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ON THE RANK-PART OF THE MAZUR-TATE
REFINED CONJECTURE FOR HIGHER WEIGHT
MODULAR FORMS

by Kazuto OTA (*)

ABSTRACT. — Under some assumptions, we prove the rank-part of the Mazur—
Tate refined conjecture of BSD type. More concretely, we prove that the rank of
the Selmer group of an elliptic modular form is less than or equal to the order of
zeros of Mazur—Tate elements, or modular elements, which are elements in certain
group rings constructed from special values of the associated L-function. Our main
result is regarded as a generalization of our previous work on elliptic curves.

RESUME. — Sous certaines hypothéses, on prouve la partie rang de la conjecture
précisée de Mazur—Tate de type BSD. Plus concrétement, on prouve que le rang du
groupe de Selmer d’une forme modulaire elliptique est inférieur ou égal a ’ordre
des zéros des éléments de Mazur—Tate, qui sont des éléments de certains algebres
de groupes construits a partir de valeurs spéciales de la fonction L associée. Notre
résultat principal est considéré comme une généralisation de nos travaux antérieurs
sur les courbes elliptiques.

1. Introduction

In an earlier paper [26], under relatively mild assumptions we proved the
rank-part of the Mazur—Tate refined conjecture for elliptic curves (cf. [22]).
The aim of this paper is to generalize the previous work to modular forms
of higher weight.

To state our main result, we fix some notation. Let f(7) € S (T'o(V)) be
a normalized eigen newform of even weight k for T'o(IV), whose g-expansion
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we denote by Zn>1 anq™. Let p be a prime not dividing 2V, and fix em-
beddings ¢, : Q= Cp and 1o : Q — C. Let F, be the completion of the
Hecke field F' = Q(an;n > 1) at the prime p | p induced by ¢,. We denote
by Vy = Fp652 the Galois representation attached to f (cf. Section 2.1). Let
Ty be an Oy-lattice of Vy stable under the Gg-action, where &, denotes
the ring of integers in Fj,. We denote by p; : Go — Autg, (Ty) the asso-
ciated representation. We put A = Ty (k/2) ® Qp/Z,, where (k/2) denotes
the k/2-th Tate twist. We assume the following (see Remark 1.2 for the
validity of the assumption).

ASSUMPTION A.

(1) HO(Qp, Alp]) = {0}.
(2) Fixing an Oy-basis of Ty, we have

Im(ps) 2 {9 € GLa(Z,) | det(g) € ()"}

(3) For each primel | N, either H°(Q;, A) or H' (F;, H*(Q}™, A)/(div.))
is the zero module, where (div.) denotes the maximal divisible part.

In this section, for simplicity we assume that F,/Q, is unramified and
that if f is ordinary (i.e. ap € O)) then a, € Z, and a, # 1 mod p (those
assumptions are imposed to verify Assumptions B and C). For a positive
integer S, we put (s = €*™/5 (the S-th root of unity) and denote by I'g
the p-Sylow subgroup of Gal(Q(¢s)/Q). We denote by s € O,[['g] the
Mazur—Tate element (cf. Definition 2.3) which interpolates algebraic parts
of the special values L(f, x, k/2) for Dirichlet characters x : I's — Q. We
put ry = corankg, (Sel(Q, A)), where Sel(Q, A) is the Bloch-Kato Selmer
group. The following is the main result (see Theorems 7.2 and 7.4 for the
general case).

THEOREM 1.1. — Let S be a positive integer relatively prime to pIN
such that for each primel | S,

(1.1) H°(Qy, Alp]) is isomorphic to Oy /p or {0}.
Let n be a non-negative integer. Assume at least one of the following two
conditions holds.

(a) We have n < 2, and for every prime [ | S we have p? { (I — 1).
(b) The p-parity conjecture holds, that is, ord,—y, /2(L(f, s)) = ry mod 2.
Then, we have
Oy € [0 7}

where Isp» denotes the augmentation ideal of Oy[T'gpn].

ANNALES DE L’INSTITUT FOURIER
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Remark 1.2.

(1)

(7)

Even in the case where FF = Q and k& = 2 (i.e. the newform f
corresponds to an elliptic curve over Q), the theorem above is still
stronger than [26, Theorem 5.17]. The reason is that in loc. cit.
we considered fg,» with n < 1, assuming that p did not divide
the product of Tamagawa factors, which is slightly stronger than
Assumption A (3).

If either f corresponds to an elliptic curve or f is ordinary, then
the p-parity conjecture holds (cf. [11, 25]).

By Ribet [30], if f has no complex multiplication, then for almost
all primes p, Assumption A (2) is verified.

By Chebotarev’s density theorem, the density of primes [ satisfy-
ing (1.1) is greater than or equal to 1 — ((p® —p)\(F;)k_l =1 (cf.
Proposition 3.9).

See Proposition 3.7 for Assumption A (1). For [ | N, if a; = 0 and
p = 5, then HO(Q, A[p]) = 0 (cf. Proposition 3.8).

We mention known results related to the theorem for k& > 2 (see [26,
§1] for k£ = 2). Kato’s result [13] on the p-adic BSD conjecture
implies that if f is ordinary, then for n > 0, 6,» € I){. In the
case where f is non-ordinary, an unpublished work of Emerton—
Pollack-Weston implies that 6,~ € I%. Results of Kurihara also
imply that if f is ordinary, then 8g,» € I ;;n for general S relatively
prime to pN, under assumptions including the validity of p = 0
conjectures and the non-existence of finite submodules of Iwasawa
modules associated to Selmer groups (see [17] for the details).

The Mazur—Tate refined conjecture which we consider is over cyclo-
tomic extensions. There are also works on anticylotomic extensions
(cf. [8, 12, 14, 20]).

Our proof of Theorem 1.1 is similar to that of [26, Theorem 5.17] (cf. [26,

§1.3)).

The key ingredients of the previous proof were the following:

(a) modification of Darmon’s argument on Heegner points in [8] to Kato’s
Euler system, (b) construction of local points (as in [15, 16, 27]) of ellip-
tic curves relating Mazur—Tate elements with Kato’s Euler system via cup
products.

Compared to the proof of [26, Theorem 5.17], one of the new parts of
this paper is that we slightly refine the argument on derivatives of Euler
systems so that we can consider fg,» with n > 2 (cf. Section 5). Another
part is that by using Perrin-Riou’s theory, we generalize local points of
Otsuki [27] to modular forms of higher weight (cf. Section 6).
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1322 Kazuto OTA

Considering {@spn }n>1 leads us to the following result on the p-adic L-
functions which also interpolate special values of the L-functions twisted
by characters whose conductor are divisible by integers prime to p.

THEOREM 1.3 (Corollary 7.5). — With the same notation and assump-
tion as in Theorem 1.1, assume further that f is ordinary. Let %) s.o(f) €
Oy[G][T's] denote the p-adic L-function (see Proposition 6.13 and Re-
mark 6.14 (1) for the details), where G, = Gal(Q(pp)/Q). Then,

zp,S,a(f) € Ion:r,;f]z;,gp}v

where I, s 1/2 € Op[Goo][I's] denotes the kernel of the homomorphism of
O, algebras 0,[G][I's] — O, induced by the product /{fﬁ - 1g. Here,
Keye : Goo = Z; denotes the p-adic cyclotomic character, and 1g denotes
the trivial character of T'g.

Remark 1.4.

(1) We note that the work of Kato [13] and Kurihara [17] mentioned in
Remark 1.2(6) also imply similar results under their corresponding
setting explained above.

(2) The elements g and %, 5. (f) rely on the choice of periods QF,
which are independent of .S. We briefly explain our choice. Through-
out this paper, we first fix an element d; = 5? + 5; of Vy which
is good for T in the sense of [13, §17.5] (see also Definition 2.1),
and the data 0 specifies Kato’s Euler system. Fixing o, the choice
of periods is essentially equivalent to that of a nonzero element
w € Fil' Deyis (V) (cf. Definition 2.1 or [13, Theorem 16.2]). We
choose w so that by Perrin-Riou’s theory (cf. [28]) we may obtain a
system of certain integral maps (regarded as analogues of Coleman
maps), by which we connect Kato’s Euler system to the Mazur—
Tate elements (cf. (7.1)). We refer the reader to Definition 6.6 for
details. We note that in the good ordinary case, by [13, §17], we may
take w to be good for Ty in the sense of [13, §17.5]. We also note
that since our w may not be necessarily the differential form asso-
ciated to f under the canonical isomorphism from the f-part of the
de Rham cohomology group of X (IN) to Deis(Vy), the p-invariant
of our £, 1.(f) may differ from those of the p-adic L-functions
associated to so-called canonical periods.

We also prove a result on exceptional zeros of Mazur—Tate elements. We
refer the reader to Theorem 7.3 for the details.

ANNALES DE L’INSTITUT FOURIER
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2. Mazur—Tate elements

In this section, we fix the notation and recall Mazur—Tate elements.

2.1. Setup

Let f(7) € Sp(T'o(N)) be a normalized eigen newform of even weight
k, whose g-expansion we denote by Zn>1 anq"™. We assume that f has no
complex multiplication. Let p be a prime not dividing 2V, and fix embed-
dings 1, : Q = C, and 15 : Q — C. We denote by F the Hecke field
Q(an;m = 1) and write & for the ring of integers in F. Let p be the prime
of F' above p induced by ¢,. Let F, be the completion of F' at p and &,
the ring of integers in F},. For a commutative F-algebra R, we let Vi (f) be
the free R-module of rank two that is introduced in [13, §6.3] and is con-
structed from cohomology groups of modular curves. Then, Vy := Vg, (f)
has an action of Gg (cf. [13, §8.3]) and is isomorphic to Deligne’s Galois
representation associated to f, where we denote by G, the absolute Galois
group of a perfect field L. We recall that for a prime [ { pN,

det(1—Fr; ' X|V;) =1 — ;X +1F1 X2,

where Fr; is the arithmetic Frobenius at [. Let Ty be an Oj-lattice of V;
stable under the Gg-action such that

Ty Vo, (1), =Ty Z Ve, (1),

where @ € 0, denotes a uniformizer, and we refer the reader to [13, §8.3]
for Vi, (f). If we put Op,(,) = F N O, then the intersection Ty N Vp(f)*
inside Vg, (f) is an Op,(,)-module free of rank one, where Vi (f)* denotes
the eigenspace with eigenvalue +1 of the complex conjugation. Let S(f)

TOME 73 (2023), FASCICULE 3
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be the F-vector subspace of Sk (T'o(N)) generated by f. Then, we have the
period map of f

pery : S(f) = Ve(f)
as in [13, §6.3].

DEFINITION 2.1. — Throughout this paper, we fix an O, ,)-basis 5fi
of Ty NV (f)*. For a non-zero element w of S(f), we define periods Q1 €
C* by

per(w) = QI(S}' + Q505

2.2. Mazur—Tate elements

Let L(f,s) = >_,>, ann™° be the L-function attached to f. For a Dirich-
let character x, we put L(f, x,s) = >_,5; x(n)a,n~°. Let w be a non-zero
element of S(f). Then, for 1 < i < k— 1, (2my/=1)*"""LL(f, x,1)/QF €
F(x), where + corresponds to the sign of (—1)*~"=1x(—1) = (=1)" "1y (-1).

For a polynomial P(z) € C[z] whose degree is at most k — 2 and for
a,S € Q with S > 0, we denote by A(f, P(z); —a,S) € C the modular
symbol as in [23, §3]. By [23, (8.6)] for a Dirichlet character yx of conductor
Sand 1 <i<k—1,

1) S A(SE T —a S)x(a) = SN — D))

a€(Z/)SZ)*

L(f,x*,i)
(—2my/—1)i-1’

where we define 7(x) = 3, < X(7)¢S. For a € Z, a positive integer S and
1 <1< k-1, we define [a/S]i[w € F by
al® _ 2 A(f 2T —a, 8) £ (1) IN(f, 2 a, S)
[g]i,w = (=2mv=1) QQf ’
Then, we have [—a/S];, = £(~1)""[a/S];,,. We define

alt a1~

ﬁS,i,w = Z <|:S:| i + |:§:| i,w) Fra S F[GS]7
a€(Z/S7)*

where Gg = Gal(Q({s)/Q), and Fr, € Gg denotes the element such that

Fra(CS) = Cg‘

For n | m and a commutative ring R, we denote by m,,/, : R[G,,] —
R[G,] the homomorphism of R-algebras induced by the natural surjection
Gm — Gp. We also denote by v, , the R-linear map R[G)] — R[Gn]
induced by

o~ Z T for o€ G,.

TE€EG,, T—0o

ANNALES DE L’INSTITUT FOURIER
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PropoSITION 2.2.
(1) Let S be a positive integer and | a prime. Then,
—Fr N1 — T e (DT s, (11 S),
Ts1/s(Vstiw) = o
a¥s,iw — €I *vs,51(9s/1,i) (L1s),

where € is the trivial Dirichlet character modulo N.
(2) For a character x of Gg with conductor S, we have

X(Vs,iw) = Si_l(i — 1)!T(X)(_2W\/f1)k—i—1w

o
where the sign + denotes that of (—1)k==1y(~1).
Proof.
(1). — We put
O = > A2 '£a,8)Fr, € C[Gs).
a€(Z/)SZ)*
Then,

(22)  ways(@)= > > A2 b, S Fr,

a€(Z/SZ)* be(z)SIZ)>
b=a mod S

We first consider the case where [ 1 S. Let z,y € Z such that S + ly = 1.
For an integer a relatively prime to S, we put e, = ayl, whose image in

Z/SIZ is a unique element such that e, = amod S and e, = 0 mod .
By [23, (3.1) and §4], we have

ST A2 %D, S1)
be(z2/SIZ) *
b=a mod S

= ) M2 hEb, S = A(f, 2 e, S)
beZ/SIZ
b=a mod S

-1

= Z M f, 257 £a — uS, S1) — M(f, 271 £ayl, SI)

u=0
= a\(f, 2" Y +a, S) — e()IFAN(f, 271 +a, S/1) — M(f, 271 +ayl, SI)
= a\(f, 27 +a, S) — e()IFAN(S, (2/1) 7L +al, S)
= A(£ U=/ 2ayl, ST)
= a\(f, 277 +a,8) — e(DIFYIN(fL 2 £al, S) — UM, 20 £ay, S).

TOME 73 (2023), FASCICULE 3
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By (2.2) and noting that yl =1 mod S, we have

ms1s(05) = (a — eI Fr; ' =17 Fr))OF
= —Fr ('t — q Fr, +e(D)IF 1 R )08,

which implies the assertion (1) in the case where [ {S.
We next assume that [ | S. Then, by [23, §4] we have

-1
S AMAETH DS =D NS, 2 da — S, SI)
be(Z/S17) % u=0

b=a mod S
= a\(f, 27 £a, S) — e(D)IFAAN(f, 2171 +a, S)1).

By (2.2) we have

7TSIZ/S(QgEe)
= > (a2 a,8) — e(IFTAA(f, 2 ta, S/1)) Frg
a€(Z/SZ7)*
= Z al\(f, 271 +a, S) Fr,
a€(Z/SZ)*

—e(l)ik2 Z Z A f, 27t +a, S/1) Fry
a€(Z/SI=Y2)* be(2/SZ)*
b—a

= az@? - e(l)lk72l/,s7,sg(@§/£),

which implies the assertion (1).

(2). — Tt follows from (2.1) and straightforward computation.

DEFINITION 2.3. — For a positive integer S, we denote by I's the p-
Sylow subgroup of Gg. For 1 < i < k—1 and w € S(f) \ {0}, we define

the Mazur—Tate element 0g;,, of F[I's] as the image of Vg, in F[I'g].
We put 0s,., = 95%,0;-

CONJECTURE 2.4. — Let S > 0, and suppose that w is a non-zero ele-

ment of S(f) such that 05, € Op ;,)[I's]. Then, 05, € Igf, where we recall
that 1y is the Op-corank of the Bloch-Kato Selmer group Sel(Q, Tt (k/2) ®
Qp/Zyp).

ANNALES DE L’INSTITUT FOURIER
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2.3. Functional equation of Mazur—Tate elements

We recall the functional equation of Mazur—Tate elements, which plays
an important role in the proof of Theorem 1.1 with the assumption that
the p-parity conjecture holds.

Let wy be the operator on Si(To(N)) defined as g(r) — %g (%)
Then there exists ey € {£1} such that wy(f) =e;f. It is known that
(2.3) (—1)%&7 — (_1)0rds:k/2(L(f,5))

(see [10, Theorem 5.10.2] for example). Let .S be a positive integer relatively
prime to N. To simplify the notation, we put [a/S]¥ = [a/S]T 95 =
3 W

V5 k20> and 05 = Og . /2..,- By [23, Chapter 1, §6], for an integer a relatively
prime to S, we have

2.4 \F_ e, (9]
(2.4 5] = o 5]
where a' is any integer satisfying a’aN = —1 mod S. Let ¢ be the homo-

morphism of Fy-algebras F,[Gs] — F,[Gs] sending 0 € Gg to o~ !. We
have the functional equation of 0g as follows.

PROPOSITION 2.5. — For a positive integer S relatively to N,
Os = (=1)3e, Frok o(0s), Os = (—1)%e; Frok 1(0s).

Proof. — Since g is the image of ¥g under F,[Gs] — F,[I's], the second
equality follows from the first one, which follows from the computation

(—D)* e Bry (W) = (~D)F e, o)y > ([;r + [;}) Fr; !

a€(Z/ST)*
— (L) At L [T gt
DY ([S] +[5] )FraN
a€(Z)ST)x
+ Ak
@ . _
2) Z ({S] +{S} )Fra,ﬂs.
a€(Z/ST)
Here, the equation (a) follows from (2.4). O

3. Preliminaries on Galois cohomology

In the rest of this paper, we write

T =Tik/2), V=T Q, A=Hom(T,F,/0,(1))=V/T,

TOME 73 (2023), FASCICULE 3
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where the last isomorphism is due to the natural Gg-equivariant isomor-
phism Hom, (Vy, F,) = Vi(k — 1) induced by the Poincaré duality. The
aim of this section is to review some basic properties of associated Galois
cohomology groups.

3.1. Global cohomology groups

LEMMA 3.1. — Under Assumption A (2), for a finite abelian p-extension
K of Q, the restriction p|g, of the residual representation p : Gg —
Auty, (T ® ky) is absolutely irreducible as a G -module, where ky, is the
residue filed of 0.

Proof. — Since T’ is free of rank two and k,, is of odd characteristic, we are
reduced to showing that the image of p: Gx — Auty, (T'® ky) = GLa(ky)

contains a; [(1) _01] and as [_01 (ﬂ for some a1, as € kpx. Since k—1 is odd and

|FX| is even, we have —1 € (F))*~! # {1}. Hence, by Assumption A (2),
[9°!] and [ ! 9] are contained in the image of ps(Gg), where py : Gg —
Aut(Ty ® ky) = GLa(k,) is the residual representation of py. Since [K : Q]
is odd and since the orders of the matrices above are powers of two, they
are contained in pf(Gk). By the Chebotarev density, there exist primes
[, and [, of K relatively prime to pN such that ps(Fry) = [V '] and
pr(Fry) = [ Y], where Fry, are the arithmetic Frobenius at [;. Since T'®

ky, = (Ty ®kyp)(k/2), by putting a; = 553{,32 (Fry,), we deduce the lemma. O

PROPOSITION 3.2. — Under Assumption A (2), for a power q of p and
a finite abelian p-extension K of Q, we have HY(K,T/q) = {0}, and the re-
striction map induces an isomorphism H'(Q, T'/q) = H°(K/Q,H*(K,T/q)).

Proof. — By Lemma 3.1, H°(K,T/p) = {0}. Then the proposition fol-
lows from the inflation-restriction sequence. O

3.2. Selmer groups

If [ is a prime and if K is a finite extension of (Q;, then we put
Ker (HY(K,V) - HY(K,V Beis l=p),
Hi, (K, V) (I #p),

where H! (K, —) := Ker(H}(K,—) — HY(K™,—)). Here K™ is the max-
imal unramified extension of K. We denote by H} (K, T) the preimage of

ANNALES DE L’INSTITUT FOURIER
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H}(K, V) under the natural map H*(K,T) — H' (K, V), and we denote by
H! (K, T/p"™) the image of H} (K, T) under the natural map H'(K,T) —
HY(K,T/p"™). We also denote by H}(K, A) the image of H} (K, V) under
the natural map H! (K, V) — H!(K, A). We recall that H} (K, A) coincides
with the orthogonal complement of H} (K, T) under the perfect pairing

HY(K,T) x HY(K,A) — H(K, F, /0y (1)) = Fy/ C.
We denote by H} (K, A[p™]) the preimage of H} (K, A) under H! (K, A[p"]) —
HY(K, A). For M € {V,T, A, A[p™], T/p™}, we put
HY(K, M)
HI (K, M)
For a finite extension L of Q and a place A of L, we denote by locy :

HY(L, M) — H'(Ly, M) the localization map, where L, denotes the com-
pletion at A\. We define loc/¢ , as the composite

H (K, M) =

locg,x : HY(L, M) 225 HY(Ly, M) — HYy(Lx, M).

DEFINITION 3.3. — Let M be one of A, T,V, A[p™] and T /p™. We define
the Selmer group Sel(Q, M) by

loc /¢
Sel(Q, M) = Ker | H'(Q, M) — = [ltee H H)(Q, M) |,

l:primes

and for a positive integer S we define a subgroup Hfl’s((@, M) of Sel(Q, M)
by

(3.1) Hi (Q, M) = Ker | Sel(Q, M) — P H{(Q, M) |,
18

where [ ranges over all the primes dividing S.

3.3. Local cohomology groups
For a finite extension L of Q or QQ; for some prime [, and for n > 0, by
taking Galois cohomology of the exact sequence
0— Alp"] — A =5 4 0,

where w is a uniformizer of F},, we have that the natural homomorphism
tn » HY(L, Alp"]) — HY(L, A)[p™] is surjective, and Ker(s,,) = H(L, A)/p™.

LEMMA 3.4. — Let | # p be a prime. Then, the following assertions
hold.

TOME 73 (2023), FASCICULE 3
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(1) Hy(Qi, V) = {0}.
(2) Forn >0, we have H}(Q, A[p"]) = H°(Qy, A)/p™. In particular, if
HY(Qi, Alp]) = {0}, then H}(Qi, A[p"]) = {0}.

Proof. — The assertion (1) is proved by combining [31, Corollary 1.3.3]
and [24, Proposition 3.1]. By (1), we have

Hg (Q, A[p™]) = Ker (H'(Qq, A[p"]) — H'(Q;, A)),
which is isomorphic to HO(Q;, A)/p™. O

LEMMA 3.5. — The following hold.
(1) We have H} (Q,, A) & F,, /0.
(2) IfH*(Qp, Alp]) = {0}, then H}(Qy, A[p"]) = O, /p".

Proof.
(1). — By [7, Theorem 4.1],

dimp, (Hf (Qp, V) = dimp, (Dexis (V) / Fil®(Deris (V) = 1,
and hence H} (Q,, A) & F, /0.

(2). — It H(Qp, Alp]) = {0}, then ¢, : H'(Qy, A[p"]) — H'(Qp, A)[p"]
is an isomorphism. Hence, by (1), we have H} (Q,, A[p"]) & Oy /p". O

LEMMA 3.6. — Assume that H°(Q, Alp]) = H°(Q,, A[p]) = {0}. Then,
for n >0, v, induces an isomorphism Hg ,(Q, A[p"]) = H} ,(Q, A)[p"].

Proof. — Under the assumption that H(Q,, A[p]) = {0}, we have that
our Selmer groups H%,p(Q, Alp]) and H1 »(Q, A) coincide with H%_—C*an (Q, Alp))
and HY:. (Q, A) in [21], respectively. Here Fr., is the Selmer structure
on A %mﬁom(T, tpee) induced by the canonical Selmer structure Fean on
T, explained in [21, Definition 3.2.1]. Then, the lemma follows from [21,
Lemma 3.5.3] (Although slightly stronger assumptions are assumed in
loc. cit., one sees that we only need to assume that H°(Q, A[p]) = 0 in

order to prove the lemma). O
The following two propositions give examples on the vanishing of local
cohomology groups.
PROPOSITION 3.7. — Assume at least one of the following three as-
sumptions holds.

(a) The modular form f is ordinary (i.e. a, € 0y°), and a, # 1 mod p.
(b) The modular form f is ordinary, and k is congruent to neither 0
nor 2 modulo 2(p — 1).
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(c) We have ordp(a,) > [(k—2)/(p—1)], where |x] denotes the max-
imal integer m such that m < x, and ord, denotes the additive
valuation on C, such that ord,(p) =1 (we regard ord,(0) = o).

Then, H°(Q,, A) = {0}.

Proof. — It suffices to show that H°(Q,,T/p) = 0. Assume first that f
is ordinary. Then, Gg, acts on T}, = k?Q by

(3.2) [nfﬁ/\l (2:2)/2 ] )
0 Reye 1 TA

where Feye : Gg, — F, denotes the cyclotomic character, and A : Gg, —
kpx denotes the unramified character sending the arithmetic Frobenius Fr,,
at p to the image of a,, in k' (cf. [33, Theorem 4]). Under (a) or (b), Egg)\_l
and Eg,zk)m)\ are non-trivial, which implies that H°(Q,,T/p) = 0.

Under (c), by [6, Theorem 4.2.1], the semi-simplification of T'/plc,, is
isomorphic to the representation Vo of Gg, explained in [6, §1.1]. By
the same argument as in the proof of [18, Lemma 4.4], we have that

H(Qp, Vo) = {0}. O

PROPOSITION 3.8. — Assume that p > 5 and that F},/Q,, is unramified.
Let | be a prime such that [ | N, then H*(Q}", A) = {0}.

Proof. — Since Afp] = T't/p as a Ggr-module, we are reduced to show-
ing that HO(Q}", T /p) = {0}. Let Z be a non-zero element of H*(Q}™, T /p).
Let .#" be the wild inertia group of Gg,, which is a pro-/ group. We note
that since €, is unramified, the kernel of the natural map GL2(6,) —
GL2(0/p) is pro-p. Hence, by | # p, there exists a lift z € Ty of T fixed by
4% In particular, dimp, (ijw) = 1,2. Moreover, since [? | N, we have that
Vf|G@z is absolutely irreducible (cf. [33, §3.1]), and hence dimp, (ny ") =2,

that is, Vy = V]z’(/ ", If we denote by .# the inertia subgroup of Gq,, then
J /I is abelian. Hence, there exist a finite extension E of Q, and con-
tinuous characters x1, x2 : -# — Oy such that Vy ® E = E(x1) ® E(x2) as
#-modules. Since det(V}) = F,(1—k) as a representation of Gg, x2 = x7 .
By the existence of z € HO(Q}™, T /p) \ {0}, the image of x; is contained in
1+ mpg, where mg denotes the maximal ideal of the ring of integers in E.
Then, by Grothendieck’s monodromy theorem (cf. [32, p. 515]), the order
of x1 is a power of p. Since I acts on V; ® E factoring through a conju-
gation of GL2(0),), which has no non-trivial p-torsion element (since &, is
unramified over Z, and p > 5), we have that x; is trivial. Hence V; ® E is
unramified, which contradicts that V| Go, is absolutely irreducible. g
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The following is a proposition concerning the condition (1.1).

PROPOSITION 3.9. — Under Assumption A (2), the density of the primes
I such that H(Qy, A[p]) is isomorphic to O, /p or {0} is greater than or equal
to1— (p*> —p)~H|(F)F 1~

Proof. — We first note that since Afp] = kP? (recall that k, := 0, /p),
for a prime [ { pN, the vector space H’(Q;, A[p]) is isomorphic to ky, or {0}
if and only if the action of the arithmetic Frobenius Fr; on A[p] is nontriv-
ial. Hence, we estimate the density of primes [ such that Fr; acts on A[p]
trivially. We recall that for a prime [ { pN, the characteristic polynomial of
Fr; is given by

det(1 —Fr; X|V) =1 — qI®®/2X +1X2

Then, if Fr; acts on A[p] trivially, then [ = 1 in k,, which implies that
k%°(Fr;) € 14-pZ, and that Fr; acts on A[p](—k/2) = Ty /p trivially as well.
If we denote by Q (T;/p) the smallest Galois extension L of Q such that
G, acts on Ty /p trivially, then by Assumption A (2), oy (Gal (Q (T /p) /Q))
contains a subgroup isomorphic to

H :={g € GLy(F,)| det(g) € (F;)"'},

where py : Gg — Auty, (Ty/p) = GLa(ky) denotes the representation at-
tached to Ty /p. Since GLy(F,) = HQGF; ga SLo(FF,), where g, is any ele-
ment of GLy(F,,) such that det(g,) = a, we have |H| = [SLy(F,)|-|(F))F 1 =
(p® —p)|(F)*~!]. Hence, the density of primes [ { pN such that Fr; acts on
Alp](—k/2) trivially is less than or equal to (p* — p)~|(F)*~!|~!. Then,
the density of primes [ ¥ pN such that Fr; acts on A[p] trivially is less than
or equal to (p* — p)~H(Fy )kt~ O

4. Preliminaries of derivatives classes

We apply the derivatives introduced in [8] to Euler systems for T (in
the sense of Definition 4.4), and we review the local conditions of resulting
derivative classes. We keep the same notation as in the previous section.

For an integer S > 0, we denote by Q(S) the maximal p-extension of
Q inside Q(¢s), and then I's = Gal(Q(S)/Q). For integers S and S” with
(S,5") = 1, by the canonical decomposition I'sgr = I's x I'g/, we regard
I's and I'ss as subgroups of I'gg.
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4.1. Darmon—Kolyvagin derivatives

We recall the derivatives introduced in [8].
As usual, for integers j > 0 and k > 1, we put

(D:j(j—l)--l-f—wn

and (6) = 1. For k < 0, we define (i) = 0. For an element o € I'g of order
n and for an integer k > 0, we define

n—1 .
D=3 (‘2) ol € Z[ls).

Jj=0

We note that ng) = 0 if either £ > n or £ < 0. By a simple computation
we have the following.

LEMMA 4.1. — Let q be a power of p. If 0 € T'g is of order q and
0<k<p—1, then

(0 —1)D¥) = —¢DFY  mod q.

DEFINITION 4.2. — In the rest of this paper, for each prime | # p, we
fix a generator o; of I';. We write Dl(k) = D((,]f). Let S > 0 be a square-
free integer relatively prime to p. We call a non-zero element D of Z[I's| a
Darmon—Kolyvagin derivative, or simply, a derivative if D is of the following
form:

D ...p*) e ZIry,.4,) C Z[Ts],

where [y, ...,ls are distinct primes dividing S, and each k; is an integer
such that 0 < k; < |I';,|. We note that if we are given such a D, then
li,.. ., ls, k1,..., ks are uniquely determined, and we define
Supp(D) =1y - - - s, Cond(D) = []
k;>0

which we call the support and the conductor of D, respectively. We put
ord(D) =k + -+ ks, n(D)= l]gnir(l){|Fli|}, e, (D) = k;.
i >
We call ord(D) the order of D. When k; = 0 for all i, we define n(D) =

1. By convention, we also regard 1 € Z[['gpn] as a derivative, and put
Supp(1) =1,Cond(1) = 1 and ord(1) = 0. When S =1; - - -5, we put

No= D0+ D[
We denote by Q. be the cyclotomic Z,-extension of Q and fix a generator -y
of Gal(Qu/Q). For a non-negative integer a, we put Dl(,‘fl) = D,(ya) € Z[Tpn],
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where we denote by the same symbol v its image in I'yn. We also put
ord(Dz(,ﬁ,)D) = a + ord(D) and

n(Dz(,i)D) _ {min{p”l,n(D)} (a > 0),
n(D) (a=0)

LEMMA 4.3. — Let S be a square-free positive integer relatively prime
top, let n > 0 and let M be a 0, [I'y» s]-module without p-torsion elements.
Let z be an element of M and put 6 = Zaerpns 02@0 € M®gp, Op[l'pns].
Let t > 1. Assume that Dl(ﬁ,)Dz = 0 mod n(DZ(,(i)D) for every integer
a > 0 and every Darmon—Kolyvagin derivative D such that Supp(D) = S
and ord(Dl()(i)D) < min{t,p}. Then, § — N5z ®@1 € M ®¢, Ifnsi:it’p}, where
Irg,. denotes the augmentation ideal of Oy[I'gpn].

Proof. — This is [26, Lemma 3.6]. O

4.2. Euler system

We recall the definition of Euler system (for T'). As is remarked in [26,
Remark 3.12], our definition is slightly different from the usual definition
as in [31].

For a prime [, we define P,(t) € F[t] by
(4.1) Pt)=1—1""2ait+ ()t
Let ¥ be a finite set of primes which contains all the primes dividing pN.
We put

# = {primes [ |l ¢ ¥,1 = 1 mod p},
A = {square-free products of primes in Z} U {1}.

DEFINITION 4.4. — We call {zspn}sen nz0 € [[g, H'(Q(Sp™),T) an
Euler system (for T' and .#") if it satisfies the following conditions.

(1) Let S € A, and let | € # be a prime not dividing S. For n > 0,

Corslpn/Spn (ZSlp“) = B(Frl_l)(zspn)7
where Corgyyn /spn : HH(Q(SIp™), T) — H'(Q(Sp™), T) denotes the

corestriction map.

(2) For every S € 4, the system {zgpn }n>0 Is a norm compatible
system, that is, {zspn }n>0 lies in lim HY(Q(Sp"),T), where the
limit is taken with respect to the corestriction maps Corgpyn+1/gpn -
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4.3. Local images at primes not dividing p

In this subsection, following [26], we recall local properties of derivatives
of Euler systems at primes not dividing p.

Let q # Oy be an ideal of 0, and {zgpn }se.# n>0 an Euler system. For
a finite extension field K of Q or Q; for some prime [, by taking Galois
cohomology with respect to the exact sequence

05T =5 T - T/q— 0,
where w is a uniformizer of F,, the natural homomorphism H'(K,T)/q —
H!(K,T/q) is injective. Then, by this injection, we often regard H! (K, T)/q
as s submodule of H' (K, T/q) = H'(K, A[q)).

For a prime [ # p, we put
(4.2) try =min{n > 0| ="H" (F,,H*(Q}", A)/(div.)) = {0} },
which is less than or equal to length (HY(F,, HO(Qy", A)/(div.))), the Tam-
agawa exponent. We note that if [ { N, then t7; = 0.

ProrosiTION 4.5. — Let D be a Darmon-Kolyvagin derivative such
that S := Supp(D) € A, and put S" = Cond(D). Let a be a non-negative
integer. Suppose that the image of D;?L)Dzspn in HY(Q(Sp™),T)/q is fixed
by Tspn, and denote by k € H'(Q,T/q) the element whose restriction is
equal to the image of D;Z)DzSpn in HY(Q(Sp™),T/q) (cf. Proposition 3.2).
Then, for a prime [ { pS’ we have @'/ loc;(k) € HH(Qy, T/q).

Proof. — By the same argument as in the proof of [26, Proposition 3.14],
we have loc;(k) € HL (Q;,T/q). It is known that w®/'H} (Q;,T/q) C
H}(Qy,T/q) (cf. [31, Lemmas 1.3.5 and 1.3.8]), and then we complete the
proof. O

We put
(4.3) Hqg={leZ|l-1€a}t, Zq={l€Z%|P(1)Eq},

' Nq = {square-free products of primes in %4} U {1}.

For an &y-module M of finite cardinality and an element x € M, we define
ord(z, M) =inf {m > 0|w™x =0} € Z.

By the same argument as in those of proofs of [31, Theorem 4.5.4] and [26,

Theorem 3.18], one can show the following proposition.

PROPOSITION 4.6. — Assume Assumption A (2). Let S be an element
of A,. Let n > 1, and let | € %y, be a prime which splits completely in
Q(Sp™). Let X be a prime of Q(Sp™) above l. For a Darmon—Kolyvagin
derivative D whose support is S, the following hold.
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(1) For a > 0, the image of locA(D](ﬁ)DzSpn) in HY(Q(Sp™)x,T/q) =
HY(Qy, T/q) lies in H}(Q, T'/q).

(2) The image of Dz(,(i)DDl(l)lepn in HY(Q(Sip™),T)/q is fixed by T.

(3) Let k© € HY(Q(Sp™),T/q) be the element corresponding to the
class DI()?Z)DDl(l)ZSIPH mod q under the isomorphism

HY(Q(Sp"), T/q) = H” (T}, HY(Q(SIp"), T/q))
induced by the restriction map. If H} (Q;, Alq]) & Oy /q, then we
have
ord (IOC/f’)\(K/(l))7 H}f(Ql, T/q))

— ord (loc,\(Dz(fi,)DzS mod ¢), H(Q;, T/q)) .

5. Divisibility of derivative classes

In this section, we study p-divisibility of derivatives of Euler systems
(cf. Theorem 5.5), and we give its applications. Since some lemmas and
propositions of this section are proved in the same way as in [26], we often
omit their proof and refer the reader to [26, §4].

We keep the notation as in Section 4. In particular, {Zspn}se/’n>() de-
notes an Euler system for T' = T¢(k/2) and some .4 in the sense of Defi-
nition 4.4.

5.1. The key theorem

The aim of this subsection is to prove Theorem 5.5. Throughout this
subsection, we assume the hypotheses (2) and (3) in Assumption A.

5.1.1. Consequence of the classical Euler system argument

ProPOSITION 5.1. — The following assertions hold.
(1) If vy := corankg, (H%,p(@’A)) > 0, then z; = 0 € HY(Q, T).
(2) Ifry >0, then locys ,(21) = 0 € Hjy(Qp, 7).

Proof. — The assertion (1) (resp. (2)) follows from [31, Theorem 2.2.3)
(resp. [31, Theorem 2.2.10]) and Lemma 3.1. O
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5.1.2. Notation

Let q be an ideal of &, which is not equal to {0} or &,. For a finitely
generated Op-module M, we define an integer rq(M) by

M ®e, Oy/a0, = (Op/q0,)® M) & M,
where M’ is killed by the ideal qp~! C 0.

LEMMA 5.2. — For an exact sequence of finite 0, /q0,-modules 0 —
M'"— M — M", we have rq(M) < rq(M') +ry(M").

Proof. — This is [20, Lemma 3.4]. O

DEFINITION 5.3. — Let D be a Darmon—Kolyvagin derivative with sup-
port S € 4. We define the weight of D as

wq(D) = ord(D) — #{l € %Zy,q|1 divides S} .

PROPOSITION 5.4. — Let D be a Darmon—Kolyvagin derivative such
that its support S lies in 5. Suppose that n > 0 is an integer such that
Pt € q. If wyn (D) := wyng, (D) < 0 and max; s{e;(D)} < p (see Defini-
tion 4.2 for e;(D)), then for a > 0 we have

DY Dzpns =0 mod qH (Q(p"S), T).
Proof. — We first note that the assumption wyn (D) < 0 implies that
there exist a prime | € % pn dividing S and a derivative D’ such that
(5.1) D= D'N,, Supp(D’)=5/l, ord(D’")=ord(D).

As in [26, Proposition 4.7], we prove the proposition by induction on the
number of primes dividing S. If S = [ is a prime, then | € Zy pn 1= Zf pno,
and D = N;. Since P;(1) = 0 mod q and since [ splits completely in Q(p™),
we have

DZ(,?I,)sznl = D;,?I,)lepnl = D;Z)H(Frfl)zpn = B(I)Dz(ﬁ)zpn =0 mod q.
For general S, since wyn (D) < 0, there exist a prime [ € Z¢ p» dividing S
and a derivative D" as in (5.1). Then, we have wyn (D") = wpyn (D) +1 < 0.
We write S/l =1 ---1,. We shall first show that for 1 <4 < b,

(5.2) (o1, — 1)Dz(,i)D'zan/l =0 mod q,

where o7, is the generator of I';, fixed in Definition 4.2. It suffices to consider
the case 1 = 1. We write D' = Dl(fl) . -~Dl(fb). In the case where k; = 0,

we have D' = NllDl(Zkz) : ~~Dl(fb), and hence (5.2) is clear. We may then
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assume that k; > 1. Since the order of oy, is congruent to 0 modulo q and
since 0 < k1 < p, Lemma 4.1 implies that

(5.3) (01, =)D’ = —a3, DI VD) . D) mod g.
We note that
Supp(Dl(llﬁfl)Dl(fz) . Dl(fb)) = S/,
w(DF VDI Dy = w(D') 1 < 0.

Then, the induction hypothesis implies that
Dz(,i)Dl(flfl)Dl(fQ) e Dl(::b)zpns/l =0 mod q,
and hence by (5.3), we deduce (5.2).
Since each Ty, is generated by oy,, the assertion (5.2) implies that

Déi)D/anS/z mod q € H® (Ts;, HH(Q(p"S/1),T) /) ,

that is, the action of I'jng/; on D;Z)D’zpns/l mod q factors through I'jn.
Therefore, by | € Zy ,» and (5.1), we have
DY Dzpng = DX D' Nizyns = DS P(Fry YD zpn s
=DYWY P()D 25, =0 modq. O

5.1.3. The theorem and its proof

Let q be an ideal of &, which is not equal to {0} or &,.

THEOREM 5.5. — Let D be a Darmon—Kolyvagin derivative. Suppose
that max;s{e;(D)} < p, where S := Supp(D). Suppose also that S € A
and that every prime | | S satisfies (1.1). Then, the following assertions
hold.

(1) If ord(D) < rq (H},(Q, Alq))), then for m > 0, we have Dzgs =
DY) Dzyms =0 mod qHY(Q(S), T).

(2) Let n > 0 be an integer such that #I',» = p"~! € q. Let a be an
integer such that 0 < a < p. If a + ord(D) < rq (Hf ,(Q, A[q])),
then

(5.4) DY Dzpng =0 mod qH (Q(p"S), T).

The proof of the assertion (1) is the same as [26, Theorem 4.9] and is
omitted. Before the proof of (2), we show some lemmas.
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LEMMA 5.6. — Let D be a Darmon—Kolyvagin derivative whose support

S lies in Aqy. Let a and n be non-negative integers such that p"~! € q.
Assume that the image of D;%)szns in HY(Q(p"S),T)/q is fixed by T'pns.
Let v € H(Q,T/q) be as in Proposition 4.5. If r(Hj ¢ (Q, Alq])) > 0,
where S' := Cond(D), then there exists a prime | € Zpn := Zpne, such
that

(1)  splits completely in Q(Sp™), and H}(Q;, T/q) = 0, /q0,,

(2) we have

ord (D) Dzyrs mod . H(Q(p"S), T)/a) = ord(loci(x), HE (@1, T/a),
(3) the localization map Hi g, (Q, Ala]) — H} (Qu, Ala]) is surjective.

In addition, if the image of Dz()(i)DDl(l)lepn in HY(Q(SIp™),T)/q is fixed
by I'pngi, then

Df(,i)Dzspn =0 mod qu(Q(Sp”),T).

Proof. — By the same argument as in the proof of [26, Lemma 4.10],
which is based on an application of Chebotarev’s density theorem, one can
find a prime [ satisfying (1), (2) and (3).

We assume that the image of Dg,ﬁ)DDl(l)zsmn in HY(Q(Sip™),T)/q is
fixed by T'pnsi. We denote by r; € HY(Q,T/q) the element whose image
in HY(Q(Sp™),T/q) coincides with that of D;Z)DDl(l)zspn. By the con-
ditions (1) and (2) above, Proposition 4.6 (3) reduces us to proving that
loc /¢ (k1) = 0. By taking the dual of the map in the condition (3) above,
it suffices to show that loc,¢;(#;) lies in the kernel of the injection

H¢(Qi, T/q) — Homg, (H 5 (Q. Ala]), 0p/a) 5 2 = (2 (2,10ci(2))14)

where for a prime v, we denote by (—, =), 4 : HY(Q,, T'/q) xH (Q,, A[q]) —
0, /q the perfect pairing induced by the local duality. Let z € H%,p < (Q, Alq)).
Then, by the Hasse principle and the definition of H%,ps, (Q, Alq]), we have

(5:5) (loc e (ma), locy(@))ig = = Y (locy(rr), locy (2))o,q,
vtpS’l

where v ranges over all primes not dividing pS’l. Hence, it suffices to show
that for v { pS’l

(5.6) (locy (k1),10cy (x))y,q = O.

By Assumption A (3), every v { pS’l satisfies at least one of the following
two conditions:

(i) tyn =0 (see (4.2) for ty,),
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(i) H°(Qu, Alp]) = {0}.
In the case (i), by Proposition 4.5, we have loc,(x;) € H} (Q,,T/q). Since
H}(Q,,T/q) and H}(Q,, A[q]) are orthogonal complements of each other
(cf. [31, Proposition 1.4.3]), by loc,(z) € H} (Q,, Alq]), we obtain (5.6). In
the case (ii), the assertion (5.6) follows from Lemma 3.4. O

LEMMA 5.7. — Let D be a Darmon—Kolyvagin derivative such that S :=
Supp(D) € A4 and max; g{e;(D)} < p. Let 0 < a < p and n > 0 such that
b)

p"~! € q, and put w = wyn (D). Assume thatD(lDZPSZOmodq for

every D( "D satisfying the assumptions as in Theorem 5.5(2) such that
wpn (D ) +b<w+a. Ifa+ord(D) < 7q(Hf ,(Q, Alq])), then the image of
D;Z)szns in HY(Q(p"S),T)/q is fixed by Tpng.

Proof. — By Lemma 4.1 and the assumption that Dz(,?fl)szn s = 0 mod
q, we have

D;%)szns mod q € H° (F ,HY(Q(>p™S), )/Cl)

The case where S = 1 is completed by the congruence above, and then we
may assume that S # 1. We write S = [y - - - l5. It suffices to show that for
each 1 <i<s

(5.7) DY Dzpng mod q € H (T, H(Q(p"S), T) /q) -

To prove (5.7), without loss of generality, we only need to consider the case
where ¢ = 1. If ¢;, (D) = 0, then we have D = N, D’ for some derivative D’,
and hence we have (5.7). We assume that e;, (D) > 1. Then, by Lemma 4.1
we have

(01, —=1)D = —0;, D" mod q0,['s],
where D’ is a derivative such that ord(D’) = ord(D)—1 and Supp(D’) = S.
Hence, we have wyn (D) = wyn (D) — 1. Therefore, by our assumption we
have D;%)D’zpns = 0 mod qH'(Q(p"S), T). Hence, we obtain

(01, =)D Dzpng = =01, DS D' zpns =0 mod g,

which implies (5.7). O
Proof of Theorem 5.5(2). — We prove it by induction on a + wyn (D).

We note that the theorem obviously follows from Proposition 5.4 when

w = wpn (D) < 0. We assume that the theorem holds for every DZ(,Z)D’

satisfying the assumptions as in Theorem 5.5(2) such that b+ w,n (D) <

a + w. Then, by Lemma 5.7, the image of D(n)sznS in HY(Q(p"S),T)/q

is fixed by I'yng, and we let k € H'(Q,7T/q) be as in Proposition 4.5.
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We shall first prove that

(5.8) rq (Hf ,5/(Q, Alg])) > 0.

We assume that rq (H%)ps, (Q, Alq])) = 0. By Lemma 5.2 and the exact
sequence

0— H%,pS’(Q? A[q]) - pr Q7 _> @Hf @17
s
we have
TNEAQAMD<mﬁ&ﬂ@AMD+WOEHM@AMO,
18

and hence by our assumption,
ord(D) < ) ry(Hf (Qu, Alp)))-
IS’

For each prime [ | S, by the assumption (1.1) and Lemma 3.4(2), we
have 7, (H} (Qq, A[p])) < 1. Then, ord(D) < > 151, which contradicts the
definition of S = Cond(D). Hence, rq (H} £ps (Q, Alg ) >

By (5.8), there exists a prime | € %y, satisfying the condltlons (1), (2)
and (3) in Lemma 5.6 for DI(]n)DzS. Since ord(DDl( )) < rq(H} »(Q, Alq]))

and wpn (DDl(l)) = w, by Lemma 5.7 we have
D DD 251 mod g € HO(Tpnst, HY(Q(p" S1), T) /).
Hence, Lemma 5.6 implies that DZ(,Z)szn s=0 mod q. O

By the same argument as in the proof of [26, Theorem 4.15], one can
prove a modification of Theorem 5.5 stated as follows:

THEOREM 5.8. — Let D and S be as in Theorem 5.5. Assume further
that for each prime | dividing S, the Oy-module H°(Qy, A[q]) is isomor-
phic to 0,/q0, or {0}. If ord(D) < rq (H%}ps, (Q, A[q])) + rp(Bq(S")), then
Dzg = 0 mod qH'(Q(S),T), where By(S’) := @vls, H}(Qy, Alqg)).

5.2. Applications
5.2.1. On the refined conjecture for Euler systems

THEOREM 5.9. — Assume Assumption A. Let S € 4 such that every
prime [ | S satisfies (1.1). Then, forn >0

Y ol ®0 € HQEP"S), T) ®p, i),

O‘EFpn S
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where we recall that t; := corankg, (Hf ,(Q, A)).

Proof. — We may assume that ty > 1. To apply Lemma 4.3 to
HY(Q(p"S),T) and zyns, we take a derivative D such that Supp(D) = S
and an integer a such that 0 < a + ord(D) < min{ty,p}. We denote by S’
the conductor of D, and then D = D'N 5 where the derivative D’ satisfies

Supp(D’) = Cond(D’) =5, n(D')=n(D), ord(D')=ord(D).

Therefore,

D Dzgyn =D | J[ BT | D'zsipe,
1(S/8")
where [ ranges over all the primes dividing S/S’. If we put g = n(D l,lL)D) O,
then S’ € #;. We note that Lemma 3.6 implies that vy < rq(Hj ,(Q, A[q])).
Then, Theorem 5.5 implies that DI(,Z)D’ zpngs = 0 mod ¢, and hence we have
Dl(ﬁ,)Dzspn = 0 mod q. Consequently, Lemma 4.3 shows that
(5.9) > 0z ® 0 — Ngpezspr @ 1 € HH(Q(Sp"), T) @ i),
O'EFSpn

Hence, by Proposition 5.1(1) we complete the proof. O

5.2.2. Localization of derivative classes at p

We state results which are applied to the case (1) of Theorem 1.1.

For a finite extension K of Q, we put HY(K ® Q,, —) = Dy HY(K), —),
where A ranges over all the primes of K dividing p. We also define

Hi (K © Qp,—) = DH Ky, ), Hj(K @ Q,, —) = P HJ(Kx, -)

Alp Alp
For n € H' (K, —), we denote by loc,(n) (resp. loc ¢ ,(n)) the image of 7 in
Hl(K®QP’ _) (resp H (K®Qp7 _))

COROLLARY 5.10. — Assume that Assumption A holds. Let D be a
Darmon-Kolyvagin derivative such that max;s{e;(D)} < p, where S :=
Supp(D). Suppose that S € A, and that each prime | | S satisfies (1.1).
We put S” = Cond(D). Let 0 < a < pand 0 < n < 2. If a+ ord(D) <
rp (H 5/(Q, Alp])) + 7p(Bp(S")), then the following assertions hold.

(1) The image ofD[() Dzgpn in HY(Q(Sp™), T)/p is fixed by T'gpn.
(2) If we let k € HY(Q,T/p) be as in Proposition 4.5 (q = p), then

loc, (k) € H} (Qp, T/p).
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Proof. — The proof of the corollary is the same as in [26, Theorem 4.18],
which is a consequence of Theorem 5.8. We omit the details. g

We note that 7y < 7y (H%S(Q,A[p])) + 75(Bp(S)). Then, by a simi-
lar argument to the proof of Corollary 5.9 and by Proposition 5.1(2) and
Corollary 5.10, we obtain the following.

COROLLARY 5.11. — Assume that Assumption A holds and that F,/Q,
is unramified. Let S be as in Theorem 1.1(a). If 0 < n < 2, then

37 m N oc s (zsp0) © 7 € HA(Q(SP™) © Q,, T) @ I3 0070,

T€l's
Proof. — By Assumption A (1) and the assumption that F,/Q, is un-

ramified, we have a commutative diagram (with exact rows)

0 — HYQ,, T) —2> HY(Q,, T) — HY(Q,,T/p) —= 0

| l |

Xp

0 ——= HY(Q,,T) — HY(Q,,T) —— HY(Qy, T/p) — 0,

where the vertical arrows are the inclusions. By the snake lemma, we have
an exact sequence

00— H}f«@m T) & H}f(@p) T) - H}f(@l’? T/]J) —0.

Hence, for D;Z)Dzspn as in Corollary 5.10, we have

1oc ), (DS Dzgpn) € pHY (Q(Sp™) @ Qy, T).

Noting that the exponent of the abelian group I'g,» is killed by p, by
Proposition 5.1(2), the proof is the same as that of Corollary 5.9. g

6. Kato’s Euler system and Mazur—Tate elements

By using a method of Perrin-Riou [28], we construct local cohomology
classes to connect Kato’s Euler system with Mazur—Tate elements. The
main result (Theorem 6.22) of this section may be regarded as a general-
ization of work of Otsuki [27] to higher weight modular forms with more
care about integrality.
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6.1. Construction of families of local points

In this subsection, we construct a family of local points to connect Kato’s
Euler system and p-adic L-functions which interpolate the special values
of L-function twisted by tame characters as well.

6.1.1. Review of Perrin-Riou’s method

Regarding V; as a representation of Gg,, we consider the filtered -
module Dq,is(Vy) associated to Vy, whose filtration is given by

Dcris(vf) (Z g 0)3
Fil' Deyis (Vi) = S(f) @r F, (1<i<k—1),
0 (i = k).

We note that De.is(Vy) is a two-dimensional F-vector space and its ¢ is
Fy-linear. We recall that Ty is the fixed lattice of Vy, and we denote by
M C Deyis(Vy) the g-stable lattice which is attached to Ty as in [3, §3.2].
We note that by [5, Proposition V.1.2], the determinant of the comparison
isomorphism

Bar ®q, Vi = Bar ®q, Deris(Vy)

with respect to basis of Ty and M lies in tk—l(z;;f)& where 22’“ denotes
the p-adic completion of the ring of integers in the maximal unramified
extension of @), and ¢ € Bgg is the element associated to the fixed basis
{Cpn }n of Zp(1) (see [2, §1.1.2] for ¢).

Let H be a finite unramified extension of Q, and W the ring of integers
in H. Let 0 : H — H denote the absolute Frobenius map. We let ¢ act on
WIX] by o(3,50anX™) = 3, 50a5X". We define ¢ : W[X] — W[X]
by

S anx™ | =3 a1+ X - 1)

n>0 n>0

By abuse of notation, we denote by ¢ the operator ¢ ® ¢ on W[X] ®z,
M. We put H, = H((pn), Hoo = UpH, and G = Gal(Q(up=)/Q) =
Gal(Hw/H). Then, G acts on W[X] by

> anX" | = 3 an((1+ X)) - 1),

n=>0 n>0
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where we recall Ky 1 Goo — Z;f denotes the p-adic cyclotomic character.
As in Subsection 3.2, for h € Z we put

H{ (H,, T (h)) = Ker(H! (H,,, T (b)) — H'(Hp, Vi(h) @ Bexis))

H} (H,, Vy(h)) = Ker(H' (H,, Vy(h)) — H'(H,, V;(h) ® Beris)).
We define 4y (Ty(h)) € W[X] ®z, Deris(Vy(h)) as

GeW[X]®M ez, e nZy| > GC1+X)—1)=pp(G(X)) ¢,
CEpp

where e_p, ==t~ @ {(n }®", the basis of Deis(Qp(h)). For a Z,-module
L and g(X) = Y7 1 9i(X) ® m; € W[X] ®z, L, if ( is an element of
the maximal ideal of Q,, then we simply write g(¢) = Y, gi(¢) ® m; €
W((]®z, L.

For n > 0 and h > 1, Perrin-Riou [28] constructs a family of homomor-
phisms

Stnn : v (Ty) — Hi (Hy, Ty (h))

satisfying the following conditions (see [2, Theorem 4.3] or [3, §3.2] for
details):

o for G € Sy (Ty), if n > 1, then

(61) Coan+1/Hn (EHJL,N*Fl(G)) = ZH,hJL((U ® LP)G)’
o for G(X) € A (T3 (h)),

(6.2) Sppn(D"G(X)®ep)

= (—1)h(h _ 1)!p(h71)n expy, i) ( (G — 1),
where D denotes the differential operator (1 + X )%
expy, ()., * Hn @ Deris(Vy(h))/ Fil° Deyis(Vy (B H} (H,,, Vi (h))

denotes the Bloch-Kato exponential map (cf. [7]).

In the rest of this section, we fix a root a € C,, of X? —a,X +p*~1 such
that

(6.3) ordy(a) < k—1.

Let 3 be the other root. We note that if f is ordinary (i.e. a, € €,°), then
« is the unit root, that is, o € O,°.

PROPOSITION 6.1. — If al#:@] = 1modyp, then 1 —¢ : W @ M —
W @ M is surjective.
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Remark 6.2. — If f is non-ordinary, then the assumption that alf:Qe] %
1 mod p is automatic. In the case where f is ordinary (« is the unit root in
this case), if a, € Z, and a, # 1 mod p, then o € Z \ 1 + pZ,, and hence
a? # 1 mod p for any power d of p.

Proof. — Let x € W ® M. If neither o nor 8 is a unit, then A =
> s ¢ () converges, and (1 — ¢)A = z. Hence, we obtain the propo-
sition. We assume that f is ordinary. Then, a € ﬁpx, and [ is not a unit.
In this case, we write * = axy + bxg, where a,b € W, and z,,23 € M
are elements such that gz, = az, and pzg = Bz (we note that M is an
Op-module). We put d = [H : Q] and

1 ,
Ay = T od Z o'(azy), Ap= ng"(bxg).

0<i<d—1 n>0

We note that by the assumption that a? # 1 mod p, we have A, € W®M.
Since 0 =1 on W, we have (1 — ¢)(A, + Ag) =x. O

6.1.2. Construction

We assume the following assumption.
ASSUMPTION B. — For every n > 0, we have o”” # 1 mod p.

Remark 6.3. — The assumption is automatic if f is non-ordinary. Even
in the case where f is ordinary and « is the unit root, if a, € Z, and
ap # 1 mod p then by Remark 6.2, Assumption B holds.

For a positive integer S relatively prime to p, we denote by Og the ring of
integers of Q(S), and for h € Z we define 5 (Ty(h)) C (Os ®zZ,)[X] @z,
Deyis(Vy(h)) as the submodule consisting of G(X) € (Os ®zZ,)[X]® M ®
Zpe—p such that 3 .o G(C(1+X)—1) = pp(G(X)). For h > 1, we define

Ss.hn + Hs(Ty) = Hi (QS) @g Qp(Gpn), Ty (h))

by X5, = [Lp Xa(8).,hn, Where v ranges over all primes of Q(S) above
p, and the cohomology group H} (Q(S) ®g Qp(¢pn), Tt (h)) may be defined

as [T, , Hi (Q(S)u(Gpn ), Ty (R)).
Since Q(59) is a p-extension of Q, Proposition 6.1 implies that the map
in [2, p. 247]

Ao (Os @Zp)[X[© M = Os@M [/ (1-¢)0s @ M;  g(X) — g(0)
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is the zero-map. Hence, by the short exact sequence in the proof of [2,
Lemma 4.1.3], for each n € M ®g, Oy[a], there exists a unique Gg,, €
Hs(Ty) ®e, Opla] such that

64)  (A-9)Gsy= %751(55(1 +X)©n) = %fs(l +X)V5 a0,

where &5 = trg(us)/a(s)(Cs), and vs € G is the element such that
Keye(7s) = S € Z. By the abuse of notation, we let Xg , denote the
homomorphism
Hs(Ty) © Fyla] = HE (Q(S) © Qp(Gon ), Vi (h) © Fy[a]

obtained by extension of scalars.

For an 0y-module B, we put

B* = Homg, (B, 0y,).

PROPOSITION 6.4. — There exists an element 1o, of Deris(Vy) @6, Opla]

satisfying the following conditions:

(1) For a nonzero element w € S(f) = F, we have

Pl = AT, [W7 na] = CEL—1,
for some ¢ € F*, where [—, —] denotes the scalar extension of the
natural pairing
[_7 _] : Dcris(Vf) X Dcris(Vf) — Dcris(Fp(l - k))
induced by the isomorphism Homp, (Vy, F,) = Vy(k —1).
(2) For 1 < i < k—1,n > 0 and S with (S,p) = 1, the element
S5.im(GZ,,. ) of HH(Q(S) @ Qp(Gpn), Vi (i) © Opla] lies in
HY (QS) © QplGpn). Ty (k = 1)) © Gplal,
which is regarded as a subgroup of H{ (Q(S)®Qy(¢pn ), V(1)) @0, [a]

by the cup product (cf. [7, Proposition 3.8]) and the isomorphism
Homp, (V (i), Fy(1)) = Vi (k — i).

Proof. — By (6.3) and [13, Theorem 16.6 (1)], there exists 7, such that
ONa = ane and [w,n,] = er—1. We note that the image of H} (Q(S) ®
Qp(Cpn), T (7)) in the vector space H' (Q(S)®Qy (¢pn ), V(i) is contained in

Homo, (H); (Q(S) ® Q). Ty (k= ), 03)

It then suffices to show that there exists ¢ € F'* such that the element
Ys,in(cna) of HH(Q(S) @ Qu(¢pn), Vi(i)) ® Fyla] lies in the submodule
HH(Q(S) ® Qp(¢pn ), Tt (i) ® Opla). Since M is a lattice of Deyis(Vy), there
exists ¢ € F* such that cn, lies in M ® Oy[a]. Since Xg; , is induced by
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the extension of scalars of 5 (Tr) — H} (Q(S)®@Q,(¢pn ), T (1)), we deduce
that cn, satisfies (2) as well as (1). O

By replacing w by ¢!

obtain the following.

w, where ¢ € F* as in Proposition 6.4(1), we

COROLLARY 6.5. — There exists a pair
(wvna) € S(f) X (Dcris(vf) ® Fp[aD

such that 7, satisfies the conditions (1) and (2) in Proposition 6.4, and
[wana] =€g-1 € Dcris(Fp(l —k)).

DEFINITION 6.6. — In the rest of this paper, we fix a pair (w,n,) €
S(f) X (Deris(Vy) @ Fyla]) as in Corollary 6.5. We write Gso = Gs,y, €
Hs(Tt) ® Fylal, which is defined by (6.4). For 1 < i< k—1andn >0,
we put

Sim = —Ts0n(Gga ) € HHQ(S) ® Qp(Gpr), V5 (0) ® Oylal.

To simplify the notation, we denote by QF the associated periods Q% (see
Definition 2.1 for the notation). We also write 0g; = 0s,, and ¥g; =
ﬁS,i,vw

Remark 6.7.

(1) We explain how many the pairs as in the Corollary 6.5 exist. Re-
quiring the condition in Corollary 6.5, the choice of w is equivalent
t0 Mo If (w,nq) is as in the corollary, then for a nonzero element
¢ € Op,p) := FNO,, the pair (¢™ 1w, 1) also satisfies the condition
in the corollary. Hence, the set of pairs (w,n,) as in the corollary
may be identified with &g ;)\ {0}. We note that Theorem 1.1 holds
for every pair.

(2) By the proof of Proposition 6.4, we may take a pair (w,7,) such
that 1, is a member of a basis of the lattice M ® 0, [a] of Deis(Vy)®
Oylal.

PROPOSITION 6.8. — We have the following norm relations.

(1) Iflis a prime not dividing pS, then we have Corg(si)/q(s)(d$.:.n) =
—1"=1Fr; ' dg; ., where Corgsy qs) : H(Q(S1) @ Qp(Gpn), —) —
HY(Q(S) ® Qp(¢pn), —) is induced by the corestriction maps.

(2) We have

adg,i,n (n 2 1)7

Cor NS mt1) = .
Qp((,,n-%—l)/Qp(Cp )( S,i, +1) {(a _p1_1 Fr;l) %_’i’o (n — 0)7
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where
CO1Q, (¢ i1)/Qp(Gpr)  H(Q(S) @ Qp(Gprt1), =) = HH(Q(S) @ Qp(Gpn), —)
denotes the corestriction map.

Proof. — By [28, 2.2.7] and [2, Lemma 4.1.3(i)], there exists a unique
Gs,i € H5(Ty(1)) ® Fy(a) such that

(1= 9)(Gsi(X)) =75 (€s(1 + X)) @10 @ ey
= §5(1 +X)1/S R Na Q€.

Since (D' ® €;)(Es(1+ X)YS @ o @ i) = &€s(1 + X)VS @ 14, by [2,
Lemma 4.1.3(ii)] we have (D ® ¢;)Gs; = S~("Y (g, Hence, by (6.2)

(6.6)  d3;, = (~1) (i — DI  expg ) (G (Gn — 1)),

where

exXPsp,v; (i) + (Q(S) © Qp(Gpn))

(6.5)

®Qp ODcris (Vf (Z) )
Fil” (Deyis (V4 (7))

— H} (Q(S)®Qp(Gpn), Vi (4))
denotes the direct sum of the exponential maps. The assertion (1) fol-
lows from (6.5) and (6.6). If n > 1, then the assertion (2) follows from
©Ne = an, and (6.1). See [28, §2.4.2] for the case n = 0 (we note that

Qin = (1) = DISTIN,_14(GT," (X)) where ¥, is as in [28]
and associated to V¢(1)). O

6.2. Kato’s Euler system

We recall Kato’s Euler system constructed in [13]. We assume the hy-
pothesis (2) in Assumption A.

For a finite extension L of Q or Q, and for i, j € Z we denote by Tw; 7, ;)
the composite

Twry (i) + B Y (L(Gpr ), Ty (7)) — W HY(L(Gpr), Ty (1)) (5)

Sl HY(L(Gyr ). Ty (i + ).

n

where the first map is induced by the product with {gpm};?iél € Zy(i), and
we refer the reader to [31, Proposition 6.2.1] for the second map.

For n > 0, we put K, = Q((pn ), Koo = Up>0K, and Gpn = Gal(K,,/Q).
For a positive integer S relatively prime to p, we denote by K,,(S) the com-
positum K,Q(S). By applying [31, Lemma 9.6.1] to Kato’s Euler system
(cf. [13, Theorems 9.7 and 12.5]), we have the following.
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THEOREM 6.9. — There exists an element
{3sp Inz0,(sp)=1 € [ [H' (K (S), Ts (k)
n,S
satisfying the following conditions.

(1) For a prime | # p, we have

(1~ al By e B 36 (115),
3Spn 1159).
(2) We have {35, }n € lim HI(K,(S), T3 (k).

(3) For1<i<k—1,5>0andn >0, we denote by 3%1;7-) the image
of {3spm }m>0 under the composite

Corg,, (s1)/Kn () (351pm) = {

i (R (), T () =2 i B (K (), 7 (5 — )

m

— H' (K (), Ty (k - 1)),

where the second map is the natural projection. Then, for a Dirich-
let character x of Gal(K,,(5)/Q) of conductor Sp™, we have

S XD, w10 (Gpa)
'yEGal(K,,L(S)/Q)

L L ) ) .
RS
where the sign & is equal to that of (—1)*~!x(-1),
XD vy (- (1) B (K (S) © Qp, Vi (k = 1)) = Kn(S) @q Deris (Vi (k — 1))

denotes the sum of the dual exponential maps, and Lpy(f, x, s) is
the L-function without Euler factor at p.

Remark 6.10.

(1) Although in [13] the integrality of such a system is verified only in
the case where S = 1, one can generalize the arguments to general
S under Assumption A (2). Let us briefly explain about it. Follow-
ing [13, §13.9] (cf. [9, Definition A.1]), for 6 € Vy = Vg, (f), we de-
fine z") ¢ lim H'(Kn(S), Ty) @acs) Q(A™), where we put AS) =
O[Gal(Ko/Q)][Ts] and Q(A) denotes its total quotient ring. By
the same argument as in [13, §13.12], one can show that zgp) lies in
(lim H'(Kn(S), Ty)) ®z, Qp and that if § € Ty and 9 is a height-

one prime ideal of A(M)| then z((;p) € (l&nm HY (K. (S5),Ty)) @a0
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A;g). Here, A;%) denotes the localization at ‘3. We also note that by
Shapiro’s lemma, we have I'&anl (Km(S),Ty) = m HY(K,,, T ®
OT's]). Under Assumption A (2), by Lemma 3.1 and applying the
same argument as in [13, §13.8] to the representation 7y ® O[I's],
we have that lim H'(K,,(S), Ty) is AM-free (see also [19, Lem-
ma 6.8.12]). Then, as in [13, §13.14], if 6 € Ty, then z) €
lim HY(K,,(9),Ty) (asimilar phenomenon is observed in [19, Cor-

ollary 6.8.13]). If we put {35, fn>0 = Twy, 1, (z((s?H;), where 5;}
are as in Definition 2.1, then the system {3, } s, satisfies the as-
sertion (3), which follows in the same way as in the case where
S =1 (cf. [13, Theorem 12.5]). By [13, Proposition 8.12], it suf-
fices to apply [31, Lemma 9.6.1] to {3%, } in order to obtain {35,n }
which satisfies the norm relations (1) and (2) as well as (3).

(2) By the argument as in the proof of [31, Theorem 6.3.5], for a prime
1t pS, we have

Corse, st/ i (s) (Bpt)) = (1 — al' ™" Frj  e()IF2 Ty )30

In particular, {5%’2/”2)}”,(3,1,]\;):1 gives rise to an Euler system in the
sense of Definition 4.4.

For n > 0 and a square-free integer S > 0 relatively prime to p, we put
1 (k—i .
3spa= D v e ©7 € HUEL(S), Ty (k — ) @0, G[Lspr]
'YGFSP"
PROPOSITION 6.11. — For n > 0 and a square-free integer S > 0 rela-
tively prime to p, we have

:))Sp",i € Hl(Kn(S)7T(k B Z)) ®ﬁp I?(ivf?g)’

where a;(S) denotes the number of primes | of dividing S such that ['~1 —
a; + e()IF7=1 = 0, and we write Ik, (s) for the augmentation ideal of

6,[Cal(K(5)/Q)].
Proof. — The proof is the same as that of [26, Proposition 5.10]. O

6.3. Kato’s Euler system and p-adic L-functions with tame
characters

We recall the p-adic L-function associated to f, which is originally con-
structed by [1, 34], and we describe its relation with Kato’s Euler system by
using local points d§ ; , (cf. Definition 6.6). We assume Assumption A (2).
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For h > 1 and a subfield L of C,, we put

%L,L[[F]]: Zan<’7—1)"eL[[,y_1]] lim M:O ,

n—oQ nh
n=>0

where I' = Z,, denotes the Galois group of the cyclotomic Z,-extension of
Qp, v € T is a topological generator, and |- |, denotes the multiplicative
valuation of C,,. Noting Goo =T x G,, we put J4, 1[G] = 56, L[T][G,)].
For j € Z, we denote by Tw; : 54, 1[Gs] — 5, 1[G ] the twist defined as
Z an(’y - 1)n7_ = Z an(’%yc(’Y)j’y - l)nﬁcyc(T)jT'
n=0,7€Gp
Let
br, : 4 L [Gool[Gs] = LGy ]G]

denote the projection which is induced by s [Goo]l/(77" —1) = LG pn].
Here, Gs = Gal(Q(¢s)/Q), and % 1[Goo] = Un»156, L[Goo]. For a
square-free integer S > 0 relatively prime to p, by [23] there exists a unique
Ly 5.0(f) € Hi1,F,10)[G][Gs] such that for 0 <i < k—2andn >0

(67) pr,, © TWi(Lp,S,a(f))

o™ (Vspn i1 =" 20" Wgpnar spr (Ispnri41)) - (n21),
(1—plaFr,)(1 - pF "2 Fr, )i (n = 0),
€ Fy(a)[Gpr][Gs]-

DEFINITION 6.12. — Let %), s.o(f) be the image of Tw_1 (Lp s.o(f))
under the natural projection 7, _1 p,|a)[G][Gs] = -1 F, [ [G][s]-

PROPOSITION 6.13. — The p-adic L-functions %, s.o(f) are elements
of H,_1,r,[a][Goo][T's] which have the following properties and are char-
acterized by them:

(1) For all1 <i < k—1 and all characters x : Goo x I's — Q* of finite
order whose conductor is divisible by S, we have

(68) szcX(gp,S,a(f))
= ep(a,i—1,0)8p "V r(x) (i - 1)!(—2m/—71)’“*i*1L(ﬁ+:”'),

where n > 0 is the integer such that p" exactly divides the conduc-
tor of x, the sign + is that of (—1)*"1y(—1), and

ey(i—1,x) e = (1= X@PTTY () x@Thy
b (1 ) )

« «
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(2) For a prime [ relatively prime to pS,
Ts1/s (Lpsia(f)) = =1 Fry (1 — all Fr; ' +e(D)IF Fr; ?) %, 5.0(f),

where 7,5 @ H-1[Goo][T'si] — H4.-1[Goo][I's] is induced by
I's; — I's, and by abuse of notation, Fr; € G, x I's denotes the
element whose image in G is vs and whose image in I'g is Fr;.

Remark 6.14.
(1) By our choice of periods, if f is ordinary, then we have %), s (f) €
Op[G][T's] (cf. Corollary 6.16).
(2) The p-adic L-function .Z, 5 (f) is in fact characterized by the
property (2) above and the more relaxed condition as follows: for
1 < i< k—1 and for almost all characters x of G5 x I'g of finite
order whose conductor is divisible by S, we have (6.8).

Proof. — The assertion (1) follows from (6.7) and Proposition 2.2(2).
The assertion (2) is deduced from Proposition 2.2 (1).

We next prove that our p-adic L-functions are characterized by (1) and
(2). If there is another family {.#s}s of elements of J#,_1 F,[a][Goo]l[T's]
satisfying the properties (1) and (2), then for each S, k¢ X (%) 5.0(f)) =
KtyeX(AMs) for all 1 < i < k —1 and for almost all characters x : Goo X
I's — Q* of finite order. Hence, by using [28, §1.3.1], we have %}, 5.o(f) =
M. O

For S > 0 with (S,p) = 1, the pairings induced by the cup product
(= =)Ty(k—i),Spn H' (K (S)®Qyp, Ty (k—i)) x H (K, (S) ®Qy, Ty (1)) — O
induce a paring
(= =) (k—i),5 * Zoo,s (T (k = 1)) X Zoo s(T4(7)) — Al's]

as follows, where A := 0, [G] and Zo s(—) := @n HY(K,(S) © Qp, —).
For 2o = (@n) € Zoo,s(Ty(k — 1)), Yoo = (Yn) € Zoo,5(Tf(¢)), the pairing
(Toos Yoo) T (k—i),s 1 defined as the limit of

(69) Z (T_lxna yn)Tf(k—i),S,nT € ﬁp [Gp"][rs]
TEGpn xI's
By abuse of notation, we denote by (—, =)z, (x—i),s the base change

Hi-1[Goo] @A Zoo,s(Ty(k — i) X H—1[Goo]l @A Zoo,s(T(i))
— %c—l[[GooMFS]
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We put

Rsp =1 J(X) € (05 ®L)[X]| Y fCA+X)—1)=0p,

CEMp

which is the (Os ® Z,)[G]-submodule of (Og ® Z,)[X] freely generated
by 1+ X, and we put Zs(Vy) = Zs,4 @z, Deris(Vy). Let

Qg)f),s : D5(Vy) ® Opla] = 4 r, (a) [Gc] ®6,16.0] Zoo,s(TF)
be Perrin-Riou’s big exponential map such that for i,n > 1,
(6.10) pr, 0 Tw; 0 O 5(9) = Bs.im((0 @ ) "G,
where (1 — ¢)G = g, and
DIy, + Ay () [Gool @ Zoo,s(Ty (i) = H' (Kn(S) @ Qp, Vi (i) ® Fy(a)

denotes the projection. See [28], [29, §3.3] or [2, §5] for the details (although
in those paper, the quotient Zo s(Tr)/H° (Koo (S) ® Qp, Ty) is considered,
by [4, Remark II. 14] we do not need to take the quotient).

PROPOSITION 6.15. — We put gg = —%55(1 + X))@, € Ds (Vi) ®

Opla] and 00,5 = {35p" n € Zoo,s(Ty(k)). Then, (5., g Q%),s(gs)>Tf(k)7s =
Zp,S,a(f)'

Proof. — Let ./ZS = <3OO,SvQ§/Qf)7S(gS)>Tf(k)7S' Since Na € Dcris(vf) is an
eigenvector such that the slope of its eigenvalue is less than k — 1, .#s lies
in 7.1, F,(a)[Go][l's] (cf. [13, Theorem 16.4]). Hence, it suffices to show
that .#s verifies the properties (1) and (2) in Proposition 6.13.

(1). — We verify the slightly more relaxed condition in Remark 6.14 (2).
Let x be a character of Go, X I'g of finite order whose conductor is Sp™
with n > 1. Let Gg; € H5(T¢(i)) ® Fyla] be as in (6.5). Then, by [28,
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§3.6.1], for 1 < ¢ < k — 1 we have

(6.11)  Klyex(As)
= \Tw; (<3oo 5, 0f) (gS)>T.f(k)rS)

0
= X(TW_i 7y 1) (30c,8) » W) 5(95)) 7y ki)

_ —1,(k—1) - o )
N (T sspr o Bsan(lo @) CGsa)) T
TEG XI'g

1 1 0_7’”/
=X (Z (T 358‘1,17)70[ Z:Szn( Sa))T(}c 5.8 T)
T f —1),0,N

(_l)iSiflp(ifl)n

n

<2 (755 exDs v (G5 (G = 1)) x(7)

T¢(k—1),Sn

(7 )’L 1gi— 1p(7, n

aTL
« k—i —n
X Z {eXPs,n,Vf(i) (T~ légpn )) &i (G — 1)}SnX(T)7
where
o [—, —]s.n denotes the composite

(Kn () © Deris (Vi (k = 1)) x (Kn(S) @ Dexis(Vy (1))
— K (S) ® Dexis(Fy(1)) = F.

Here, the first map is the natural pairing, and the last map is the
tensor product of the trace map K,,(S) — Q and the natural iden-
tification Deyis(Fp(1)) = F).
e the fourth equality follows from ¢n, = anq.
e the fifth equality follows from (6.6).
Since x is primitive as a character of I's X Gp» and (apGggn)(Cpn -1) =
(" Y (Gpn-1 — 1), by Theorem 6.9 (3), (6.5) and Corollary 6.5, we have
that the last term of the computation (6.11) is equal to %, X(Zp,s5.a(f))-

(2). — Tt follows from Proposition 6.8 and the norm relation of
{Zspn}. D
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COROLLARY 6.16. — For1 <i<k—1andn >0,

pr, o Twi(Zp,5.0(f))

— — k—1
0 egynrs (7711065, 42,1 (n>1),

= )Tf(k—i)@" !
ZTEFS (T_l locp(ggk_i)), (1—-p~ta-t Fr;l)dgw) T (n=0),
€ F(a)[Gy][T's).
Moreover, if f is ordinary, then the p-adic L-function .2, g (f) lies in
Oy[Gool[Ts) = lim_ 6, (G T,

Proof. — The first assertion follows from Propositions 6.8 and 6.15.
If f is ordinary, then by Proposition 6.4 (2), for n > 1 the projection pr,, o
Tw; 0 Q) ¢(g5) = -dg,; , lies in HYp (K, (S) ® Qp, Ty (k —4))*. Therefore,

-n — k—i @
o Y (TN oo ) dSi), T € GGl
T7€G,n xI'g f(kil)“g’n
P

Hence, by the first assertion and [28, §3.6.1], £, s.o(f) € Op[Gx][I's]. O

DEFINITION 6.17. — For 1 < i< k—1,n > 1 and a positive integer S
relatively prime to p, we put

Ospr i = Ospri —p Vspr—1,8pn (Ospn-1,4)  (n=2),
o Ospi — (p— )p*2a"0g,, (n=1),
€ Fy[Tspn] @ Gpla,

2 = Corre, sy /acsp) (3600 ) € HH(Q(SP™), Ty (1),

cS},n,a = Corg, (s)/asp™) (d,,,) € HE (Q(Sp™) © Qp, V3 (i) ® Oy[a]
where by abuse of notation, we denote by Corg,, (s)/q(spr) the corestriction
map H'(K,,(S)®Q,, —) — H (Q(Sp")®@Q,, —). Forn = 0, we define zg) =
35;) € HY(Q(9),Ty(i)), which coincides with zg; (we note that Q(Sp) =
Q(5)).
We note that by (6.7), for n > 1, a "0gpn ; o is equal to the image of

pr, o Twi(Z} s5,0(f)) in Fy[a][l'spyn]. Hence, Proposition 6.15, (6.10) and
Proposition 6.4 (2) imply the following corollary.

k—2a—1

COROLLARY 6.18. — If (S,p) =1 and n > 1, then

_ k—i)y (i
Ospn ia = Z (7' 11001,(2(51)”)),0(3;”)&

TEL gpn

F n .
)Tf(k_i),s,nT < ﬁp[a][ Sp }
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PROPOSITION 6.19.

(1) For n = 1, ﬂ'@(spn-l—l)/(@(spn)(05p'ﬂ+l7z'7a) = Oéespnﬂ"a where
mo(sprt1y/Q(spr) : Cpllspnt1] — Cp[[spn] denotes the natural pro-
Jjection.

(2) We have sy, 0 = a(l —p~taFr,)(1 — pF=i71la™! Fr;l)ﬁgy,; in
Opla][l'sp] = Gpla][l's].

Proof. — The proposition follows from simple computation combined
with Proposition 2.2 (1). O

6.4. Mazur—Tate elements and Kato’s Euler system

Finally we construct local points to connect Mazur—Tate elements with
Kato’s Euler system. We keep the same assumption and notation as in the
previous section. In particular, we assume Assumptions A (2) and B.

LEMMA 6.20. — Under Assumption B, there exists a root a € C,, of
X2 — a,X + p*~1 such that ord,(a) < k—1, and for 1 < i < k— 1 and
m € Z, we have ord,(1 — (p*~=1a=1)™) < 0.

Proof. — In the case where f is ordinary, it suffices to take a to be the
unit root (we need Assumption B only for the case where i = k — 1).

We next consider the case where f is non-ordinary. Then, all the roots «
and f satisfy ord,(«) < k—1 and ord,(8) < k —1. If ord,(a) = ord,(8) =
k—i—1forsomel<i<k—1,then k—1=ordy(af) =2(k—1i—1),
which contradicts the assumption that &k is even. Hence, there is a root «
such that for all 1 < ¢ < k — 1, we have ord,(a) # k — ¢ — 1, which implies
that for m € Z we have ord,(1 — (p*~""ta=1)™) < 0. O

We consider the following assumption.

AssumpTION C. — If a root o of X? — apX + pF~1 lies in F,, then
ord, () # ord,(B), where (3 is the other root.

PROPOSITION 6.21. — If either F,/Q, is unramified or f is ordinary,
then Assumption C holds.

Proof. — The case where f is ordinary is immediate. We assume that
F,/Q, is unramified and that o € F},, which implies that § € F,. Since F),
is unramified, ord,(«) and ord,(8) are integers. If ord,(a) = ord,(3), then
ord,(aB) = ord,(p*~1) = k — 1 is even, which contradicts the assumption
that k is even. O
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THEOREM 6.22. — Let S be a positive integer relatively prime to p. Let
cgz))n be the elements defined in (6.13), (6.15), (6.16) or (6.17) below.

(1) Forn>0and1<i<k—1,
(6.12) Ogpn,i = Z (T_l loc,, (zg;i)) ,cgz),n,
TEFspn
(2) The element cg) lies in H}f(Q(S) ® Qp, Tf(k —1))* @ Opla], and
hence 0s; also lies in the integral ring 0, [I'g].
(3) Under Assumption C, forn>1, cg;)n GH}f(Q(Sp")Q?Qp, Ty(k—1))*,
and hence Ogpn ; € Op[I'gpn].

€ Fy[lgynl.
)Tf(kfi),S,nT p[Tspr]

Remark 6.23. — Even without assuming Assumption A (2) or Assump-
tion B, we may obtain at least the assertion (1). The reason that we are
assuming those assumption in this section is to guarantee the integrality of

Cgl))n and zg;n .

In the rest of this section, we prove Theorem 6.22. Let o be a root of
X?% — a, X + pF~1 such that ord,(a) < k — 1, and 3 the other root.

6.4.1. The case where n =0

Let « be as in Lemma 6.20. We define cg) by
(6.13) c§) = (1—p" a7 By ) N € HHQ(S)®Qy, Vi (0) ® Gylo).

By Corollary 6.18 and Propositions 6.8 and 6.19, we obtain (6.12) for
n = 0, that is,
(614) 0571- = Z (T71 IOCp(Zék_i)), Cg))Tf(k—i),S,OT'

T€l's

We note that since ord, (1 — (pF~~1a 1)@ Ql) < 0, where v is any
prime of Q(S) above p, we have (1 — p*~*~la~! Frzjl)_1 € Oyla][lg], and
hence Proposition 6.4 (2) implies the assertion (2).

6.4.2. The case where n >1
In the following, we construct c(;z),n for n > 1 and complete the proof
of the theorem. We assume Assumption C holds. In order to obtain (6.12)
without assuming Assumption C, it suffices to consider cg;n as in (6.15)
below (even if f is non-ordinary, the construction and the proof of (6.12)
works).
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The case where f is ordinary

In this case, « is the unit root of X? — a,X +pF 1 and a € F,. We

define c(SiZ))n (n > 1) inductively by

615) o = [Spat PP Ramie) (n=1),
Spm CES'I))" ot aflpk 2reSn_17n( g;n 1) (n > 2)7

where res,, 1, : HH(Q(Sp" 1) @ Qp, V¢ (i)) — HY(Q(Sp ),® Qp, V#(1)) de-
notes the map induced by the restriction maps. Since cg) € H (Q(S) ®
Qp, T¢(k —14))* and since c(Sp” € H (Q(Sp™) ® Qp, Ty (k —1))* for n>=l1,

we have C(Si;n € H}f(Q( ") ® Qp,Tf( —i))*.
The assertion (6.12) follows from (6.14), Corollary 6.18 and the definition
of espnma.

The case where o & F},

In this case, for n > 1 we define C(Z) € HH(Q(Sp™) @ Qp, V#(i)) by

(6.16) acg; o= acg; + v,

where y is an element of H} (Q(Sp™) @ Qp, V¢(i)). We note that since for
1 < i<k—1, c(szz), € H}f(Q(Sp") ®Qp, T§(k —1))" ® Opa], the element
cS . lies in H} (Q(Sp™) ® Qp, Ty (k —10))*.

The assertion (6.12) follows from Corollary 6.18 and from that Og,n ; €
Fy[Cspr] C Fp[Lspr][a].

The case where ord,(«) # ord,(8) and f is non-ordinary

In this case, § also satisfies ord,(8) < k — 1 and then, the results in
the previous section may be applied with replacing « by 5. For n > 1, we
define

(@)

0 _ 00— Bl 8
6.17 -
( ) CSp a— 6

Since ord,(a) # ord, (), for any i > 0 the element c( ) lies in H1 (Qp®
Q(Sp™), Ty (k —1))*. The assertion (6.12) follows from Corollary 6. 18 and

aOspn i,a — BOspn.ip

a—p

espn)i ==
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7. Proof of the results

We prove the theorems stated in Section 1 (Theorems 7.2, 7.4 and Corol-
lary 7.5). We also prove a result on exceptional zeros of Mazur—Tate ele-
ments (Theorem 7.3).

We keep the same notation as in the previous section. We write 0g,n =
9Spn’k/2 and Ogpn o = espn’k/za, where « is a root of X?2 —apX—l—p’“_1 satis-
fying such that ord, (o) < k—1. We put {zspn }ser n>0 = {zgﬁ)}sew,@o
(cf. Definition 6.17), which is an Euler system for 7' = Ty(k/2) in the sense
of Definition 4.4. Here, .4 is the set of square-free, positive integers rela-

tively prime to pN, with the convention that 1 € 4.

7.1. Applications of local points cg;/f})a and c(k/Q)
7.1.1. Proof of a part of Theorem 1.1
COROLLARY 7.1. — Assume Assumptions A and B. Let S be a positive

integer relatively prime to pN such that every prime l | S satisfies (1.1).
(1) We have

Os € Ig.nin{p’tf}, Ospn.a € Imm{p g Opla) forn > 1.
(2) If Assumption C holds, then for n > 1, we have Og,n € Imm{p’tf}

Proof. — If we denote by S’ the square-free integer divisible by the prime
factors of S, then I'gs = I's/. Hence, we may assume that S is square-free.
We first prove the assertion on fgpn o. Since cg;/f,)a € H (Q(Sp™) ®

Qp,T)* ® Oyla] (cf. Definition 6.17), it induces a homomorph1sm of O,-

modules

(7-1) H}f(Q(Spn) ® QpaT) ® ﬁp [FSp”] — ﬁp [O‘] [FSp"}

which sends >0 . ar® 7 to 3 (ar, cg;/ ))T757nr. If we regard the 0p-

module H}f(Q(Sp”)@)(@p7 T)®0,(I'spn] as an O, [I' gpn|-module by its action
on the second factor, then the map (7.1) is a homomorphism of &[T gpn]-
modules. Since (7.1) sends > 7 'zgpn ® T to Ogpn o (by Corollary 6.18),
by Theorem 5.9 we obtain the assertion (1).

The other assertions similarly follow from Theorem 6.22. O

The following is a part of the main result.
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THEOREM 7.2. — Under the assumption and notation as in Cor-
ollary 7.1, assume further that F,/Q, is unramified and that every prime
1| S satisfies p? {1 — 1. Then, for n = 1,2, we have

Ospra € TomP7Y @ G la], Ogpn € Tom®Td | and g € 137,

Proof. — By using Corollary 5.11 instead of Theorem 5.9 and by Propo-
sition 6.21, the same argument as in the proof of Corollary 7.1, we deduce
the theorem. O

7.1.2. Exceptional zeros

By Proposition 6.11 and Theorem 6.22, following the same argument of
the proof of Corollary 7.1, we obtain the following theorem on the excep-
tional zeros of Mazur—Tate elements.

THEOREM 7.3. — Assume Assumptions A (2) and B. Let S be a positive
integer relatively prime to p and n a non-negative integer. If either Assump-
tion C holds or n = 0, then for 1 <i < k—1, we have Ogpn ; € IS;(,ZS),Wbere
we recall that a;(S) denotes the number of primes dividing S such that

=L —ap 4+ e(D)IF-1 = 0.

7.2. Proof of the main result

It remains to prove Theorems 1.1 under (b) and 1.3.

THEOREM 7.4. — Assume Assumptions A and B. Assume also that the
p-parity conjecture holds. Let S be a positive integer relatively prime to pN
such that every prime [ | S satisfies (1.1). Then, the following assertions
hold.

(1) We have8s € I8 and forn > 1, §syn o € TP © 6,

(2) Assume further Assumpmon C (which holds if F, / Qp is unramified).

gmin{rs.p}

Then, for n > 1 we have Ogpn € Ig,n

Proof. — We first note that Proposition 2.5 implies that
(7.2) Ospr o = (1) e Frok 1(Ospn o).

Let R = Oyla] (resp. R = 0,) and @S’pn = Ogpn,a (resp. Ogpn = Ogpn).
Lemma 3.5(1) implies that vy < 7y < ty + 1. By Corollary 7.1, we may
assume that 1 <ry =ty 41 < p. Then, we have O g € IS " ®ﬁp R. Since
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tacts on [ r’;:l /1 g’; by the multiplication by (—1)"/~! and since I'spn acts

on Irffl/IT;,, trivially, Proposition 2.5 or (7.2) implies that

Spn
Ogpn = sf(—l)rffpr%@spn mod I;;n ®o, R.

Then, by (2.3) and the assumption that ord,_/2(L(f,s)) = ry mod 2, we
conclude the theorem. O

COROLLARY 7.5. — Assume Assumptions A and B. Let S be a pos-
itive integer relatively prime to pN such that every prime | | S satis-

fies (1.1). If f is ordinary, then £, s,(f) € Oy[Go][T's], and £y s,0(f) €
ey

Proof. — The assertion that .Z}, .o (f) € 0,[G][I's] is proved in Corol-
lary 6.16. If we put Egpn = pr,, 0 Twy/2(Lp s.a(f)) € Op[Gpn][I's], then it
suffices to show that for every n > 1

(7.3) Sgpn € Spmnirs

,where I, 5 /2 is as in Theorem 1.3.

where 73" "/} denotes the augmentation ideal of 0,[Gp»][I's]. By Corol-
laries 6.16 and 6.18, the image of Egpn under Oy[Gpn][['s] = Op[L'pn][Ls]
coincides with Ogp» . Hence, since I',» is the p-Sylow subgroup of G,
[26, Lemma 5.3] and Theorem 7.4 imply (7.3). O
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