond 
what is immediately  
necessary because 
doing so incurs  
energetic and other 
costs.
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either an inadequacy of the data or a 
weakness of the theory. It is neither: it is 
the consequence of a failure to understand 
statistics.

So, let’s look again at the Social Brain 
Hypothesis in the light of this. The 
hypothesis is conventionally tested by 
regressing group size on brain size 
(because, in the here-and-now, brain size 
will be a constraint on group size if group 
size selected for increases in brain size in 
the past). Most analyses have done exactly 
this. However, because DeCasien et al. 
(2017) and Powell et al. (2017) wanted to 
test simultaneously between alternative 
selection drivers, they inverted the causal 
structure and used brain size as the 
dependent variable so as to be able to have 
both group size and diet as drivers in a 
multiple regression model. Doing so 
unwittingly commits a category mistake by 
confounding different types of explana-
tions, or Tinbergen “Why’s”. In the 
here-and-now, it is perfectly plausible (and 
indeed correct) for diet (or foraging 
competence) to be a determinant of brain 
size because, ultimately, the size of brain 
you can grow as an individual is limited by 
nutrient throughput. It is not at all 
plausible to suggest that group size (or 
social skills, for that matter) determines 
brain size: brain growth is completed 
(effectively at birth) long before most 
animals, including humans, achieve full 
competence in their social skills (which 
does not occur until subadulthood or even 
adulthood), never mind arrive at their 
natural adult group size. In effect, by 
structuring the statistical model in the way 
they did, DeCasien et al. (2017) and Powell 
et al. (2017) assume that causes can act 
backwards in time – a philosophically 
interesting proposition for sure, but one 

that, if true, would have the unfortunate 
implication that the entire structure of 
modern physics (and hence all of science) 
is flawed. Science is based on the assump-
tion that causes must precede their effects 
(as David Hume, the founding father of 
modern empiricist philosophy, trenchantly 
reminded us). 

In fact, the only correct way to 
approach problems of this kind is by using 
path analysis (or, if there are only three 
variables, mediation analysis). Path 
analyses using several different datasets 
(see Dunbar & Shultz 2007, 2017; Nav-
arette et al. 2016; Shultz & Dunbar 2022) 
yield results that are in close agreement 
with each other but are diametrically 
opposite to the ones obtained by DeCasien 
et al. (2017) and Powell et al. (2017).  
The reason is obvious: both DeCasien et al. 
and Powell et al. thought they were testing 
a selection hypothesis when in fact they 
were testing a constraints hypothesis.  
The correct explanatory model turns out 
to have the form A→B→C, not,  
as is assumed in their analyses,  
{(A→B) v (C→B)} (where, in standard 
symbolic logic, the logical operator v 
stands for disjunction [‘either/or but not 
both’]). Diet determines (or more correctly, 
constrains) brain size (as they, in fact, 
correctly found), but brain size determines 
(or constrains) group size. This reflects a 
selection logic that runs in the reverse 
direction: had we been able to observe the 
evolutionary process in action, we would 
have observed that the need to increase 
group size imposed a selection pressure 
favouring an increase in brain size (A→B) 
so as to enable the animals to maintain 
social cohesion (in order to solve some eco-
logical problem), and the need to increase 
brain size in turn imposed a selection 
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pressure favouring ways of improving 
nutrient throughput (by changing diet or 
improving foraging efficiency: (B→C) so 
as to provide the spare energy needed for 
the additional brain growth.

At this point, the unwary run the risk 
of falling for another well-known logical 
error: the fallacy of the illicit affirmative. 
Whether or not group size is the main 
factor selecting for brain evolution is 
irrelevant to the question of whether brain 
size imposes a constraint on (i.e. predicts) 
the size of group that animals can live in. 
The fact that A is known to cause B (and 
C does not cause B) tells us nothing at all 
about whether B causes C. Thus, even if it 
was the case that primate brain evolution 
was simply a consequence of, say, the fact 
that animals with larger bodies have larger 
brains (i.e. increases in brain size are an 
unintended consequence of selection for 
large body mass), it may still be the case 
that brain size constrains group size 
because that is a derivative psychological 
constraint, not a selection effect.  Whether 
we can predict group size from brain size is 
an empirical question about cognitive 
constraints and cannot necessarily be 
inferred from the reasons why large brains 
have evolved. Tinbergen’s Four Why’s 
again: questions at different explanatory 
levels are completely independent of each 
other.

One last point is worth noting. It has 
been suggested that these tests of the social 
brain hypothesis may be subject to a great 
deal of measurement error because they 
invariably use mean values. Most species 
have group sizes that vary widely, espe-
cially those that live in large groups. Using 
the variance in group size might yield very 
different conclusions about how group size 
relates to brain size than if we use the 

mean. In fact, this claim rests on a poor 
understanding of primate group size 
dynamics and a poor understanding of 
statistical theory. Primate group sizes take 
the form of a nonlinear oscillator that 
varies round a target mean value set by the 
local habitat’s predation risk and other 
environmental constraints (see Dunbar et 
al. 2009; Dunbar et al. 2018). Over time, a 
group’s size varies over a range limited by 
predation risk and the stresses of group-
living, which results in group size having a 
Poisson distribution, usually with a 
characteristic peak defining the mean and 
a very long tail to the right (Dunbar et al. 
2009, 2018a,b; Dunbar & MacCarron 
2019; Dunbar 2019). In other words, they 
are almost always Poisson-distributed 
rather than being normal in form. In a 
Poisson distribution, the variance is always 
equal to the mean and so, in fact, it won’t 
matter which statistical moment is used in 
an analysis. Sandel et al. (2016) confirm 
that the results of the primate social brain 
analysis are the same irrespective of 
whether you use the mean or some 
measure of the variance. 

3. Reconstructing 
Dunbar’s Number
Notwithstanding the points made in the 
previous section, Lindenfors et al. (2021) 
have claimed that it is not possible to 
predict human group sizes (Dunbar’s 
Number) from the equation for the 
primate social brain hypothesis – or rather, 
to interpret their actual results correctly, 
you can predict human group size, but the 
confidence intervals (CIs) are so wide that 
almost any number would fall within 
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them. Apparently, they agree that the social 
brain hypothesis is true (their analysis does 
in fact confirm that there is a statistically 
significant relationship between group size 
regressed on brain size for primates using 
several datasets and several different 
regression methods). They presumably also 
agree that humans do have a natural (or 
“typical”) group size, otherwise there 
would be no point at all to their analysis. 
They also agree that this observed human 
group size must be in the tens or hundreds 
rather than the thousands, since the CIs 
they give do not have an infinite range: the 
95% CIs on their various estimates range 
from 2 to 520. If the typical human group 
size is >520 in size, that would clearly 
disprove the prediction, so it is not the case 
that the prediction cannot be tested at all. 
In fact, the only substantive claim they 
make is that human group size cannot be 
predicted with precision from the primate 
social brain equation. 

Luckily, their conclusion is not actually 
true. This is because their analysis simulta-
neously manages to combine several 
statistical indiscretions and a fallacy. These 
indiscretions are, however, themselves 
rather interesting and have important 
implications for how we do comparative 
evolutionary analyses.

First, the fallacy. We have known since 
the 1930s that, when there are grades 
present in a dataset, conventional OLS 
(ordinary least squares) regression underes-
timates the true slope (a point that was 
much discussed during the 1980s in the 
context of comparative analyses of brain 
size evolution: Mace et al. 1981; Harvey & 
Mace 1982; Aiello 1992). This is known as 
Simpson’s Paradox (or the Yule-Simpson 
Effect) and is a version of the ecological 
fallacy. One indication that there are grades 

present in a dataset is that the data have a 
bivariate uniform distribution (i.e. the 
distribution has the form of a tube) rather 
than being bivariate normal. OLS regres-
sion requires the data to be bivariate 
normal, otherwise it will always underesti-
mate the slope of the regression. It was 
pointed out very early on (Dunbar 1993, 
1998), and later confirmed by Dunbar & 
Shultz (2021a), that the primate social 
brain dataset consists of a set of grades 
whose regression equations differ in their 
intercepts but not in their slopes. (Indeed, 
the presence of grades in the vertebrate 
brain size data was, in fact, first noted by 
Jerison [1973].) Failure to take grades into 
account when using OLS regression (as 
Lindenfors et al. did) results in a flattened 
slope and wide confidence intervals (just as 
they found). This is a consequence of 
several more subtle statistical issues that 
they seemed to be unaware of.

One issue is that OLS regression 
assumes that the X-axis values are meas-
ured without error. This is because OLS 
regression was developed for use in 
experimental designs where the X-axis 
values are specified exactly in advance and 
thus have little or no measurement error 
(as, for example, in a dose-response 
experimental design). OLS regression 
methods exploit this assumption to 
simplify the process of estimating the 
statistical moments (mean and variance) of 
the slope. When there is error variance on 
both axes, OLS regression inevitably 
underestimates the slope (resulting, once 
again, in wide CIs) (Kendall & Stuart 1979; 
Rayner 1985). Grades in the data add to 
the problem by increasing the error 
variance on both variables. For this reason, 
OLS regression methods are normally 
recommended only when r2>0.95 (in other 
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words, when the data approximate a 
straight line). This problem was widely 
known as an issue for comparative analyses 
in the 1970s and 1980s (Mace et al. 1981; 
Harvey & Mace 1982; Martin 1990), and 
was specifically identified as a problem in 
the context of the social brain hypothesis 
by Dunbar (1992, 1993). 

The conventional solution is to use 
reduced major axis (or RMA) regression 
since this places the regression line up the 

centre of the distribution of the data rather 
than across it. The only problem with 
RMA regression is that it is still not 
possible to specify the variance associated 
with the regression fit: this is because the 
regression minimises the deviation on both 
the X and Y axes simultaneously (not just 
on the Y-axis as OLS regression does) and 
this makes estimating the variance 
conceptually tricky – so tricky in fact, that 
after more than a century it has proved 
impossible to find a satisfactory solution. 
As a result, the significance of an RMA 
relationship cannot be determined. 
However, since an RMA regression cannot 
be less significant than the equivalent OLS 

regression, most statistical packages simply 
provide only the OLS regression as a 
default conservative proxy: if the OLS 
regression is significant, the RMA regres-
sion will certainly be. 

There is, however, a second problem. 
OLS regression is perfectly fine for 
determining whether there is a correlation 
between two variables, since at worst it acts 
conservatively by underestimating the 
significance. However, this comes at a cost: 
while using the OLS obviously minimises 
Type I errors (you are less likely to reject a 
false hypothesis), it necessarily increases 
Type II errors (you are more likely to reject 
a true hypothesis). This is because Type I 
and Type II errors are reciprocally related: 
if you decrease one, you necessarily 
increase the other, and vice versa. This may 
be acceptable for hypothesis-testing 
purposes (all I want to know is how 
confident I can be that the two variables 
are correlated), but it is not acceptable if 
you want to use the regression equation to 
predict new values. And herein lies a 
hidden pitfall for multiple regression 
analysis: the residuals for any variable for 
which an OLS regression is a poor estima-
tor will be much larger than those for any 
variable whose slope is accurately esti-
mated. As a result, the effect size for the 
first variable will be underestimated 
relative to that for the second variable. 
This can result in the apparent impact of 
the two predictor variables being reversed. 
In extreme cases, the first variable may 
appear to make no contribution at all.

Our more immediate concern, 
however, is with what happens when we 
use an OLS equation to predict a value for 
an unknown species. Because the slope of 
the regression is reduced (i.e. flattened), 
OLS will always overpredict on the left 

Our more immediate 
concern, however, is 
with what happens 
when we use an OLS 
equation to predict 
a value for an 
unknown species. 
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Figure 1. Mean genus group sizes for primates plotted against neocortex ratio for the 
Stephan brain dataset. The hominoids are indicated as filled symbols (from left to right: 
Hylobates, Gorilla, Pongo and Pan). The square symbol indicates the observed mean social 
group size for humans (154: Dunbar 2020). (a) The heavy dashed line is the OLS regression 
line (with 95% CIs for the prediction interval as light dashes); the heavy solid line is the RMA 
regression line. For the OLS regression, r2=0.729; it is not possible to specify statistical 
moments for RMA regressions, but the fit cannot be less than that for the OLS regression. (b) 
Grades (indicated by alternating black and white symbols) identified using a k-means 
clustering (see Dunbar & Shultz 2021a). The solid regression line is the OLS regression (with 
95% CIs as light dashed lines) for the hominoids-only grade. OLS regression is used because 
r2≥0.95 for the individual grades.  For the full dataset, r2=0.978 taking grades into account; for 
the hominoids-only grade, r2=0.989.
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hand side of the graph and underpredict 
on the right hand side (for data with a 
positive relationship; the converse will 
obviously hold if the underlying relation-
ship is negative). The difference is illus-
trated in Fig. 1a which compares the OLS 
and RMA regressions set through the 
classic social brain data. Notice, in particu-
lar, the predictions that the two equations 
would make for humans, compared to the 
observed value for human groups (~154, 
range 72-250 for N=24 samples: Dunbar 
2020). The 95% CIs for the OLS regres-
sion are indicated by the dotted lines. 
Notice that the datapoint for humans lies 
well outside the 95% CIs for the OLS 
regression, whereas the RMA regression 
line runs right through the human 
datapoint (the large square symbol). 

Fig. 1b plots the same data, but with 
the consensus grades (from Dunbar & 
Shultz 2021b) indicated. An OLS regres-
sion (acceptable here because r2>0.92 on 
all four grades) is shown only for the 
hominoid grade (the grade that includes all 
the apes and humans). The regression 
equations, and their respective r2 values, 
are given in Table 1. Notice how dramati-

cally the regression slope steepens: the con-
ventional overall OLS regression through 
the entire dataset has a slope (b=2.44), 
which is, of course, highly significant 
(p<0.001). It is, however, much shallower 
than that for the equivalent RMA regres-
sion (b=3.11), and both are considerably 
shallower than the OLS slopes for the 
individual grades (averaged across the four 
grades: b=3.88; for the hominoid-only 
grade: b=5.11; for apes only: b=4.97). The 
goodness of fit for the conventional overall 
OLS regression is a respectable r2=0.729, 
which would normally be considered very 
acceptable by most standards; the overall 
goodness of fit for the whole dataset 
taking the grades into account (Fig. 1b) is 
r2=0.978, a very significant improvement. 
The goodness-of-fit for the hominoid-only 
grade on its own is r2=0.989, that for the 
apes alone is r2=0.958. 

These slope differences result in very 
different predictions for human group size. 
The conventional OLS regression for the 
full dataset predicts a value of 82.4 (just as 
Lindenfors et al. found), and the observed 
value clearly lies well outside 95% CIs on 
this estimate (56.2 - 121.6) (Fig. 1a). The 
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Table 1. 

Regression equations for the different regression equations set to the data in Fig. 1. 

 

Regression model  Equation      r2 

 

All data: OLS    Lg10(Group) =  0.42 + 2.44*Lg10(NeoRatio†) 0.729 

All data: RMA      Lg10(Group) =  0.22 + 3.11*Lg10(NeoRatio)  n/a 

Mean for 4 grades: OLS Lg10(Group) =  0.09 + 3.88* Lg10(NeoRatio)  0.978 

Hominoids grade only: OLS Lg10(Group) = -0.95 + 5.11*Lg10(NeoRatio)  0.989 

Apes only: OLS  Lg10(Group) = -0.90 + 4.97*Lg10(NeoRatio)  0.958 

† Neocortex ratio (neocortex volume divided by volume of rest of brain) 
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RMA regression does better, with a 
prediction of 132.0. The hominoid-only 
regression, however, predicts a value of 
152.2 which is indistinguishable from the 
observed value (with 95% CIs of 100.0-
227.5 – very close to those originally 
estimated in Dunbar [1993], and, in fact, 
close to the 95% CIs for the actual data). 
The lesson here is that various regression 
methods differ in the assumptions they 
make about the data, and we need to be 
very careful that we apply the right method 
for our situation. Failure to do so can lead 
us woefully astray.

Perhaps fortunately, Lindenfors et al. 
(2020) rest their claim not on the predic-
tions themselves but on the fact that the 
confidence intervals for predicted human 
group size are so wide that almost any 
value would confirm the prediction. 
However, in doing so, they compound their 
statistical problems. The clue lies in the 
fact that their confidence intervals (2-520) 
are almost twice as wide as those given by 
the regression equations in Table 1 
(100-227). How can this be? The reason is 
straightforward. Lindenfors et al. chose to 
give confidence intervals instead of 
prediction intervals. Though both are often 
referred to as confidence intervals, the two 
are, in fact, conceptually quite different: 
one is based on the scatter in all the data 
and hence estimates the range within 
which all observed values (known and as 
yet unknown) will lie; the other gives the 
range within which the slope parameter is 
likely to vary, and hence the range within 
which predictions for a mean value should 
lie. The difference this makes is illustrated 
by the values for the overall OLS regression 
line in Fig. 1a: the 95% confidence interval 
round the prediction is {25.7-245.5} 
whereas the prediction interval is {56.2-

121.6} (it is the second that is plotted in 
Fig. 1). We are only interested in the 
second because we are concerned with 
predicting the mean value for humans, not 
the likely range of values for all possible 
samples of human populations. The latter 
isn’t especially interesting in this context, 
any more than the range of group size for 
individual primate species is especially 
interesting. The prediction interval 
radically reduces the range of acceptable 
values, making for a much more robust 
test (fewer values will satisfy the criterion). 

In reality, the question Lindenfors et 
al. should have been asking is not how 
wide the CIs are around the predicted 
value for human group size, but how close 
the observed value is to the predicted 
value. This is a Bayesian question: it asks 
how good a fit the data are to a predicted 
value, not whether or not the data differ 
from the null hypothesis – a contrast 
reflected in the statistical p-values that 
indicate significance (p≥0.95 in the first 
case, p<0.05 in the second). The observed 
value of 154 is clearly a very good fit 
indeed to the value predicted by the social 
brain equations (for the hominids-only 
regression: the Bayesian pposterior=0.95 
2-tailed; for the ape-only regression, 
p=0.95). To have confused the mean with 
the entire range of values is careless. Less 
partisan refereeing and less casual editing 
should have picked this up.

If Lindenfors et al. had really wanted 
to debunk Dunbar’s Number as a concept 
(as the tone of their article strongly 
suggests), then what they really should 
have done is an empirical analysis to show 
that there is no characteristic human group 
size. Had they done so, they would have 
discovered that a value of ~150 is widely 
characteristic of human egocentric 
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(personal) social networks as well as 
human social organisations in a wide range 
of contexts (Dunbar 2020). They would 
have found that many of these samples are 
extremely large. Of the 20 or so samples 
that establish this, no less than half have 
samples >10,000 individuals. One based 
on a sample of 61,000,000 individuals 
gave a mean personal network size of 
exactly 149 (Bond et al. 2012). The 
robustness of this value may be because 
150 constitutes a criticality in the structure 
of networks: information flow is optimised 
at this particular network size and falls 
away rapidly either side of it (West et al. 
2020). 

One test of the validity of a concept in 
science is whether it carries sufficient 
weight to be adopted and applied in the 
real world. As opposed to the world of the 
academic ivory tower, ideas have to work 
in the real world of business: there are 
hardnosed financial consequences if they 
do not. Dunbar’s Number has been applied 
in a number of interesting real world 
contexts. The Swedish government tax 
collection agency, for example, re-organ-

ised itself a few years ago so that each tax 
officer dealt with only 150 clients (a small 
enough number for them to know each 
one personally). Twitter is reported to be 
developing a new social networking 
facility, with the placeholder name Flock, 
that allows users to limit their list to 150 
favoured individuals (Moon 2022) – a 
design that had underpinned an earlier 
social networking site Path and had been 
deliberately based on Dunbar’s Number. It 
has also been widely implemented as an 
ideal team size by business consultancies 
over the last decade or so. More intrigu-
ingly, Dunbar’s Number has been used as 
the basis for a very successful bot detection 
algorithm (Berry et al. 2019). 

It is well to remember that the value of 
~150 is just one of a fractally structured 
series of layers in human social groups and 
personal social networks, the layers of 
which have very characteristic values 
(Zhou et al. 2005; Hamilton et al. 2007; 
Hill et all. 2008; Arnaboldi et al. 2015; 
Dunbar et al. 2018; Dunbar 2020; Wang et 
al. 2020). This fractal structure, or Dunbar 
graph (Acherjee et al. 2020), extends across 
a series of layers that range in size from 1.5 
to 5000 individuals with a scaling ratio of 
approximately 3 (each layer is three times 
the size of the layer inside it), reflecting the 
complex multilevel structure of all human 
social groupings (Dunbar 2020). These 
layers are characteristic of the way Face-
book and Twitter personal networks are 
organised (Arnaboldi et al. 2015; Dunbar 
et al. 2015) as well as telephone call 
patterns (MacCarron et al. 2016), the 
structure of informal business organisa-
tions (Webber & Dunbar 2020), alliance 
patterns in the online gaming world 
(Fuchs et al. 2014) and the structure of all 
modern armies (Dunbar 2011). We find 

One test of the  
validity of a concept 
in science is whether 
it carries sufficient 
weight to be adopted 
and applied in the 
real world.
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exactly the same layer sizes in the social 
groups of monkeys and apes (Dunbar et al. 
2018; Dunbar & Shultz 2021b; Escribano 
et al. 2022).  In short, the way we organise 
our businesses and our personal social 
worlds, and the way the social groups of 
our monkey and ape cousins are struc-
tured, all turn out to follow exactly the 
same rule and appear to be a consequence 
of criticalities in the way information flow 
is optimised in social networks (West et al. 
2020, 2023).

4. Conclusions

There are two salutary philosophical 
lessons here that apply widely throughout 
the sciences and the humanities. First, the 
world we live in is complex, and we forget 
this at our peril. We need to be sure that 
when we compare between alternative 
explanations for some effect that we are 
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comparing like with like. The statistical 
tests we use do not guard against poorly 
thought out hypotheses: they simply 
mechanically calculate what they are told 
to calculate. Failure to think through the 
theoretical structure of our explanations 
can easily result in our misinterpreting the 
statistical results. We need to make much 
greater efforts to set the particular prob-
lem that interests us into the bigger 
real-world picture of which it is a part.  
Second, we need to think much more 
carefully about the way we test hypotheses, 
and especially about the assumptions that 
underlie the statistical tests available to us. 
Too often we just press buttons in software 
programs without actually knowing what 
the statistical algorithms actually do, or 
why the original programmer included the 
particular version of a test that they did. 
When we fail to understand the assump-
tions that lie behind the statistics, we risk 
sliding into the GIGO (Garbage In, 
Garbage Out) mode of science. 
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