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SEPARATION PROFILE, ISOPERIMETRY, GROWTH
AND COMPRESSION

by Antoine GOURNAY & Corentin LE COZ (*)

Abstract. — We give lower and upper bounds for the separation profile (in-
troduced by Benjamini, Schramm & Timár) for various graphs using isoperimetric
profile, volume growth and Hilbertian compression. For graphs which have poly-
nomial isoperimetry and growth, we show that the separation profile is bounded
between na and nb for some a, b ∈ (0, 1). For many amenable groups, we prove a
lower bound of n/ log(n)a for some a > 1, and for groups admitting “good” embed-
dings into an ℓp space we prove an upper bound of n/ log(n)b for some b ∈ (0, 1).
We show that solvable groups of exponential growth cannot have a separation pro-
file bounded above by a sublinear power function. We also introduce a notion of
local separation, with applications for percolation clusters of Zd and graphs which
have polynomial isoperimetry and growth.

Résumé. — Pour différents types de graphes, nous établissons des bornes in-
férieures et supérieures sur leur profil de séparation (introduit par Benjamini,
Schramm & Timár), en utilisant le profil isopérimétrique, la fonction de croissance
et la compression dans les espaces de Hilbert. Dans le cas des graphes de dimen-
sion isopérimétrique supérieure à 1 et à croissance polynomiale, nous montrons que
le profil de séparation est compris entre deux fonctions puissance, avec des expo-
sants compris strictement entre 0 et 1. Pour de nombreux groupes moyennables,
nous montrons une borne inférieure de la forme n/ log(n)a avec a > 1 et, pour les
groupes ayant des « bons » plongements vers un espace ℓp une borne supérieure de
la forme n/ log(n)b avec b compris strictement entre 0 et 1. Nous prouvons que le
profil de séparation d’un groupe résoluble à croissance exponentielle n’est jamais
dominé par une fonction puissance sous-linéaire. Nous introduisons également une
notion de séparation locale, avec des applications aux composantes de percolation
de Zd et aux graphes de dimension isopééimétrique supérieure à 1 et àà croissance
polynomiale.
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1. Introduction

The separation profile was first defined by Benjamini, Schramm & Timár
in [7]. The separation function at n is the supremum over all subgraphs of
size n, of the number of vertices needed to be removed from the subgraph,
in order to cut into connected pieces of size at most n/2. The introduc-
tion of this function was motivated by the study of regular maps between
metric spaces, because the separation profile is monotonous under regu-
lar maps (up to constant factors). A map between two graphs of bounded
degree is said to be regular if it is Lipschitz, and if the cardinality of the
preimages of singletons is uniformly bounded (see Definition 6.2); for ex-
ample, quasi-isometric and coarse embeddings between connected graphs
are regular maps.

Hume’s work about linear separation profiles (see [22]) led to an equiva-
lent definition of the separation profile using the Cheeger constant h. The
definition of the separation profile that we use is the following:

Sep(n) = sup
F ⊂V Γ,|F |⩽n

|F |h(F ),

where h(F ) denotes the Cheeger constant of F (see Section 2 for details).
This was studied by Hume in [22] with the aim of finding large classes of

expanders. His work was continued by Hume, Mackay & Tessera [24] who
introduced Lp-variants of these profiles and recently Hume & Mackay [23]
studied the case of groups with low separation profiles (≺ log(n)). On
the opposite side, the separation profiles of expanders is linear (along a
subsequence).

The subject matter of the current paper is to estimate the separation
profile for various types of graphs, using other known information such
as growth, isoperimetry and compression. Our focus is mostly on Cayley
graphs, because this is where most information is available on other proper-
ties of the graph (such as growth, isoperimetry and compression). However
our methods do not really require the high level of regularity that Cayley
graphs possess.

A first group of results regards graphs G which are “polynomial” in some
sense. Here ΛG denotes the isoperimetric profile of G, defined by ΛG(n) =
inf
{

|∂A|
|A| : A ⊂ G, |A| ⩽ n

}
. Isoperimetry gives rise to a notion of dimen-

sion: if for some K > 0, ΛG(n) ⩾ Kn−1/d, one says the graph has d-
dimensional isoperimetry. The growth will be measured by bn =
supx |Bn(x)| where Bn(x) is the ball of radius n centred at x. Roughly
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speaking, a (d1, d2)-polynomial graph is a graph of growth bounded by nd2

and of isoperimetric dimension at least d1, see Definition 6.9 for details.

Theorem 1.1.
• Let G be a graph such that K1

n1/d ⩽ ΛG(n) ⩽ K2
n1/d for some constants

K1 and K2, then, ∃K3 > 0 such that for all n, Sep(n)
n ⩾ K3

n1/d .
• Let G be a graph such that bn ⩽ K1nd for some constant K1, then,

∃K2 > 0 such that for all n, Sep(n)
n ⩽ K2 log n

n1/d .
• Let G be a (1+ϵ, d)-polynomial graph. Then, for any δ > d there are

constants K1 and K2 such that, for all n, K1nϵ(1+ϵ)/δ2
⩽ Sep(n) ⩽

K2n(d−1)/d log n.

See Proposition 4.1, Proposition 4.3 and Corollary 5.4 for details.
This theorem can be used on Cayley graphs of nilpotent groups (for which

a sharper upper bound was already given by Hume, Mackay & Tessera [24]),
but our method applies also to other type of graphs, such as pre-fractal Sier-
pinski carpets (on this subject, see Gibson & Pivarski [16] for isoperimetry
and Gladkova & Shum [17] for a study of the relationship between confor-
mal dimension and separation profile in graphs of fractals).

Our methods also yield results on the infinite percolation components
of Zd, and more generally on polynomial graphs. Since the percolation
component always includes arbitrary large balls, it is more interesting to
introduce a local variant of the separation profile in this context, namely
the local separation at v, where v is a vertex of the graph (see Section 6):

Sepv
G(n) := sup

F <BG(v,r);|BG(v,r)|⩽n

|F | · h(F ).

Local separation profiles are also monotone under regular maps, see
Proposition 6.3. In that case, we show that Sepv(n)

n is bounded below by
a function of the type 1

nα , for every vertices in the polynomial case, see
theorem below.

Theorem 1.2. — Let G be a (d1, d2)-polynomial graph. Then for any
η ∈ (0, 1) there exists c > 0 such that for any vertex v and any integer n:

Sepv(n) ⩾ cn
(1−η)

d2
1(d1−1)

d3
2 .

(see Corollaries 6.11 and 6.21 for details), and for vertices that stay expo-
nentially close to the origin in the Zd percolation case:

Theorem 1.3. — Let C∞ be a supercritical phase percolation cluster
of Zd. Then for any ε ∈ (0, 1) There exists almost surely c > 0 such that
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1630 Antoine GOURNAY & Corentin LE COZ

for n large enough, if ∥x∥∞ ⩽ exp
(

n(1−ε) d
d−1

)
, then we have:

Sepx
C∞

(n) ⩾ cn
d−1

d .

(see Corollary 6.13).

In this case, the inclusion in Zd shows that this lower bound is optimal.
The same methods as those of Theorem 1.1 can also be applied to groups
of intermediate growth:

Theorem 1.4. — Let G be a Cayley graph of a groups of intermediate
growth with K1 ena

⩽ bn ⩽ K2 enb where K1, K2 > 0 and a, b ∈ ]0, 1[. Then
• ∃K3 > 0 such that there are infinitely many n with Sep(n)

n ⩾
K3

(log n)1+ 1
a

.

• ∃K4 > 0 such that for any n, Sep(n)
n ⩽ K4

(log n)
1
b

−1 .

See Proposition 4.7 and Corollary 5.3 for details. The upper bound is
obtained here using the growth assumption. Relations between growth and
separation is studied in subsection 5.1.

Inside the realms of graphs having a logarithmic isoperimetric profile,
the lower bounds obtained are listed in the upcoming theorem. (The list
is not exhaustive, one could also get a lower bound for any group whose
isoperimetric profile is known, e.g. Z ≀ Z.) Note that it is reasonable to
compare Sep(n)

n with ΛG(n) for two reasons. First, for nilpotent groups
those two functions coincide up to some multiplicative constants (see Hume,
Mackay & Tessera [24]). Second, the underlying mechanism which allow us
to provide such bounds relies on the known estimates of ΛG(n).

Theorem 1.5. — Let G be a Cayley graph.

If, for some a > 0, ΛG(N) is ... then, for infinitely many N ′s, Sep(N)
N

is ...

≼ 1
log(N)a ≽ ΛG(N)

log(N)

≼ 1
loga

(
log(N)

) ≽ ΛG(N)
log(N)C (for some C)

≼ 1
(log... log log N)a

≽ ΛG(N)
Nε , where ε can be arbitrarily

small
These estimates on the isoperimetric profile are known for polycyclic

groups which are not nilpotent (first row of the table with a = 1), wreath
products F ≀N where F is finite and N is a nilpotent group whose growth is
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polynomial of degree d (first row with a = 1/d), iterated wreath products
F ≀(F ≀N) where F is finite and N is a nilpotent group whose growth is poly-
nomial of degree d (second row with a = 1/d), solvable groups in general
(third row, see [37] and [38]). See Propositions 4.7 and 4.13 for details.

Using the last row of the table, we prove the following theorem:

Theorem 1.6. — Let G be a finitely generated solvable group. If there
exists ϵ ∈ (0, 1) and c > 0 such that for any large enough integer n we have

SepG(n) ⩽ cn1−ϵ,

then G is virtually nilpotent.

See Theorem 4.18 for details. It is a very natural question to wonder
whether Sep(n) ⪯ n1−ϵ for G amenable implies that G is virtually nilpo-
tent, see Question 7.7. However, our proofs techniques break down com-
pletely in the general case, see Section 4.5. Here is a direct application of
Theorem 4.18 and Theorem 1.4: (see Definition 6.2 for the definition of a
regular map)

Corollary 1.7. — Let G be a finitely generated group which is either
solvable or of subexponential growth. If there exists a regular map from G

to Hd (the d−dimensional hyperbolic space), then G is virtually nilpotent.

The case of G solvable was already addressed by Hume & Sisto [25,
Corollary 1.3] in the case of coarse embeddings, with a completely different
proof.

Remark 1.8. — In the context of the current paper, limited to graphs,
it might not be clear what a regular map to Hd is. Either replace Hd by
any uniform lattice or see Hume, Mackay & Tessera [24] for the generalisa-
tion of separation profiles and regular maps to Riemannian manifolds with
bounded geometry.

Though our lower bounds apply to a vast array of groups, we show,
using constructions of Erschler [14] and Brieussel & Zheng [9], that there
are groups for which those methods fail to give a significant bound (see
Section 4.5).

Our upper bounds on the separation profile come either from the growth
of balls (for graphs which do not have exponential growth, see Theorems 5.3
and 5.4) or from the compression exponents:

Theorem 1.9. — Let G be a bounded degree graph which has compres-
sion exponent (in some Lp-space) equal to α > 0. Then, for any c < α

2−α ,
there is a constant K so that, for any N , Sep(N)

N ⩽ K
(log N)c .

TOME 73 (2023), FASCICULE 4



1632 Antoine GOURNAY & Corentin LE COZ

See Corollary 5.6 for details.
In addition to the afore-mentioned examples, the previous theorem ap-

plies to products of hyperbolic groups (these have α = 1 [39, Corollary 2]).
This shows that the separation profile of a product of hyperbolic groups
satisfies Sep(n)

n ⩽ K1
(log n)1−ε (for any ε ∈ (0, 1)). This is quite sharp, since

such a group always have Sep(n)
n ≃ 1

log n , as soon as at least two of these
hyperbolic groups are non-elementary. Indeed, in this case it contains up
to quasi-isometry the product T × T , where T is the infinite binary tree
(e.g. from the Tits alternative for hyperbolic groups). This implies that
its separation profile satisfies Sep(n)

n ⪰ 1
log n [7, Lemma 1.3, Theorem 3.5].

On the other hand, any product of hyperbolic groups coarsely embeds in
a product of the form T × · · · × T [10], which implies that its separation
profile satisfies Sep(n)

n ⪯ 1
log n .

It might be disappointing to see that the lower bounds of Theorem 1.5 are
sometimes much smaller that the original isoperimetric profile (e.g. a power
of log N is much larger than log log N). However, our upper bounds show
that such a dramatic loss cannot be avoided (see Theorem 1.9, Corollary 5.6
and Remark 4.14).

In fact, for polycyclic groups, free metabelian groups, lamplighters on Z
with finite lamps, lamplighters on Z2 with finite lamps and some iterated
wreath products such as F ≀ (F ≀ Z), Theorem 1.5 gives that Sep(n)

n is in-
finitely often ⩾ K1(log n)−c1 while it is (for all n) ⩽ K2(log n)−c2 , from
Theorem 1.9.

More precisely, c2 < 1 can be arbitrarily close to 1 (but there is no
control on the constant K2 as far as we know) Furthermore, for polycyclic
groups and lamplighters on Z with finite lamps c1 = 2. For lamplighters
on Z2 with finite lamps c1 = 3

2 . For free metabelian groups c1 > 1 + 1
r is

arbitrarily close to 1 + 1
r , where r is the rank of the group.

The case of F ≀ (F ≀ Z) is of particular interest, since it shows that the
appearance of the logarithmic factor in the lower bound is necessary (see
Remark 5.7). This also shows that there are amenable groups for which
Sep(n)

n decays much faster than ΛG(n).

Organisation of the paper

Section 2 contains the basic definitions. In Section 3.1, we make the first
step towards a lower bound by looking at sets which have a small boundary
to content ratio. These optimal set turn out to have a high separation. This
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estimate is then used in Section 3.2 to get lower bounds on the separation
profile from the isoperimetric profile. Section 4 is devoted to concrete es-
timates in various Cayley graphs and self-similar graphs (Section 4.1.1).
The proof of Theorem 1.6 (as well as some further lower bounds) is done
in Section 3.3. Groups where the methods do not yield a lower bound are
constructed in Section 4.5. Upper bounds on the separation profile are done
in Section 5: via growth in Section 5.1 and via compression in Section 5.2.
Local separation profiles are studied in Section 6, with applications to in-
finite percolation component in Zd (Section 6.2) and to polynomial graphs
(Section 6.2 and 6.4). Questions are presented in Section 7.

Acknowledgments
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and followed this project all along; Romain Tessera for various interest-
ing questions, remarks and corrections; Itai Benjamini who proposed us
to study local separation of polynomial graphs; and Todor Tsankov for
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2. Definitions

The set of vertices of a graph G will be denoted V G, while the set of edges
will be written EG. The set of edges consists of ordered pairs of vertices:
EG ⊂ V G × V G. Since the separation profile is monotone under quasi-
isometric embeddings only for graphs of bounded degree, we will always
work with this hypothesis.

Definition 2.1. — Let G be a graph. For any subset A ⊂ V G, its
boundary is the set ∂A = {(a, b) ∈ EG, a ∈ A ⇔ b ∈ Ac}.

Definition 2.2. — The isoperimetric profile of a graph G is the func-
tion ΛG : N → R⩾0 defined by

ΛG(n) = inf
A⊂V G,|A|⩽n

|∂A|
|A|

.

Note that, for an infinite connected graph, the isoperimetric profile never
takes the value 0.

TOME 73 (2023), FASCICULE 4
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Definition 2.3. — For any finite graph G, the Cheeger constant h(G)
of G is

h(G) = min
A⊂G,|A|⩽ |G|

2

|∂A|
|A|

.

Let Γ be an infinite graph. For any finite subset F ⊂ V Γ, let F̃ be the
subgraph of Γ induced by F , defined more precisely by:

• V F̃ = F

• EF̃ = {(a, b) ∈ V Γ | a, b ∈ F}
By a small abuse of notation, the Cheeger constant of F ⊂ V Γ is h(F ) =
h(F̃ ).

Definition 2.4. — Let Γ be an infinite graph of bounded degree. The
separation profile of Γ is the function Sep : N → R⩾0 defined by

Sep(n) = sup
F ⊂V Γ,|F |⩽n

|F | · h(F ).

As remarked by Hume, Mackay & Tessera in [24], it comes naturally
from [22, Proposition 2.2. and Proposition 2.4.] that this definition is equiv-
alent to the original one from Benjamini, Schramm & Timár [7].

One may notice that we use here the edge-boundaries, unlike Hume who
uses vertex-boundaries. However, under the assumption that the graph has
a bounded degree those two differ only by a constant factor.

Remark 2.5. — In any graph with at least one edge there is a trivial
lower bound on Sep(n): Sep(n) ⩾ 1 or Sep(n)

n ⩾ 1
n . Recall that Benjamini,

Schramm & Timàr [7, Theorem 2.1] showed that a graph with bounded
separation admits a regular map into a tree.

Lastly, the following convention will be used to compare functions: f(n) ⪯
g(n) if there is a constant K > 0 so that f(n) ⩽ Kg(n). f(n) ≃ g(n) if
f(n) ⪯ g(n) and g(n) ⪯ f(n) (most of the time not with the same con-
stant).

3. Lower bound on the separation from isoperimetry

3.1. Optimal sets and their Cheeger constant

This section is devoted to the following question: given an infinite graph
that has a rather large isoperimetric profile, does the same holds for the
Cheeger constants of its finite subgraphs?

ANNALES DE L’INSTITUT FOURIER
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There are two simple negative answers. First, in any infinite connected
graph, there is an infinite subset L so that the graph induced to L is
an infinite half-line. However, a finite subgraph of the half-line has the
weakest Cheeger constant. Clearly, one needs to restrict a bit more the sets
considered. It turns out the right thing to do is to restrict only to sets F

which are “optimal” for the isoperimetric problem.
Second, consider the infinite regular tree; a graph with strong isoperi-

metric profile (i.e. the isoperimetric profile is bounded from below by a
constant). Any graph induced by a finite subset has (again) the weakest
possible Cheeger constant.

The aim of this section is to show that in graphs without strong isoperi-
metric profiles, the Cheeger constant on the optimal induced subsets is still
fairly strong.

Definition 3.1 (Optimal sets and integers). — Let Γ be an infinite
graph

• A subset F of V Γ is called optimal if |∂F |
|F | = ΛΓ(|F |), i.e.:

∀G ⊂ V Γ, |G| ⩽ |F | ⇒ |∂G|
|G|

⩾
|∂F |
|F |

.

• An integer n will be called optimal if there exists an optimal subset
of cardinality n.

Lemma 3.2. — Assume F is optimal. Then:

2h(F ) ⩾ ΛΓ

(
|F |
2

)
− ΛΓ (|F |) .

Proof. — The Cheeger constant for the [finite] graph induced on F is
given by looking at subsets F1 of V F of size at most equal to |F |

2 , and
trying to minimise |∂F F1|

|F1| , where ∂F denotes the boundary in F .
Let F1 be a subset of V F of size at most equal to |F |

2 , let F2 = F \ F1.
For any (disjoint) subsets A and B of V Γ, we denote by E(A, B) the set
of edges of Γ that have one endpoint in A, and the other in B. We have:

∂F1 = E (F1, V Γ \ F1)
= E (F1, V Γ \ F ) ⊔ E (F1, F2)
= E (F1, V Γ \ F ) ⊔ ∂F F1.

Similarly,

∂F2 = E (F2, V Γ \ F ) ⊔ ∂F F2

= E (F2, V Γ \ F ) ⊔ ∂F F1.

TOME 73 (2023), FASCICULE 4
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Then we have
2|∂F F1| = |∂F1| + |∂F2| − |∂F |.

Moreover, we have ΛΓ(|F1|) ⩾ ΛΓ(|F |/2), and as F is optimal, |∂F2|
|F2| ⩾ |∂F |

|F |

and ΛΓ(|F |) = |∂F |
|F | .

Using these facts, we can deduce that

2|∂F F1| ⩾ |F1|ΛΓ(|F1|) + |F2|. |∂F |
|F | − |F |. |∂F |

|F |

= |F1|ΛΓ(|F1|) − |F1|. |∂F |
|F |

⩾ |F1| (ΛΓ(|F |/2) − ΛΓ(|F |)) .

Since this is true for any F1 ⊂ V F of size at most |F |/2, this concludes
the proof. □

One already sees that these methods give basically nothing in graphs
with a strong isoperimetric profile, since ΛΓ is nearly constant. This is
however to be expected since there can be no general reasonable bound
in this family of graphs (the typical example would be infinite k-regular
trees).

Corollary 3.3. — If n > 0 is optimal, then:

2Sep(n)
n

⩾ ΛΓ(n/2) − ΛΓ(n).

Proof. — Assume F is optimal of cardinality n. Then 2 Sep(n)
n ⩾ 2h(F ) ⩾

ΛΓ(n/2) − ΛΓ(n) □

3.2. A lower bound on the separation profile from isoperimetry

The following theorem is a consequence of the previous lemma and it
applies to a large class of graphs, providing that the isoperimetric profile
tends to 0 without reaching it (equivalently, the graph is amenable and has
no finite connected components). It can be simplified in the case of graphs
with “many symmetries”, see Theorem 3.8.

Theorem 3.4. — Let G be an infinite connected amenable graph of
bounded degree. Assume there is an increasing function p : N → N so that
for any n there is a k ∈ (n, p(n)] such that k is optimal. Choose ε ∈ (0, 1).
Let n ⩾ 1 be an integer. Let m ⩾ 1 be such that ΛG(m) ⩽ (1 − ε)ΛG(n).

Then there exists an N ∈ [n, p(m)] such that
Sep(N)

N
⩾ ε

ΛG(n)
4 log( p(m)

n ) + 4
.

ANNALES DE L’INSTITUT FOURIER
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For example, it applies to graphs where the isoperimetric profile is
bounded above and below: C1

na ⩽ ΛG(n) ⩽ C2
na . Given an optimal inte-

ger no the next optimal integer np happens at the latest when C1
na

o
⩾ C2

na
p

,
or in other words np ⩽ ( C2

C1
)1/ano (and the function p is linear). We study

this specific case in Theorem 4.1
Proof. — We use Λ = ΛG throughout this proof. Let n0 = min{k ⩾ n |

k is optimal}. We define recursively i ∈ N, ni+1 = max{k ∈ (ni, 2ni] | k

is optimal }, if this set is non-empty, and, otherwise, ni+1 = min{k | k ∈
[2ni, p(n)] and k optimal}.

Notice that ∀i, ni+2 ⩾ 2ni. Let imax be the first index i for which ni ⩾ m.
Then

nimax−1 ⩽ m ⩽ nimax ⩽ p(nimax−1) ⩽ p(m).
Using Lemma 3.2,

∀i ∈ [0, imax], 2Sep(ni)
ni

⩾ Λ(ni/2) − Λ(ni).

Summing up all these inequalities, one gets

2
imax∑
i=0

Sep(ni)
ni

⩾ Λ(n0/2) − Λ(nimax) +
imax−1∑

i=0
Λ(ni+1/2) − Λ(ni).

Either 1
2 ni+1 ⩽ ni (so that Λ(ni+1/2) ⩾ Λ(ni) since Λ is decreasing) or

Λ(ni+1/2) ⩾ Λ(ni) because ni+1 is the next optimal integer after ni. Either
way, the sum on the right-hand side is positive, and consequently

2
∑imax

i=0
Sep(ni)

ni
⩾ Λ(n0/2) − Λ(nimax)
⩾ Λ(n) − Λ(m)
⩾ εΛ(n).

To justify the second inequality, note that Λ(m) ⩾ Λ(nimax) by mono-
tonicity of Λ (and m ⩽ nimax) To see that Λ(n0/2) ⩾ Λ(n) consider two
cases:

• if n0 ⩽ 2n, then (since Λ is non-increasing) Λ(n0/2) ⩾ Λ(n)
• otherwise n0 ⩾ 2n, therefore ⌊n0/2⌋ is not optimal, so Λ(n0/2) =

Λ(n).
From there, we can deduce that

∃j ∈ [0, imax], Sep(nj)
nj

⩾
ε

2
Λ(n)

imax + 1 .

But recall that ∀i, ni+2 ⩾ 2ni. Consequently, nimax ⩾ 2⌊ imax
2 ⌋n0. Fur-

thermore, nimax ⩽ p(m). This implies: 2⌊ imax
2 ⌋n0 ⩽ p(m). Since n0 = n,
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2⌊ imax
2 ⌋ ⩽ p(m)

n Thus,

imax + 1 ⩽ 2⌊ imax

2 ⌋ + 2 ⩽ 2 log2

(p(m)
n

)
+ 2.

The claim follows if we choose N := nj . □

Definition 3.5. — We shall say that a graph G has partial
self-isomorphisms, if, for every finite set F ⊂ V G, there exists another
finite F ′ such that F ∩ F ′ = ∅ and the graph induced on F ∪ ∂F is iso-
morphic (as a finite graph) to F ′ ∪ ∂F ′.

Note that having partial self-isomorphisms implies the graph is infinite.
This property is satisfied by fairly natural classes of graphs such as Cayley
graphs, graphs with vertex-transitive (or edge-transitive) automorphisms
and self-similar graphs.

Lemma 3.6. — Let G be a graph which has partial self-isomorphisms.
Assume n is an optimal integer. The set {k ∈ (n, 2n] | k is optimal} is not
empty.

Proof. — If there is an optimal subset F whose size is (n, 2n], there is
nothing to prove. Otherwise, let us construct such an optimal set of size 2n.

Let F be an optimal set of size n. Using the property of partial self-
isomorphisms, there is a set F ′ with |F | = |F ′|, |∂F | = |∂F ′|, and F ∩F ′ =
∅. Hence |F ∪ F ′| = 2n and |∂(F ∪F ′)|

|F ∪F ′| ⩽ |∂F |
|F | . Since we assumed there

are no optimal sets whose size is in (n, 2n], then for any G ⊂ Γ such that
|G| ⩽ 2n, we have |∂G|

|G| ⩾ |∂F |
|F | ⩾ |∂(F ∪F ′)|

|F ∪F ′| . Therefore F ∪F ′ is optimal. □

Since there is always an optimal integer (n = 1!), any graph with partial
self-isomorphisms always has infinitely many optimal n.

Remark 3.7. — Even without the assumption that the graph G has par-
tial self-isomorphisms, it is still possible to get some information on optimal
integers, using the bounds on the isoperimetric profile. This is what is done
in Theorem 3.10.

This strategy is very well adapted to polynomial graphs, so we applied it
also in the proof of Theorem 6.10, taking a function p(n) satisfying the more
restrictive condition ΛG(p(n)) ⩽ ΛG(n)/2. It simplifies the proof without
any loss.

Theorem 3.8. — Assume Γ is a connected amenable graph of bounded
degree with partial self-isomorphisms. Let n ⩾ 1 and ε ∈ (0, 1). Let m ⩾ 1
be such that ΛΓ(m) ⩽ (1 − ε)ΛΓ(n).
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Then there exists an N ∈ [n, 2m] such that

Sep(N)
N

⩾ ε
ΛΓ(n)

4 log(m/n) + 8 .

Proof. — This result comes naturally from Theorem 3.4 and
Lemma 3.6. □

3.3. A qualitative approach

In this subsection, we give an application of Theorem 3.4 using a single
upper bound on the isoperimetric profile. In applications, this gives an
improvement on the lower bounds obtained on the separation profile, but
this comes to the cost of a weaker control on the frequency of the integers
for which the bound holds. Inspired by the formulation of Theorem 3.4, we
quantify the decreasing of real functions in the following way:

Definition 3.9. — Let f : R>0 → R>0 be a continuous non-increasing
function such that f tends to 0 at infinity. For any δ ∈ (0, 1), we define the
δ−geometric decay function of f as:

pδ
f (x) := f−1 (δf(x)) = min {x′ | f (x′) ⩽ δf(x)} .

We define the δ-geometric decay function of a function from N∗ to R>0
as the δ−geometric decay function of either a natural extension, either a
piecewise affine extension.

We can state the following theorem:

Theorem 3.10. — Let G be an infinite connected amenable graph of
bounded degree. Let g be a continuous non-increasing positive function
such that

• limn→∞ g(n) = 0,
• for any large enough n, ΛG(n) ⩽ g(n).

Then, for infinitely many integers n there exists N ∈
[
n, p

1/8
g (n)

]
such that

SepG(N)
N

⩾
1
8

ΛG(n)

log
(

p
1/8
g (n)

n

)
+ 1

.

Proof of Theorem 3.10. — This follows from the two lemmas below. □
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Lemma 3.11. — Let G be an infinite connected amenable graph of
bounded degree. Then for any n ⩾ 1 there exists an integer N ∈

[
n, p

1/4
ΛG

(n)
]

such that
SepG(N)

N
⩾

1
8

ΛG(n)

log
(

p
1/4
ΛG

(n)
n

)
+ 1

.

Proof. — This is straightforward using Theorem 3.4, taking ε = 1
2 ,

m =
⌊
p

1/2
ΛG

(n)
⌋

∈
[
n, p

1/4
ΛG

(n)
]

and p(m) =
⌊
p

1/4
ΛG

(n)
⌋
. Note that in the

degenerated cases where m = p(m) the integer p(m) is optimal since
ΛG(p(m))

ΛG(p(m)−1) ⩽ 1/2. □

Lemma 3.12. — Let f, g : R>0 → R>0 two continuous non-increasing
functions such that limx→∞ f(x) = limx→∞ g(x) = 0.

We assume that for any x > 0 we have f(x) ⩽ g(x). Then there exists
infinitely many positive integers (ni)i⩾0 such that for any i:

p
1/4
f (ni) ⩽ p1/8

g (ni) .

Proof. — Suppose for a contradiction that there exists an integer N such
that we have

(3.1) p
1/4
f (n) > p1/8

g (n) for any n ⩾ N .

We claim that we have, for any k ⩾ 0,

(3.2) p
1/4
f

◦k
(N) ⩾ p1/8

g

◦k
(N).

We prove this by induction. If k = 0, then this is obvious. Now, if (3.2) is
satisfied for some k ⩾ 0, we have:

p
1/4
f

◦(k+1)
(N) = p

1/4
f

(
p

1/4
f

◦k
(N)

)
⩾ p

1/4
f

(
p

1/8
g

◦k
(N)

)
by (3.2)

⩾ p
1/8
g

(
p

1/8
g

◦k
(N)

)
by (3.1)

= p
1/8
g

◦(k+1)
(N).

This proves (3.2) for every k ⩾ 0.
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Let m be such that 2m > g(N)
f(N) . We compose m times the 1/4−geometric

decay function of f :

f
(

p
1/4
f

◦m
(N)

)
= 1

4m f(N)

> 1
8m g(N) by definition of m,

= g
(

p
1/8
g

◦m
(N)

)
⩾ g

(
p

1/4
f

◦m
(N)

)
by (3.2) and g non-increasing,

which contradicts the initial assumption that f ⩽ g. □

4. Applications

In this section, we give applications of Theorems 3.4, 3.8, and 3.10. We
use isoperimetric profiles that have already been computed in the literature.
In the course of this investigation, there are three factors that come into
play:

• The geometry / the symmetries of the graph: the function p(n) of
Theorem 3.4.

• The decay of the isoperimetric profile.
• Inaccurate knowledge of the isoperimetric profile: when we only

have loose bounds on the isoperimetric profile.
Our goal on this section is not to give an exhaustive overview of possi-

ble applications, but only to apply Theorem 3.4 in situations that seemed
interesting to us. In Section 4.4, we give an application of Theorem 3.10 to
solvable groups. In Section 4.5 we look at limit cases, where those theorems
give no information.

Bendikov, Pittet & Sauer [4, Table 1 on p. 52] contains many reference
for the isoperimetric profile of groups. As noted in Erschler [13, §1] the
isoperimetric profile ΛG is connected to the Følner function F by the rela-
tion:

ΛG(N) ≃ 1
F −1(N) .

4.1. Isoperimetric profile decaying as a power of N

Recall that virtually nilpotent groups (equivalently groups for which the
cardinality of a ball of radius r is bounded by polynomials in r) are the
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only groups where ΛG(n) is of the form 1
n1/d (where d is the degree of the

polynomial); see Pittet & Saloff-Coste [35, Theorem 7.1.5] or [34, Theo-
rem 3.4].

A polynomial upper bound on the isoperimetric profile is given by Ben-
jamini & Papasoglu [6, Theorem 2.1] for doubling planar graphs.

Proposition 4.1. — Let G be a graph of bounded degree such that if
n is large enough, the following inequality holds:

(4.1) C1

nβ
⩽ ΛG(n) <

C2

nβ
,

for some constants C1, C2, β > 0.
Then if n is large enough:

Sep(n)
n

⩾ A · ΛG(n),

for some constant A.

One may notice that this proposition applies for very general graphs
(although the hypotheses on G imply that it is amenable and has no finite
connected component).

Proof. — We use Λ = ΛG throughout this proof. Let n0 be an integer
such that (4.1) holds for any n ⩾ n0. For any such n,

Λ
((

C2

C1

)1/β

· n

)
⩽

C1

nβ
⩽ Λ(n).

Therefore with the notations of Theorem 3.4, we can take

p(n) =
(

C2

C1

)1/β

n.

Let C be the smallest integer larger than
(

C2
1
2 ·C1

)1/β

. Let n be an integer
such that n ⩾ n0 and let m be the smallest integer such that m ⩾ Cn.
Since mβ ⩾ 2 C2

C1
nβ , it follows that Λ(m) ⩽ C2

mβ ⩽
1
2 ·C1
nβ ⩽ 1

2 Λ(n).
Then we can apply Theorem 3.4: there is a N ∈ [n, 2m] such that

Sep(N)
N

⩾
ε

4
Λ(n)

log
(

p(m)
n

)
+ 1

= ε

4
Λ(n)

log
((

C2
C1

)1/β

· m
n

)
+ 1

.
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Since m/n − 1 ⩽ C, and log(m/n) ⩽ log(m/n − 1) + 1 ⩽ log(C) + 1,
finally we get:

Sep(N)
N

⩾ KΛ(n),

with K = ε

(
4 log

((
C2
C1

)1/β
)

+ log(C) + 1
)−1

.

The proof shows the lower bound for some (mysterious) infinite set of
integers. To show it for any large enough integer: suppose that k ⩾ 4C2,
then (since k can be the upper bound of an interval with some integer N),
we have:

Sep(k)
k

⩾
K

2C + 1
1

kβ
.

Indeed, assume k ⩾ n0 and k ⩾ 4C2. We know that there exists an
integer N ∈

[
⌊ k

2C ⌋, k
]

such that Sep(N)
N ⩾ KΛ(k). Then we have:

Sep(k)
k

⩾
Sep(N)

(2C + 1)N ⩾
K

2C + 1 · 1
Nβ

⩾
K

2C + 1 · 1
kβ

⩾
K

(2C + 1) · C2
·Λ(k).

This concludes the proof. □

Note that in the case of virtually nilpotent groups, and more gener-
ally for vertex-transitive graphs with polynomial growth, Hume, Mackay
& Tessera [24, Theorem 7] shows that the inequality of Proposition 4.1 is
sharp.

Remark 4.2. — If we assume that the graph G has partial self-isomor-
phisms then we can take p(n) = 2n according to Lemma 3.6. Therefore we
may improve the constant K1 of Proposition 4.1.

Proposition 4.3. — If one assumes that for a graph of bounded degree
there exist some positive constants C1, C2, α, and β, with 1 > α > β, such
that we have

C1

nα
⩽ ΛG(n) ⩽ C2

nβ
,

for any positive integer n, then there exists A > 0 such that for any n > 0
we have:

Sep(n) ⩾ A · nγ

log(n) ,

with:
• γ = β(1−α)

α if G has partial self-isomorphisms,
• γ = β2(1−α)

α2 otherwise.
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Proof. — Without assuming partial self-isomorphisms, we can apply
Theorem 3.4, with p(n) ≃ n

α
β and m ≃ n

α
β . Then for any integer n we

have an integer N ∈
[
n, Cn

(
α2
β2

)]
such that Sep(N) ⪰ N ·ΛG(n)

log(n) . Now, let k

be an positive integer. Let n =
(

k
C

) β2

α2 . Then there exists some N ∈ [n, k]
such that

Sep(N) ⪰ N · ΛG(n)
log(n) ⪰ n

nα log(n) = n1−α

log(n) ≃ kγ

log(k) ,

with γ = β2(1−α)
α2 . Since Sep(k) ⩾ Sep(N), we get the announced lower

bound.
If the graph has partial self-isomorphisms, then Lemma 3.6 shows that

p(n) = 2n is a valid choice and the rest of the proof is similar. □

4.1.1. Application to pre-fractal Sierpinski carpets

Gibson & Pivarski showed in [16] some results on isoperimetry in pre-
fractal graphical Sierpinski carpets.

Pre-fractal Sierpinski carpets are built using an iterating process. We
consider a squared fundamental domain F1 which is a union of little squares,
obtained by removing subsquares in an admissible way which is satisfied
by standard Sierpinski carpets (see [16, Definition 2.1 and §2.2.2]). We
can consider F1 as a pattern. We make copies of F1 in such a way that we
reproduce this pattern at a larger scale. We get a bigger square that we can
call F2. That is the first step of this process, and the pre-fractal Sierpinski
carpet is the limit object that we get iterating the process indefinitely.

The carpet is then a subset of R2, which is a union of little squares. The
associated graph is obtained putting a vertex in the centre of each of these
squares, and linking vertices with an edge if and only if their squares share
a common face in the carpet.

We use the notations of [16]: F1 is the fundamental domain of the pre-
fractal, mF is the number of sub-squares in F1 and R is the number of
columns of F1 with one or more squares removed.

Theorem 4.4 (Gibson & Pivarski [16]). — Let X be an admissible two-
dimensional pre-fractal graphical Sierpinski carpet. Then

ΛX(n) ≍ n
log(R)

mF
−1

.

Proof. — The lower bound comes from [16, Theorem 4.4], together
with [16, Corollary 3.2], and [16, Corollary 3.8] to convert the result of
the Theorem for the so-called graphical isoperimetry.
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The upper bound comes from the construction of explicit subsets [16,
Lemma 4.1], together with [16, Lemma 3.3] (to get graphical subsets)
and [16, Corollary 3.2]. □

The construction of pre-fractal Sierpinski carpets can be generalised in
higher dimensions. The following theorem holds for standard Sierpinski
carpets of any dimension.

Theorem 4.5 (see Gibson & Pivarski [16]). — Let X be the d-dimen-
sional pre-fractal graphical standard Sierpinski carpet. Then

ΛX(n) ≍ n
−

log(3d−1)−log(3d−1−1)
log(3d−1) .

Proof. — The proof is very similar to the latest proof, using d-dimen-
sional results: [16, Corollary 4.6] and [16, Corollary 4.2]. □

In this context, Proposition 4.1 applies, so we can deduce the following
corollary:

Corollary 4.6. — Under the assumptions of Theorem 4.4 or of The-
orem 4.5 , there exists n0, K1 > 0 such that

∀n ⩾ n0
SepX(n)

n
⩾ K1 · ΛX(n).

As pointed by the anonymous referee, this estimate is very close to a lower
bound of Gladkova & Shum [17] (for the S(d, 3, {1}, 1) graphical fractal in
their terminology).

4.2. Isoperimetric profile with logarithmic decay

Before moving on to the next class of examples, let us recall that for poly-
cyclic groups of exponential growth (as well as solvable groups with finite
Prüfer rank and geometrically elementary solvable groups) the isoperimet-
ric profile is known to be of the form C1

log(n) ⩽ ΛG(n) ⩽ C2
log(n) ; see Pittet &

Saloff-Coste [35, Theorem 7.2.1], [34, Theorem 3.4] for polycyclic groups,
and Bendikov, Pittet & Sauer [4, Table 1], Pittet & Saloff-Coste [33] and
Tessera [40] for more general statements.

Also a group of intermediate growth (i.e. a group where the cardinality
of balls are such that ena

≼ |Bn| ≼ enb) are known to have a bound
C1

(log n)
1
a

≼ ΛG(n) ≼ C2

(log n)
1
b

−1 . The lower bound comes from Coulhon
& Saloff-Coste [12, Theorem 1], the upper bound can be deduced from
Lemma 5.1, and using the monotonicity of the isoperimetric profile.
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Lastly, wreath products F ≀ N where F is finite and N has polynomial
growth of degree d have an isoperimetric profile of the form C1

(log n)
1
d

≼

ΛG(n) ≼ C2

(log n)
1
d

; see Pittet & Saloff-Coste [34, §4 and §7] or Erschler [13,
Theorem 1].

Proposition 4.7. — Let C1, C2, α, β > 0. Let G be an infinite con-
nected amenable graph of bounded degree with partial self-isomorphisms
such that C1

logα(n) ⩽ ΛG(n) ⩽ C2
logβ(n) , for any large enough n.

Then there exists a constant K1 such that for infinitely many N ’s, the
following inequality holds:

Sep(N)
N

⩾ K1
ΛG(N)
log N

.

Remark 4.8. — For this class of examples, we chose to apply Theo-
rem 3.10. We could also have used Theorem 3.8. This would give a less
interesting bound (of the form ΛG(N)

(log N)α/β ), but, on the other hand, it gives
an estimation of the frequency of the integers N satisfying the inequality.

We will use the following fact.

Fact 4.9. — Let g(n) = c
(log n)β . Then we have p

1/8
g (n) = n(81/β), for

any n ⩾ 1.

Proof. — Let m, n be such that m = n(81/β). Then, g(m) = 1
8

c
(log n)β =

1
8 g(n), which is the required equality. □

Proof of Proposition 4.7. — Combining Theorem 3.10 with Fact 4.9, we
obtain that there exists infinitely many integers (ni)i⩾0 such that for any
i there exists Ni ∈

[
ni, p

1/8
g (ni)

]
such that, if ni is large enough,

SepG(Ni)
Ni

⩾ ΛG(ni) 1/8

log

(
p

1/8
g (ni)

ni

)
+1

⩾ ΛG(Ni) 1/8
log
(

p
1/8
g (ni)

)
+1

= ΛG(Ni) 1/8
81/β log(ni)+1

⩾ ΛG(Ni) 1/16
81/β log(Ni) . □

We deduce the three following corollaries.

Corollary 4.10. — Assume G is a polycyclic group of exponential
growth (or, more generally, a solvable group with finite Prüfer rank or a
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geometrically elementary solvable group), then there exists a constant K

so that for infinitely many N ’s we have:
Sep(N)

N
⩾ K

ΛG(N)
log(N) ≃ 1

log(N)2 .

Corollary 4.11. — Assume G is a wreath product F ≀ N where F

is finite and N has polynomial growth of degree d. Then there exists a
constant K so that for infinitely many N ’s we have:

Sep(N)
N

⩾ K
ΛG(N)
log(N) ≃ 1

log(N) d+1
d

.

Corollary 4.12. — Let G be a group of intermediate growth with
ena

≼ |Bn| ≼ enb . Then there is a constant K so that for infinitely many
N ’s we have:

Sep(N)
N

⩾ K
ΛG(N)
log N

≽
1

(log N)1+1/a
.

4.3. Isoperimetric profile with iterated logarithmic decay

There are explicit groups where the isoperimetric profile decays with a
power of iterated logarithms. Example of such groups are iterated wreath
products F ≀ (F ≀ N) where F is finite and N is a nilpotent group whose
growth is polynomial of degree d. For such groups, one has ΛG(n) ≃

1
(log log n)1/d . Iterating further the wreath products (with finite groups) gives
a profile with more iterated logarithms; see Erschler [13, Theorem 1] or
Gromov [19, §8.1].

Let log(k)(x) := log log · · · log︸ ︷︷ ︸
k times

(x) and exp(j)(x) := exp exp · · · exp︸ ︷︷ ︸
j times

(x).

Proposition 4.13. — Let G be an infinite connected amenable graph
with partial self-isomorphisms such that there exists an integer k and C, β >

0 such that ΛG(n) ⩽ C

(log(k) n)β , for any large enough n. Then there exists
some positive constants K and C such that the following inequality holds
for infinitely many N ′s:

Sep(N)
N

⩾ K
ΛG(N)

exp(k−1)
(

C log(k) N
) .

As in Section 4.2, we chose to apply Theorem 3.10. We could also have
used Theorem 3.8, see Remark 4.8.
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Remark 4.14. — When k = 2, the denominator of the right-hand-side
is a power of log(n). In that case, the lower bound is significantly weaker
than ΛG, because a power of log(N) is significantly bigger than log log(N).
This tendency continues for isoperimetric profiles which are even closer to
being constant. For example, if ΛG(n) ≃ 1/ log log log(n), then the bound
on Sep(N)/N is of the form ΛG(N)/(log N)logη(log N), with η = 1 − C.

However, this phenomenon is not only an artefact of the proof. Indeed,
the upper bounds obtained in Corollary 5.6 together with Theorem 1.1
of [28] shows that the separation profile of Z2(Z2 ≀ Z) cannot dominate

n
(log n)c for some c > 0, while its isoperimetric profile is equivalent to 1

log log n .
Beyond amenable groups, the gap may be even larger: virtually free groups
have a bounded separation profile (so Sep(N)/N → 0), while their isoperi-
metric profile is equivalent to a positive constant.

Remark 4.15. — Note that for any integer k and C > 0, we have for any
ε ∈ (0, 1), we have

exp(k−1)
(

C log(k) N
)

⪯ Nε.

Indeed, let ε > 0. For N large enough the following inequalities hold:

log(k)(N) ⩽ log(k−1)(N)
2C

⩽
1
C

log(k−1)(Nε).

Therefore we have:

C log(k)(N) ⩽ log(k−1)(Nε),

i.e.:
exp(k−1)

(
C log(k)(N)

)
⩽ Nε.

To prove Proposition 4.13, we will use the following fact.

Fact 4.16. — Let g(n) = c

(log(d−1)(n))β . Then for any large enough n

we have
p1/8

g (n) ⩽ exp(k)
(

81/β log(k)(n)
)

.

Proof. — Let m, n be such that m ⩾ exp(k)
(

81/β log(k)(n)
)

. Let us write
m′ = log(k)(m) and n′ = log(k)(n). We have m′ ⩾ 81/βn′. Hence, we have
g(m) ⩽ 1

8 g(n), which is the required inequality. □

Proof of Proposition 4.13. — Combining Theorem 3.10 with Fact 4.16,
we get that there exists infinitely many integers (ni)i⩾0 such that for any
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i there exists Ni ∈
[
ni, p

1/8
g (ni)

]
such that, if ni is large enough,

SepG(Ni)
Ni

⩾ ΛG(ni) 1/8

log

(
p

1/8
g (ni)

ni

)
+1

⩾ ΛG(Ni) 1/8
log
(

p
1/8
g (ni)

)
+1

⩾ ΛG(Ni) 1/16
exp(k−1)(81/β log(k)(ni))

⩾ ΛG(Ni) 1/16
exp(k−1)(81/β log(k)(Ni)) . □

Corollary 4.17. — Assume G = F ≀ (F ≀ N) where F is a finite group
and N is a nilpotent group whose growth is polynomial of degree d. Then
there are constants K, C > 1 so that for infinitely many integers N ’s, we
have:

Sep(N)
N

⩾ K
ΛG(N)

log(N)C
≃ 1

log(log(N))1/d · log(N)C
.

It is hard to tell if this lower bound is sharp. Note however, that some
power of log need to be present as we exhibit an upper bound which also
decays as a power of log, see Remark 5.7.

4.4. Solvable groups

In this subsection, we give an application of Proposition 4.13 to solvable
groups. We prove the following theorem:

Theorem 4.18. — Let G be a finitely generated solvable group. If there
exists ϵ ∈ (0, 1) and c > 0 such that for any large enough integer n we have

SepG(n) ⩽ cn1−ϵ,

then G is virtually nilpotent.

It is known that any nilpotent group of rank d has a separation profile
equivalent to n

d−1
d (see [24, Theorem 7]). We show here that, among solv-

able groups, the separation profile is able to reveal nilpotence. This is quite
sharp since the separation profile of the classical lamplighter group Z2 ≀ Z
(as well as any polycyclic group) is bounded above by n

log(n) (since it has
finite Assouad dimension, see Hume [22, Theorem 1.5]; our Corollary 5.6
gives a slightly weaker bound for these groups). Note that this result is
definitively not true in general as non-amenable groups give counterexam-
ples: for any d ⩾ 3, the d-dimensional hyperbolic space has a separation
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profile equivalent to n
d−2
d−1 (see [7, Proposition 4.1.]) or, more spectacularly,

free groups has a bounded separation profile. This theorem partially an-
swers a question posed to us independently by David Hume and Jérémie
Brieussel:

Question 4.19. — Is there an exponential growth solvable group Γ
such that SepΓ(n) ̸⪰ n

log(n) ?

See Question 7.4 for further discussions of this topic.
Proof of Theorem 4.18. — Recall that for any group ∆ we define the the

derived series of ∆ as the sequence of groups
(
∆(i))

i⩾0 defined inductively
by ∆(0) = ∆, ∆(i) =

[
∆(i−1), ∆(i−1)]. A group is solvable if and only if

∆(i) = {e} for some i and the smallest such i is called the derived length
of ∆.

Let r be the size of a finite generating set of G and d be the derived
length of G. If G is an abelian group, then the conclusion of Theorem 4.18
is valid, then we can assume that d is at least equal to 2. Let Fr be “the”
free group on r generators, labelled by a generating set of G of size r, and
let Sd,r := Fr/F(d)

r be the free solvable on r generators of derived length
d. G is a quotient of Sd,r, considering the well-defined surjective group
homomorphism

πG : Sd,r → G.

From Tessera [40, Proposition 5.5], we have

ΛG ⩽ ΛSd,r
.

Additionally, L. Saloff-Coste and T. Zheng explicited in the introduction
of [38] the isoperimetric profile of the free solvable groups, namely:

ΛSd,r
(n) ≃

(
log(d)(n)

log(d−1)(n)

)1/r

.

Combining those two inequalities (and the fact that log(d)(n) ⩽√
log(d−1)(n) for n ⩾ 4d−1), we get that there exists some constants c, d, r

such that for any large enough n, we have

(4.2) ΛG(n) ⩽ c(
log(d−1)(n)

)1/2r
.

Let us assume that G has an exponential volume growth. From Theorem 1
of [12], there exists a positive constant cl such that the following inequality
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is true for any n:

(4.3) ΛG(n) ⩾ cl

log(n) .

Then combining Proposition 4.13 and (4.2), we get that there exists K, C >

0 such that for infinitely many integers N , we have:

Sep(N)
N

⩾ K
ΛG(N)

exp(k−1)
(

C log(k)(N)
) .

Let ε > 0. From Remark 4.15, we then have, for any large enough such N ,

SepG(N)
N ⩾ ΛG(N)N−ε/2

⩾ cl

log N N−ε/2 from (4.3)
⩾ N−ε.

We have shown that if the group G has exponential volume growth, then
its separation profile dominates along a subsequence every sublinear power
function. By contraposition, if the assumptions of Theorem 4.18 are sat-
isfied, that means that the group G does not have exponential growth,
meaning that it is virtually nilpotent according to the usual dichotomy for
solvable groups (see for example [20]). □

4.5. Limitations of Theorem 3.8

Now we will be interested in graphs where the conclusion of Theorem 3.8
becomes trivial.

A first source of loss of sharpness is the uncertainty on the isoperimetric
profile. This happens for example when the profile is bounded by different
numbers of iterated logarithms. However, we will consider this limitation
due to lack of information as superficial. The approach of Section 3.3 sup-
ports this point of view.

A second source, which we believe to be much deeper, is the decay of
the isoperimetric profile. As we noticed before, Theorem 3.8 gives nothing
in the case of graphs with almost constant isoperimetric profiles, since the
integer m doesn’t exist for n large enough. We will see in this subsection an
example of isoperimetric profile for which the conclusion of the Theorem 3.8
is trivial.
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Erschler [14] and Brieussel & Zheng [9] give an explicit construction
of groups with up-to-constant prescribed(1) isoperimetric profile. We can
deduce that the examples below has instances in Cayley graphs, which
leaves little hope to generalise Theorem 4.18 to amenable groups.

In the thesis of the first author, explicit examples of isoperimetric profiles
where Theorem 3.8 gives no information are given.

5. Upper bounds on the separation profile

5.1. From growth

The aim of this subsection is to obtain upper bound from on the sep-
aration profile using the growth of balls in the graphs. Let d denote the
combinatorial distance in the graph, then Bn(x) = {v ∈ V G | d(x, v) ⩽ n}
is the ball of radius n with centre x.

In order to effectively apply this method, the upper bound on the size
Bn(x) should be independent of the choice of the ball’s centre x.

Lemma 5.1. — Assume G is a graph such that supx∈V G |Bn(x)| ⩽ ef(n)

and f(n)
n → 0. For any subgraph G′ let βn(x) be the cardinality of a

ball [inside the subgraph] of radius n centred at x. Let n0 be such that
supn⩾n0

f(n)
n ⩽ 1. Then for any n ⩾ n0 and x ∈ V G there is a ℓ ∈ [n, 2n]

such that
βℓ+1(x) − βℓ(x)

βℓ(x) ⩽
2f(n)

n
.

Proof. — Let us alleviate notation by using βj := βj(x) and σn = βn −
βn−1. Let Cn,k = mini∈[n,n+k[

βi+1
βi

. Then βn+k ⩾ (Cn,k)k
βn. However,

since the growth of the extra k steps is bounded by ef(k), βn+k ⩽ βn−1 +
σn ef(k) = βn + σn(ef(k) −1). Thus

(Cn,k)k ⩽ 1 + σn

βn
(ef(k) −1) ⩽ ef(k) .

This implies that Cn,k − 1 ⩽ ef(k)/k −1. If f(k)
k ⩽ 1 then Cn,k − 1 ⩽

ef(k)/k −1 ⩽ (e − 1) f(k)
k ⩽ 2 f(k)

k . Taking k = n yields the conclusion. □

(1) In those examples, isoperimetric profiles aren’t prescribed exactly, but up to con-
stants. However, using Theorem 3.10 we can have the same bounds (up to constants)
on infinitely many N ’s as using Theorem 3.4 if the isoperimetric profile was exactly
prescribed.
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For the next proposition f−1 denotes the generalised inverse (but one
can also simply assume f is a continuous increasing function defined on
the reals).

Proposition 5.2. — Let G be a graph so that supx∈V G |Bn(x)| ⩽ ef(n)

for a function f with limn→∞
f(n)

n = 0. Assume the degree of the vertices
is bounded by d. Then there is a constant K (depending on f) such that
for any integer N > K,

Sep(N)
N

⩽ 4d

f

(
f−1(ln N

2 )−1
2

)
f−1

(
ln N

2
)

− 1
.

Proof. — For any subset F ⊂ V G of cardinality N , consider the balls
B′

n(x) of radius n in the subgraph induced by F . (It does not matter where
the centre x of the ball is, if one could choose, it would probably be best
to choose a point that realises the diameter of F ). Note that |B′

n(x)| ⩽
|Bn(x)| ⩽ ef(n). Let n0 be the largest integer such that ef(n0) ⩽ N/2.
Applying Lemma 5.1 with n = ⌊n0/2⌋ implies that for some k ∈ [ n0−1

2 , n0],

|∂B′
k|

|B′
k|

⩽ d
|B′

k+1| − |B′
k|

|B′
k|

⩽ d
2f(n)

n
.

Consequently, the Cheeger constant of F is at most 2d f(n)
n . This shows

that Sep(N)
N ⩽ 2d f(n)

n , as long as f(n)
n ⩽ 1. The constant K is ef(n1), where

n1 is the smallest integer so that f(n)
n ⩽ 1 for any n ⩾ n1. □

Corollary 5.3. — Let G be a graph so that supx∈V G |Bn(x)|⩽K1eK2nα

for some constants K1, K2 > 0 and α ∈ [0, 1). Then, there are constants
L1, L2 > 0 so that, for any N > L1 large enough,

Sep(N)
N

⩽
L2

(ln N) 1
α −1 .

Proof. — Use Proposition 5.2 with f(x) = K2xα + log K1. □

Corollary 5.4. — Let G be a graph so that supx∈V G |Bn(x)| ⩽ Knd

for some constants K, d > 0. Then, there are constants L1, L2 > 0 so that,
for any N > L1 large enough,

Sep(N)
N

⩽
L2 log(N)

N1/d
.

Proof. — Use Proposition 5.2 with f(x) ≃ d log x + log K. □
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5.2. From compression

Another upper bound on the separation profile can be obtained if the
groups has a good embedding in Lp-spaces. Recall that for a finite graph
X and a 1-Lipschitz embedding F : X ↪→ Y in a Lp-space, the distortion
of F is

dist(F ) = max
x,y∈X,x ̸=y

d(x, y)
∥F (x) − F (y)∥Y

.

where d is the combinatorial distance on X. The Lp-distortion of X is
cp(X) := inf{dist(F )|F : X ↪→ Lp}.

P.-N. Jolissaint and Valette [27, Theorem 1.1] (combined with [27, Propo-
sition 3.3] as well as an estimate on the p-spectral gap from Amghibech [1])
give the following lower bound on the Lp distortion for a finite graph X

with n vertices and Cheeger constant h:

(5.1) cp(X) ⩾ K log(n)h,

where the constant K depends only on p and the maximal degree.
Distortion can also be studied for infinite graphs, but we will here rely

on the notion of compression. If G is a [connected] infinite graph, then a
compression function for a 1-Lipschitz embedding Φ : G ↪→ Lp is a function
ρ so that

(5.2) ∀x, y ∈ G, ρ(d(x, y)) ⩽ ∥Φ(x) − Φ(y)∥Lp .

The compression exponent of Φ is α(Φ) = lim infx→∞
log ρ(x)

log x and the com-
pression exponent of the graph is α(G) = supΦ α(Φ).

Proposition 5.5. — Let G be a connected graph of bounded degree
which admits an embedding in a Lp-space (for some p) with compression
function ρ(x) = k1 + k2xa. Then there is a constant K so that

Sep(n)
n

⩽
K

(log n)a/(2−a) .

Proof. — Assume X is a finite subgraph of G of cardinality n with
Cheeger constant h, maximal degree k and diameter δ.

First note that the diameter of X is bounded by the other quantities.
Indeed, pick x, y ∈ X, that realise the diameter and let δ′ = ⌊ δ−1

2 ⌋. Then
the balls of radius δ′ around x and y are disjoint and at least one of them
does not cover more than half the vertices. The ratio h

k then dictates a
minimal growth: n

2 ⩾ (1 + h
k )δ′ , that is δ′ ⩽

log n
2

log(1+ h
k ) . For δ ⩾ 6, this gives

δ
3 ⩽ log n

log(1+ h
k ) .
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Since G admits a 1-Lipschitz embedding Φ, this embedding restricts to
X and (5.2) can be rewritten as

∀x, y ∈ X,
d(x, y)

ρ(d(x, y)) ⩾
d(x, y)

∥Φ(x) − Φ(y)∥Lp

.

The left-hand-side gets only bigger if one looks at d(x, y) = δ. By taking
the maximum on the right hand side, this leads to

δ

ρ(δ) ⩾ cp(X).

Using the bound (5.1) of P.-N. Jolissaint and Valette [27], this gives

δ

ρ(δ) ⩾ Kh log(n).

For n large enough, δ is also large (δ ⩾ log n
log k ) so that δ

ρ(δ) ⩽ k3δ1−a for
some constant k3. Next using the bound on δ above:

Kh log(n) ⩽ k3δ1−a ⩽ 31−ak3
(log n)1−a

(log(1 + h
k ))1−a

.

This can be rewritten as

Kh(log(1 + h

k
))1−a ⩽ 31−ak3(log n)−a.

Since h ⩽ k, log(1+ h
k ) ⩾ h

k log 2. With new constants, the inequality reads:

h2−a ⩽ K ′(log n)−a.

This means that any [connected] subset X of cardinality n inside G has
a Cheeger constant of at most K ′′(log n)−a/(2−a). From the definition of
Sep(n) it follows that Sep(n) ⪯ n(log n)−a/(2−a). □

Corollary 5.6. — Assume G is a graph with bounded degree and
compression exponent α (in some Lp-space). Then for any c < α

2−α there
is a constant K so that

Sep(n)
n

⩽
K

(log n)c
.

Here is a [non-exhaustive] list of Cayley graphs for which the compression
exponent is known (references below). This table does not always use the
case p = 2; in fact taking p → 1 or p → ∞ often gives better bounds, see
Naor & Peres [30, Lemma 2.1].
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α(G) α
2−α Groups

1 1
polycyclic groups(a) , the lamplighter group
over Z with finite lamps(a) , hyperbolic groups(b) ,
Baumslag–Solitar groups(c) , 3-manifolds groups(d)

→ 1 1
lamplighter group over Z with lamps in Z(e) , lamp-
lighter over H of polynomial growth with finite
lamps or lamps in Z(f)

1
2

1
3

lamplighter over Z2 with lamp group H hav-
ing α2(H) ⩾ 1

2
(g) , Thompson’s group F (h)

1
2−21−k

1
3−22−k

iterated wreath products of the form:
(. . . ((Z ≀ Z) ≀ Z) . . .) ≀ Z︸ ︷︷ ︸

k “Z” terms

(i)

⩾ 1−γ
1+γ ⩾ 1−γ

1+3γ

groups with return probability after n steps of a
SRW ⩽ K2 e−K1nγ (j)

⩾ 1 − ν ⩾ 1−ν
1+ν groups of intermediate growth with bn ⩽ enν (k)

→⩾ 1
d−1 ⩾ 1

2d−3
free solvable groups Sd,r of derived length d when
d > 1(l)

Table’s references:
(a) Tessera [39, Theorems 9 and 10]
(b) Bonk & Schramm [8] and Buyalo & Schroeder [11]
(c) Jolissaint & Pillon [26, Corollary 2]
(d) Hume [21, Theorem 5.4]
(e) Naor & Peres [30, Lemma 7.8] and [31, Theorem 6.1]; the bound is
max{ p

2p−1 , 2
3 }, take p → 1

(f) Naor & Peres [31, Theorem 3.1]; the bound is max{ 1
p , 1

2 }, take p → 1
(g) Naor & Peres [30, Theorem 3.3]
(h) Arzhantseva, Guba & Sapir [2, Theorem 1.3]
(i) Naor & Peres [30, Corollary 1.3]
(j) see [18, Theorem 1.1]
(k) see either [18, Theorem 1.3(b)] or Tessera [39, Proposition 14]. In that
case, the bound obtained on Sep(n) by Proposition 5.2 is better.
(l) see Sale [36, Corollary 4.2]; the bound on is 1

p(d−1) for p ∈ [1, 2], so take
p → 1.

There are many other groups for which one can compute the compres-
sion (the above list does not exhaust the results in the references). For
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example, α(G × H) = min
(
α(G), α(H)

)
. There are also further results:

on HNN-extensions see Jollissaint & Pillon [26], on relatively hyperbolic
groups see Hume [21], on wreath products see Li [28].

Note that Proposition 5.5 is fairly sharp (in this generality). Indeed, if
one looks at the product of two trees, then the compression exponent is 1.
This means Proposition 5.5 ensures, for every c < 1, the existence of Kc

such that Sep(n)
n ⩽ Kc

(log n)c . On the other hand, it was shown by Benjamini,
Schramm & Timár [7, Theorem 3.5] that the separation profile of such a
space is Sep(n)

n ≃ 1
log n .

Remark 5.7. — The above corollary shows that there are amenable
groups G for which Sep(n)

n decreases much more quickly than ΛG(n). For
example, G = F ≀(F ≀Z) has ΛG(n) ≃ 1

log log n . On the other hand this group
has an isometric embedding in a Cayley graph of Z ≀ (Z ≀ Z). In particular,
its compression exponent is at least 4

7 . This implies that Sep(n)
n ≼ 1

(log n)c

for any c < 2
5 .

Remark 5.8. — It is possible to show that if there is an embedding with
ρ(x) ⩾ K1(log(k) n)α (where log(k) denotes k iterated logarithms) then the
conclusion of Proposition 5.5 is that

Sep(n)
n

⩽
K ′

(log(k+1) n)α/2
.

Compression function of this sort follow from the methods of [18, Paragraph
before Remark 3.4]. It can be shown that any [amenable] group where
P n(e) ⩽ K1exp(n/ log(k) n) has an embedding in some Hilbert space with
ρ(x) ⩾ (log(k) n)1/2. In fact (thanks to Kesten’s criterion for amenability),
one can get for any amenable group an upper bound on the separation
profile.

6. Local separation profiles

In this section, we will study a local variant of the separation profile.
We found it relevant in two contexts. First, in Zd percolation clusters,
where considering classical separation profile is trivial: since in almost every
percolation configuration one can find arbitrary large balls, the profile is
almost surely equal to the separation profile of Zd. Second, it can tackle the
issue of the density of high separation subgraphs in non-vertex transitive
graphs.
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We will first define it, give a local version of Theorem 3.4 (Theorem 6.8),
and some applications to percolation clusters in Zd, and to graphs of poly-
nomial growth and of isoperimetric dimension larger than one, that we call
polynomial graphs. Finally, we will give a theorem with a more abstract
approach, that also applies to polynomial graphs, see Theorem 6.19.

Definition 6.1. — Let (G, v) be a rooted graph. Let ρ : R⩾1 → R⩾1 be
a non-decreasing function. We define the (ρ, v)-local separation profile as:

Sepρ,v
G (n) := sup

|F |⩽n and F ⊂BG(v,ρ(n))
|F | · h(F ).

In comparison to the classical separation profile, which is defined as
SepG(n) = sup|F |⩽n |F | · h(F ), there is an extra condition restricting the
subgraphs to lie in a given sequence of balls. One can think of it as search-
ing for graph with big separation, but not too far from x; the “not too
far”-part is quantified by the function ρ.

As for the classical separation profile, this local variant gives obstructions
for the existence or regular maps (see Lemma 1.3 of [7]). We remind the
reader the definition of a regular map:

Definition 6.2. — Let X and Y be two graphs of uniformly bounded
degrees. A map f : X → Y is said to be regular if there exists a constant
κ > 0 such that the following two conditions are satisfied:

• ∀x1, x2 ∈ X d(f(x1), f(x2)) ⩽ κd(x1, x2),
• ∀y ∈ Y

∣∣f−1 ({y})
∣∣ ⩽ κ.

The local separation profiles satisfies the following monotonicity:

Proposition 6.3. — Let (X, x0) and (Y, y0) be two rooted graphs of
uniformly bounded degrees. Let ρ : R⩾1 → R⩾1 be a non-decreasing func-
tion. Let f : X → Y be a regular map such that f(x0) = y0. Then there
exists a constant K > 0 such that for any n:

Sepρ,x0
X (n) ⩽ K Sepρ(K·),y0

Y (n).

Proof. — The same proof as the proof of Lemma 1.3 of [7] works. □

Remark 6.4. — Recall that the constant K appears both in factor of
the separation profile, and in the argument of ρ (we define ρ (K·) by n 7→
ρ (Kn)).

Note that if ρ ⪰ n, the (v, ρ)-local separation profile coincides with the
usual separation profile for vertex-transitive graphs.

The smallest (interesting) local profile is what we obtain choosing ρ to
be the generalised inverse of the volume growth: ρ(n) = γ−1

v (n) = sup{x ⩾
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0 | γv(x) ⩽ n}, with γv(n) denoting the size of the ball of radius n and
centred at v. In that case we restrict the graphs investigated to lie in a ball
of cardinality (almost) n.

In the situations we investigate, we get upper bounds in the case ρ = γ−1
v .

Then in what follows, we will restrict ourselves to this case. In this situation,
the condition “|F | ⩽ n” is redundant and we will drop the ρ from our
notation:

Sepv
G(n) := Sepγ−1

v ,v
G (n) = sup

F <BG(v,r);|BG(v,r)|⩽n

|F | · h(F ).

Therefore, we do not study this notion in its full generality, but we believe
nevertheless that it can be relevant in some probabilistic contexts.

Local separation profile will be studied in two cases: first, Zd percolation
clusters, then, graphs of isoperimetric dimension greater that one and of
polynomial growth.

6.1. A local version of Theorem 3.4

6.1.1. Statement of the Theorem

Before stating the theorem, we will introduce some notations for local
isoperimetry.

Definition 6.5. — We say that F ⊂ G is (n, v)-optimal if:
• F ⊂ B(v, n),
• ∀A ⊂ F |∂A|

|A| ⩾ |∂F |
|F | .

As before, we will say that an integer r is (n, v)-optimal if there exists
an (n, v)-optimal set of cardinality r.

To adapt the previous result to our context, we need to introduce a local
version of the isoperimetric profile:

Definition 6.6. — Let G be a graph. Let v ∈ G and n be a positive
integer. We define for any r > 0:

Λv
n(r) = inf

A⊂BG(v,n),|A|⩽r

|∂A|
|A|

.

This is a mixed profile between the classical and the isoperimetric profile
inside the balls introduced by Tessera in [39] .

We can now state the local versions of Lemma 3.2 and Theorem 3.4. The
proofs of the corresponding statements still work in this local context, we
will not write them again:
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Lemma 6.7. — Let F be a (n, v)-optimal subset of a graph G. Then:

2h(F ) ⩾ Λv
n

(
|F |
2

)
− Λv

n(|F |).

Theorem 6.8. — Let G be a connected infinite graph of bounded de-
gree. Let v ∈ G, n be a positive integer, and k be an integer. Assume there is
a non-decreasing function p : [0, k] → [0, |B(x, n)|] so that for any r ∈ [0, k]
there is an rop ∈ (r, p(r)] such that rop is optimal. Choose ε ∈ (0, 1). Let
r1, r2 ∈ [0, k] be such that Λv

n(r2) ⩽ (1 − ε)Λv
n(r1).

Then there exists an r′ ∈ [r1, p(r2)] such that
Sepv(r′)

r′ ⩾ ε
Λv

n(r1)
4 log( p(r2)

r1
) + 4

.

6.2. Application to polynomial graphs and Zd percolation
clusters.

We will apply Theorem 6.10 in graphs of polynomial growth and of di-
mension greater than one. We will call such a graph a polynomial graph.
We will show that around any point the separation is bounded below by
some power of n. We start with the definition of a polynomial graph:

Definition 6.9. — Let G be a graph. Let d1 and d2 be two positive
reals. We say that G is (d1, d2)-polynomial if there exist b, g > 0 such that:

• For any vertex v and any integer n |B(v, n)| ⩽ bnd2 ,
• For any V ⊂ V G, |∂V | ⩾ g|V |

d1−1
d1 .

The upcoming theorem will apply both to polynomial graphs and to
percolation clusters of Zd. Therefore the assumptions of this theorem are
less restrictive, and polynomial graphs will be a particular case where they
are satisfied. In particular, we do not require every subset of vertices to
satisfy the isoperimetric inequality, but only some large enough subset.

Theorem 6.10. — Let G be a connected infinite graph of bounded
degree. We assume that there exist d1, d2 > 1 such that G locally has a
growth rate at most d2 and a large scale isoperimetric dimension at least
d1. Namely, we assume that there exist some functions f, g, b > 0 such that
for any vertex v and any integer n:

(1) |B(v, n)| ⩽ b(v) · nd2 ,
(2) For any A ⊂ B(v, n) such that |A| ⩾ f(v, n), |∂A| ⩾ g(v)·|A|1−1/d1 .
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We make the additional assumption that for any vertex v there exists an
integer nω such that for any integer n ⩾ nω we have f(v, n) ⩽ |B(v, n)|.

Then for any η ∈ (0, 1), there exist c(v), K(v), β > 0 (with β > d1),
such that for any vertex v and any large enough integer n, when f(v, n) ⩽

cg(v)
β−d1
d1−1 n

d2
1(1−η)2

d2
2 , then we have:

Sepv
G(n) ⩾ Kg(v)βnα(1−η), with α = d2

1(d1−1)
d3

2
.

Moreover, if d1 = d2 the conclusion is also true with η = 0. In this case,
the constant K depends on the logarithm of g.

Before proving this theorem in subsection 6.3, we will state the corollaries
we obtain in the two particular cases that interest us. First, to polynomial
graphs:

Corollary 6.11. — Let G be a (d1, d2)-polynomial graph. Then for
any η ∈ (0, 1) there exists c > 0 such that for any vertex v and any
integer n:

Sepv(n) ⩾ cn
(1−η)

d2
1(d1−1)

d3
2 .

Moreover, if d1 = d2 the conclusion is also true with η = 0.

Remark 6.12. — If d1 equals d2, we get the expected exponent d1−1
d1

; this
is optimal in the case of vertex-transitive graphs, see Benjamini, Schramm
& Timár [7].

As a second application, we study local separation in Zd percolation
clusters. We obtain the following corollary:

Corollary 6.13. — Let p > pc

(
Zd
)
. Let ω be a percolation configu-

ration of Zd of parameter p. Let C∞ be an (almost surely unique) infinite
connected component of ω. Let ε ∈ (0, 1). Then there exist c(d, p) > 0 and,
for almost every ω, an integer lω such that for any n ⩾ lω and for any
x ∈ C∞ such that ∥x∥∞ ⩽ exp

(
n(1−ε) d

d−1

)
, we have:

Sepx
C∞

(n) ⩾ cn
d−1

d .

This theorem will be deduced from a result on isoperimetry by
G. Pete [32]. The forebears of this result can be found in the work of
Barlow [3] and Benjamini & Mossel [5] (see [32] for more details on the
history).

Theorem (Pete [32, Corollary 1.3]). — For all p > pc(Zd) there exist
c3(d, p) > 0, α(d, p) > 0 and (for almost all percolation configurations ω) an
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integer nω such that for all n > nω, all connected subsets S ⊂ C∞ ∩ [−n, n]d

with size |S| ⩾ c3(log n) d−1
d , we have |∂C∞S| ⩾ α|S|1−1/d.

Proof of Corollary 6.13. — From this theorem, one can deduce that we
can apply Theorem 6.10 to almost every percolation configuration with
d1 = d2 = d, f(v, n) = c3(log (∥v∥∞ + n)) d−1

d , and g(v) = α. □

6.3. Proof of Theorem 6.10

To show Theorem 6.10, we start with two lemmas. First, we can deduce
from isoperimetry a lower bound on the growth of the graph:

Lemma 6.14. — Let G be a connected infinite graph of bounded degree
satisfying the assumptions of Theorem 6.10. Let v ∈ G. Then there exists
b′(v) > 0 such that for any large enough n, we have:

|B(v, n)| ⩾ b′(v) · g(v)d1 · nd1 .

Proof. — We can substitute n 7→ |B(v, n)| with an piecewise affine func-
tion B(t) that takes the same values on integer points. Then, for every
n > nω, we get:

B(n)1/d1 − B(nω)1/d1 = 1
d1

∫ n

nω

B′(t)
B(t)1−1/d1 dt

⩾ 1
d1

∑n−1
r=nω

B(r+1)−B(r)
B(r+1)1−1/d1

= 1
d1

∑n−1
r=nω

B(r+1)−B(r)
B(r)1−1/d1

(
B(r)

B(r+1)

)1−1/d1

⩾ 1
d1

∑n−1
r=nω

B(r+1)−B(r)
B(r)1−1/d1

1
D1−1/d1

⩾ 1
d1

∑n−1
r=nω

|∂B(v,r)|
B(r)1−1/d1

1
D2−1/d1

⩾ g(v)
d1D2−1/d1 · (n − nω) ,

where D is a bound on the degrees of the vertices of G. This implies, for
any large enough n,

B(n)1/d1 ⩾
g(v)

2d1D2−1/d1
n. □

Second, we can deduce an upper bound on the isoperimetric ratio of balls
using growth:

Lemma 6.15. — Let G be a connected infinite graph of bounded degree
satisfying the assumptions of Theorem 6.10. Let v ∈ G and η ∈ (0, 1).
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Then there exists a > 0 such that for any large enough integer n, there
exists an integer r between n1−η and 2n such that:

|∂B(v, r)|
|B(v, r)| ⩽

a

|B(v, r)|1/d1
.

Moreover, if d1 = d2 the conclusion is also true for η = 0.

To show this lemma, we will use the following facts, that we will prove
later:

Fact 6.16. — Let G be a connected infinite graph of bounded degree
satisfying the assumptions of Theorem 6.10. Let v ∈ G and η ∈ (0, 1).

Then there exists A > 0 such that for any non-negative integer n there
exists m ∈

[
n1−η, n

]
such that |B(v, 2m)| ⩽ A|B(v, m)|.

Moreover, if d1 = d2 the conclusion is also true for η = 0: there exists A >

0 such that for any non-negative integer n we have |B(v, 2n)| ⩽ A|B(v, n)|.

Fact 6.17. — Let G be a connected infinite graph of bounded degree
satisfying the assumptions of Theorem 6.10.

Let A > 0, v be a vertex of G and m be an integer such that |B(v, 2m)| ⩽
A|B(v, m)|. Then there exists an integer r between m and 2m such that:

|∂B(v, r)|
|B(v, r)| ⩽

2 log(A)
r

.

Before proving those facts, we give a proof of Lemma 6.15:

Proof of Lemma 6.15. — According to the Facts 6.16 and 6.17, there
exists A > 0 such that for any non-negative integer n there exists r ∈[
n1−η, 2n

]
such that

|∂B(v, r)|
|B(v, r)| ⩽

log(A)
r

.

We assume that n1−η is large enough so that it satisfies the assumptions
of Lemma 6.14. From this lemma, we have r ⩽ |B(v,r)|1/d1

b′(v)1/d1 g(v) . Therefore
|∂B(v,r)|
|B(v,r)| ⩽ a

|B(v,r)|1/d1 with a = g(v) log(A)b′(v)1/d1 . □

We will now prove the facts.

Proof of Fact 6.16. — Let A be such that η
2 log(A) ⩾ d2 + log(b + 1),

and let n be a positive integer. Then:

• if n ⩽ exp
(

2
η

)
, then up to taking a larger A, we can show that the

conclusion of the fact holds, since is G is of bounded degree.
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• otherwise, we assume by contradiction that for any integer m in the
interval

[
n1−η, n

]
, we have |B(x, 2m)| > A × |B(x, m)|. Then we

have:

|B(x, n)| ⩾ Alog(nη)−1|B(x, n1−η)|

⩾ Alog(nη)−1

⩾ Alog(nη)/2 as n ⩾ exp
(

2
η

)
⩾ exp

(
η
2 log(n) log(A)

)
⩾ exp(d2 log(n) + log(b + 1))
= (b + 1)nd2 .

(Our logarithms and exponentials are in base 2.) This contradicts
the assumption on the growth of the graph.

If d1 = d2, the assumption on the growth of G and the conclusion of
Lemma 6.14 give the announced result with A = b

b′ 2d2 . □

Proof of Fact 6.17. — We assume by contradiction that for any r be-
tween n and 2n we have |∂B(v,r)|

|B(v,r)| > 2 log(A)
r . That implies in particular

the following inequality: |B(v,r+1)|−|B(v,r)|
|B(v,r)| > 2 log(A)

r . Summing-up these
inequalities, we have:

2m∑
r=m

|B(v, r + 1)| − |B(v, r)|
|B(v, r)| > 2 log(A)

2m∑
r=m

1
r

.

Then we consider an piecewise affine function B(t) that coincides with
|B(v, t)| on integer points. We get:

log
(

B(2m)
B(m)

)
=
∫ 2m

m
B′(t)
B(t) dt > 2 log (A)

∫ 2m

m
1
t dt > log (A) .

Therefore B(2m) > AB(m), which is a contradiction. □

We are now able to prove Theorem 6.10:

Proof of Theorem 6.10. — Let v be a vertex of G and n ⩾ nω be an
integer large enough so that we can apply Lemmas 6.14 and 6.15. We
will require n to be (a priori) even larger in the following, satisfying some
conditions that will appear later. Let η be a real of the interval (0, 1), that
may be equal to zero if d1 = d2.

Fact 6.18. — Let r ∈
[
g(v)d1f(v, n)d1 , |B(v, n)|

]
. Let F a subset of

B(v, n) of cardinality at most r. Then, we have |∂F |
|F | ⩾ g(v)r−1/d1 .
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Proof. — If |F | ⩽ f(v, n), then since G is infinite and connected, we have
|∂F | ⩾ 1. From the lower bound on r we can deduce

|∂F |
|F |

⩾
1

|F |
⩾

1
f(v, n) ⩾ g(v)r−1/d1 .

If |F | ⩾ f(v, n), then we have from assumption (2)
|∂F |
|F |

⩾ g(v)|F |−1/d1 ⩾ g(v)r−1/d1 . □

It follows that we have:

(is1) ∀r ∈
[
g(v)d1f(v, n)d1 , |B(v, n)|

]
Λv

n(r) ⩾ g(v)r−1/d1 .

Let r be an integer in
[
max

(
8d2b(v), 4d2b(v)n

d2
1−η
ω

)
, |B(v, n)|

]
. Let r′

be the biggest integer such that |B (v, 2r′)| ⩽ r. According to Lemma 6.15,
there exists an integer r′′ between r′1−η and 2r′ such that |∂B(v,r′′)|

|B(v,r′′)| ⩽
a

|B(v,r′′)|1/d1 .
Since B(v, 2r′ + 2) ⩾ r, we get from the growth assumption 1 of The-

orem 6.10 that r′ ⩾ 1
2

(
r

b(v)

)1/d2
− 2 ⩾ 1

4

(
r

b(v)

)1/d2
. Then we have r′′ ⩾

r(1−η)/d2

4(1−η)b(v)(1−η)/d2 ⩾ nω. Therefore, by Lemma 6.14 we have: |B(v, r′′)| ⩾

b′(v) · g(v)d1 · r′′d1 ⩾ b′(v)g(v)d1

4(1−η)d1 b(v)
(1−η) d1

d2

r(1−η) d1
d2 . We can deduce the follow-

ing inequality, setting g′(v) = a.4(1−η)b(v)
(1−η)

d2

b′(v)1/d1 :

(is2) ∀r ∈
[
4d2b(v)n

d2
1−η
ω , |B(v, n)|

]
Λv

n(r) ⩽ g′(v)
g(v) r− (1−η)

d2 .

Note that if d1 = d2, then this is also true with η = 0.

Let us set s =
(

2g′(v)
g(v)2

) d2
1−η . From the inequalities (is1) and (is2), we

can deduce that whenever r1 and r2, respectively in the validity domains

of (is1) and (is2), satisfy r2 ⩾ s · r
d2

d1(1−η)
1 , we have Λ(r2) ⩽ 1

2 Λ(r1). From
this inequality we can deduce that p : r 7→ s · r

d2
d1(1−η) is a suitable function

to apply Theorem 6.8.
Let r1 be the biggest integer such that p(p(r1)) ⩽ |B(v, n)|. Then we

have p(p(r1 + 1)) ⩾ |B(v, n)|. Since n is at least equal to nω, we can use
Lemma 6.14, which gives |B(v, n)| ⩾ b′ · g(v)d1 · nd1 . This yields:(

2g′(v)
g(v)2

)( d2
1−η +

d2
2

d1(1−η)2

)
· (r1 + 1)

d2
2

d2
1(1−η)2

⩾ b′ · g(v)d1 · nd1 .
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Therefore, if n is large enough,

(6.1) r1 ⩾ cd1 · g(v)

(
d3

1(1−η)2

d2
2

+2
d2

1(1−η)
d2

+2d1(1−η)
)

n

d3
1(1−η)2

d2
2 ,

with

c = b′
d1(1−η)2

d2
2

(3g′(v))
d1(1−η)

d2
+ 1

d2
1

.

Then if n is large enough r1 is in the validity domain of (is2). Moreover, if
we set

β = d2
1(d1 − 1)(1 − η)2

d2
2

+ 2d1(d1 − 1)(1 − η)
d2

+ 2(d1 − 1)(1 − η) + 1,

we get that if f(v, n) ⩽ cg(v)
β−d1
d1−1 n

d2
1(1−η)2

d2
2 , then r1 is in the validity domain

of (is1). We find out the condition on f(v, n) that is made in the statement
of Theorem 6.10. Under this assumption, we can apply Theorem 6.8 with
r2 = p(r1). This gives:

(6.2)
Sepv(|B(v, n)|) ⩾ Sepv(p(r2))

⩾ r1
Λv

n(r1)
8 log( p(r2)

r1
)+8

.

First, from (is1) and the lower bound (6.1) on r1, we have:

r1Λv
n(r1) ⩾ g(v)r

d1−1
d1

1 ⩾
b′

d1(d1−1)(1−η)2

d2
2

(3g′(v))
d1(d1−1)(1−η)

d2
+ d1−1

d2
1

· g(v)βn

d2
1(d1−1)(1−η)2

d2
2 .

Second, we have p(r2) ⩽ |B(v, n)| ⩽ b(v) · nd2 , from the assumption (1)
of Theorem 6.10. We now set N = |B(v, n)|, and define D to be a bound
on the degrees of the vertices of G.

Then, after calculation we deduce from (6.2), using the two previous
inequalities, and the lower bound (6.1) on r1, that if N is large enough we
have

Sepv(N) ⩾ Kg(v)β Nα

log(N) ,

ANNALES DE L’INSTITUT FOURIER



SEPARATION, ISOPERIMETRY, GROWTH AND COMPRESSION 1667

with:

K = b′
d1(d1−1)(1−η)2

d2
2

9
d3

2−d3
1(1−η)2

d2
2

(3g′(v))
d1(d1−1)(1−η)

d2
+ d1−1

d2
1 b

d2
1(d1−1)(1−η)2

d3
2

,

α = d2
1(d1−1)(1−η)2

d3
2

,

β = d2
1(d1−1)(1−η)2

d2
2

+ 2 d1(d1−1)(1−η)
d2

+ 2(d1 − 1)(1 − η) + 1.

Up to considering a larger η, we can substitute (1 − η)2 with (1 − η) in
the expression of α, and remove the log(N) term that appear in the lower
bound on Sepv(N). This gives the desired inequality in Theorem 6.10.

If we make the additional assumption that d1 = d2, we can set d = d1.
Our previous inqualities were valid with η = 0, which we now assume to
be true. Then our previous inequalities turn into

p(r2)
r1

⩽ bc−dg(v)d,

and
r1Λv

n(r1) ⩾ 1
3g′(v)− (d−1)(d2+1)

d2 g(v)βN
d−1

d .

Thus, the inequality (6.2) yields, if N is large enough:

Sepv(N) ⩾ Kg(v)βNα,

with:

K = 1
24

g′(v)− (d−1)(d2+1)
d2

log(bc−dg(v)d)+1 ,

α = d−1
d ,

β = 5d − 4.

This ends the proof of Theorem 6.10. □

6.4. Another approach for polynomial graphs.

In this subsection, we study local separation in graphs of polynomial
growth and of isoperimetric dimension greater than 1. Using a more ab-
stract and simple approach, we show again that around any point the sep-
aration is bounded below by a power of n, that improves Theorem 6.10
in some cases. We will prove a statement in a slightly more general con-
text than polynomial graphs, with a local flavour, which is very natural
regarding to the proof. We will then formulate the theorem in the setting
of polynomial graphs (Corollary 6.21). Here is our theorem:
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Theorem 6.19. — Let G be an infinite graph of bounded degree such
that there exists d2 ⩾ d1 > 1 and two positive functions b(v) and g(v, n)
such that for any vertex v and any positive integer n:

• γv(n) := |B(v, n)| ⩽ b(v)nd2 ,
• for any V ⊂ B (v, n), |∂V | ⩾ g(v, γv(n))|V |

d1−1
d1 .

We assume moreover that d2
1 > d2 − d1. Then for any η > 0 there exists

s > 0 depending only on d1, d2, b and η such that for any positive integer
n and any vertex v:

Sepv
G(n) ⩾ s · g(v, n)β · n(1−η)α with α = (d1−1)(d2

1−(d2−d1))
d2

1d2
,

and β = d2
1+d1−1

d1
.

Moreover, if d1 = d2 the conclusion is also true for η = 0.

Remark 6.20. — The conclusion of the theorem implies in particular that
the classical (or global) separation profile is bounded below: For any η > 0
there exists s(v, η) > 0 such that for any positive integer n:

SepG(n) ⩾ s · g(v, n)β · n(1−η)α.

This corollary follows, using the terminology introduced in Definition 6.9:

Corollary 6.21. — Let G be a (d1, d2)-polynomial graph such that
d2 − d1 < d2

1. Then for any η ∈ (0, 1) there exists c > 0 such that for any
vertex v and any integer n:

Sepv
G(n) ⩾ cn(1−η)α, with α = (d1 − 1)(d2

1 − (d2 − d1))
d2

1d2
.

Moreover, if d1 = d2 the conclusion is also true for η = 0.

Remark 6.22. — As in Corollary 6.11, in the case where d1 equals d2
we get the expected exponent d1−1

d1
, optimal in the case of vertex-transitive

graphs. If d1 is smaller than d2 one can notice that Corollaries 6.11 and 6.21
do not give the same exponents (the best can be given by one or the other,
depending on the values of d1 and d2), which is an interesting demonstra-
tion of the fact that, despite the use of the same ingredients, the two ap-
proaches are essentially different. Dropping the (1−η) factor, the exponents
of Corollaries 6.11 and 6.21 are respectively d2

1(d1−1)
d3

2
and (d1−1)(d2

1−(d2−d1))
d2

1d2
.

For example, with d1 = 2 and d2 = 3, Corollary 6.21 gives 1
4 , which is bigger

than 4
27 , given by Corollary 6.11. With d1 = 2 and d2 = 11

2 , Corollary 6.11
gives 32

1331 ≈ 0.024, which is bigger than 1
44 ≈ 0.023 given by Corollary 6.21.

Moreover, Corollary 6.21 gives nothing when d2 ⩾ d2
1 + d1, while Corol-

lary 6.11 always gives a consistent result.
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Let us explain the strategy of the proof of Theorem 6.19. We call isoperi-
metric ratio of a set the ratio between the size of its boundary and its size,
|∂·|
|·| . Our a goal is to find, for any n, a subset X of B(v, n) for which we

can bound below its cardinality and its Cheeger constant in order to get a
bound on |X|h(X). Adapting slightly the proof of Lemma 3.2, we see that
to bound its Cheeger constant, it suffices for X to verify two conditions:
first that it has a lower (or equal) isoperimetric ratio than its subsets, and
second that the isoperimetric ratio of its small (less than a half) subsets
is bigger, by a controlled factor greater than 1. To get those properties,
we proceed recursively: starting from a ball B(v, n), we take smaller and
smaller subsets that violates the second condition, and when there is no
such small subset, we finally take a subset of the resulting set that min-
imises the isoperimetric ratio. Our hypothesis on the growth of the graph
gives an upper bound on the isoperimetric ratio the size of the boundary of
B(v, n), and the hypothesis on the isoperimetric dimension ensures a lower
bound on the cardinality of the final set and on its isoperimetric ratio,
leading to a bound on its Cheeger constant.

In the proof of Theorem 6.19, we will use the following lemma. As men-
tionned above, this is a local version of Lemma 3.2.

Lemma 6.23. — Let X be a finite subset of an infinite graph, satisfying
the following properties:

• ∀Y ⊂ X |∂Y |
|Y | ⩾ |∂X|

|X| ,

• ∀Y ⊂ X
(

|Y | ⩽ |X|
2 ⇒ |∂Y |

|Y | ⩾ (1 + ε) |∂X|
|X|

)
.

Then,

2h(X) ⩾ ε
|∂X|
|X|

.

Proof. — The proof is very similar to the proof of Lemma 3.2. Let F1 be
a subset of X such that |F1| ⩽ |X|

2 . We denote F2 = X \ F1. Then we have:

2|∂XF1| = |∂F1| + |∂F2| − |∂X|

⩾ (1 + ε) |∂X|
|X| |F1| + |∂X|

|X| |F2| − |∂X|

= ε |∂X|
|X| |F1| + |∂X|

|X| (|F1| + |F2|) − |∂X|

= ε |∂X|
|X| |F1|.

Then we have 2 |∂X F1|
|F1| ⩾ ε |∂X|

|X| . Since this is true for any subset F1 of
X containing at most half of its points, we have shown the announced
inequality. □
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Proof of Theorem 6.19. — Let v be a vertex of G. We start by giving
a doubling property of the graph G. Let η be a real of the interval (0, 1),
that may be equal to zero if d1 = d2. Let n be an integer at least equal to
2. Let m, A, and r be given by Facts 6.16 and 6.17. Then we have:

• n1−η ⩽ r ⩽ 2n

• |∂B(v,r)|
|B(v,r)| ⩽ log(A)

r

Let us write F1 = B(v, r) the ball of G centred at v of radius r. Let
g = g (v, |B(v, 2n)|) and ε be a positive real small enough so that 2

1
d1+1 ⩽

21/d1

1+ε .
We construct a finite decreasing sequence (Fi)i by induction, in the fol-

lowing way: let i be a positive integer. If Fi is defined, then:
• If there exists a subset of A of Fi such that |A| ⩽ |Fi|

2 and |∂A|
|A| ⩽

(1 + ε) |∂Fi|
|Fi| , then we take Fi+1 being such a set.

• Otherwise, we stop the sequence.
Let k denote the number of terms of this sequence. From the isoperi-

metric dimension hypothesis we have: |Fk|−1/d1 ⩽ 1
g

|∂Fk|
|Fk| ⩽ (1+ε)k

g
|∂F1|
|F1| ⩽

(1+ε)k

g
log(A)

r , therefore we can deduce that |Fk| ⩾ gd1 rd1

log(A)d1 (1+ε)kd1 .
By construction, we have |Fk| ⩽ 2−k|F1|. Hence, we can deduce that

2k/d1 |F1|−1/d1 ⩽ |Fk|−1/d1 ⩽
(1 + ε)k

g

log(A)
r

,

which means that 2
k

d1+1 ⩽
(

21/d1

1+ε

)k

⩽ log(A)
g

|F1|1/d1

r ⩽ log(A)b1/d1

g
rd2/d1

r =
log(A)b1/d1

g r
d2−d1

d1 .

Then, since (1 + ε)kd1 ⩽ 2
(

1
d1

− 1
d1+1

)
kd1 = 2

k
d1+1 , we can deduce that,

with c = log(A)−(d1+1)b−1/d1 ,

|Fk| ⩾ c · gd1+1 · rd1

r
d2−d1

d1

= c · gd1+1 · r
d2

1−(d2−d1)
d1 .

We can take a final set X minimising |∂·|
|·| among subsets of Fk.

Therefore, X satisfies the following properties:
• ∀Y ⊂ X |∂Y |

|Y | ⩾ |∂X|
|X|

• ∀Y ⊂ X
(

|Y | ⩽ |X|
2 ⇒ |∂Y |

|Y | ⩾ (1 + ε) |∂X|
|X|

)
Then, we can apply Lemma 6.23 to X. We get

2h(X) ⩾ ε
|∂X|
|X|

.
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By construction of Fk, we have |X| ⩾ |Fk|/2. We have:

|X|h(X) ⩾ ε
2 · |∂X|

⩾ ε
2 g · |X|

d1−1
d1

⩾ ε
2 g2

1−d1
d1 · |Fk|

d1−1
d1

⩾ ε
2 g2

1−d1
d1 c

d1−1
d1 g

(d1−1)(d1+1)
d1 · r

(d1−1)(d2
1−(d2−d1))

d2
1

⩾ c′ · g
d2

1+d1−1
d1 · nd2(1−η)α.

With c′ = ε
2 · 2

1−d1
d1 · c

d1−1
d1 and α = (d1−1)(d2

1−(d2−d1))
d2

1d2
.

We have shown that there exists a positive constant c′ such that for any
integer n ⩾ 2 and any vertex v, we have:

Sepv
G(|B(v, 2n)|)

⩾ c′g (v, |B(v, 2n)|)
d2

1+d1−1
d1 · nd2(1−η)α

⩾ c′

b(1−η)α2d2(1−η)α g (v, |B(v, 2n)|)
d2

1+d1−1
d1 · |B(v, 2n)|(1−η)α

.

The announced result follows. □

7. Questions

Although we showed that there are plenty of optimal integers, it turns
out it’s incredibly hard to describe optimal sets. In the case of Zd this can
probably be achieved with the Loomis–Whitney inequality (see [29]).

Question 7.1. — Give an explicit description of the optimal sets in the
discrete Heisenberg groups (or in any amenable group which is not virtually
Abelian).

For the “continuous” version of the Heisenberg group, this is an old open
question. But perhaps the discrete case is easier.

More generally, one could ask whether it is possible to find the optimal
sets in semi-direct products of “well-known cases”: assuming the optimal
sets of the [finitely generated] groups G1 and G2 are known [for some
generating sets S1 and S2], can the optimal sets of G1 ⋊G2 be of the form
F1 × F2 (where Fi is an optimal set for the Cayley graph of Gi w.r.t. Si)?

Another interesting question on optimal sets would be the following:
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Question 7.2. — If G is a graph whose isoperimetric profile is known
up to a multiplicative constant, what can we say about the density of sets
whose separation is good?

Let us shortly describe two interpretations of this question. First, Propo-
sition 4.3 only uses the fact that p(n) ⩽ Knc for some K > 0 and c > 1.
This gives a fairly low density of optimal integers, leaving open the possi-
bility for much higher densities. For example, if K = 1 and c = 2, then the
sequence of optimal integers could be as sparse as 2, 4, 16, 256, . . .

Second (in the spirit of local separation), one could also fix some n, r

and K and look at the density of vertices x for which a ball of radius r

contains a set of size n which is up to a multiplicative factor of K as hard
to cut as the best set for that given n.

Here are many inequalities between the separation and isoperimetric pro-
file which seem natural (they might be easy, or hard, to prove or disprove):

Question 7.3.
(1) If G is the Cayley graph of a group, more generally a vertex-

transitive graphs, Sep(N)
N

?
≼ ΛG(N).

(2) If G is the Cayley graph of an amenable group,
SepG(N)

N

?
≽ ΛG(N/2) − ΛG(N).

(3) If G is the Cayley graph of a polycyclic group, SepG(N)
N

?≃ 1
log n . (For

such groups ΛG(N) ≃ 1
log n .)

(4) If G is the Cayley graph of a group, is Sep(N)
N

?
≽ N

(
ΛG(N − 1) −

ΛG(N)
)
.

The following associated question was also posed to us in connection
with Question 4.19:

Question 7.4. — Does the classical lamplighter group Z2 ≀ Z coarsely
embeds in any exponential growth solvable group?

A positive answer to this question would give a (negative) answer to
Question 4.19. In fact, regular maps from the lamplighter to solvable groups
(of exponential growth) would be enough (and should be easier to produce).
Note that one cannot replace the lamplighter with a polycyclic group (of
exponential growth) in Question 7.4. Indeed, the asymptotic dimension
increases under a regular map (see Benjamini, Schramm and Timàr [7, §6])
and the classical lamplighter has asymptotic dimension 1 while polycyclic
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groups have dimension ⩾ 2 (they are finitely presented; see Gentimis [15] for
both results). Consequently, there are no regular maps from any polycyclic
group to the classical lamplighter group (which is a solvable group).

It is very natural to ask Question 7.4 more generally for exponential
growth amenable groups. However, in [23], Hume and Mackay gave exam-
ples of elementary hyperbolic groups with an arbitrary low profile, along a
subsequence. Then, the lamplighter group cannot coarsely embed in those
groups.

The following interesting question was suggested by the referee in light
of Corollary 1.7:

Question 7.5. — Are there amenable groups of exponential growth
which have a regular embedding in an hyperbolic space of dimension d > 1.

Question 7.6. — Does there exists a vertex-transitive graph G such
that for some/any vertex v we have Sepγ−1

v ,v
G ≺ SepG? With G amenable?

This question in linked with the issue of controlling the diameter of high
separation graphs. Indeed, we expect those graphs to have a small diameter
but finding such a counter-example would be very interesting.

The following question is very natural, after Theorem 1.6 which answers
positively when G is solvable and Theorem 1.4 which does it for groups of
subexponential growth.

Question 7.7. — For G amenable, does Sep(n) ⪯ n1−ϵ implies that G

is virtually nilpotent?

BIBLIOGRAPHY

[1] S. Amghibech, “Eigenvalues of the discrete p-Laplacian for graphs”, Ars Combin.
67 (2003), p. 283-302.

[2] G. N. Arzhantseva, V. S. Guba & M. V. Sapir, “Metrics on diagram groups and
uniform embeddings in a Hilbert space”, Comment. Math. Helv. 81 (2006), no. 4,
p. 911-929.

[3] M. T. Barlow, “Random walks on supercritical percolation clusters”, Ann. Probab.
32 (2004), no. 4, p. 3024-3084.

[4] A. Bendikov, Ch. Pittet & R. Sauer, “Spectral distribution and L2-isoperimetric
profile of Laplace operators on groups”, Math. Ann. 354 (2012), no. 1, p. 43-72.

[5] I. Benjamini & E. Mossel, “On the mixing time of a simple random walk on the
super critical percolation cluster”, Probab. Theory Related Fields 125 (2003), no. 3,
p. 408-420.

[6] I. Benjamini & P. Papasoglu, “Growth and isoperimetric profile of planar graphs”,
Proc. Amer. Math. Soc. 139 (2011), no. 11, p. 4105-4111.

[7] I. Benjamini, O. Schramm & Á. Timár, “On the separation profile of infinite
graphs”, Groups Geom. Dyn. 6 (2012), no. 4, p. 639-658.

TOME 73 (2023), FASCICULE 4



1674 Antoine GOURNAY & Corentin LE COZ

[8] M. Bonk & O. Schramm, “Embeddings of Gromov hyperbolic spaces”, Geom.
Funct. Anal. 10 (2000), no. 2, p. 266-306.

[9] J. Brieussel & T. Zheng, “Speed of random walks, isoperimetry and compression
of finitely generated groups”, Ann. of Math. (2) 193 (2021), no. 1, p. 1-105.

[10] S. Buyalo, A. Dranishnikov & V. Schroeder, “Embedding of hyperbolic groups
into products of binary trees”, Invent. Math. 169 (2007), no. 1, p. 153-192.

[11] S. Buyalo & V. Schroeder, Elements of asymptotic geometry, EMS Mono-
graphs in Mathematics, European Mathematical Society (EMS), Zürich, 2007,
xii+200 pages.

[12] Th. Coulhon & L. Saloff-Coste, “Isopérimétrie pour les groupes et les variétés”,
Rev. Mat. Iberoamericana 9 (1993), no. 2, p. 293-314.

[13] A. Erschler, “On isoperimetric profiles of finitely generated groups”, Geom. Ded-
icata 100 (2003), p. 157-171.

[14] ——— , “Piecewise automatic groups”, Duke Math. J. 134 (2006), no. 3, p. 591-613.
[15] T. Gentimis, “Asymptotic dimension of finitely presented groups”, Proc. Amer.

Math. Soc. 136 (2008), no. 12, p. 4103-4110.
[16] L. R. Gibson & M. Pivarski, “Isoperimetric profiles on the pre-fractal Sierpinski

carpet”, Fractals 18 (2010), no. 4, p. 433-449.
[17] V. Gladkova & V. Shum, “Separation profiles of graphs of fractals”, https://

arxiv.org/abs/1810.08792, 2018.
[18] A. Gournay, “The Liouville property and Hilbertian compression”, Ann. Inst.

Fourier (Grenoble) 66 (2016), no. 6, p. 2435-2454.
[19] M. Gromov, “Entropy and isoperimetry for linear and non-linear group actions”,

Groups Geom. Dyn. 2 (2008), no. 4, p. 499-593.
[20] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathe-

matics, University of Chicago Press, Chicago, IL, 2000, vi+310 pages.
[21] D. Hume, “Direct embeddings of relatively hyperbolic groups with optimal ℓp com-

pression exponent”, J. Reine Angew. Math. 703 (2015), p. 147-172.
[22] ——— , “A continuum of expanders”, Fund. Math. 238 (2017), no. 2, p. 143-152.
[23] D. Hume & J. M. Mackay, “Poorly connected groups”, Proc. Amer. Math. Soc.

148 (2020), no. 11, p. 4653-4664.
[24] D. Hume, J. M. Mackay & R. Tessera, “Poincaré profiles of groups and spaces”,

Rev. Mat. Iberoam. 36 (2020), no. 6, p. 1835-1886.
[25] D. Hume & A. Sisto, “Groups with no coarse embeddings into hyperbolic groups”,

New York J. Math. 23 (2017), p. 1657-1670.
[26] P.-N. Jolissaint & T. Pillon, “Lp compression of some HNN extensions”, J.

Group Theory 16 (2013), no. 6, p. 907-913.
[27] P.-N. Jolissaint & A. Valette, “Lp-distortion and p-spectral gap of finite graphs”,

Bull. Lond. Math. Soc. 46 (2014), no. 2, p. 329-341.
[28] S. Li, “Compression bounds for wreath products”, Proc. Amer. Math. Soc. 138

(2010), no. 8, p. 2701-2714.
[29] L. H. Loomis & H. Whitney, “An inequality related to the isoperimetric inequal-

ity”, Bull. Amer. Math. Soc 55 (1949), p. 961-962.
[30] A. Naor & Y. Peres, “Embeddings of discrete groups and the speed of random

walks”, Int. Math. Res. Not. IMRN (2008), article no. 076 (34 pages).
[31] ——— , “Lp compression, traveling salesmen, and stable walks”, Duke Math. J.

157 (2011), no. 1, p. 53-108.
[32] G. Pete, “A note on percolation on Zd: isoperimetric profile via exponential cluster

repulsion”, Electron. Commun. Probab. 13 (2008), p. 377-392.

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1810.08792
https://arxiv.org/abs/1810.08792


SEPARATION, ISOPERIMETRY, GROWTH AND COMPRESSION 1675

[33] Ch. Pittet & L. Saloff-Coste, “Random walks on finite rank solvable groups”,
J. Eur. Math. Soc. (JEMS) 5 (2003), no. 4, p. 313-342.

[34] Ch. Pittet & L. Saloff-Coste, “Amenable groups, isoperimetric profiles and ran-
dom walks”, in Geometric group theory down under (Canberra, 1996), de Gruyter,
Berlin, 1999, p. 293-316.

[35] ——— , “A survey on the relationships between volume growth, isoperimetry, and
the behavior of simple random walk on Cayley graphs, with examples”, https:
//math.unice.fr/~indira/papers/surveyPS.pdf, 2001.

[36] A. W. Sale, “Metric behaviour of the Magnus embedding”, Geom. Dedicata 176
(2015), p. 305-313.

[37] L. Saloff-Coste & T. Zheng, “Random walks and isoperimetric profiles under
moment conditions”, Ann. Probab. 44 (2016), no. 6, p. 4133-4183.

[38] ——— , “Isoperimetric profiles and random walks on some permutation wreath
products”, Rev. Mat. Iberoam. 34 (2018), no. 2, p. 481-540.

[39] R. Tessera, “Asymptotic isoperimetry on groups and uniform embeddings into
Banach spaces”, Comment. Math. Helv. 86 (2011), no. 3, p. 499-535.

[40] ——— , “Isoperimetric profile and random walks on locally compact solvable
groups”, Rev. Mat. Iberoam. 29 (2013), no. 2, p. 715-737.

Manuscrit reçu le 2 janvier 2020,
révisé le 25 octobre 2021,
accepté le 1er décembre 2021.

Antoine GOURNAY
Institut für Geometrie,
TU Dresden,
Zellescher Weg 12-14,
01069 Dresden, Germany
antoine.gournay@gmail.com
Corentin LE COZ
Laboratoire de Mathématiques d’Orsay,
Université Paris-Sud, CNRS,
Université Paris-Saclay,
91405 Orsay, France
corentinlecoz@outlook.com

TOME 73 (2023), FASCICULE 4

https://math.unice.fr/~indira/papers/surveyPS.pdf
https://math.unice.fr/~indira/papers/surveyPS.pdf
mailto:antoine.gournay@gmail.com
mailto:corentinlecoz@outlook.com

	1. Introduction
	Organisation of the paper
	Acknowledgments

	2. Definitions
	3. Lower bound on the separation from isoperimetry
	3.1. Optimal sets and their Cheeger constant
	3.2. A lower bound on the separation profile from isoperimetry
	3.3. A qualitative approach

	4. Applications
	4.1. Isoperimetric profile decaying as a power of N
	4.1.1. Application to pre-fractal Sierpinski carpets

	4.2. Isoperimetric profile with logarithmic decay
	4.3. Isoperimetric profile with iterated logarithmic decay
	4.4. Solvable groups
	4.5. Limitations of Theorem 3.8

	5. Upper bounds on the separation profile
	5.1. From growth
	5.2. From compression

	6. Local separation profiles
	6.1. A local version of Theorem 3.4
	6.1.1. Statement of the Theorem

	6.2. Application to polynomial graphs and Zd percolation clusters.
	6.3. Proof of Theorem 6.10
	6.4. Another approach for polynomial graphs.

	7. Questions
	References

