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RADIAL RAPID DECAY DOES NOT IMPLY RAPID
DECAY

by Adrien BOYER,
Antoine PINOCHET LOBOS & Christophe PITTET (*)

Abstract. — We provide a new, dynamical criterion for the radial rapid decay
property. We work out in detail the special case of the group Γ := SL2(A), where
A := Fq [X, X−1] is the ring of Laurent polynomials with coefficients in Fq , endowed
with the length function coming from a natural action of Γ on a product of two
trees, and show that it has the radial rapid decay (RRD) property and doesn’t
have the rapid decay (RD) property. We show that the criterion also applies to
all irreducible lattices (uniform or not) in semisimple Lie groups with finite center
endowed with a length function defined with the help of a Finsler metric. When the
rank is greater or equal to two and the lattice is non-uniform, the lattice has RRD
but not RD. These examples answer a question asked by Chatterji and moreover
show that, unlike the RD property, the RRD property isn’t inherited by open
subgroups.

Résumé. — Nous établissons un nouveau critère dynamique entraînant la pro-
priété de décroissance rapide radiale. Nous explicitons le cas particulier du groupe
Γ := SL2(A), où A := Fq [X, X−1] est l’anneau des polynômes de Laurent à coeffi-
cients dans le corps fini Fq , muni d’une fonction longueur provenant d’une action
naturelle de Γ sur le produit de deux arbres. Nous prouvons que pour cette fonction
longueur, ce groupe vérifie la propriété de décroissance rapide radiale (RRD), mais
ne vérifie pas la propriété de décroissance rapide (RD). Nous prouvons aussi que
notre critère s’applique à tout réseau irréductible (uniforme ou non), de tout groupe
de Lie semi-simple à centre fini, muni d’une certaine fonction longueur définie à
l’aide d’une métrique de Finsler. Lorsque le rang réel est supérieur ou égal à deux
et que le réseau n’est pas uniforme, le réseau vérifie la propriété RRD, mais pas
la propriété RD. Ces exemples répondent à une question de Chatterji et montrent
que, contrairement à la propriété RD, la propriété RRD n’est pas héréditaire par
passage à un sous-groupe ouvert.

Keywords: RD property, Koopman representation, semi-simple group, lattice, Harish-
Chandra function, convolution operator norm, length function.
2020 Mathematics Subject Classification: 42A85, 22F10.
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1. Introduction

The rapid decay property (RD), which can be stated as an inequality
between two different norms on the convolution algebra of a group, was
first introduced in [14] and further developped in [15]. It became a subject
of great importance since V. Lafforgue discovered its connection with the
Baum–Connes conjecture [16]. Any connected, non-compact semisimple Lie
group with finite center has RD [9], but it is an open question (asked in [25]
and now known as Valette’s conjecture) to know whether cocompact lattices
inherit the rapid decay property.

The radial rapid decay property (RRD) is a weakening of RD, first stud-
ied in [24], and consists in restricting the RD inequality to the class of
radial functions. The strategy of proof used in [9] for Lie groups, a reduc-
tion to radial functions, raised hope for a solution of Valette’s conjecture
when Perrone [19] managed to show that cocompact lattices have RRD.
In this context, Chatterji asked for a group having RRD but not having
RD [8, p. 57].

In this paper, we provide a sufficient, dynamical condition, for a group
to have property RRD. We then study the case of the discrete group Γ :=
SL2(A), where A := Fq[X,X−1] is the ring of Laurent polynomials with
coefficients in Fq, that acts naturally on a product of trees, and on the
product of the boundaries of these trees. Using the dynamical criterion, we
prove that Γ has RRD. Moreover, noticing that Γ contains a lamplighter
group as a subgroup, we prove that Γ doesn’t have RD, and give therefore
a negative answer to Chatterji’s question; finally, this example shows that
RRD isn’t inherited by open subgroups, whereas RD is. At first sight, this
example may look surprising, since containing an amenable subgroup with
exponential growth is a well-known obstruction to having RD.

The criterion also applies to irreducible lattices (uniform or not) in
semisimple Lie groups. We prove this in Section 2.2 below.

Notation. — Throughout the paper, we will use the ≪ notation, as an
alternative to the big O notation. Precisely,

f(n) ≪ g(n)
means that there is M ∈ R such that for every sufficiently large n, we have
that |f(n)| ⩽M |g(n)|.
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2. Statement of the results

2.1. Statement of the criterion

In this section, we give the necessary definitions and notation in order to
state the dynamical criterion; we then investigate the range of application
of the criterion.

Let G be a locally compact group. Let e ∈ G denote the identity element.

Definition 2.1 (Length functions). — A length function on G is a map
L : G → R+ such that

(1) L(e) = 0;
(2) ∀g ∈ G, L(g−1) = L(g);
(3) ∀g, h ∈ G, L(gh) ⩽ L(g) + L(h).

If E ⊂ G is any subset, we define, for all t ∈ R+, Et = E ∩L−1([0, t]). A
length function L is said to be proper if Gt is compact, for all t.

Notation 2.2. — When it is unambiguous, we use the notation

Cn := {g ∈ G | L(g) ∈ [n, n+ 1)}.

If necessary, we add the reference to the group or the length function by
writing CGn or CLn .

Definition 2.3 (Radial functions). — Let L : G → R+ be a proper
length function. Denote by Cc(G) the space of compactly-supported func-
tions on G (if G is a discrete group, Cc(G) is the space of finitely-supported
functions and we denote it by C[G]).

We say that f ∈ Cc(G) is radial if

∀g1, g2 ∈ G, L(g1) = L(g2) ⇒ f(g1) = f(g2).

Denote by Crad
c (G) the set of radial functions (if G is a discrete group,

Crad
c (G) is the space of radial functions of finite support, and we denote it

by C[G]rad).

Let µ be a left Haar measure on G. Let R[X] denote the algebra of
polynomial functions in one variable X and with real coefficients.

For f ∈ Cc(G), let

L(f) := sup{L(g) | g ∈ supp(f)},

and for f ∈ Cc(G) and ξ ∈ L2(G,µ), consider the convolution

f ∗ ξ :=
(
g 7→

∫
G

ξ(h−1g)f(h) dµ(h)
)
.

TOME 73 (2023), FASCICULE 4
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Let us denote by ∥ · ∥p→q the norm of a continuous operator between
a Lp and a Lq space. Recall ξ 7→ f ∗ ξ is a continuous linear operator on
L2(G,µ). For reasons of concision, let us denote

∥f∥op := ∥ξ 7→ f ∗ ξ∥2→2.

We can now define the rapid decay property.
Definition 2.4 (Rapid decay). — We say that G has property RD with

respect to L if
∃P ∈ R[X], ∀f ∈ Cc(G), ∥f∥op ⩽ P (L(f))∥f∥2

and we say that it has radial property RD with respect to L if
∃P ∈ R[X], ∀f ∈ Crad

c (G), ∥f∥op ⩽ P (L(f))∥f∥2.

For further information on property RD, see [8] and [12].
The dynamical criterion asserts, for short, that if there is a suitable action

of the group on some probability space, then the group has RRD. In order
to state it precisely, we will need additional definitions and notation. Let
(B, T ) be a measurable space, G↷ B be a measurable action.

Definition 2.5 (Quasi-invariant measure). — We say that a measure
ν on (B, T ) is quasi-invariant if the action preserves ν-null-sets, that is, for
every g ∈ G, for every C ∈ T such that ν(C) = 0, then ν(gC) = 0.

Let ν be a σ-finite quasi-invariant measure for the action G ↷ (B, T ).
We consider the following objects, which existence relies on the Radon–
Nikodym theorem.

Definition 2.6 (Radon–Nikodym cocycles, Koopman representation
and Harish-Chandra function). — We call

c : G×B → R∗
+

(g, b) 7→ dg−1
∗ν

dν (b)

the Radon–Nikodym cocycle.
The formula

π : G → U(L2(B, ν))

g 7→
(
h 7→ (b 7→ c(g−1, b) 1

2h(g−1b)
)

defines a unitary representation called the Koopman representation asso-
ciated to the action Λ ↷ (B, ν). The associated Harish-Chandra function
is defined as

Ξ := g 7→
∫
B

c(g−1, b) 1
2 dν(b) = ⟨π(g)1B ,1B⟩.

ANNALES DE L’INSTITUT FOURIER
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The main result of this paper is the following theorem.

Theorem 2.7 (Dynamical criterion for RRD). — Let Λ be a discrete
group with a proper length function L. Let (B, ν) be a σ-finite probability
space. Let π : Λ → U(L2(B)) be the Koopman representation arising from
a measurable action Λ ↷ (B,µ) leaving ν quasi-invariant, and let Ξ be the
corresponding Harish-Chandra function.

Assume that there is M ∈ R, P ∈ R[X], such that

(1) ∀n ∈ N, sup
γ∈Cn

Ξ(γ) ⩽ P (n)√
|Cn|

.

(2) ∀n ∈ N,

∥∥∥∥∥∥ 1
|Cn|

∑
γ∈Cn

π(γ)
Ξ(γ)

∥∥∥∥∥∥
2→2

⩽M.

Then Λ has RRD with respect to L.

We will refer to the two hypotheses of the criterion as the Harish-Chandra
volume estimates condition and the uniform boundedness condition. For a
proof of Theorem 2.7, see Section 3.

The following theorem, which generalizes ideas from [6], gives sufficient
conditions for the uniform boundedness condition to hold.

Theorem 2.8 (Sufficient conditions for the uniform boundedness
condition). — Let G be a locally compact group endowed with a left Haar
measure µG, and a proper length function L. Let B be a compact space, ν
be a Borel probability measure on B and consider a measurable action of
G on B leaving ν quasi-invariant. Let Λ be a lattice in G, and let us endow
it with the length function given by the restriction of L.

Let us assume that
• the Radon–Nikodym cocycle and the Harish-Chandra function are

continuous;
• the compact subgroup G0 of G consisting of elements of length 0

acts transitively on B and leaves ν invariant;
• at least one of the following two conditions holds:

(i) G0 is open and we have the following growth condition:

µG(CGn ) ≪ |CΛ
n |;

(ii) the subset G1 of G consisting of elements of length at most 1
is a neighborhood of e and we have the following growth con-
dition:

max
{
µG(CGn−1), µG(CGn ), µG(CGn+1)

}
≪ |CΛ

n |.

TOME 73 (2023), FASCICULE 4
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Let us finally denote by π the Koopman representation of Λ associated
with the (restricted) action Λ ↷ B. Then there is M ∈ R such that

∀n ∈ N,

∥∥∥∥∥∥ 1
|CΛ
n |
∑
γ∈CΛ

n

π(γ)
Ξ(γ)

∥∥∥∥∥∥
2→2

⩽M.

For a proof of Theorem 2.8, see Section 4.
The criterion allows us to prove the radial rapid decay property for two

sets of examples:
• on the one hand, it applies to lattices in semisimple Lie groups (see

Section 2.2 for a precise statement and a short proof which heavily
relies on sharp estimates on the Harish-Chandra function);

• on the other hand, we present a self-contained, detailed proof that
the criterion applies to some specific lattice in an algebraic semisim-
ple group over a non-archimedean local field (see Section 2.3 for a
precise statement and Section 5 for the proof).

2.2. Application of the criterion to lattices in semisimple Lie
groups

In this section, we prove (using Theorem 2.7 and Theorem 2.8) that
irreducible lattices, in semisimple connected Lie groups with no compact
factors and a finite center, have RRD for a suitable length function. We
need to start with some notation.

Let G be a connected semisimple Lie group, with no compact factors and
a finite center. Let g be the Lie algebra of G. Let a be a maximal abelian
subalgebra of g. Let Σ be the root system of (g, a), let Σ+ be a system
of positive roots, let a+ be the corresponding Weyl chamber, let Σ+

0 be
the set of indivisible positive roots. Let G := KAN be the corresponding
Iwasawa decomposition, let M := K ∩ Z(A), and let P := MAN be the
corresponding parabolic subgroup. Let ρ be the half-sum of positive roots.
Let us denote A+ := exp(a+).

If H ∈ a+, let us denote
∥H∥ := 2ρ(H).

Let us endow G with the following so-called Finsler length function: if
g = k1 exp(H)k2

is a KA+K decomposition of any g in G, let us denote
L(g) := ∥H∥.

ANNALES DE L’INSTITUT FOURIER
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Finally, consider the action G ↷ G/P , a quasi-invariant measure ν on
G/P and Ξ the associated Harish-Chandra function.

We then have the following corollary of Theorem 2.7 and Theorem 2.8.

Corollary 2.9. — Let Λ be an irreducible lattice in G. There exists
α > 0 such that if we define Lα as

Lα : γ 7→
⌈
L(γ)
α

⌉
,

then (Λ, Lα) has RRD.

Proof. — We will show the corollary by using the dynamical criterion,
Theorem 2.7, and in order to do that, we just need two check two as-
sumptions: the Harish-Chandra estimates and the uniform boundedness
condition. Let us begin by checking the first assumption of the dynami-
cal criterion, when Λ is endowed with the length function L (it obviously
follows that the first assumption is satisfied when Λ is endowed with the
length function Lα for any α > 0).

From the work of Anker (see [2]), we have the following form of the
Harish-Chandra estimate: for every g ∈ G, and any KA+K-decomposition
g = k1 exp(H)k2, we have

Ξ(g) ≍
∏
α∈Σ+

0

(1 + α(H)) e−ρ(H).

We then have, by definition of L, the following estimate:

∀g ∈ G, Ξ(g) ≪ (1 + L(g))|Σ+
0 |
e− L(g)

2 .

On the other hand, if CΛ
n denotes the sphere with respect to L, we have

the following estimate (by combining Prop 7.2 and 7.3 in [1, p. 25]):
|CΛ
n | ≪ nrkG−1en.

Therefore, by combining these two results, we have

sup
γ∈CΛ

n

Ξ(γ)
√

|CΛ
n | ≪ (1 + n)|Σ+

0 |+ rk G−1
2 ,

so that condition (1) of the dynamical criterion is satisfied.

In order to check assumption (2) of the criterion, we use Theorem 2.8 by
checking its assumptions.

We will check that condition (ii) is satisfied. First of all, the ball centered
at e and of radius 1 with respect to Lα is a neighborhood of the identity if
α is chosen large enough, since at least one ball has non-empty interior. It
remains to prove the growth condition.

TOME 73 (2023), FASCICULE 4
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The following growth assertion
µG(CGn ) ≪ |CΛ

n |,

is, in fact, true for a large class of integer-valued proper length functions
L on G, up to a rescaling, i.e. replacing L by L′ := ⌈Lα ⌉ for α large enough
(see [13] or [21, Théorème 1.4.41] for details); let us shortly prove how
to deduce from it the growth assumption we need. Remember that, for a
subgroup H of G, we denote by Hn the intersection of H with the ball of
radius n around the identity in G; assuming α is large enough so that the
1-ball generates G, we have, since G is non-amenable,

µG(Gn) ≪ µG(CGn );
(see for example [20]) therefore,

µG(CGn−1) ⩽ µG(Gn−1) ⩽ µG(Gn) ≪ µG(CGn )
and, using an argument of bounded geometry,

µG(CGn+1) ⩽ µG(Gn+1) ≪ µG(Gn) ≪ µG(CGn ),
so that

max
{
µG(CGn−1), µG(CGn ), µG(CGn+1)

}
≪ µG(CGn )

and, since
µG(CGn ) ≪ |CΛ

n |,
we are done. □

2.3. Application of the criterion to a specific example

In this section, we apply Theorem 2.7 and Theorem 2.8 to a specific
example and exhibit a group having RRD but not having RD for a natural
length function. In order to do so, we need a substantial amount of notation.

2.3.1. The group SL2(A) and its action on the product of two trees

Let q be a power of a prime number and A := Fq[X,X−1] be the com-
mutative ring of Laurent polynomials in the variable X with coefficients
in Fq, the field with q elements. It is the subring of K := Fq(X) (the ring
of rational fractions over the field Fq) generated by the elements X and
X−1 and its additive group is the Fq-vector space with basis {Xn | n ∈ Z},
so each element of A can be written as

∑
n∈Z anX

n, such that ∀n ∈ Z,
an ∈ Fq and all but a finite number of the an being zero.

ANNALES DE L’INSTITUT FOURIER
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Let us now define on K two valuations: if F ∈ K, there are n ∈ Z,
P,Q ∈ Fq[X] such that F := XnP/Q with X ∤ P and X ∤ Q. The integer n
only depends on F and is denoted by v0(F ) (it is the valuation at the place
0). If F = P/Q ∈ K, we define v∞(F ) to be the number degP − degQ (it
is the valuation at infinity). We denote, for i ∈ {0,∞}, | · |i := q−vi(·) the
associated norms, and we consider the corresponding completions K0 and
K∞. The elements of the ringA are called the {0,∞}-integral elements of K.
Now consider the diagonal embedding ∆ : SL2(A) ↪→ SL2(K0) × SL2(K∞).
According to [18, p. 1],

Γ := ∆(SL2(A)) ⊂ G := SL2(K0) × SL2(K∞)

is a lattice in G.
Now, both SL2(K0) and SL2(K∞) act simplicially and properly on their

Bruhat–Tits trees T0 and T∞ (see [22, p. 69] for the detailed construction of
the tree and the action on it) which both happen to be (q+1)-regular trees,
so the group G = SL2(K0) × SL2(K∞) (and therefore, Γ) acts cellularly on
the product I := T0 × T∞. Let us denote V (T0) and V (T∞) the sets of
vertices of these two trees. Let us denote by d0 and d∞ the distances giving
length 1 to the edges of T0 and T∞. We define on I := T0 ×T∞, the so-called
L1 distance, that is,

∀x, y ∈ T0, ∀x′, y′ ∈ T∞, dI ((x, y), (x′, y′)) := d0(x, y) + d∞(x′, y′).

For this distance function, the group G (and, in particular, Γ) acts on I
(and also on V (T0) × V (T∞)) by isometries.

Let (v0, v∞) ∈ V (T0)×V (T∞). We define two length functions as follows:
for i ∈ {0,∞}, let us denote

∀gi ∈ Gi, Li(gi) := di(vi, givi);

finally, we define a length function on G as follows: ∀g := (g0, g∞) ∈ G,

L(g) := dI ((v0, v∞), g(v0, v∞)) = L0(g0) + L∞(g∞).

According to [17], the length function L on Γ is quasi-isometric to any
of the word-lengths on Γ.

We perform the necessary computations and apply the criterion to Γ and
the action of Γ on B, the product of the boundaries of the Bruhat–Tits trees
to deduce the following corollary.

Corollary 2.10. — The group SL2(A) has RRD with respect to L.

The proof of Corollary 2.10 we present here is self-contained and elemen-
tary, but rather lengthy. Section 5 is devoted to collect all ingredients of
the proof.

TOME 73 (2023), FASCICULE 4
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2.4. General consequences on RRD

The examples of the above sections allows us to show two general conse-
quences on the radial rapid decay property, stated in the following corollary.

Corollary 2.11. — There exists finitely generated groups endowed
with lengths functions which are quasi-isometric to word-lengths

(1) which have RRD but do not have RD;
(2) which contain subgroups that do not have RRD for some word-

lengths.

2.5. Comments on the results

2.5.1. Comments on the criterion

The Harish-Chandra function is usually defined in the general theory
of harmonic analysis on reductive groups, and the definition we give coin-
cides with the general definition if one consider the action of a semisimple
Lie group on its Poisson–Furstenberg boundary. Its asymptotics have been
extensively studied and we make use of an estimate presented by Anker
(in [2]) in Section 2.2.

The uniform boundedness condition has been studied in [3, 5, 6, 11]
and [7] where authors investigate generalizations of the von Neumann er-
godic theorem to the situation where the measure is only quasi-invariant.
In several cases of interest, the relevant generalization of von Neumann
means are the normalized averages

1
|Cn|

∑
γ∈Cn

π(γ)
Ξ(γ)

which are shown to converge, in the weak-operator topology, to the orthog-
onal projector on the constant functions subspace, using the fact that the
sequence of these means is uniformly operator-norm-bounded. In particu-
lar, the following are true:

Facts. — The uniform boundedness condition is true (and has been
investigated) for (Λ, L,B, ν) in the following situations:

• [3] if Λ is the fundamental group of a compact, negatively curved
manifold X with universal cover X̃, such that L is the length func-
tion associated to the action of Γ on X̃ and a fixed base-point
x0 ∈ X̃, and B is the Gromov boundary of X̃ endowed with the
Patterson–Sullivan measure ν associated to x0;

ANNALES DE L’INSTITUT FOURIER
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• [7] if Λ is a free group over a finite set of generators, where L is the
length function associated to the action of Λ on its Cayley tree (with
respect to a generating basis) X̃ and B is the Gromov boundary of
X̃ and ν is the Patterson–Sullivan measure;

• [11] if Λ is a non elementary hyperbolic group acting properly and
cocompactly on a proper roughly geodesic hyperbolic space X, L
is the length function associated to the action, B is the Gromov
boundary and ν is the Patterson–Sullivan probability measure;

• [5] if Λ is a convex cocompact discrete group of isometries of a
CAT(-1)-space X, and L is the length function associated to the
action and B is the Gromov boundary endowed with the Patterson–
Sullivan measure ν;

• [6] if G is a noncompact, connected, semisimple Lie group with
finite center, with the notation from Section 2.5.1: Λ is a lattice in
G, B := G/P , ν is a quasi-invariant probability measure and L is a
length function defined as in Section 2.2.

2.5.2. Comments on Corollary 2.9

In rank one, the content of Corollary 2.9 is already known; in fact, Chat-
terji and Ruane, in [10], show that such lattices have RD.

In [19], Perrone has shown that uniform lattices inherit RRD for length
functions built from the Riemannian metric on the symmetric space of the
ambient semisimple Lie group. We suspect the criterion does not apply
to such length functions, in higher rank, because the rate of decay of the
Harish-Chandra function critically depends on the direction in the Weyl
chamber (see the estimation in [2] quoted in the proof of Corollary 2.9);
it is in order to circumvent this difficulty that we investigated the Finsler
metric.

No non-uniform lattice in a semisimple Lie group of rank at least two has
RD, since such a lattice has U -elements [17]. The question of deciding if
uniform lattices in higher rank semisimple Lie groups have RD is a difficult
problem, known as Valette’s conjecture, stated in [25].

2.5.3. Comments on Corollary 2.11

The strategy of proof used in [9], in order to prove that semisimple Lie
groups have RD, is a reduction to radial functions and the question of
comparing RRD and RD has therefore been raised by Chatterji in [8]. Our

TOME 73 (2023), FASCICULE 4
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results show that finitely-generated groups, endowed with length functions
quasi-isometric to word-lengths, can have RRD but can lack RD. It would
be of great interest to have examples of finitely generated groups that have
RRD with respect to some word length but do not have RD (we do not
know if RRD is, in general, invariant by quasi-isometries); this problems
looks very difficult and we do not even know if SL3(Z) has RRD with
respect to one of its word-lengths.

As mentioned in the introduction, one way to prove that a discrete group
does not have RD is to prove that it contains an amenable subgroup of ex-
ponential growth, since an open subgroup of a group having RD has it as
well, and since a finitely-generated amenable group has RD with respect to
any of its word-lengths if and only if it is of polynomial growth. However,
the example of SL2(A) in Corollary 2.10 shows that the analogue obstruc-
tion for RRD does not hold, by noticing that SL2(A) contains a lamplighter
group as a subgroup. It would be interesting to further investigate condi-
tions incompatible with RD; for example, we do not know if a group lacking
RD must have a subgroup lacking RRD.

2.6. Structure of the paper

We prove the dynamical criterion (Theorem 2.7) in Section 3. We prove
Theorem 2.8 in Section 4. Section 5 is devoted to the self-contained proof of
the fact that SL2(A) has RRD (Corollary 2.10) in which we prove that we
can apply the dynamical criterion. In Section 6, we recall some facts on the
RD property, exhibit the lamplighter subgroup H of SL2(A) and prove that
SL2(A) does not have RD and that H does not have RRD (Corollary 2.11).

3. Proof of the criterion (Theorem 2.7)

Let Λ be a discrete group, and L be a proper integer-valued length func-
tion on Λ. Let us define

∀γ ∈ Λ, 1n(γ) :=
{

1 if L(γ) = n,

0 else.

The following proposition shows that for integer-valued length functions,
rapid decay on spheres implies radial rapid decay.
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Proposition 3.1. — Let Γ be a discrete group, and L an integer-valued
proper length function on Γ. Then if

∃P ∈ R[X], ∀n ∈ N, ∥1n∥op ⩽ P (n)∥1n∥2,

then Γ has RRD with respect to L.

Proof. — Let f ∈ C[Γ]rad. We have f =
∑
n∈N an1n where an is the

common value of f on elements of length n. Notice that for all but finitely
many n, an = 0. Assuming there is a P ∈ R[X] as in the hypotheses, choose
Q ∈ R[X] positive and non-decreasing on R+ such that (1 + t)2(P (t))2 ⩽
Q(t) for all t ∈ R+. Now, we have

∥f∥op ⩽
∑
n∈N

∥an1n∥op

⩽
∑
n∈N

P (n)∥an1n∥2

(Cauchy–Schwarz inequality) ⩽

(∑
n∈N

(1+n)2(P (n))2∥an1n∥2
2

)1
2
(∑
n∈N

(1+n)−2

)1
2

⩽ C ·

(∑
n∈N

Q(n)∥an1n∥2
2

) 1
2

⩽ C · sup ({Q(n) | an ̸= 0})
(∑
n∈N

∥an1n∥2
2

) 1
2

= C ·Q(L(f))
(∑
n∈N

∥an1n∥2
2

) 1
2

= C ·Q(L(f))∥f∥2

so Γ has radial property RD with respect to L. □

We are now ready to prove Theorem 2.7. Let us recall that we are given
(B, ν), a σ-finite probability space, on which Λ acts measurably, and we
assume that ν is quasi-invariant. We denote by π : Γ → U(L2(B)) the
associated Koopman representation and by Ξ be the corresponding Harish-
Chandra function and that we assume that there is M ∈ R+, P ∈ R[X],
such that

(1) ∀n ∈ N, sup
γ∈Cn

Ξ(γ) ⩽ P (n)√
|Cn|

.

(2) ∀n ∈ N,

∥∥∥∥∥∥ 1
|Cn|

∑
γ∈Cn

π(γ)
Ξ(γ)

∥∥∥∥∥∥
2→2

⩽M.
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Proof of Theorem 2.7. — Let us first notice that ∥1Cn
∥2 =

√
|Cn|.

According to Proposition 3.1, it is enough to prove

∃P ∈ R[X],∀n ∈ N, ∥1Cn∥op ⩽ P (n)
√

|Cn|.

We will in fact prove

∃P ∈ R[X],∀n ∈ N, ∥π(1Cn
)∥2→2 ⩽ P (n)

√
|Cn|.

This is enough, because according to [23, Lemma 2.3] (we can apply this
lemma, since its hypotheses are satisfied, because 1B is an obvious positive
vector), we have that

∀n ∈ N, ∥1Cn
∥op ⩽ ∥π(1Cn

)∥2→2.

We claim that

∀n ∈ N,

∥∥∥∥∥∥ 1
|Cn|

∑
γ∈Cn

π(γ)

∥∥∥∥∥∥
2→2

⩽ sup
γ∈Cn

Ξ(γ)

∥∥∥∥∥∥ 1
|Cn|

∑
γ∈Cn

π(γ)
Ξ(γ)

∥∥∥∥∥∥
2→2

.

Notice that the claim, combined with (1) and (2), ends the proof of the
Theorem.

Let us now prove the claim. If h ∈ L2(B), denote by hr and hi its real and
imaginary parts and let, ∀a ∈ {r, i}, h+

a := max(ha, 0) and h−
a := h+

a − ha.
Then h±

r and h±
i are all positive L2 functions, and

max{∥h+
r ∥2, ∥h−

r ∥2, ∥h+
i ∥2, ∥h−

i ∥2} ⩽ ∥h∥2.

Let us denote, until the end of the proof,

Mn := 1
|Cn|

∑
γ∈Cn

π(γ)

and
MΞ
n := sup

γ∈Cn

Ξ(γ) 1
|Cn|

∑
γ∈Cn

π(γ)
Ξ(γ) .

We then have
∥Mn(h)∥2

2 = ∥Mn(h+
r )∥2

2 + ∥Mn(h−
r )∥2

2 + ∥Mn(h+
i )∥2

2 + ∥Mn(h−
i )∥2

2

⩽ ∥MΞ
n (h+

r )∥2
2 + ∥MΞ

n (h−
r )∥2

2 + ∥MΞ
n (h+

i )∥2
2 + ∥MΞ

n (h−
i )∥2

2

= ∥MΞ
n h∥2

2

where the inequality comes from the fact that for every nonnegative func-
tion f , we have

0 ⩽Mn(f) ⩽MΞ
n (f).

This proves our claim. □
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4. Proof of Theorem 2.8

In this section, we prove Theorem 2.8. Let us recall the context. Let G
be a locally compact group with left Haar measure µG and L be a proper
integer-valued length function on G, B be a compact space, ν be a Borel
probability measure on B, and Λ be a lattice in G. Let us denote, for every
n ∈ N,

CGn := {g ∈ G | L(g) = n}
and

CΛ
n := {g ∈ G | L(g) = n}.

We consider a continuous action of G on B which leaves ν quasi-invariant.
We make the following assumptions:

• the Radon–Nikodym cocycle and the Harish-Chandra function are
continuous ;

• the compact subgroup G0 acts transitively on B by preserving ν;
• at least one of the following two conditions holds:

(i) G0 is open and we have the following growth condition:

µG(CGn ) ≪ |CΛ
n |;

(ii) the subset G1 of G consisting of elements of length at most
1 is a neighborhood of e and we have the following growth
condition:

max
{
µG(CGn−1), µG(CGn ), µG(CGn+1)

}
≪ |CΛ

n |.

Remark 4.1. — As for the proofs, the only difference between assum-
ing (i) and assuming (ii) appears in the proof of Proposition 4.7, where
assumption (i) simplifies the situation.

Under these assumptions, we are going to prove that there is a constant
M ∈ R+ such that

∀n ∈ N,

∥∥∥∥∥∥ 1
|CΛ
n |
∑
γ∈CΛ

n

π(γ)
Ξ(γ)

∥∥∥∥∥∥
2→2

⩽M.

Let us define the averages on Λ and on G:

MG
n := 1

µ(CGn )

∫
CG

n

π(g)
Ξ(g) dµG(g) ∈ B(L2(B))

and
MΛ
n := 1

|CΛ
n |
∑
γ∈CΛ

n

π(γ)
Ξ(γ) ∈ B(L2(B)).
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The goal is to prove that the family (MΛ
n )n∈N is bounded in B(L2(B))

and the strategy is to prove the following chain of inequalities:

∥MΛ
n ∥2→2

(1)
⩽ ∥MΛ

n ∥∞→∞
(2)= ∥MΛ

n 1B∥∞
(3)
≪

1∑
j=−1

∥MG
n+j1B∥∞

(4)= 3.

Remark 4.2. — As a careful examination of the proof of Proposition 4.7
shows, under assumption (i), it is in fact possible to strenghthen inequal-
ity (3) and equality (4) and prove

∥MΛ
n 1B∥∞ ⩽ ∥MG

n 1B∥∞ = 1.
This fact will not be used in the paper.

Let us first state a version of the Riesz–Thorin theorem we need (a proof
of the reduction of the lemma to the general Riesz–Thorin theorem can be
found in [7, Proposition 2.8]).

Lemma 4.3. — Let (X,m) be a probability space. Let T be a continuous
operator L1(X,m) → L1(X,m) such that

• the restriction of T to L2(X,m) induces a continuous self-adjoint
operator on L2(X,m);

• the restriction of T to L∞(X,m) induces a continuous operator on
L∞(X,m).

Then we have
∥T∥2→2 ⩽ ∥T∥∞→∞.

Lemma 4.4. — We have that ∥MΛ
n ∥∞→∞ = ∥MΛ

n 1B∥∞.

Proof. — Let h ∈ L∞(B). From the pointwise inequality (valid almost
everywhere)

−∥h∥∞1B ⩽ h ⩽ ∥h∥∞1B
we deduce the pointwise inequality (valid almost everywhere)

−∥h∥∞M
Λ
n 1B ⩽MΛ

n h ⩽ ∥h∥∞M
Λ
n 1B .

So, we get ∥MΛ
n h∥∞ ⩽ ∥h∥∞∥MΛ

n 1B∥∞, so ∥MΛ
n ∥∞→∞ ⩽ ∥MΛ

n 1B∥∞. □

The following elementary lemma states stability properties satisfied by
the Radon–Nikodym cocycle and the Harish-Chandra function (which are
well-known in the case of the Harish-Chandra function of a semi-simple Lie
group).

Lemma 4.5. — Let G be a locally compact group, acting on a probabil-
ity space (B, ν) such that the Radon–Nikodym cocycles are continuous. Let
us recall that Λ is a discrete subgroup of G. Then, there exist a relatively
compact neighborhood U of e in G and a non-zero constant C such that
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(1) Λ ∩ U = {e};
(2) ∀u ∈ U , ∀g ∈ G, ∀b ∈ B,

π(g)1B(b) ⩽ Cπ(gu)1B(b) ;

(3) ∀u ∈ U , ∀g ∈ G,
Ξ(gu) ⩽ CΞ(g).

Proof. — Let V be a symmetric compact neighborhood of e in G. Since
c is continuous, it reaches its minimum C1 and its maximum C2 on the
compact V × B. Let C :=

√
C2, and let W be a symmetric neighborhood

of the identity in G which trivially intersects Γ and take U := V ∩W . We
now prove that C and U satisfy the required properties.

Let us recall the cocycle identity:

∀g, h ∈ G, ∀b ∈ B, c(gh, b) = c(g, hb)c(h, b).

Let v ∈ V and b ∈ B. Since V is symmetric, v−1 ∈ V and therefore, using
the cocycle identity, we have that

1 = c(v−1v, b)
= c(v−1, vb)c(v, b)
⩽ C2c(v, b)

from which we deduce that 1 ⩽ C1C2. One shows similarly that C1C2 ⩽ 1,
so C1C2 = 1, and, in particular, that C2, and, therefore, C, is non-zero.
Moreover, for any g ∈ G, v ∈ V and b ∈ B, we have that

C1c(g, b) ⩽ c(v, gb)c(g, b) = c(vg, b)

and, similarly,
c(vg, b) ⩽ C2c(g, b).

We now use the first of these two inequalities in order to prove (2). Let
v ∈ V , g ∈ G and b ∈ B. We have

π(g)1B(b) =
√
c(g−1, b)

⩽
√
C2c(u−1g−1, b)

=
√
C2c((gu)−1, b)

=
√
C2π(gu)1B(b))

= Cπ(gu)1B(b)).
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The second inequality allows us to prove (3). Let v ∈ V , g ∈ G. We have
that

Ξ(gv) = Ξ(v−1g−1)

=
∫
B

c(v−1g−1, b) 1
2 dµ(b)

⩽
∫
B

√
C2c(g−1, b) 1

2 dµ(b)

=
√
C2Ξ(g)

= CΞ(g). □

Proposition 4.6. — There exists a relatively compact neighborhood
U of e in G and a constant C such that for every finite subset A ⊂ Λ,∑

γ∈A

π(γ)1B
Ξ(γ) ⩽ C

∫
AU

π(g)1B
Ξ(g) dµG(g).

Proof. — Let U be a compact neighborhood of e in G and C be as in
Lemma 4.5.

Let γ ∈ Λ and b ∈ B. Then
π(γ)1B(b)

Ξ(γ) = 1
µ(U)

∫
U

π(γ)1B(b)
Ξ(γ) du

⩽
1

µ(U)

∫
C
π(γu)1B(b)

Ξ(γ) du

⩽
C

µ(U)

∫
U

π(γu)1B(b)
Ξ(γu)
C

du

⩽
C2

µ(U)

∫
γU

π(u)1B(b)
Ξ(u) du

Now, a summation over all γ ∈ A ends the proof. □

Proposition 4.7. — There exists C ∈ R+ such that for all sufficiently
large n and for all b ∈ B, we have

0 ⩽MΛ
n 1B(b) ⩽ C

(
MG
n−11B(b) +MG

n 1B(b) +MG
n+11B(b)

)
.

In particular, we have

∥MΛ
n 1B∥∞ ≪ ∥MG

n−11B∥∞ + ∥MG
n 1B∥∞ + ∥MG

n+11B∥∞.

Proof. — Take a neighborhood U of e in G and C given by Proposi-
tion 4.6.

We now split the proof in two parts, one for each of the two assumptions,
(i) and (ii).
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• Under assumption (i), we can assume that ∀g ∈ U , L(g) = 0, and
therefore, we have

CΛ
nU ⊆ CGn

so, by Proposition 4.6, we have, for all n,∑
γ∈CΛ

n

π(γ)1B
Ξ(γ) ⩽ C1

∫
CG

n

π(g)1B
Ξ(g) dµG(g)

⩽ C1µG(CGn )MG
n 1B(b).

Now, we also know that there exists C2 ∈ R such that for every
sufficiently large n,

µG(CGn ) ⩽ C2|CΛ
n |

so

MΛ
n 1B(b) = 1

|CΛ
n |
∑
γ∈CΛ

n

π(γ)1B
Ξ(γ) ⩽ C1C2M

G
n 1B(b).

Since MG
n−11B and MG

n+11B are non-negative, the claim follows.
• Under assumption (ii), since G1 is a neighborhood of e, we can

assume that ∀g ∈ U , L(g) ⩽ 1. We have

CΛ
nU ⊆ CGn−1 ∪ CGn ∪ CGn+1,

so, by Proposition 4.6, we have, for all sufficiently large n,∑
γ∈CΛ

n

π(γ)1B
Ξ(γ) ⩽ C1

∫
CG

n−1∪CG
n ∪CG

n+1

π(g)1B
Ξ(g) dµG(g)

⩽ C1 max
{
µG(CGn−1), µG(CGn ), µG(CGn+1)

}(
MG
n−11B(b) +MG

n 1B(b) +MG
n+11B(b)

)
.

Now, we assumed that there exists C2 > 0 such that for all suffi-
ciently large n,

max
{
µG(CGn−1), µG(CGn ), µG(CGn+1)

}
⩽ C2|CΛ

n |,

so we have

MΛ
n 1B(b) = 1

|CΛ
n |
∑
γ∈CΛ

n

π(γ)1B
Ξ(γ)

⩽ C1C2
(
MG
n−11B(b) +MG

n 1B(b) +MG
n+11B(b)

)
which gives the claim. □

Lemma 4.8. — The function MG
n 1B is constant and equal to 1.
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Proof. — Let k ∈ G0. First of all, let us notice that we have, for all
b ∈ B,

MG
n 1B(b) = MG

n 1B(kb).

To prove it, let us make the following computation using the cocycle prop-
erty and the fact that G0 preserves µ, so that c(k−1, ·) ≡ 1:

MG
n (1B)(kb) =

∫
CG

n

(π(g)1B) (kb) dµG(g)

=
∫
CG

n

c(g−1, kb) 1
2 1B(kb) dµG(g)

h=k−1g=
∫
CG

n

c(h−1k−1, kb) 1
2 1B(h−1b) dµG(g)

=
∫
CG

n

c(h−1, k−1kb) 1
2 c(k−1, b) 1

2 1B(h−1b) dµG(g)

=
∫
CG

n

c(h−1, b) 1
2 1B(h−1b) dµG(g)

= MG
n (1B)(b).

Moreover, recall that, by assumption, the action of G0 on B is transitive,
so the function MG

n 1B is constant and equal to c ∈ R.
We integrate and use Fubini’s theorem to prove that c is in fact 1:

c =
∫
B

MG
n 1B

= 1
µ(CGn )

∫
B

∫
CG

n

c(g−1, b) 1
2

Ξ(g) 1B(g−1b) dµG(g) dµ(b)

= 1
µ(CGn )

∫
CG

n

∫
B

c(g−1, b) 1
2

Ξ(g) dµ(b) dµG(g)

= 1
µ(CGn )

∫
CG

n

Ξ(g−1)
Ξ(g) dµG(g)

= 1 □

Proof of Theorem 2.8. — Let us recall the chain of inequalities we want
to prove:

∥MΛ
n ∥2→2

(1)
⩽ ∥MΛ

n ∥∞→∞
(2)= ∥MΛ

n 1B∥∞
(3)
≪

1∑
j=−1

∥MG
n+j1B∥∞

(4)= 3.
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Inequality (1) is a simple application of the Riesz–Thorin theorem
(Lemma 4.3). Equality (2) is proved in Lemma 4.4. Inequality (3) is proved
in Proposition 4.7 and equality (4) is proved in Lemma 4.8. □

5. Proof of Corollary 2.10

5.1. Outline of the section

This section is devoted to the proof of Corollary 2.10. Precisely, let us
recall that in Section 2.3.1, we defined a ring A, fields K0 et K∞, two
(q+1)-regular trees T0 and T∞, a distance dI on the product of these trees,
an action of G := SL2(K0) × SL2(K∞) on T0 × T∞, a length function L on
G, and Γ to be the image, under the diagonal embedding, of SL2(A) in G.
Corollary 2.10 asserts that Γ has RRD with respect to L.

In order to prove Corollary 2.10, we just need to check that, in this
particular setting, the two hypotheses of the dynamical criterion stated
in Theorem 2.7 (the Harish-Chandra estimates condition and the uniform
boundedness condition) are satisfied. To that end, we build a probability
space on which Γ acts in Section 5.2, we perform growth estimates on Γ we
need in Section 5.3, we perform estimates on the Harish-Chandra function
in Section 5.4, and collect all the results and give the proof of Corollary 2.9
in Section 5.5.

5.2. The Koopman representation on the product of the
boundaries

Here we recall the construction of the boundary of a tree in order to
build a useful compact space B on which G acts and endow it with a
quasi-invariant Borel probability measure.

Let T be a d-regular tree. Let us recall a few facts from the theory of
CAT(-1) spaces and measures at infinity (see [4] for details).

Let us denote by ∂T the set of equivalence classes of asymptotic rays in
T (the equivalence class of r is denoted by r(+∞)). Fixing a point x ∈ T ,
we can consider ∂xT , the set of geodesic rays starting at x. The quotient
map ∂xT → ∂T can be shown to be a bijection. The image of the topology
of uniform convergence on compact sets on ∂xT is a topology on ∂T that,
in fact, does not depend on x. For this topology, ∂T is homeomorphic to a
Cantor set.
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Now, the set T = T ∪ ∂T can be endowed with a natural topology
which makes T a compactification of T and induces on ∂T the topology
defined above. This compactification has the important property that every
isometry γ of T extends to a homeomorphism of T , the restriction of which
to ∂T being denoted by ∂γ.

If x, y, z ∈ T , we denote (y | z)x := 1
2 (d(x, y) + d(x, z) − d(y, z)) and we

call it the Gromov product. If x ∈ T , then (. | .)x can be extended in a
continuous manner to T 2, which we again call the Gromov product, and if
we set, for all b, b′ ∈ ∂T , dx(b, b′) := e−(b|b′)x , then dx is a distance on ∂T

which also induces the topology defined above. However, the distances dx
do depend on x, but in a conformal manner. That is, we have

lim
b′→b

dy(b, b′)
dx(b, b′) = eβb(x,y)

for a certain number βb(x, y) defined in the following way: if r is a geodesic
ray in T , then we denote by βr(x, y) the limit of d(x, r(t)) − d(y, r(t)) as t
tends to infinity, which exists and only depends on r(+∞). We call it the
horospheric distance between x and y with respect to r(+∞).

We can now define measures on ∂X. The Hausdorff dimension of (∂T, dx)
can easily be calculated, and is ln(d− 1). Moreover, if we denote by µx the
normalized ln(d − 1)-dimensional Hausdorff measure, isotropy around x

implies that µx(B) = 1
d(d−1)i−1 if B is a ball of radius e−i for the distance

dx. The map
µ : T → M1(∂T )

x 7→ µx

is Isom(T ) equivariant in the sense that ∀γ ∈ Isom(T ), (∂γ)∗µx = µγ(x).
Adding everything up, we get:

Fact. — The action Isom(T ) ↷ (∂T, µx0) is a quasi-invariant action,
and we have the formula

∀γ ∈ Isom(T ), ∀b ∈ ∂T,
d(∂γ)∗µx0

dµx0

(b) = (d− 1)βb(x0,γ
−1(x0)) =: cT (γ, b).

Let us recall that G := SL2(K0) × SL2(K∞) acts componentwise on the
product T0 × T∞ of the Bruhat–Tits trees, which are (q+ 1)-regular. Now,
fix two vertices v0 and v∞ in T0 and T∞ and consider the product action
G↷ (∂T0 × ∂T∞, µv0 ⊗ µv∞).

From the above discussion, the following proposition is obvious.

Proposition 5.1. — In this setting, the product measure µv0 ⊗ µv∞ is
quasi-invariant under the action G↷ ∂T0 ×∂T∞, and the Radon–Nikodym
cocycle is continuous.
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Let us denote π the Koopman representation associated to this action,
and Ξ the Harish-Chandra function.

5.3. Estimates on the growth of Γ

In this section, we provide the estimates on |CΓ
n | we need. To do so, it is

useful to estimate the cardinal of sets of vertices inside balls in a product
of two trees. We keep notation from Section 2.3.1, so Gn denotes the ball of
radius n (that is, the set of elements in G of length at most n with respect
to L defined in Section 2.3.1) whereas CHn denotes similarly the sphere of
radius n in the subgroup H.

We will now compute the number of elements of

Bn := {(x, y) ∈ V (T0) × V (T∞) | dI ((v0, v∞), (x, y)) ⩽ n} .

If a ∈ {0,∞}, i ∈ N, x ∈ Ta, let us denote Sa(x, i) := {y ∈ Ta | da(x, y) = i}
and Ba(x, i) :=

⋃
j=0,...,i Sa(x, j).

Lemma 5.2 (Ball counting). — There are A,B,C ∈ R such that A ̸= 0
and

∀n ∈ N, |Bn| = (An+B) (d− 1)n + C.

Proof. — To make the calculation more readable, we set D := d
d−2 . We

first observe that

Bn =
n⊔
i=0

⊔
x∈S0(v0,i)

{x} ×B∞(v∞, n− i)

so that |Bn| =
∑n
i=0 sibn−i where we denote, for i, j ∈ N, si := |S0(v0, i)|

and bj := |B∞(v∞, j)|.
We have that ∀i, j ∈ N,

∀i ∈ N, si =
{
d(d− 1)i−1 if i ⩾ 1,
1 if i = 0,

∀j ∈ N, bj =
j∑
i=0

si = 1 +D
(
(d− 1)j − 1

)
∀i ⩾ 1, sibn−i = D

(
d(d− 1)n−1 − 2(d− 1)i−1)
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and we get, ∀n ∈ N,

|Bn| =
n∑
i=0

sibn−i

= bn +
n∑
i=1

sibn−i

= 1 +D((d− 1)n − 1) +
n∑
i=1

D
[
d(d− 1)n−1 − 2(d− 1)i−1]

= 1 −D +D(d− 1)n +Ddn(d− 1)n−1 − 2D
n∑
i=1

(d− 1)i−1

= 1 −D +D(d− 1)n +Ddn(d− 1)n−1 − 2D
d− 2(d− 1)n + 2D

d− 2

= (d− 1)n
[
n
Dd

d− 1 +D − 2D
d− 2

]
+ 1 −D + 2D

d− 2
so we choose

A := Dd

d− 1 = d2

(d− 2)(d− 1)

B := D − 2D
d− 2 = d(d− 4)

(d− 2)2

C := 1 −D + 2D
d− 2 = 1 −B. □

Proposition 5.3. — We have that

µ(Gn) ≪ n(d− 1)n.

Proof. — Consider the map
θ : G → T0 × T∞

g 7→ g(v0, v∞).

Then
Gn = θ−1(Bn) =

⊔
y∈Bn

θ−1({y}).

Each of these fibers, if it is nonempty, is a G0-left coset, so it has measure
µG(G0). So, according to Lemma 5.2,

µG(Gn) ⩽ |Bn|µG(G0) ≪ n(d− 1)n. □

Proposition 5.4. — We have

µ
(
CGn
)

≪
∣∣CΓ
n

∣∣ .
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Proof. — Let us recall that Γ is an irreducible lattice in G, according
to [18, p. 1]. Since the action of G on G/Γ is mixing, the mean ergodic
theorem holds, and therefore, we can apply [13, Lemma 6.7, p. 79]. □

5.4. Estimates on the Harish-Chandra function

In order to apply the criterion, we need to compute the Harish-Chandra
function associated to the quasi-invariant action Γ ↷ ∂T0 ×∂T∞. Since this
is a product action, is is enough to calculate the Harish-Chandra functions
on the factors:

Lemma 5.5. — The Harish-Chandra function of a product of actions is
the product of the Harish-Chandra functions on the factors. In particular,

∀(g0, g∞) ∈ G,

Ξ(g0, g∞) =
∫
∂T0

cT0(g−1
0 , b) 1

2 dµv0(b)
∫
∂T∞

cT∞(g−1
∞ , b) 1

2 dµv∞(b).

Proof. — Just apply Fubini’s theorem. □

Our goal is now to compute
∫
∂T
cT (γ−1, b) 1

2 dµx0(b) for T a d-regular
tree, γ ∈ Isom(T ), x0 a vertex of T and µx0 the boundary measure on ∂T

associated to x0. As we shall see, b 7→ cT (γ, b) is piecewise constant, so we
will suitably partition ∂T .

Let us define Sn,γ := {y ∈ Td | d(x0, y) = n, l([x0, y] ∩ [x0, γ
−1(x0)]) =

l([x0, y]) − 1}, and, for y ∈ T , Oy := {ξ ∈ ∂T | y ∈ [x0, ξ)}.

Lemma 5.6. — With the above notation, let n := d(x0, γ
−1(x0)). The

following properties hold true.
(1) Assume i < n, y ∈ Si,γ , b ∈ Oy, b′ ∈ ∂T . Then

b′ ∈ Oy ⇔ (b|b′)x0 > i− 1 ⇔ dx0(b, b′) < e−i+1.

(2) ∂T = Oγ−1(x0) ⊔
⊔n
i=1

(⊔
y∈Si,γ

Oy

)
,

(3) ∀i ∈ {2, ..., n}, |Si,γ(x0)| = d− 2, and |S1,γ(x0)| = d− 1,
(4) ∀i ∈ {1, ..., n}, ∀y ∈ Si,γ(x0), ∀ξ ∈ Oy, βξ(x0, γ

−1(x0)) = 2(i−1)−n,
(5) ∀ξ ∈ Oγ−1(x0), βξ(x0, γ

−1(x0)) = n.

Proof.
(1) We have that b′ ̸∈ O(y) if and only if l([x0, b

′)∩[x0, b)) ⩽ l([x0, y])−
1 = i− 1, which proves (1).
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(2) The sets in the union are clearly disjoint, so it is enough to show
that ∂T is the mentioned union. Let b ∈ ∂T , and r : R+ → T be
the geodesic joining x0 to b. Let

t := max{t ∈ R+ | r(t) ∈ [x0, γ
−1(x0)]}.

Then y := r(t+ 1) ∈ St+1,γ and b ∈ Oy.
(3) (4) and (5) are straightforward. □

Proposition 5.7. — Let γ ∈ Isom(Td) and denote n := d(x0, γ(x0)).
Let q = d− 1. We have∫

∂T

c(γ, b) 1
2 dµ(b) =

(
1 + q − 1

q + 1 n

)
q− n

2 .

Proof. — Using the information collected in the above lemma, we do the
following calculation:∫
∂T

c(γ, b) 1
2 dµ(b)

=
∫

Oγ−1x0

c(γ, b) 1
2 dµ(b) +

n∑
i=1

∑
y∈Si,γ

∫
Oy

c(γ, b) 1
2 dµ(b)

= µ
(
Oγ−1x0

)
(d− 1) n

2 +
n∑
i=1

∑
y∈Si,γ

µ (Oy) (d− 1)i−1− n
2

= 1
d(d− 1)n−1 (d− 1) n

2 +
n∑
i=1

∑
y∈Si,γ

1
d(d− 1)i−1 (d− 1)i−1− n

2

= 1
d

(d− 1)− n
2 +1 +

n∑
i=1

∑
y∈Si,γ

(d− 1)− n
2


= 1
d

(d− 1)− n
2

[
d− 1 +

n∑
i=1

|Si,γ |

]

= 1
d

(d− 1)− n
2 [d− 1 + d− 1 + (n− 1)(d− 2)]

=
(

1 + d− 2
d

n

)
(d− 1)− n

2 □

Proposition 5.8 (The Harish-Chandra estimate). — Let Ξ be the
Harish-Chandra function Ξ associated to the action G↷ (∂T0×∂T∞, µx0 ⊗
µx∞). We then have
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(1) for all g := (g0, g∞) ∈ G,

Ξ(g) =
(

1 + q − 1
q + 1L(g) +

(
q − 1
q + 1

)2
L0(g0)L∞(g∞)

)
q− L(g)

2 ;

(2) Ξ : G → R is continuous ;
(3) we have the following estimate: for all g ∈ G (and therefore, for

every g ∈ Γ),

Ξ(g) ≪ L(g)2(d− 1)− L(g)
2 .

Proof. — The last two claims follow immediately from the first. We apply
together Proposition 5.7 and Lemma 5.5: let g := (g0, g∞) ∈ G. We then
have

Ξ(g) =
(

1 + q − 1
q + 1L0(g0)

)
q− L0(g0)

2

(
1 + q − 1

q + 1L∞(g∞)
)
q− L∞(g∞)

2

=
(

1+ q−1
q+1(L0(g0)+L∞(g∞))+

(
q−1
q+1

)2
L0(g0)L∞(g∞)

)
q− L(g)

2 .□

Using the above proposition, we can now perform the estimates needed
in order to apply the criterion.

Proposition 5.9. — We have that

sup
γ∈CΓ

n

Ξ(γ)
√

|CΓ
n | ≪ n5/2.

Proof. — On the one hand, we apply Proposition 5.8 and we obtain:

sup
γ∈Cn

Ξ(γ) ⩽
(

1 + d− 2
d

n+ 1
2

(
d− 2
d

)2
n2

)
(d− 1)− n

2 .

Therefore, we have
sup
γ∈Cn

Ξ(γ) ≪ n2(d− 1)− n
2 .

On the other hand, since CΓ
n ⊂ Γn ⊂ Gn, applying Lemma 5.2, we obtain

(recall that q = d− 1)√
|CΓ
n | ≪

√
n(d− 1)n = n

1
2 (d− 1) n

2 .

So, we have,

sup
γ∈CΓ

n

Ξ(γ)
√

|CΓ
n | ≪ n5/2. □
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5.5. Proof of Corollary 2.10

In this section, we gather all the results of the section in order to prove
Corollary 2.10.

Proof of Corollary 2.10. — Let B be the compact space, ν be the Borel
probability measure on B, defined in Section 5.2, which also defines a mea-
surable action G↷ B leaving ν-invariant. Let us denote by π the Koopman
representation of G associated to this action.

Proposition 5.9 asserts that there is a polynomial P such that

sup
γ∈CΓ

n

Ξ(γ)
√

|CΓ
n | ⩽ P (n),

so the first condition in the dynamical criterion is satisfied.
In order to prove that the second condition is also satisfied, we use The-

orem 2.8; and, in order to do so, let us check its hypotheses: according to
Proposition 5.1 and Proposition 5.8, the Radon–Nikodym and the Harish-
Chandra function are continuous; finally, we check assumption (i): the sub-
group G0 is open, and according to Proposition 5.3, the growth estimate
assumption is satisfied. We deduce then from Theorem 2.8 that∥∥∥∥∥∥ 1

|CΓ
n |
∑
γ∈CΓ

n

π(γ)
Ξ(γ)

∥∥∥∥∥∥
2→2

≪ 1.

Therefore, the two assumptions of the dynamical criterion are satisfied;
so Γ has RRD with respect to L. □

6. Proof of Corollary 2.11

6.1. RD and amenable subgroups of exponential growth

Let us recall three easy lemmas, proved in [12], which hold for any finitely
generated group Λ:

Lemma 6.1.
(1) If a finitely generated group Λ has RD with respect to some proper,

discrete length function, then it has RD with respect to the word
length associated with any finite symmetric generating set.

(2) If a discrete group Λ has RD with respect to some proper, discrete
length function L, then each subgroup H ⩽ Λ has RD with respect
to the induced length function L|H

.
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(3) If an amenable finitely-generated group has RRD with respect to
some proper, discrete length function L, then it has polynomial
growth with respect to L.

These three lemmas are combined in the following criterion, useful to
prove that some discrete groups do not have RD:

Proposition 6.2. — Let Λ be a discrete group endowed with a dis-
crete, proper length function L. Let H be an amenable finitely-generated
subgroup of Λ. Then if H has exponential growth with respect to L|H

(and
this is the case if H has exponential growth with respect to a word length),
then Λ does not have RD with respect to L.

6.2. The lamplighter subgroup

Let us consider the subgroup

H :=
{(

Xn P

0 X−n

) ∣∣∣∣ n ∈ Z, P ∈ A

}
of SL2(A) and let S denote the finite subset of H{(

X 0
0 X−1

)
,

(
X−1 0

0 X

)
,

(
1 ±1
0 1

)
,

(
1 ±X
0 1

)}
.

The following proposition is a routine exercise for people working in geo-
metric group theory. We give the proof for readers with a different back-
ground.

Proposition 6.3. — The subgroup H is amenable, S is a symmetric
generating set of H, and H has exponential growth with respect to the
word-length associated to S.

Proof. — If P ∈ Fq[X,X−1], define

γ(P ) :=
(

1 P

0 1

)
so that γ : Fq[X,X−1] → H is a morphism. Define also

ψ

((
Xn P

0 X−n

))
:= n

so that ψ : H → Z is a morphism. Then

0 // Fq[X,X−1]
γ // H

ψ // Z // 0

is a short exact sequence so H is solvable, hence amenable.
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Now let us prove that H has exponential growth with respect to the
word-length associated to S. Let n ∈ N, and P :=

∑n
i=0 aiX

2i, where
ai ∈ {0, 1}. There are 2n+1 such P , and we will prove that every γ(P ) can
be written as a product of 3n+ 1 (or less) elements of S.

To do so, define

A0 :=
(

1 an
0 1

)
Aj+1 :=

(
X 0
0 X−1

)
Aj

(
X−1 0

0 X

)(
1 an−(j+1)
0 1

)
It is straightforward to see that An = γ(P ), and by definition, An is the

product of (at most) 3n+ 1 elements of S. □

Remark 6.4. — Such a subgroup H is a variant of the usual lamplighter
group Z/2Z ≀ Z.

We now prove Corollary 2.11.
Proof. — Proposition 6.2 shows that if (Γ, L) has the property RD, then

it cannot contain an amenable finitely-generated exponential growth sub-
group, and Proposition 6.3 shows that H is such a subgroup. □
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