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Abstract		
The digital twins of production systems are one of the pillars of the Indus-try of the Future. 
Despite numerous on-going research and development initiatives the verification and 
validation of the digital twin remains a major scientific obstacle. This work proposes a 
simulation-based approach to achieve this goal: support Digital Twin verification and 
validation through the definition of a dedicated framework. A simulation model is used in 
place of the real-world system for ensuring the digital twin behaves as expected and for 
assessing its proper interoperability with the system to be twinned with. Then the simulation 
model is replaced by the real-world sys-tem, to interoperate with the verified and validated 
digital twin. With such an approach, the interoperability middleware, i.e. the IoT between the 
sys-tem and its digital twin can also be modeled, simulated, verified and vali-dated. 
Consequently, an optimized solution can be built for an entire value chain, from the system to 
its digital twin and conversely. 
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1. Introduction	

The concept of “smart everything” is emerging with the ever-growing digitalization of the society, 
from industrial and health sectors, to educational an urbanization sectors. Consequently, new 
production systems are appearing, where data and virtual technologies occupy a prominent place. 
Such systems are so complex that their management requires model-based approaches. 

The digital twin (DT) concept has surfaced as such an approach and is landing in top strategic 
technology trends. It is based on the idea that a model which is used in different ways in place of a 
system of interest, is continuously synchronized with that system in order to reflect any real event 
happening to the system on the model, such that any management initiative can be assessed on this 
ever-updated artifact before transferring it to the system. Therefore, the model is more than a simple 
representation of the system, but a digital counterpart which is specifically bound to the system, rather 
than representing a family of systems of the same kind. 

NASA is a pioneer in the system-pairing approach for having simulated from the ground situations 
occurring in space, to guide astronauts. Yet while this approach brought the Apollo 13 crew back safe 
in 1970, it didn’t use a DT, but a pair of physical twins (respectively located in space and in ground). 

The term digital twin first appeared in [1], and the underlying principle of a digital informational 
construct created as a separate entity and related to a physical system of interest was foreseen in [2]. 
In the context of product life cycle management, the model of a conceptual ideal was proposed and 
called Mirrored Spaces Model [3], and later Information Mirroring Model [4], and actually Digital 
Twin [5]. It has been defined as: "a set of virtual information constructs that fully describe a potential 
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or actual physical manufactured product, from the micro atomic to the macro geometric level" [6]. 
This data-centric definition contrasts with the behavior-centric one given in [7], where a DT is "an 
integrated multi-physics, multiscale, probabilistic simulation of an as-built vehicle or system that uses 
the best available physical models, sensor updates, fleet history, etc., to mirror the life of its 
corresponding flying twin”. 

From a simulation perspective, the DT is a disruptive approach, as simulation experiments are 
based on current information provided by the system, rather than assumptions [8, 9]. Used in this way, 
the DT serves both for representational purposes, and prediction-making on system behavior [10], 
which often appear as a set of integrated sub-models that reflect different system characteristics [11]. 
Some additional aspects have also emerged, such as DT-based prognostic and diagnostic activities 
[12, 13], as well as DT-based real-time optimization [14, 15]. 

Current DT applications span from automotive [16], avionics [17], aerospace [7], energy [18] to 
manufacturing [8], healthcare [19] and services [20]. Industrial applications of DTs include 
controlling the predictive maintenance of equipment, improving assets safety and reliability, and 
optimizing process operation and product design. In healthcare, the DT approach holds the promise of 
designing personal and completely tailor-made treatments/surgeries for diseases, in contrast with 
traditional approaches that are based on what is best on average for a large group of patients. DTs also 
allows servitization by supporting companies in monitoring their products while they are in 
customers’ hands. 

Despite all these research and development initiatives, DT verification and validation (V&V) 
remains a major scientific obstacle. This paper proposes a candidate framework to achieve that goal. 
It suggests a simulation-based approach, where a simulation model is used in place of the real-world 
system for ensuring the DT behaves as expected and for assessing its proper interoperability with the 
system to be twinned with. Then the simulation model is replaced by the real-world system, to 
interoperate with the verified and validated DT. With such an approach, the interoperability 
middleware, i.e. the IoT between the system and its DT can also be modeled, simulated, verified and 
validated. Consequently, an optimized solution can be built for an entire value chain, from the system 
to its DT, and conversely. 

The remaining of the paper is organized as follows: We first propose in Section 2 a unifying 
framework to DT understanding and engineering. Then, Section 3 presents the V&V approach based 
on this framework. A conclusion is given in Section 4. 

2. Unifying	DT	framework	

The DT concept is approached by different professional communities in a way akin to the 
metaphor of a group of blind men who have never encountered an elephant before and who 
conceptualize what it is by touching it. Each blind man feels a different and unique part of the 
elephant's body. They then describe the elephant based on this sole experience and their views differ 
radically. Similarly, actors from different communities make various use of the term Digital Twin in a 
way that raises the issue of its fair and formal definition. Nevertheless, we argue that all these various 
DT views fall under the same common umbrella, which we try to formalize here. 

2.1. Definition	

What makes a digital model a DT is that there is a data-based synchronization between that model 
and the real entity of interest (be it a product, a process or a system) that the model represents, where 
data are collected from the real entity. We formally define the Twin of Interest (TOI) as referring to 
an entity of interest, viewed from a systemic perspective (i.e., a product/service/process system). 
Since the entity of interest can be material or immaterial (such as a software), the term TOI is 
preferred to “physical twin” or “real twin”. We define a DT as referring to a digital abstraction 
synchronized with a TOI and reflecting one or more of the TOI’s aspects (static, dynamic, functional, 
etc.). 

 
 



2.2. Operational	value	chain	

The value chain shown in Figure 1 defines a DT system that achieves rationality: (1) sensing its 
associated TOI, and collecting, cleaning, interpreting and storing data; (2) turning data perceived into 
capability models, i.e., data-based diagnosis/prognosis model, simulation-based prediction model, 3D-
based visualization/monitoring model, and/or rule-based decision-making model that may combines 
other models; then (3) acting accordingly (the decision can be automatically derived and sent to the 
TOI to be executed by its actuators, or made by a human operator through a decision interface). 

 

 
Figure	1:	DT	value	chain’s	operational	architecture.	

 
The capability models are executed by engines embedded in existing as-a-service platforms, such 

as Analogic Cloud for simulation and AI4EU for AI (https://www.ai4europe.eu/). 

3. DT	V&V	

The objective of this section is to suggest a systematic simulation-based DT engineering approach. 
We first propose an operational architecture, which we use to design the DT V&V methodology. 

The role of the real-world system is played by a simulation model during the design stage of the 
digital twin, and the IoT infrastructure is simulated by an analogical model; once the digital twin 
realized and effective, the simulation model is replaced by the real system, and the analogical model 
by the real IoT infrastructure. Therefore, the V&V methodology’s components are the following: (i) 
the TOI, i.e., the real system; (ii) the simulated TOI, i.e., a simulation model of the real system with 
implementation using the Anylogic software [21]; (iii) the simulated IoT, i.e., an Internet-based 
infrastructure that links the simulated TOI to its digital counterpart; and (iv) the DT, i.e., an instance 
of the operational architecture. 

The V&V methodology consists in the following 5 steps: 
1. Firstly, the simulated TOI is built and validated against the real system, using traditional V&V 

techniques [22]. 
2. Secondly, the simulated IoT is modeled and integrated to the simulated TOI, using an existing 

Internet-based mechanism (such as files shared in a drive on cloud). 
3. Thirdly, the DT is built as a technology-specific instance of the layered model, integrating the 

communication with the simulated IoT. 
4. Lastly, the DT operationality and interoperability are verified and validated against the 

simulated TOI, using traditional V&V techniques. 
5. The validated DT is ready to be paired with the TOI, provided the simulated IoT is replaced by 

the real-world IoT, and the communication mechanisms implemented accordingly. 

4. Conclusion	

This work proposes a framework to support digital twin verification and validation. With it, a 
candidate DT must meet each of the following criteria in order to be qualified as a DT (if one of the 
criteria is not met, then the candidate is not a DT from our framework’s perspective): 



• A DT is a digital model of a reality, and is paired with that reality in a way it is able to self-
update in response to known changes in the state, condition, or context within the reality 
represented. A model turns into a DT only when it is paired with its real counterpart. It is no 
longer a DT at the real counterpart disposal, as it turns to a digital documentation (unlike in 
Grieves’s view where the lifecycle of the DT continues beyond the disposal of the real 
counterpart). 

• A DT is uniquely paired with a specific instance of the reality and can contain various 
representations of that instance. The model(s) composing the DT can’t be the twin of more than 
one real instance, regardless of their similarities in structure and behavior. 

• A DT provides services (such as analysis, optimization, prediction, etc.) through capability 
models (such as visualization model, simulation model, etc.). 

We propose an operational architecture, which technology-agnostically concretizes a DT reference 
model, and which allows us to define our V&V strategy. The methodology consists of replacing the 
twin of interest as well as the twinning middleware (the IoT) by simulation models, and when the 
digital twin is realized and tested against these simulated components, the real-world infrastructure is 
set, including the real-world system and the real-world IoT infrastructure. The framework has been 
demonstrated on various technology-specific use cases. 
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