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LIFTING SEMISTABILITY IN FINITELY GENERATED
ASCENDING HNN-EXTENSIONS

by Francisco F. LASHERAS & Michael MIHALIK

Abstract. — If a finitely generated group G maps epimorphically onto a group
H, we are interested in the question: When does the semistability of H imply G is
semistable? In this paper, we give an answer within the class of ascending HNN-
extensions. More precisely, our main theorem states: Suppose that the 1-ended
finitely generated ascending HNN-extension H = ⟨S, t; R, t−1st = ϕ(s), s ∈ S⟩ is
semistable at infinity. Let R be the kernel of the obvious homomorphism from
the free group F ({t} ∪ S) onto H, then there is a finite subset R0 ⊆ R such
that those finitely generated ascending HNN-extensions H1 = ⟨S, t; R1, t−1st =
ϕ(s), s ∈ S⟩, with R0 ⊆ R1 ⊂ R, are all 1-ended and semistable at infinity as
well. Furthermore H1 has such a presentation with R1 ⊂ R. Note that there is an
obvious epimorphism from H1 to H. It is unknown whether all finitely presented
ascending HNN-extensions are semistable at infinity.

Résumé. — La question fondamentale de cet article est de savoir sous quelles
conditions la semistabilité d’un groupe H entraîne la semistabilité d’un groupe G
qui admet une surjection sur H. Nous allons y répondre dans le cadre des extensions
HNN ascendantes. Plus précisement, considérons une extension HNN de type fini
ayant un seul bout H = ⟨S, t; R, t−1st = ϕ(s), s ∈ S⟩ qu’on suppose être semistable
à l’infini. Soit R le noyau du morphisme tautologique du groupe libre F ({t} ∪ S)
sur H. Alors il existe un sous-ensemble fini R0 ⊆ R tel que toute extension HNN
de type fini H1 = ⟨S, t; R1, t−1st = ϕ(s), s ∈ S⟩, ayant R0 ⊆ R1 ⊂ R, n’a qu’un
seul bout et est semistable à l’infini. De plus H1 admet une telle présentation avec
R1 ⊂ R. Notons qu’il y a un épimorphisme de H1 dans H. A l’heure actuelle, nous
ne savons pas si toutes les extensions HNN ascendantes sont semistables à l’infini.

1. Introduction

We consider an asymptotic property of finitely presented groups that has
been well studied for over 40 years called semistable fundamental group at
∞. A locally finite complex Y has semistable fundamental group at ∞ if

Keywords: Proper homotopy, semistability at infinity, ascending HNN-extension, group
presentation.
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2 Francisco F. LASHERAS & Michael MIHALIK

any two proper rays r, s : [0,∞) → Y that converge to the same end of Y

are properly homotopic in Y . A finitely presented group G has semistable
fundamental group at ∞ (often shortened to say G is semistable) if for
some (equivalently any) finite complex X with π1(X) = G, the universal
cover of X has semistable fundamental group at∞. Suppose H is a finitely
generated group, G is a finitely presented group and h : G → H is an
epimorphism. If X is a finite complex with π1(X) = G and Y is the regular
cover of X corresponding to the kernel of h, then we say H has semistable
fundamental group at ∞ if Y does. The idea of extending semistability
from finitely presented groups to finitely generated groups has been used
successfully to show many finitely presented groups are semistable, see [8]
and [10]. While semistability has a number of interesting connections to
other asymptotic properties of groups, perhaps the primary application
of semistability is the following: If a finitely presented 1-ended group G

is semistable at ∞, then the fundamental group at infinity of G is well
defined. It is unknown at this time, whether or not all finitely presented
groups have semistable fundamental group at ∞, but in [9] the problem
is reduced to considering 1-ended groups. The finitely presented group G

satisfies a weaker geometric condition called semistable first homology at∞
if and only if H2(G : ZG) is free abelian (see [3]). The question of whether
or not H2(G : ZG) is free abelian for all finitely presented groups G goes
back to H. Hopf.

The semistability of 1-ended finitely generated groups G was introduced
in [8]. Given a finite generating set S for G, let R be the kernel of the map
of the free group F (S) to G and let ΓG(S) denote the Cayley graph of G

with respect to S.

(∗). — The finitely generated group G is semistable at infinity if there
is a finite subset R0 ⊂ R so that the (strongly) locally finite 2-dimensional
CW-complex ΓG(S; R0), obtained by attaching to every vertex of ΓG(S) 2-
cells according to each element in R0, is semistable at infinity. This notion
is independent of finite generating set for G (see [8, Thm. 1]). The space
ΓG(S; R0) naturally identifies with a regular covering of the standard finite
complex X(S; R0) (with π1(X(S; R0)) ∼= ⟨S; R0⟩). This covering is obtained
by taking the quotient of X̃(S; R0), the universal cover of X(S; R0), by the
kernel of the map ⟨S; R0⟩ → G that takes s→ s for each s ∈ S.

X̃(S; R0)
q
��

p

''
ΓG(S; R0) // X(S; R0)
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LIFTING SEMISTABILITY IN ASCENDING HNN-EXTENSIONS 3

In this situation, one may naturally ask whether for some (alternatively,
for any) set R1 such that R0 ⊂ R1 ⊂ R the finitely generated group with
presentation A = ⟨S; R1⟩ is semistable at infinity as well. In this paper,
we give a partial answer to this question within the class of ascending
HNN-extensions. In Section 2 we show that a finitely generated group is an
ascending HNN-extension of another finitely generated group if and only
if it has a presentation of the form ⟨S, t; R, t−1st = ϕ(s), s ∈ S⟩ where S

is finite, R is a subset of the free group F (S) and ϕ(s) is an element of
F (S) for each s ∈ S. The usual “HNN-base group” of such a presenta-
tion is the subgroup generated by S and we explain how ϕ determines a
monomorphism of this base group.

Theorem 1.1. — Suppose S is a finite set, ϕ : S −→ F (S) is a map
to the free group generated by S, R is a subset of F (S) and the finitely
generated ascending HNN-extension H with presentation ⟨S, t; R, t−1st =
ϕ(s), s ∈ S⟩ is 1-ended and semistable at infinity. Let R be the kernel of
the obvious epimorphism of the free group F ({t} ∪ S) to H. Then there is
a finite subset R0 ⊆ R such that those ascending HNN-extensions H1 =
⟨S, t; R1, t−1st = ϕ(s), s ∈ S⟩, with R0 ⊆ R1 ⊆ R, are all 1-ended and
semistable at infinity as well.

Remark 1.2. — The subgroup of H generated by S is the base group
of the ascending HNN-extension. The letter t is the stable letter. If the
base group of H is infinite, then H is 1-ended (see [12, Thm. 3.3] or [13,
Thm. 3.1]). Otherwise H is 2-ended. All 2-ended groups are semistable at
infinity. Following the notation of the theorem, another presentation of H is
⟨S, t; R, t−1st = ϕ(s), s ∈ S⟩. There is an obvious epimorphism of H1 onto
H. If R′

0 is a finite subset of R such that R′
0 along with the conjugation

relations t−1st = ϕ(s), s ∈ S satisfy the semistability condition for H

(see (∗)), then it is an elementary matter to show that R′
0 is a consequence

(in F ({t} ∪ S)) of the conjugation relations and a finite set R′′
0 ⊂ R. We

show that R′′
0 can play the role of R0 in Theorem 1.1. Note that if the subset

R1 of R is finite then H1 is a finitely presented ascending HNN-extensions
that is semistable at infinity.

It is unknown whether all finitely presented ascending HNN-extensions
are semistable at infinity, see [11] for some recent results. Notice that,
even when R is finite (and so H is finitely presented), the base group
for the ascending HNN-extension H need not be finitely presented and
hence might not admit ⟨S; R⟩ as a presentation. For an explicit presentation
of such base groups see [11, §4]. It is worth mentioning that ascending

TOME 0 (0), FASCICULE 0



4 Francisco F. LASHERAS & Michael MIHALIK

HNN-extensions with finitely presented base group are all known to be
semistable at infinity [6]; moreover, their fundamental pro-group is known
to be semistable and pro-(finitely generated free), see [4].

Remark 1.3. — As an interesting example, Theorem 1.1 applies to any
ascending HNN-extension of the (first) Grigorchuk group Γ, which is an
infinite finitely generated (non finitely presentable) 2-group. Notice that
such a finitely generated ascending HNN-extension is always 1-ended and
semistable at infinity by [8, Prop. 2] and [11, Thm. 1.3] (see also [8, Thm. 4])
as Γ and Γ × Γ are commensurable. In fact, in [10] it is shown that Γ as
well as any of its ascending HNN-extensions is simply connected at infinity.
See [1, Chap. VIII] for a complete description of the group Γ.

In Section 2 we give basic facts about ascending HNN-extensions. In
particular, we show that a finitely generated group H is an ascending HNN-
extension of a finitely generated group if and only if H has a presentation
matching the one in our Theorem 1.1. Section 3 contains basic definitions.
We prove two elementary lemmas about certain proper rays in a space that
we must show is semistable at infinity. The lemmas reduce the proof of
our theorem to the more interesting rays described in Proposition 3.3. The
Main Lemma (4.3) of the paper is proved in Section 4. It states that any
proper ray (in the space we are trying to show is semistable at infinity) is
properly homotopic to one that projects (by a covering map) to a proper
ray in a space we already know is semistable at infinity. A lifting argument
then concludes the proof of our main theorem.

2. Ascending HNN-extension combinatorics

Suppose S is a finite set and B is a group with presentation ⟨S; R⟩ (so
that R is a subset of the free group F (S)). Let q : F (S) → B be the
quotient homomorphism with kernel N equal to the normal closure of R.
Suppose ϕ : B → B is a monomorphism then there is a homomorphism
ϕ : F (S)→ F (S) such that ϕq = qϕ.

F (S)
ϕ //

q

��

F (S)

q

��
B

ϕ // B

A standard presentation for G, the ascending HNN-extension of B and
ϕ is ⟨S, t; R, t−1st = ϕ(s), s ∈ S⟩. Let q1 : F (S ∪ {t}) → G be the quotient

ANNALES DE L’INSTITUT FOURIER



LIFTING SEMISTABILITY IN ASCENDING HNN-EXTENSIONS 5

map with kernel equal to the normal closure of the set R∪{t−1st(ϕ(s))−1,

s ∈ S}. Let i : F (S)→ F (S ∪ {t}) be the inclusion homomorphism. There
is a homomorphism i : B → G so that q1i = iq and q1 restricted to F (S)
is equal to q.

F (S) i //

q

��

F (S ∪ {t})

q1

��
B

i // G

By Britton’s Lemma, the map i : B → G is a monomorphism. The image
of B under i is called the base group of the ascending HNN-extension. The
letter t is called the stable letter of the standard presentation.

In the remainder of this section our goal is show that a finitely generated
group G with a presentation of the form P = ⟨S, t; R, t−1st = ϕ(s), s ∈ S⟩
(where S is a finite set, R is a subset of the free group F (S) and ϕ(s) is
an element of F (S)) is an ascending HNN-extension of the subgroup of
G generated by S. Note that ϕ extends to a homomorphism ϕ : F (S) →
F (S). Then (up to isomorphism) the group G is the image of the quotient
homomorphism q : F (S ∪ {t}) → G with kernel equal to N , the normal
closure of the set R ∪ {t−1st(ϕ(s))−1, s ∈ S} in F (S ∪ {t}). To simplify
notation let q(a) = a = aN ∈ G for any a ∈ F (S ∪ {t}). If B is the
subgroup of G generated by S then any element of B is equal to b for some
b ∈ F (S). Furthermore,

t−1bt = ϕ(b).
We want to see that P presents the ascending HNN-extension with base
group B and some monomorphism of B. Consider the function ϕ : B → B

defined by b → ϕ(b) for all b ∈ F (S). In order to see that ϕ is a homo-
morphism, it is enough to see that ϕ takes relators of B (elements of the
kernel of q restricted to F (S)) to relators of B. If r is a relator for B then
r = q(r) = 1 and ϕ(r) = t−1rt = 1. So, the function ϕ is a homomorphism
of B. Note that ϕq = qϕ.

F (S)
ϕ //

q

��

F (S)

q

��
B

ϕ // B

Finally we want to see that ϕ is a monomorphism. Let b ∈ B be in the
kernel of ϕ. Then 1 = ϕ(b) = ϕ(b) = t−1bt. This implies that b = 1 and ϕ is
a monomorphism. A presentation for B is ⟨S; R̃⟩ where R̃ is the kernel of
q restricted to F (S). A standard presentation for the HNN-extension of B

TOME 0 (0), FASCICULE 0



6 Francisco F. LASHERAS & Michael MIHALIK

and ϕ is ⟨S, t; R̃, t−1st = ϕ(s), s ∈ S⟩. If r ∈ R̃ then since r is in the kernel
of q it belongs to N , the normal closure of the set R∪{t−1st(ϕ(s))−1, s ∈ S}
in F (S ∪ {t}). Then R̃ can be added to the relation set of the presentation
⟨S, t; R, t−1st = ϕ(s)⟩ of G. Since R ⊂ R̃, ⟨S, t; R̃, t−1st = ϕ(s), s ∈ S⟩
presents both G and the ascending HNN-extension of B and ϕ.

A final comment on presentations of the form P = ⟨S, t; R, t−1st =
ϕ(s), s ∈ S⟩ (where S is a finite set, R is a subset of the free group F (S) and
ϕ(s) is an element of F (S)). Extend ϕ to ϕ : F (S) → F (S). The relation
set (up to normal closure) of the subgroup B of this group generated by S

is worked out in Theorem 4.1 of [11]. A presentation of B is〈
S :

∞⋃
i=0

ϕ−i(N(∪∞
j=0ϕj(R)))

〉
.

Here if A ⊂ F (S) then N(A) is the normal closure of A in F (S).

3. Semistability preliminaries

We recall some basic notions. A map of topological spaces f : X → Y is
proper if for each compact set C ⊂ Y , f−1(C) is compact in X. We are only
interested in 1-ended groups in this paper. A 1-ended space Y is semistable
at ∞ if any two proper rays r, s : [0,∞) → Y are properly homotopic.
Recall that pro−π1(Y, ω) is determined by the inverse sequence (tower) of
groups

π1(Y, ω(0)) ϕ1←− π1(Y − C1, ω(t1)) ϕ2←− π1(Y − C2, ω(t2))←− · · ·

where C1 ⊂ C2 ⊂ · · · ⊂ Y is a filtration of Y by compact subspaces
(Ci is a subset of the interior of Ci+1 and

⋃∞
i=1 Ci = Y ), ω([ti,∞)) ⊂

Y − Ci and the bonding homomorphisms ϕi are induced by the inclusions
and basepoint-change isomorphisms. If Y is 1-ended and semistable, then
changing base rays ω gives pro-isomorphic inverse sequences and the inverse
limit of pro− π1(Y ) is called the fundamental group at ∞ of Y . The space
Y is semistable at ∞ if and only if pro − π1(Y ) is pro-isomorphic to an
inverse sequence of groups with epimorphic bonding maps. We refer to [2, 5]
for more details.

Let G be a group with finite generating set S. Let R be the kernel of the
natural map from the free group F (S) to G. The Cayley graph ΓG(S) of G

with respect to the set S has G as vertex set and one edge labeled s joining
g to gs for each pair (g, s) ∈ G × S (the inverse of this edge is labeled
s−1). If R0 ⊂ R is a finite set then we denote by ΓG(S; R0) the (strongly)
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LIFTING SEMISTABILITY IN ASCENDING HNN-EXTENSIONS 7

locally finite 2-complex obtained by attaching to every vertex of ΓG(S),
a 2-cell according to each r ∈ R0, so that G acts as a group of covering
transformations on ΓG(S; R0). Any proper edge path ray in ΓG(S; R0) can
be represented as an infinite sequence (s±1

1 , s±1
2 , . . . ), where si ∈ S, once

the initial vertex is given. Observe that if G is finitely presented and ⟨S; R⟩
is a finite presentation of G, then the corresponding 2-complex ΓG(S; R) is
the so called Cayley 2-complex for this presentation. It is simply connected
and in this case the quotient X = G\ΓG(S; R) is the standard 2-complex
associated to the presentation. The space X is a finite 2-complex with
π1(X) ∼= G and the quotient map ΓG(S; R) −→ X is the universal covering
projection. If G is 1-ended and semistable at ∞ then pro − π1(ΓG(S; R))
(up to pro-isomorphism) is the fundamental pro-group at ∞ of G. The
inverse limit of pro− π1(ΓG(S; R)) is the fundamental group at ∞ of G.

Suppose S is a finite set together with a function ϕ : S −→ F (S) and
R ⊂ F (S). Let R0 be a finite subset of R. Consider the finitely generated
ascending HNN-extension H given by the presentation:

H = ⟨S, t; R, t−1st = ϕ(s) (for s ∈ S)⟩

and the locally finite 2-complex:

X̂ = ΓH(S, t; R0, t−1st = ϕ(s) (for s ∈ S)).

The homomorphism L : H(= X̂0) −→ Z that kills the normal closure of
S in H extends to the “level” map L : X̂ −→ R which sends each 2-cell
corresponding to a relator in R to L(v) for any vertex v of it, and each 2-
cell corresponding to a “conjugation relation” to the corresponding interval
[N, N + 1] ⊂ R in the obvious way (i.e., sending the corresponding edge
labeled s to N , the edges in ϕ(s) to N +1 and the edges labeled t, t−1 to the
interval [N, N + 1]). Consider a vertex v ∈ X̂ and the proper edge path ray
rv ≡ (t, t, . . . ) based at v each of whose edges is labeled t. It is clear that
the translate of rv by t or t−1 is another ray in X̂ properly homotopic to
rv. On the other hand, [11, Lem. 3.1] shows that if an edge labeled s ∈ S in
X̂ has v and w as initial and final vertices, then the corresponding proper
edge path rays rv and rw are properly homotopic (and the same is true
for an edge labeled s−1). See Figure 3.1 for a pictorial description of the
proper homotopy.

Therefore, if we denote by ∗ the vertex of ΓH(S, t; R0, t−1st = ϕ(s) (for
s ∈ S)) corresponding to the identity element in H, one can easily conclude
the following:

TOME 0 (0), FASCICULE 0



8 Francisco F. LASHERAS & Michael MIHALIK

• •• •

• • • •

w t t t rw

v t t t rv

s φ(s) φ2(s) φ3(s)

Figure 3.1. Conjugation Homotopies

Lemma 3.1. — Any two translates in ΓH(S, t; R0, t−1st = ϕ(s) (for
s ∈ S)) of the proper edge path ray (t, t, . . . ) based at ∗ are properly
homotopic.

Again, let X̂ = ΓH(S, t; R0, t−1st = ϕ(s) (for s ∈ S)). Suppose r ≡
(σ1, σ2, . . . ) is a proper edge path ray based at v in X̂, where each σi ∈
S±1 ∪ {t±1}. We may always assume that no two consecutive edges are
labeled σ, σ−1 or σ−1, σ in r, with σ ∈ S ∪ {t}. Of course, if there is an
edge in r labeled σi after which all edges occurring in r are labeled by
elements in S±1, then r is clearly properly homotopic to the proper edge
path ray (σi+1, σi+2, . . . ) based at the final vertex w of σi. This ray is
properly homotopic to the proper edge path ray rw (and hence to r∗) all of
whose edges are labeled t, by [11, Lem. 3.3]. One simply combines proper
homotopies of the type shown in Figure 3.1 (one for each σj for j > i). In
fact, the following result may be thought of as an extension of [11, Lem. 3.3].

Lemma 3.2. — Let r ≡ (σ1, σ2, . . . ) be a proper edge path ray based at
v in X̂ = ΓH(S, t; R0, t−1st = ϕ(s) (for s ∈ S)) (with R0 finite). If no edge
in r is labeled t−1 then r is properly homotopic to the proper edge path
ray rv ≡ (t, t, . . . ) based at v in X̂.

Proof. — By the above considerations, we may assume that for each i ⩾
1 there are j, k ⩾ i so that σj = t and σk ∈ S±1. Write r = (γ1, α1, γ2, α, . . .)
where the letters of γi are in S±1 and the letters of αi are all t. There is a
homotopyH of rv to r obtained by stacking homotopies Hi as in Figure 3.2.
Each Hi combines a finite number of homotopies (one for each edge of γi)
as in Figure 3.1.

Any compact K ⊂ X̃ has bounded image L(K) ⊂ R and so only finitely
many of the proper homotopies Hi have image that can intersect K. Hence
H is proper. □

ANNALES DE L’INSTITUT FOURIER
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t

t

rv0 rv1 rv2

H1 H2

•

•

•

•

•

•

•

γ1

γ2

γ3

α1

α2

v0 v1

v2

Figure 3.2. Stacking Homotopies

As above, let X̂ = ΓH(S, t; R0, t−1st = ϕ(s) (for s ∈ S)) (with R0 finite)
and assume r is a proper edge path ray based at v in X̂ which is represented
as a sequence r = (γ1, α1, γ2, α2, . . . ) where each γk is a (maximal) finite
edge path in r all of whose edges are labeled by elements in S±1 (or perhaps
the constant path, in the case of γ1), and each αk is a (maximal) finite edge
path in r all of whose edges are either labeled t or t−1 (i.e., of the form
(t, t, . . . , t) or (t−1, t−1, . . . , t−1)). By [11, Lem. 3.2], if A < B are integers
and K is compact in X̂, then there are at most finitely many edges e in
level A of X̂ that cannot be moved to level B by a conjugation homotopy
avoiding K (i.e., by means of the 2-cells coming from the corresponding
conjugation relations as in Figure 3.1). Since r = (γ1, α1, γ2, α2, . . . ) is
proper, there are only finitely many γi of r in level A of X̂ that cannot be
moved to level B by a conjugation homotopy avoiding K. Let K1 ⊂ K2 ⊂
· · · be a filtration by compact subsets of X̂. Without loss of generality, we
may assume that for i ⩾ 1, Ki has points in level i.

Suppose γ is a finite edge path of X̂, in the letters S±1. Let L(γ) be the
level containing γ. If γ can be pushed to level |L(γ)|+ 1 by a conjugation
homotopy avoiding K|L(γ)|+1, then let P (γ)(> |L(γ)|) be the largest integer
such that γ can be pushed to level P (γ) by a conjugation homotopy avoiding
KP (γ). Note that P (γ) is bounded above by j if the image of γ intersects Kj .

If P (γi) is defined (and so P (γi) > |L(γi)|) then let Hi be the conjugation
homotopy that moves γi to γi in level P (γi). This means that Hi is the

TOME 0 (0), FASCICULE 0



10 Francisco F. LASHERAS & Michael MIHALIK

conjugation homotopy of γi to ta(i)γit
−a(i), where a(i) = P (γi)−L(γi) and

im(Hi) ∩KP (γi) = ∅.
Given an integer J , [11, Lem. 3.2] implies there are only finitely many

γi in level J such that P (γi) is not defined. In particular, Hi is defined for
all but finitely many γi in level J . If P (γi) is not defined, then let γi = γi.

Proposition 3.3. — Suppose X̂ = ΓH(S, t; R0, t−1st = ϕ(s) (for
s ∈ S)) (with R0 finite) and r is a proper edge path ray in X̂. Then r

is properly homotopic relative to r(0), to a proper edge path ray r′ such
that for any integer J , only finitely many S±1 maximal subpaths of r′

belong to level J .

Proof. — Assume that r is as above. Let r′ be obtained from r by com-
bining the homotopies Hi above to a single homotopy H. We must show
that H is proper and that for any level J , only finitely many of the γi

belong to level J .
Suppose γi belongs to level J . By [11, Lem. 3.2], only finitely many γi

in level J are such that γi = γi. Hence we only need concern ourselves
with the γi such that J = P (γi) > |L(γi)|. For each such γi, L(γi) ∈
{−J +1,−J +2, . . . , J−1}. Again, by [11, Lem. 3.2], there are only finitely
many such γi in any given level such that P (γi) = J .

In order to see that H is proper, it is enough to show that for each
integer n > 0, only finitely many of the Hi have images that intersect
Kn. If P (γj) > |L(γj)| (so that Hj is defined) and |L(γj)| > n, then
im(Hj) ∩ KP (γj) = ∅ and so im(Hj) ∩ Kn = ∅. Hence we need only be
concerned with γj with L(γj) ∈ [−n, n]. [11, Lem. 3.2] implies that for a
given compact set, and level, there are only finitely many edges e in that
level such the image of any conjugation homotopy for e intersects that
compact set. The same statement is true if e is replaced by γj and so H is
proper. □

4. Proof of Theorem 1.1

We now proceed with the proof of the main result. Recall the ascending
HNN extension H = ⟨S, t; R, t−1st = ϕ(s) (for s ∈ S)⟩ is 1-ended and
semistable at infinity. For any group G and subset A ⊂ G, let NG(A) be
the normal closure of A in G. Then R = NF ({t}∪S)(R ∪ C) where

C = {t−1st = ϕ(s) (for s ∈ S)}.
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Let R0 be a finite subset of R such that X̂ = ΓH(S, t; R0, C) is semistable
at infinity. We show that R0 may be taken as a finite subset of R, and any as-
cending HNN-extension H1 = ⟨S, t; R1, C⟩, with R0 ⊆ R1 ⊆ R is semistable
at infinity. In fact we show that X̂1 = ΓH1(S, t; R0, C) is semistable at in-
finity.

X̃0 = ΓH0(t, S; R0, C)

��
X̂1 = ΓH1(t, S; R0, C) = X̃0/NH0(R1)

q

��
X̂ = ΓH(t, S; R0, C) = X̃0/NH0(R) = X̂1/NH1(R)

��
X0

H0 = π1(X0) = ⟨t, S : R0, C⟩ H1 = ⟨t, S : R1, C⟩, H = ⟨t, S; R, C⟩

Let X0 be the standard finite complex for the presentation ⟨S, t; R0, C⟩ ≡
H0 and let X̃0 be its universal cover. We have the above diagram where
each map is a regular covering map.

Recall that R0 ⊂ R1 ⊂ NF ({t}∪S)(R ∪ C) = R. ByNH0(R1) we mean
the normal closure in H0 of the image of R1 in H0 under the obvious map
from F ({t} ∪ S). The group H0 maps onto H1 with kernel isomorphic to
NH0(R1) and H1 maps onto H with kernel NH1(R).

Proof of Theorem 1.1. — Since H is semistable at infinity, there is
a finite set T ⊂ F (S ∪ {t}) of H-relations such that the correspond-
ing locally finite 2-complex ΓH(t, S; T ) is semistable at infinity (see Sec-
tion 3). As ΓH(t, S; T ′) is also semistable at infinity for any other finite
set of relations T ′ ⊃ T , we may always assume that T contains the set
C = {t−1stϕ(s)−1, s ∈ S} of all conjugation relations in the above presen-
tation. Observe that each relator θ ∈ T can be expressed as a product ωθ

(in the letters of {t±1} ∪ S±1) of conjugates of elements in R ∪ C, and let
R0 be the finite set of relators in R which occur in ωθ, for every θ ∈ T . Let
R̂ = C ∪R0.

The attaching map of each 2-cell in ΓH(t, S; T ∪ R̂) corresponding to
any relation in T is null homotopic in ΓH(t, S; R̂) ⊂ ΓH(t, S; T ∪ R̂), and
we can perform all these homotopies simultaneously in an equivariant way
(since H acts freely and properly discontinously). This implies there is
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l+ r

v1

H1

•

•

•

β1
β2

t1

β3

t2

∗ v2
•• • •

l+ t1 r

∗ v2 v1 v2

t2

β3 β1 β1

H2 H1

Figure 4.1. Combining the Hi

a proper (cellular) map p : ΓH(t, S; T ∪ R̂) → ΓH(t, S; R̂) that is the
identity on the 1-skeletons. By Proposition 16.2.3 of [2], ΓH(t, S; T ∪ R̂)
is semistable at infinity if and only if ΓH(t, S; R̂) is semistable at infin-
ity. Since ΓH(t, S; T ) is semistable at infinity, ΓH(t, S; T ∪ R̂) and hence
ΓH(t, S; R̂) = ΓH(t, S; R0, C) is semistable at infinity.

We need three lemmas. Lemma 4.3 is the Main Lemma of the paper. Our
first lemma is an improvement to Lemma 2 of [8].

Lemma 4.1. — Suppose G is a finitely generated group that is 1-ended
and semistable at ∞. Let S be a finite generating set for G and R a finite
set of S-relations such that ΓG(S; R) is semistable at ∞. Then two rays r

and s in ΓG(S; R), with r(0) = s(0) are properly homotopic rel{r(0)}.

Proof. — Let X = ΓG(S, R) and let l be a geodesic edge path line in X

through the identity ∗, parametrized so that l(0) = ∗. Let l+(n) = l(n) for
n ⩾ 0 and l−(n) = l(n) for all n ⩽ 0. Since X is semistable at infinity,
there is a compact ball such that any two rays r and s in X −BK(∗) (with
r(0) = s(0)) are properly homotopic relative to r(0). For v ∈ G(≡ X0),
let vl+ and vl− be the translates of l+ and l− respectively to the vertex
v. Given any vertex v ∈ X − B2K+1(∗) only one of the geodesic rays vl+

or vl− can intersect BK(∗). Hence either there are infinitely many vertices
v ∈ X such that vl+ avoids BK or infinitely many vertices v ∈ X such
that vl− avoids BK . Without loss, assume the former holds. It is enough
to show that every proper ray r at ∗ is properly homotopic to l+ relative
to ∗.

Choose a path β1 from a vertex v1 of l+ to a vertex v2 of r such that
the image of β1 and the tail of r at v2 avoid BK(∗). By the definition of
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K, t1 (the tail of l+ at v1) is properly homotopic (relative to v1) to β1
followed by t2 (the tail of r at v2) by a proper homotopy H1. Let β2 be
the initial segment of l+ from ∗ to v1 and let β3 be the initial segment of
r from ∗ to v2. Let β be the loop (β3, β−1

1 , β−1
2 ). Choose a vertex (infin-

itely many exist) w ∈ X such that the translate wl+ of l+ to w and the
translate wβ both avoid BK(∗). By the definition of K, wl+ is properly
homotopic to (wβ, wl+) relative to w. Translating by w−1, l+ is properly
homotopic to (β, l+) relative to ∗. Equivalently, l+ is properly homotopic
to (β3, wβ−1

2 , t1) relative to ∗ by a proper homotopy H2. Combining H1
and H2 as in Figure 4.1 (and canceling (β1, β−1

1 )) shows that l+ and r are
properly homotopic relative to ∗. □

Lemma 4.2. — Suppose A is an integer and K is compact in X̂1. Then
for all but finitely many points v in level A of X̂1, there is a proper S±1

ray sv at v such that q(sv) is proper in X̂ and the image of the (proper)
conjugation homotopy of rv = (t, t, . . .) to sv does not intersect K.

Proof. — Say H has base group B and H1 has base group B1. Then for
each vertex v of X̂1, the complex X̂1 contains a copy Γ1

v of the Cayley graph
of B1 (with respect to S) which contains v (and L(Γ1

v) = L(v)). Similarly
there are copies Γv of the Cayley graph of B, for vertices v ∈ X̂. Let E1 be
the (finite) set of S edges e = (a, b) in level A of X̂1, such that the image of
the conjugation homotopy of ra to (e, rb) intersects K. If v is a vertex of X̂,
then for each vertex w of Γv there is a proper S±1 ray aw in Γv such that
aw begins at w and only finitely many aw have image that intersect any
given compact subset of Γv - this is an elementary fact that generalizes to
arbitrary connected, locally finite, infinite graphs (see [7, proof of Lem. 2]).
Suppose v ∈ X̂1 is a vertex of level A and Γ1

v contains no edge of E1. If
w ∈ Γ1

v, then let sw be the lift of the proper ray aq(w) (in Γq(v)) to w. Since
Γ1

v contains no edge of E1, the conjugation homotopy of sw to rw avoids K.
Hence it suffices to consider one of the finitely many Γ1

v in level A of
X̂1 that does contain an edge of E1. Let V be the (finite) set of vertices
z ∈ Γq(v) such that im(az) intersects q(E1). Choose an integer N such that
for each vertex w ∈ V there is an S±1 edge path pw of length ⩽ N from w

to a vertex of Γq(v) not in V . There are only finitely many vertices of Γ1
v

within N of a vertex of E1. Consider a vertex w ∈ Γ1
v that is not within N

of a vertex of E1. If q(w) ∈ V , consider the path pq(w) in Γq(z) (of length
⩽ N) with end point w′ ̸∈ V and otherwise, let pq(w) be the trivial path at
q(w). Let ŝw be the proper ray, (pq(w), aw′). Let sw be the lift of ŝw to w.
No edge of sw belongs to E1 and so the conjugation homotopy of sw to rw

avoids K. □

TOME 0 (0), FASCICULE 0



14 Francisco F. LASHERAS & Michael MIHALIK

Lemma 4.3. — If r is a proper ray in X̂1 then there is a proper ray r′

such that r is properly homotopic (relative to r(0)) to r′ and q(r′) is proper
in X̂.

Proof. — If there is a vertex v of r such that all letters of r beyond v are
in S±1 or all letters are labeled t then r is properly homotopic to rv. If all
letters beyond v are labeled t−1 then r is properly homotopic to this tail of
r. Hence we assume that r satisfies the conclusion of Proposition 3.3 and
has the form (γ1, α1, γ2, α2, . . .) where γi is a S±1 path and αi is a t or t−1

path. It is convenient to modify notation. If αi = (t−1, t−1, . . . , t−1) then
replace αi in our representation of r by α−1

i . In this way we have each αi

has the form (t, t, . . . , t). Let xi be the initial and yi the terminal vertex
of αi.

Let A be the set of all i such αi contains no vertex of level 0. By the
conditions of Proposition 3.3, there are only finitely many xi (yi) in any
given level. Hence for any N > 0, there are only finitely many i ∈ A such
that the image of αi (equivalently, the image of q(αi)) contains a point v

with L(v) ∈ [−N, N ]. In particular:

(1) Given any compact set C ⊂ X̂ there are only finitely many i ∈ A

such that the image of q(αi) intersects C.

Recall that K1 ⊂ K2 ⊂ · · · is a filtration of X̂1 by compact sets. Suppose
i ̸∈ A is a positive integer and vi is the vertex of αi with smallest level in
[−1, 0] (so L(vi) = 0 if vi = xi and L(xi) = 0 and L(vi) = −1 otherwise).
If the image of the conjugation homotopy of svi (of Lemma 4.2) to rvi

intersects K1, then i ∈ S0. The set S0 is finite since r is proper and since
there are only finitely many vertices w in levels −1 and 0 such that the
image of the conjugation homotopy of sw to rw meets K1.

Suppose i ̸∈ S0 ∪ A is a positive integer and vi is the vertex of αi with
smallest level in [−2, 0] (so either vi = xi or L(vi) = −2). If the image of
the conjugation homotopy of svi

to rvi
intersects K2, then i ∈ S1. The set

S1 is finite.
Inductively, assume Sn−1 is defined. Suppose i ̸∈ A is a positive integer,

i ̸∈ Sm for m < n, and vi is the vertex of αi with smallest level in [−n−1, 0]
(so either vi = xi or L(vi) = −n − 1). If the image of the conjugation
homotopy of svi

to rvi
intersects Kn+1, then i ∈ Sn. The set Sn is finite.

Next we show:

(2) The sets Sn for n ⩾ 0, partition Z+−A (into a collection of disjoint
finite sets).
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δi sviwi

αi = (α′′i , α′i)

ηi

Hi τi

α′′i

α′i

•vi

•xi

•

•yi

rvi

Figure 4.2. Component Homotopies

By definition, Sn ∩A = ∅ = Sn ∩ Sm for all n > m ⩾ 0. Say i ∈ Z+ −A

and i ̸∈
⋃∞

n=0 Sn. Recall that xi is the initial vertex of αi. Since i ̸∈ A,
L(xi) ⩽ 0. For −n ∈ [L(xi), 0], let vn be the vertex of αn in level −n and
for −n < L(xi), let vn = xi. Since i ̸∈ Sn, the image of the conjugation
homotopy of svn to rvn does not intersect Kn+1 for all n. But, this is
impossible since for large n, Kn contains xi and vn = xi for all −n ⩽ L(xi).
So (2) follows.

At this point we will alter each of the αi for i ̸∈ A ∪ S0 and produce
the desired proper ray r′. Suppose i ∈ Sn then i ̸∈ Sn−1. So if vi is the
vertex of αi with smallest level in [−n, 0], then the image of the conjugation
homotopy of svi

to rvi
does not intersects Kn.

Recall that yi is the terminal point of αi and q(svi) is a proper S±1 ray
in X̂. Let δi be an initial segment of svi

with terminal point wi, where wi

is such that the t-path at wi with end point in L(yi) (call it τi) is such that
q(τi) avoids q(K(n)). Let Hi be the conjugation homotopy of δi to the S±1

path ηi in level L(yi) (see Figure 4.2). Since the image of Hi is a subset
of the image of the conjugation homotopy of svi

to rvi
(in X̂1 −Kn). We

have:
(3) If i ∈ Sn then the image of Hi does not intersect Kn.

Now we defined r′. For each i ∈
⋃∞

n=1 Sn replace the segment α′
i of αi

from vi to yi in r by (δi, τi, η−1
i ). Let H be the homotopy of r to r′ obtained

by combining all of the Hi. Statement (3) and the fact that there are only
finitely many integers in each Sn immediately imply H is proper. We have:

(4) The ray r is properly homotopic to r′ in X̂1.
It remains to show that q(r′) is proper in X̂. First we show:
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(5) The number of maximal S±1 subpaths of r′ in any level is finite.

For i ∈
⋃∞

n=1 Sn, the path ηi is in level L(yi), so the S±1 subpath (γi or
γi+1) of r in this level is simply extended by ηi in r′. Hence we have not
increased the number of maximal S±1 subpaths of r in level L(yi) when
we add ηi to r′. If δj is defined and in level −n, then either j ∈ Sn or
L(xj) = −n. There are only finitely many j ∈ Sn and only finitely many
xj in level −n. Hence, (4) is verified. Statement (5) immediately implies:

(6) The number of S±1 edges of r′ in any given level is finite.

We can now show that q(r′) is proper. Suppose otherwise. Then r′ con-
tains infinitely many edges all of which are mapped by q to the same edge
e of X̂. If e is an S±1 edge, then since q is level preserving, each of the
edges of r′ that maps to e is in the same level as e. But by (6) r′ has only
finitely many S±1 edges in any given level.

This means that e has label t. By (1), there are only finitely many i ∈ A

such that the image of q(αi) intersects any given compact set. This means
that r′ has infinitely many t edges that map to e, none of which belong to αi

for any i ∈ A. For i ∈
⋃∞

n=1 Sn, and vi ̸= xi, write αi as (α′′
i , α′

i), otherwise
write αi = α′

i. Either there are infinitely i such that τi contains an edge
that q maps to e (see Figure 4.2) or there are infinitely many i such that
α′′

i contains an edge that is mapped by q to e (and this edge precedes vi in
αi). If i ∈ Sn then by definition, q(τi) avoids q(Kn) and so the former is
not possible. Instead, there must be infinitely many α′′

i containing an edge
that is mapped by q to e. If α′

i ̸= αi, then δi is a maximal S±1 subpath of r′

in a level ⩽ 0. Recall, there are only finitely many maximal S±1 subpaths
of r′ in any level. Since α′′

i lies in levels at and below the level of δi (and
since γi lies in a level < 0), only finitely many α′′

i contain an edge that can
be mapped by q to e. We have shown that q(r′) is proper. □

We conclude the proof of Theorem 1.1. Suppose r is a proper ray based at
∗ in X̂1, we will show that it is properly homotopic to the proper edge path
ray r∗ ≡ (t, t, . . . ) based at ∗, and this concludes the proof of Theorem 1.1.
By Lemma 4.3, we may assume that the projection q(r) is a proper edge
path ray based at q(∗) in X̂. Observe that q(r∗) ≡ (t, t, . . . ) is also a
proper edge path ray based at q(∗) ∈ X̂. Since X̂ is semistable at infinity,
Lemma 4.1 implies that q(r∗) is properly homotopic to q(r) relative to
q(∗). Let H : [0,∞)× [0, 1]→ X̂ be a proper homotopy such that H(t, 0) =
q(r∗(t)) and H(t, 1) = q(r(t)) for all t ∈ [0,∞) and H(0, t) = q(∗) for all
t ∈ [0, 1]. Certainly H|[0,∞)×{0}(= q(r∗)) lifts to r∗. The homotopy lifting
theorem implies that H lifts to H, a homotopy of r∗ to r, relative to ∗.
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Lifting proper homotopies always results in a proper homotopy so H is
proper. □
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