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ON THE RANK-PART OF THE MAZUR–TATE
REFINED CONJECTURE FOR HIGHER WEIGHT

MODULAR FORMS

by Kazuto OTA (*)

Abstract. — Under some assumptions, we prove the rank-part of the Mazur–
Tate refined conjecture of BSD type. More concretely, we prove that the rank of
the Selmer group of an elliptic modular form is less than or equal to the order of
zeros of Mazur–Tate elements, or modular elements, which are elements in certain
group rings constructed from special values of the associated L-function. Our main
result is regarded as a generalization of our previous work on elliptic curves.

Résumé. — Sous certaines hypothèses, on prouve la partie rang de la conjecture
précisée de Mazur–Tate de type BSD. Plus concrètement, on prouve que le rang du
groupe de Selmer d’une forme modulaire elliptique est inférieur ou égal à l’ordre
des zéros des éléments de Mazur–Tate, qui sont des éléments de certains algèbres
de groupes construits à partir de valeurs spéciales de la fonction L associée. Notre
résultat principal est considéré comme une généralisation de nos travaux antérieurs
sur les courbes elliptiques.

1. Introduction

In an earlier paper [26], under relatively mild assumptions we proved the
rank-part of the Mazur–Tate refined conjecture for elliptic curves (cf. [22]).
The aim of this paper is to generalize the previous work to modular forms
of higher weight.

To state our main result, we fix some notation. Let f(τ) ∈ Sk(Γ0(N)) be
a normalized eigen newform of even weight k for Γ0(N), whose q-expansion
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we denote by
∑
n⩾1 anqn. Let p be a prime not dividing 2N , and fix em-

beddings ιp : Q ↪→ Cp and ι∞ : Q ↪→ C. Let Fp be the completion of the
Hecke field F = Q(an; n ⩾ 1) at the prime p | p induced by ιp. We denote
by Vf ∼= F ⊕2

p the Galois representation attached to f (cf. Section 2.1). Let
Tf be an Op-lattice of Vf stable under the GQ-action, where Op denotes
the ring of integers in Fp. We denote by ρf : GQ → AutOp

(Tf ) the asso-
ciated representation. We put A = Tf (k/2)⊗Qp/Zp, where (k/2) denotes
the k/2-th Tate twist. We assume the following (see Remark 1.2 for the
validity of the assumption).

Assumption A.

(1) H0(Qp, A[p]) = {0}.
(2) Fixing an Op-basis of Tf , we have

Im(ρf ) ⊇
{

g ∈ GL2(Zp)
∣∣det(g) ∈ (Z×

p )k−1} .

(3) For each prime l | N , either H0(Ql, A) or H1 (Fl, H0(Qur
l , A)/(div.)

)
is the zero module, where (div.) denotes the maximal divisible part.

In this section, for simplicity we assume that Fp/Qp is unramified and
that if f is ordinary (i.e. ap ∈ O×

p ) then ap ∈ Zp and ap ̸≡ 1 mod p (those
assumptions are imposed to verify Assumptions B and C). For a positive
integer S, we put ζS = e2πi/S (the S-th root of unity) and denote by ΓS
the p-Sylow subgroup of Gal(Q(ζS)/Q). We denote by θS ∈ Op[ΓS ] the
Mazur–Tate element (cf. Definition 2.3) which interpolates algebraic parts
of the special values L(f, χ, k/2) for Dirichlet characters χ : ΓS → Q×. We
put rf = corankOp

(Sel(Q, A)), where Sel(Q, A) is the Bloch–Kato Selmer
group. The following is the main result (see Theorems 7.2 and 7.4 for the
general case).

Theorem 1.1. — Let S be a positive integer relatively prime to pN

such that for each prime l | S,

(1.1) H0(Ql, A[p]) is isomorphic to Op/p or {0}.

Let n be a non-negative integer. Assume at least one of the following two
conditions holds.

(a) We have n ⩽ 2, and for every prime l | S we have p2 ∤ (l − 1).
(b) The p-parity conjecture holds, that is, ords=k/2(L(f, s))≡ rf mod 2.

Then, we have
θSpn ∈ I

min{rf ,p}
Spn ,

where ISpn denotes the augmentation ideal of Op[ΓSpn ].

ANNALES DE L’INSTITUT FOURIER
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Remark 1.2.
(1) Even in the case where F = Q and k = 2 (i.e. the newform f

corresponds to an elliptic curve over Q), the theorem above is still
stronger than [26, Theorem 5.17]. The reason is that in loc. cit.
we considered θSpn with n ⩽ 1, assuming that p did not divide
the product of Tamagawa factors, which is slightly stronger than
Assumption A(3).

(2) If either f corresponds to an elliptic curve or f is ordinary, then
the p-parity conjecture holds (cf. [11, 25]).

(3) By Ribet [30], if f has no complex multiplication, then for almost
all primes p, Assumption A(2) is verified.

(4) By Chebotarev’s density theorem, the density of primes l satisfy-
ing (1.1) is greater than or equal to 1−

(
(p3 − p)|(F×

p

)k−1 |)−1 (cf.
Proposition 3.9).

(5) See Proposition 3.7 for Assumption A(1). For l | N , if al = 0 and
p ⩾ 5, then H0(Qur

l , A[p]) = 0 (cf. Proposition 3.8).
(6) We mention known results related to the theorem for k > 2 (see [26,

§1] for k = 2). Kato’s result [13] on the p-adic BSD conjecture
implies that if f is ordinary, then for n ⩾ 0, θpn ∈ I

rf

pn . In the
case where f is non-ordinary, an unpublished work of Emerton–
Pollack–Weston implies that θpn ∈ I

rf

pn . Results of Kurihara also
imply that if f is ordinary, then θSpn ∈ I

rf

Spn for general S relatively
prime to pN , under assumptions including the validity of µ = 0
conjectures and the non-existence of finite submodules of Iwasawa
modules associated to Selmer groups (see [17] for the details).

(7) The Mazur–Tate refined conjecture which we consider is over cyclo-
tomic extensions. There are also works on anticylotomic extensions
(cf. [8, 12, 14, 20]).

Our proof of Theorem 1.1 is similar to that of [26, Theorem 5.17] (cf. [26,
§1.3]). The key ingredients of the previous proof were the following:
(a) modification of Darmon’s argument on Heegner points in [8] to Kato’s
Euler system, (b) construction of local points (as in [15, 16, 27]) of ellip-
tic curves relating Mazur–Tate elements with Kato’s Euler system via cup
products.

Compared to the proof of [26, Theorem 5.17], one of the new parts of
this paper is that we slightly refine the argument on derivatives of Euler
systems so that we can consider θSpn with n ⩾ 2 (cf. Section 5). Another
part is that by using Perrin-Riou’s theory, we generalize local points of
Otsuki [27] to modular forms of higher weight (cf. Section 6).

TOME 73 (2023), FASCICULE 3



1322 Kazuto OTA

Considering {θSpn}n⩾1 leads us to the following result on the p-adic L-
functions which also interpolate special values of the L-functions twisted
by characters whose conductor are divisible by integers prime to p.

Theorem 1.3 (Corollary 7.5). — With the same notation and assump-
tion as in Theorem 1.1, assume further that f is ordinary. Let Lp,S,α(f) ∈
Op[[G∞]][ΓS ] denote the p-adic L-function (see Proposition 6.13 and Re-
mark 6.14(1) for the details), where G∞ = Gal(Q(µp∞)/Q). Then,

Lp,S,α(f) ∈ I
min{rf ,p}
∞,S,k/2 ,

where I∞,S,k/2 ⊆ Op[[G∞]][ΓS ] denotes the kernel of the homomorphism of
Op algebras Op[[G∞]][ΓS ] → Op induced by the product κ

k/2
cyc · 1S . Here,

κcyc : G∞
∼−→ Z×

p denotes the p-adic cyclotomic character, and 1S denotes
the trivial character of ΓS .

Remark 1.4.

(1) We note that the work of Kato [13] and Kurihara [17] mentioned in
Remark 1.2(6) also imply similar results under their corresponding
setting explained above.

(2) The elements θS and Lp,S,α(f) rely on the choice of periods Ω±,

which are independent of S. We briefly explain our choice. Through-
out this paper, we first fix an element δf = δ+

f + δ−
f of Vf which

is good for Tf in the sense of [13, §17.5] (see also Definition 2.1),
and the data δf specifies Kato’s Euler system. Fixing δf , the choice
of periods is essentially equivalent to that of a nonzero element
ω ∈ Fil1 Dcris(Vf ) (cf. Definition 2.1 or [13, Theorem 16.2]). We
choose ω so that by Perrin-Riou’s theory (cf. [28]) we may obtain a
system of certain integral maps (regarded as analogues of Coleman
maps), by which we connect Kato’s Euler system to the Mazur–
Tate elements (cf. (7.1)). We refer the reader to Definition 6.6 for
details. We note that in the good ordinary case, by [13, §17], we may
take ω to be good for Tf in the sense of [13, §17.5]. We also note
that since our ω may not be necessarily the differential form asso-
ciated to f under the canonical isomorphism from the f -part of the
de Rham cohomology group of X1(N) to Dcris(Vf ), the µ-invariant
of our Lp,1,α(f) may differ from those of the p-adic L-functions
associated to so-called canonical periods.

We also prove a result on exceptional zeros of Mazur–Tate elements. We
refer the reader to Theorem 7.3 for the details.

ANNALES DE L’INSTITUT FOURIER
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2. Mazur–Tate elements

In this section, we fix the notation and recall Mazur–Tate elements.

2.1. Setup

Let f(τ) ∈ Sk(Γ0(N)) be a normalized eigen newform of even weight
k, whose q-expansion we denote by

∑
n⩾1 anqn. We assume that f has no

complex multiplication. Let p be a prime not dividing 2N , and fix embed-
dings ιp : Q ↪→ Cp and ι∞ : Q ↪→ C. We denote by F the Hecke field
Q(an; n ⩾ 1) and write O for the ring of integers in F . Let p be the prime
of F above p induced by ιp. Let Fp be the completion of F at p and Op

the ring of integers in Fp. For a commutative F -algebra R, we let VR(f) be
the free R-module of rank two that is introduced in [13, §6.3] and is con-
structed from cohomology groups of modular curves. Then, Vf := VFp

(f)
has an action of GQ (cf. [13, §8.3]) and is isomorphic to Deligne’s Galois
representation associated to f , where we denote by GL the absolute Galois
group of a perfect field L. We recall that for a prime l ∤ pN ,

det(1− Fr−1
l X|Vf ) = 1− alX + lk−1X2,

where Frl is the arithmetic Frobenius at l. Let Tf be an Op-lattice of Vf
stable under the GQ-action such that

Tf ⊆ VOp
(f), 1

ϖ
Tf ̸⊆ VOp

(f),

where ϖ ∈ Op denotes a uniformizer, and we refer the reader to [13, §8.3]
for VOp

(f). If we put OF,(p) = F ∩ Op, then the intersection Tf ∩ VF (f)±

inside VFp
(f) is an OF,(p)-module free of rank one, where VF (f)± denotes

the eigenspace with eigenvalue ±1 of the complex conjugation. Let S(f)

TOME 73 (2023), FASCICULE 3



1324 Kazuto OTA

be the F -vector subspace of Sk(Γ0(N)) generated by f . Then, we have the
period map of f

perf : S(f)→ VC(f)
as in [13, §6.3].

Definition 2.1. — Throughout this paper, we fix an OF,(p)-basis δ±
f

of Tf ∩ VF (f)±. For a non-zero element ω of S(f), we define periods Ω±
ω ∈

C× by
perf (ω) = Ω+

ω δ+
f + Ω−

ω δ−
f .

2.2. Mazur–Tate elements

Let L(f, s) =
∑
n⩾1 ann−s be the L-function attached to f . For a Dirich-

let character χ, we put L(f, χ, s) =
∑
n⩾1 χ(n)ann−s. Let ω be a non-zero

element of S(f). Then, for 1 ⩽ i ⩽ k − 1, (2π
√
−1)k−i−1L(f, χ, i)/Ω±

ω ∈
F (χ), where± corresponds to the sign of (−1)k−i−1χ(−1) = (−1)i−1χ(−1).

For a polynomial P (z) ∈ C[z] whose degree is at most k − 2 and for
a, S ∈ Q with S > 0, we denote by λ(f, P (z);−a, S) ∈ C the modular
symbol as in [23, §3]. By [23, (8.6)] for a Dirichlet character χ of conductor
S and 1 ⩽ i ⩽ k − 1,

(2.1)
∑

a∈(Z/SZ)×

λ(f, zi−1;−a, S)χ(a) = Si−1(i− 1)!τ(χ) L(f, χ−1, i)
(−2π

√
−1)i−1 ,

where we define τ(χ) =
∑
γ∈GS

χ(γ)ζγS . For a ∈ Z, a positive integer S and
1 ⩽ i ⩽ k − 1, we define [a/S]±i,ω ∈ F by[ a

S

]±

i,ω
= (−2π

√
−1)k−2 λ(f, zi−1;−a, S)± (−1)i−1λ(f, zi−1; a, S)

2Ω±
ω

.

Then, we have [−a/S]±i,ω = ±(−1)i−1[a/S]±i,ω. We define

ϑS,i,ω =
∑

a∈(Z/SZ)×

([ a

S

]+

i,ω
+
[ a

S

]−

i,ω

)
Fra ∈ F [GS ],

where GS = Gal(Q(ζS)/Q), and Fra ∈ GS denotes the element such that
Fra(ζS) = ζaS .

For n | m and a commutative ring R, we denote by πm/n : R[Gm] →
R[Gn] the homomorphism of R-algebras induced by the natural surjection
Gm → Gn. We also denote by νm,n the R-linear map R[Gn] → R[Gm]
induced by

σ 7→
∑

τ∈Gm, τ 7→σ

τ for σ ∈ Gn.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.2.

(1) Let S be a positive integer and l a prime. Then,

πSl/S(ϑSl,i,ω) =
{
−Frl li−1(1− all

1−i Fr−1
l +ϵ(l)lk−2i Fr−2

l )ϑS,i,ω (l ∤ S),
alϑS,i,ω − ϵ(l)lk−2νS,Sl(ϑS/l,i,ω) (l | S),

where ϵ is the trivial Dirichlet character modulo N .
(2) For a character χ of GS with conductor S, we have

χ(ϑS,i,ω) = Si−1(i− 1)!τ(χ)(−2π
√
−1)k−i−1 L(f, χ−1, i)

Ω±
ω

,

where the sign ± denotes that of (−1)k−i−1χ(−1).

Proof.
(1). — We put

Θ±
S =

∑
a∈(Z/SZ)×

λ(f, zi−1;±a, S) Fra ∈ C[GS ].

Then,

(2.2) πSl/S(Θ±
Sl) =

∑
a∈(Z/SZ)×

∑
b∈(Z/SlZ)×

b≡a mod S

λ(f, zi−1;±b, Sl) Fra .

We first consider the case where l ∤ S. Let x, y ∈ Z such that xS + ly = 1.
For an integer a relatively prime to S, we put ea = ayl, whose image in
Z/SlZ is a unique element such that ea ≡ a mod S and ea ≡ 0 mod l.

By [23, (3.1) and §4], we have∑
b∈(Z/SlZ)×

b≡a mod S

λ(f, zi−1;±b, Sl)

=
∑

b∈Z/SlZ
b≡a mod S

λ(f, zi−1;±b, Sl)− λ(f, zi−1;±ea, Sl)

=
l−1∑
u=0

λ(f, zi−1;±a− uS, Sl)− λ(f, zi−1;±ayl, Sl)

= alλ(f, zi−1;±a, S)− ϵ(l)lk−2λ(f, zi−1;±a, S/l)− λ(f, zi−1;±ayl, Sl)

= alλ(f, zi−1;±a, S)− ϵ(l)lk−2λ(f, (z/l)i−1;±al, S)

− λ(f, li−1(z/l)i−1;±ayl, Sl)

= alλ(f,zi−1;±a,S)− ϵ(l)lk−1−iλ(f,zi−1;±al,S)− li−1λ(f,zi−1;±ay,S).

TOME 73 (2023), FASCICULE 3
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By (2.2) and noting that yl ≡ 1 mod S, we have

πSl/S(Θ±
S ) = (al − ϵ(l)lk−1−i Fr−1

l −li−1 Frl)Θ±
S

= −Frl(li−1 − al Fr−1
l +ϵ(l)lk−1−i Fr−2

l )Θ±
S ,

which implies the assertion (1) in the case where l ∤ S.
We next assume that l | S. Then, by [23, §4] we have

∑
b∈(Z/SlZ)×

b≡a mod S

λ(f, zi−1;±b, Sl) =
l−1∑
u=0

λ(f, zi−1;±a− uS, Sl)

= alλ(f, zi−1;±a, S)− ϵ(l)lk−2λ(f, zi−1;±a, S/l).

By (2.2) we have

πSℓ/S(Θ±
Sℓ)

=
∑

a∈(Z/SZ)×

(
alλ(f, zi−1;±a, S)− ϵ(l)lk−2λ(f, zi−1;±a, S/l)

)
Fra

=
∑

a∈(Z/SZ)×

alλ(f, zi−1;±a, S) Fra

− ϵ(l)lk−2
∑

a∈(Z/Sl−1Z)×

∑
b∈(Z/SZ)×

b 7→a

λ(f, zi−1;±a, S/l) Frb

= aℓΘ
±
S − ϵ(l)lk−2νS,Sℓ(Θ±

S/ℓ),

which implies the assertion (1).

(2). — It follows from (2.1) and straightforward computation. □

Definition 2.3. — For a positive integer S, we denote by ΓS the p-
Sylow subgroup of GS . For 1 ⩽ i ⩽ k − 1 and ω ∈ S(f) \ {0}, we define
the Mazur–Tate element θS,i,ω of F [ΓS ] as the image of ϑS,i,ω in F [ΓS ].
We put θS,ω = θS, k

2 ,ω
.

Conjecture 2.4. — Let S > 0, and suppose that ω is a non-zero ele-
ment of S(f) such that θS,ω ∈ OF,(p)[ΓS ]. Then, θS,ω ∈ I

rf

S , where we recall
that rf is the Op-corank of the Bloch–Kato Selmer group Sel(Q, Tf (k/2)⊗
Qp/Zp).

ANNALES DE L’INSTITUT FOURIER
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2.3. Functional equation of Mazur–Tate elements

We recall the functional equation of Mazur–Tate elements, which plays
an important role in the proof of Theorem 1.1 with the assumption that
the p-parity conjecture holds.

Let wN be the operator on Sk(Γ0(N)) defined as g(τ) 7→ Nk/2

(Nτ)k g
(−1
Nτ

)
.

Then there exists εf ∈ {±1} such that wN (f) = εff . It is known that

(2.3) (−1) k
2 εf = (−1)ords=k/2(L(f,s))

(see [10, Theorem 5.10.2] for example). Let S be a positive integer relatively
prime to N . To simplify the notation, we put [a/S]± = [a/S]±k

2 ,ω
, ϑS =

ϑS,k/2,ω, and θS = θS,k/2,ω. By [23, Chapter 1, §6], for an integer a relatively
prime to S, we have

(2.4)
[ a

S

]±
= (−1)k/2εf

[
a′

S

]±

,

where a′ is any integer satisfying a′aN ≡ −1 mod S. Let ι be the homo-
morphism of Fp-algebras Fp[GS ] → Fp[GS ] sending σ ∈ GS to σ−1. We
have the functional equation of θS as follows.

Proposition 2.5. — For a positive integer S relatively to N ,

ϑS = (−1) k
2 εf Fr−1

−N ι(ϑS), θS = (−1) k
2 εf Fr−1

−N ι(θS).

Proof. — Since θS is the image of ϑS under Fp[GS ]→ Fp[ΓS ], the second
equality follows from the first one, which follows from the computation

(−1)k/2εf Fr−1
−N ι(ϑS) = (−1)k/2εf Fr−1

−N

∑
a∈(Z/SZ)×

([ a

S

]+
+
[ a

S

]−
)

Fr−1
a

= (−1)k/2εf
∑

a∈(Z/SZ)×

([ a

S

]+
+
[ a

S

]−
)

Fr−1
−aN

(a)=
∑

a∈(Z/SZ)×

([
a′

S

]+
+
[

a′

S

]−
)

Fra′ = ϑS .

Here, the equation (a) follows from (2.4). □

3. Preliminaries on Galois cohomology

In the rest of this paper, we write

T = Tf (k/2), V = T ⊗Zp Qp, A = Hom(T, Fp/Op(1)) ∼= V/T,

TOME 73 (2023), FASCICULE 3
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where the last isomorphism is due to the natural GQ-equivariant isomor-
phism Homp(Vf , Fp) ∼= Vf (k − 1) induced by the Poincaré duality. The
aim of this section is to review some basic properties of associated Galois
cohomology groups.

3.1. Global cohomology groups

Lemma 3.1. — Under Assumption A(2), for a finite abelian p-extension
K of Q, the restriction ρ|GK

of the residual representation ρ : GQ →
Autkp(T ⊗ kp) is absolutely irreducible as a GK-module, where kp is the
residue filed of Op.

Proof. — Since T is free of rank two and kp is of odd characteristic, we are
reduced to showing that the image of ρ : GK → Autkp(T ⊗ kp) ∼= GL2(kp)
contains a1

[ 0 −1
1 0

]
and a2

[−1 0
0 1
]

for some a1, a2 ∈ k×
p . Since k−1 is odd and

|F×
p | is even, we have −1 ∈ (F×

p )k−1 ̸= {1}. Hence, by Assumption A(2),[ 0 −1
1 0

]
and

[−1 0
0 1
]

are contained in the image of ρf (GQ), where ρf : GQ →
Aut(Tf ⊗ kp) ∼= GL2(kp) is the residual representation of ρf . Since [K : Q]
is odd and since the orders of the matrices above are powers of two, they
are contained in ρf (GK). By the Chebotarev density, there exist primes
l1 and l2 of K relatively prime to pN such that ρf (Frl1) =

[ 0 −1
1 0

]
and

ρf (Frl2) =
[−1 0

0 1
]
, where Frli are the arithmetic Frobenius at li. Since T ⊗

kp = (Tf ⊗kp)(k/2), by putting ai = κ
k/2
cyc (Frli), we deduce the lemma. □

Proposition 3.2. — Under Assumption A(2), for a power q of p and
a finite abelian p-extension K of Q, we have H0(K, T/q) = {0}, and the re-
striction map induces an isomorphism H1(Q, T/q) ∼= H0(K/Q, H1(K, T/q)).

Proof. — By Lemma 3.1, H0(K, T/p) = {0}. Then the proposition fol-
lows from the inflation-restriction sequence. □

3.2. Selmer groups

If l is a prime and if K is a finite extension of Ql, then we put

H1
f (K, V ) =

{
Ker

(
H1(K, V )→ H1(K, V ⊗Qp

Bcris)
)

(l = p),
H1

ur(K, V ) (l ̸= p),

where H1
ur(K,−) := Ker(H1(K,−) → H1(Kur,−)). Here Kur is the max-

imal unramified extension of K. We denote by H1
f (K, T ) the preimage of
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H1
f (K, V ) under the natural map H1(K, T )→ H1(K, V ), and we denote by

H1
f (K, T/pn) the image of H1

f (K, T ) under the natural map H1(K, T ) →
H1(K, T/pn). We also denote by H1

f (K, A) the image of H1
f (K, V ) under

the natural map H1(K, V )→ H1(K, A). We recall that H1
f (K, A) coincides

with the orthogonal complement of H1
f (K, T ) under the perfect pairing

H1(K, T )×H1(K, A)→ H2(K, Fp/Op(1)) = Fp/Op.

We denote by H1
f (K, A[pn]) the preimage of H1

f (K, A) under H1(K, A[pn])→
H1(K, A). For M ∈ {V, T, A, A[pm], T/pm}, we put

H1
/f(K, M) = H1(K, M)

H1
f (K, M) .

For a finite extension L of Q and a place λ of L, we denote by locλ :
H1(L, M) → H1(Lλ, M) the localization map, where Lλ denotes the com-
pletion at λ. We define loc/f,λ as the composite

loc/f,λ : H1(L, M) locλ−−→ H1(Lλ, M)→ H1
/f(Lλ, M).

Definition 3.3. — Let M be one of A, T, V, A[pn] and T/pn. We define
the Selmer group Sel(Q, M) by

Sel(Q, M) = Ker

H1(Q, M)
∏

loc/f,l−−−−−−→
∏

l:primes
H1
/f(Ql, M)

 ,

and for a positive integer S we define a subgroup H1
f,S(Q, M) of Sel(Q, M)

by

(3.1) H1
f,S(Q, M) = Ker

Sel(Q, M)→
⊕
l|S

H1
f (Ql, M)

 ,

where l ranges over all the primes dividing S.

3.3. Local cohomology groups

For a finite extension L of Q or Ql for some prime l, and for n ⩾ 0, by
taking Galois cohomology of the exact sequence

0→ A[pn]→ A
×ϖn

−−−→ A→ 0,

where ϖ is a uniformizer of Fp, we have that the natural homomorphism
ιn : H1(L, A[pn])→ H1(L, A)[pn] is surjective, and Ker(ιn) ∼= H0(L, A)/pn.

Lemma 3.4. — Let l ̸= p be a prime. Then, the following assertions
hold.
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(1) H1
f (Ql, V ) = {0}.

(2) For n ⩾ 0, we have H1
f (Ql, A[pn]) ∼= H0(Ql, A)/pn. In particular, if

H0(Ql, A[p]) = {0}, then H1
f (Ql, A[pn]) = {0}.

Proof. — The assertion (1) is proved by combining [31, Corollary 1.3.3]
and [24, Proposition 3.1]. By (1), we have

H1
f (Ql, A[pn]) = Ker

(
H1(Ql, A[pn])→ H1(Ql, A)

)
,

which is isomorphic to H0(Ql, A)/pn. □

Lemma 3.5. — The following hold.
(1) We have H1

f (Qp, A) ∼= Fp/Op.

(2) If H0(Qp, A[p]) = {0}, then H1
f (Qp, A[pn]) ∼= Op/pn.

Proof.
(1). — By [7, Theorem 4.1],

dimFp

(
H1

f (Qp, V )
)

= dimFp
(Dcris(V )/ Fil0(Dcris(V ))) = 1,

and hence H1
f (Qp, A) ∼= Fp/Op.

(2). — If H0(Qp, A[p]) = {0}, then ιn : H1(Qp, A[pn]) → H1(Qp, A)[pn]
is an isomorphism. Hence, by (1), we have H1

f (Qp, A[pn]) ∼= Op/pn. □

Lemma 3.6. — Assume that H0(Q, A[p]) = H0(Qp, A[p]) = {0}. Then,
for n ⩾ 0, ιn induces an isomorphism H1

f,p(Q, A[pn]) ∼= H1
f,p(Q, A)[pn].

Proof. — Under the assumption that H0(Qp, A[p]) = {0}, we have that
our Selmer groups H1

f,p(Q, A[p]) and H1
f,p(Q, A) coincide with H1

F∗
can

(Q, A[p])
and H1

F∗
can

(Q, A) in [21], respectively. Here, F∗
can is the Selmer structure

on A ∼= Hom(T, µp∞) induced by the canonical Selmer structure Fcan on
T , explained in [21, Definition 3.2.1]. Then, the lemma follows from [21,
Lemma 3.5.3] (Although slightly stronger assumptions are assumed in
loc. cit., one sees that we only need to assume that H0(Q, A[p]) = 0 in
order to prove the lemma). □

The following two propositions give examples on the vanishing of local
cohomology groups.

Proposition 3.7. — Assume at least one of the following three as-
sumptions holds.

(a) The modular form f is ordinary (i.e. ap ∈ O×
p ), and ap ̸≡ 1 mod p.

(b) The modular form f is ordinary, and k is congruent to neither 0
nor 2 modulo 2(p− 1).
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(c) We have ordp(ap) > ⌊(k− 2)/(p− 1)⌋, where ⌊x⌋ denotes the max-
imal integer m such that m ⩽ x, and ordp denotes the additive
valuation on Cp such that ordp(p) = 1 (we regard ordp(0) =∞).

Then, H0(Qp, A) = {0}.

Proof. — It suffices to show that H0(Qp, T/p) = 0. Assume first that f

is ordinary. Then, GQp
acts on Tp

∼= k⊕2
p by

(3.2)
[

κ
k/2
cyc λ−1 ∗

0 κ
(2−k)/2
cyc λ

]
,

where κcyc : GQp
→ F×

p denotes the cyclotomic character, and λ : GQp
→

k×
p denotes the unramified character sending the arithmetic Frobenius Frp

at p to the image of ap in k×
p (cf. [33, Theorem 4]). Under (a) or (b), κ

k/2
cyc λ−1

and κ
(2−k)/2
cyc λ are non-trivial, which implies that H0(Qp, T/p) = 0.

Under (c), by [6, Theorem 4.2.1], the semi-simplification of T/p|GQp
is

isomorphic to the representation V k.0 of GQp
explained in [6, §1.1]. By

the same argument as in the proof of [18, Lemma 4.4], we have that
H0(Qp, V k,0) = {0}. □

Proposition 3.8. — Assume that p ⩾ 5 and that Fp/Qp is unramified.
Let l be a prime such that l2 | N , then H0(Qur

l , A) = {0}.

Proof. — Since A[p] ∼= Tf/p as a GQur
l

-module, we are reduced to show-
ing that H0(Qur

l , Tf/p) = {0}. Let x be a non-zero element of H0(Qur
l , Tf/p).

Let I w be the wild inertia group of GQl
, which is a pro-l group. We note

that since Op is unramified, the kernel of the natural map GL2(Op) →
GL2(O/p) is pro-p. Hence, by l ̸= p, there exists a lift x ∈ Tf of x fixed by
I w. In particular, dimFp

(V I w

f ) = 1, 2. Moreover, since l2 | N , we have that
Vf |GQl

is absolutely irreducible (cf. [33, §3.1]), and hence dimFp
(V I w

f ) = 2,

that is, Vf = V I w

f . If we denote by I the inertia subgroup of GQl
, then

I /I w is abelian. Hence, there exist a finite extension E of Qp and con-
tinuous characters χ1, χ2 : I → O×

E such that Vf ⊗E ∼= E(χ1)⊕E(χ2) as
I -modules. Since det(Vf ) ∼= Fp(1−k) as a representation of GQ, χ2 = χ−1

1 .

By the existence of x ∈ H0(Qur
l , Tf/p)\{0}, the image of χ1 is contained in

1 + mE , where mE denotes the maximal ideal of the ring of integers in E.
Then, by Grothendieck’s monodromy theorem (cf. [32, p. 515]), the order
of χ1 is a power of p. Since I acts on Vf ⊗ E factoring through a conju-
gation of GL2(Op), which has no non-trivial p-torsion element (since Op is
unramified over Zp and p ⩾ 5), we have that χ1 is trivial. Hence Vf ⊗E is
unramified, which contradicts that Vf |GQl

is absolutely irreducible. □
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The following is a proposition concerning the condition (1.1).

Proposition 3.9. — Under Assumption A(2), the density of the primes
l such that H0(Ql, A[p]) is isomorphic to Op/p or {0} is greater than or equal
to 1− (p3 − p)−1|(F×

p )k−1|−1.

Proof. — We first note that since A[p] ∼= k⊕2
p (recall that kp := Op/p),

for a prime l ∤ pN , the vector space H0(Ql, A[p]) is isomorphic to kp or {0}
if and only if the action of the arithmetic Frobenius Frl on A[p] is nontriv-
ial. Hence, we estimate the density of primes l such that Frl acts on A[p]
trivially. We recall that for a prime l ∤ pN , the characteristic polynomial of
Frl is given by

det(1− Frl X|V ) = 1− all
(2−k)/2X + lX2.

Then, if Frl acts on A[p] trivially, then l = 1 in kp, which implies that
κcyc(Frl) ∈ 1+pZp and that Frl acts on A[p](−k/2) ∼= Tf/p trivially as well.
If we denote by Q (Tf/p) the smallest Galois extension L of Q such that
GL acts on Tf/p trivially, then by Assumption A(2), ρf (Gal (Q (Tf/p) /Q))
contains a subgroup isomorphic to

H :=
{

g ∈ GL2(Fp)|det(g) ∈ (F×
p )k−1} ,

where ρf : GQ → Autkp(Tf/p) ∼= GL2(kp) denotes the representation at-
tached to Tf/p. Since GL2(Fp) =

∐
a∈F×

p
ga SL2(Fp), where ga is any ele-

ment of GL2(Fp) such that det(ga) = a, we have |H|= |SL2(Fp)|·|(F×
p )k−1|=

(p3−p)|(F×
p )k−1|. Hence, the density of primes l ∤ pN such that Frl acts on

A[p](−k/2) trivially is less than or equal to (p3 − p)−1|(F×
p )k−1|−1. Then,

the density of primes l ∤ pN such that Frl acts on A[p] trivially is less than
or equal to (p3 − p)−1|(F×

p )k−1|−1. □

4. Preliminaries of derivatives classes

We apply the derivatives introduced in [8] to Euler systems for T (in
the sense of Definition 4.4), and we review the local conditions of resulting
derivative classes. We keep the same notation as in the previous section.

For an integer S > 0, we denote by Q(S) the maximal p-extension of
Q inside Q(ζS), and then ΓS = Gal(Q(S)/Q). For integers S and S′ with
(S, S′) = 1, by the canonical decomposition ΓSS′ = ΓS × ΓS′ , we regard
ΓS and ΓS′ as subgroups of ΓSS′ .
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4.1. Darmon–Kolyvagin derivatives

We recall the derivatives introduced in [8].
As usual, for integers j ⩾ 0 and k ⩾ 1, we put(

j

k

)
= j(j − 1) · · · (j − k + 1)

k!

and
(
j
0
)

= 1. For k < 0, we define
(
j
k

)
= 0. For an element σ ∈ ΓS of order

n and for an integer k ⩾ 0, we define

D(k)
σ =

n−1∑
j=0

(
j

k

)
σj ∈ Z[ΓS ].

We note that D
(k)
σ = 0 if either k ⩾ n or k < 0. By a simple computation

we have the following.

Lemma 4.1. — Let q be a power of p. If σ ∈ ΓS is of order q and
0 ⩽ k ⩽ p− 1, then

(σ − 1)D(k)
σ ≡ −σD(k−1)

σ mod q.

Definition 4.2. — In the rest of this paper, for each prime l ̸= p, we
fix a generator σl of Γl. We write D

(k)
l = D

(k)
σl . Let S > 0 be a square-

free integer relatively prime to p. We call a non-zero element D of Z[ΓS ] a
Darmon–Kolyvagin derivative, or simply, a derivative if D is of the following
form:

D
(k1)
l1
· · ·D(ks)

ls
∈ Z[Γl1···ls ] ⊆ Z[ΓS ],

where l1, . . . , ls are distinct primes dividing S, and each ki is an integer
such that 0 ⩽ ki < |Γli |. We note that if we are given such a D, then
l1, . . . , ls, k1, . . . , ks are uniquely determined, and we define

Supp(D) = l1 · · · ls, Cond(D) =
∏
ki>0

li,

which we call the support and the conductor of D, respectively. We put

ord(D) = k1 + · · ·+ ks, n(D) = min
ki>0
{|Γli |}, eli(D) = ki.

We call ord(D) the order of D. When ki = 0 for all i, we define n(D) =
1. By convention, we also regard 1 ∈ Z[ΓSpn ] as a derivative, and put
Supp(1) = 1, Cond(1) = 1 and ord(1) = 0. When S = l1 · · · ls, we put

NS = D
(0)
l1
· · ·D(0)

ls
.

We denote by Q∞ be the cyclotomic Zp-extension of Q and fix a generator γ

of Gal(Q∞/Q). For a non-negative integer a, we put D
(a)
pn = D

(a)
γ ∈ Z[Γpn ],
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where we denote by the same symbol γ its image in Γpn . We also put
ord(D(a)

pn D) = a + ord(D) and

n(D(a)
pn D) =

{
min{pn−1, n(D)} (a > 0),
n(D) (a = 0).

Lemma 4.3. — Let S be a square-free positive integer relatively prime
to p, let n ⩾ 0 and let M be a Op[ΓpnS ]-module without p-torsion elements.
Let z be an element of M and put θ =

∑
σ∈ΓpnS

σz⊗σ ∈M ⊗Op
Op[ΓpnS ].

Let t ⩾ 1. Assume that D
(a)
pn Dz ≡ 0 mod n(D(a)

pn D) for every integer
a ⩾ 0 and every Darmon–Kolyvagin derivative D such that Supp(D) = S

and ord(D(a)
pn D) < min{t, p}. Then, θ−NSz ⊗ 1 ∈M ⊗Op

I
min{t,p}
ΓSpn

, where
IΓSpn denotes the augmentation ideal of Op[ΓSpn ].

Proof. — This is [26, Lemma 3.6]. □

4.2. Euler system

We recall the definition of Euler system (for T ). As is remarked in [26,
Remark 3.12], our definition is slightly different from the usual definition
as in [31].

For a prime l, we define Pl(t) ∈ F [t] by

(4.1) Pl(t) = 1− l1− k
2 alt + ϵ(l)t2.

Let Σ be a finite set of primes which contains all the primes dividing pN .
We put

R = {primes l | l /∈ Σ, l ≡ 1 mod p} ,

N = {square-free products of primes in R} ∪ {1}.

Definition 4.4. — We call {zSpn}S∈N ,n⩾0 ∈
∏
S,n H1(Q(Spn), T ) an

Euler system (for T and N ) if it satisfies the following conditions.
(1) Let S ∈ N , and let l ∈ R be a prime not dividing S. For n ⩾ 0,

CorSlpn/Spn(zSlpn) = Pl(Fr−1
l )(zSpn),

where CorSlpn/Spn : H1(Q(Slpn), T ) → H1(Q(Spn), T ) denotes the
corestriction map.

(2) For every S ∈ N , the system {zSpn}n⩾0 is a norm compatible
system, that is, {zSpn}n⩾0 lies in lim←−n H1(Q(Spn), T ), where the
limit is taken with respect to the corestriction maps CorSpn+1/Spn .
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4.3. Local images at primes not dividing p

In this subsection, following [26], we recall local properties of derivatives
of Euler systems at primes not dividing p.

Let q ̸= Op be an ideal of Op and {zSpn}S∈N ,n⩾0 an Euler system. For
a finite extension field K of Q or Ql for some prime l, by taking Galois
cohomology with respect to the exact sequence

0→ T
×ϖn

−−−→ T → T/q→ 0,

where ϖ is a uniformizer of Fp, the natural homomorphism H1(K, T )/q→
H1(K, T/q) is injective. Then, by this injection, we often regard H1(K, T )/q
as s submodule of H1(K, T/q) ∼= H1(K, A[q]).

For a prime l ̸= p, we put

(4.2) tf,l = min
{

n ⩾ 0
∣∣ϖnH1 (Fl, H0(Qur

l , A)/(div.)
)

= {0}
}

,

which is less than or equal to lengthOp
(H1(Fl, H0(Qur

l , A)/(div.))), the Tam-
agawa exponent. We note that if l ∤ N , then tf,l = 0.

Proposition 4.5. — Let D be a Darmon–Kolyvagin derivative such
that S := Supp(D) ∈ Nq, and put S′ = Cond(D). Let a be a non-negative
integer. Suppose that the image of D

(a)
pn DzSpn in H1(Q(Spn), T )/q is fixed

by ΓSpn , and denote by κ ∈ H1(Q, T/q) the element whose restriction is
equal to the image of D

(a)
pn DzSpn in H1(Q(Spn), T/q) (cf. Proposition 3.2).

Then, for a prime l ∤ pS′ we have ϖtf,l locl(κ) ∈ H1
f (Ql, T/q).

Proof. — By the same argument as in the proof of [26, Proposition 3.14],
we have locl(κ) ∈ H1

ur(Ql, T/q). It is known that ϖtf,lH1
ur(Ql, T/q) ⊆

H1
f (Ql, T/q) (cf. [31, Lemmas 1.3.5 and 1.3.8]), and then we complete the

proof. □

We put
Rq = {l ∈ R | l − 1 ∈ q} , Rf,q = {l ∈ Rq |Pl(1) ∈ q} ,

Nq = {square-free products of primes in Rq} ∪ {1}.
(4.3)

For an Op-module M of finite cardinality and an element x ∈M , we define

ord(x, M) = inf {m ⩾ 0 |ϖmx = 0} ∈ Z.

By the same argument as in those of proofs of [31, Theorem 4.5.4] and [26,
Theorem 3.18], one can show the following proposition.

Proposition 4.6. — Assume Assumption A(2). Let S be an element
of Np. Let n ⩾ 1, and let l ∈ Rf,q be a prime which splits completely in
Q(Spn). Let λ be a prime of Q(Spn) above l. For a Darmon–Kolyvagin
derivative D whose support is S, the following hold.
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(1) For a ⩾ 0, the image of locλ(D(a)
pn DzSpn) in H1(Q(Spn)λ, T/q) =

H1(Ql, T/q) lies in H1
f (Ql, T/q).

(2) The image of D
(a)
pn DD

(1)
l zSlpn in H1(Q(Slpn), T )/q is fixed by Γl.

(3) Let κ(l) ∈ H1(Q(Spn), T/q) be the element corresponding to the
class D

(a)
pn DD

(1)
l zSlpn mod q under the isomorphism

H1(Q(Spn), T/q) ∼= H0 (Γl, H1(Q(Slpn), T/q)
)

induced by the restriction map. If H1
f (Ql, A[q]) ∼= Op/q, then we

have

ord
(

loc/f,λ(κ(l)), H1
/f(Ql, T/q)

)
= ord

(
locλ(D(a)

pn DzS mod q), H1(Ql, T/q)
)

.

5. Divisibility of derivative classes

In this section, we study p-divisibility of derivatives of Euler systems
(cf. Theorem 5.5), and we give its applications. Since some lemmas and
propositions of this section are proved in the same way as in [26], we often
omit their proof and refer the reader to [26, §4].

We keep the notation as in Section 4. In particular, {zSpn}S∈N ,n⩾0 de-
notes an Euler system for T = Tf (k/2) and some N in the sense of Defi-
nition 4.4.

5.1. The key theorem

The aim of this subsection is to prove Theorem 5.5. Throughout this
subsection, we assume the hypotheses (2) and (3) in Assumption A.

5.1.1. Consequence of the classical Euler system argument

Proposition 5.1. — The following assertions hold.
(1) If rf := corankOp

(
H1

f,p(Q, A)
)

> 0, then z1 = 0 ∈ H1(Q, T ).
(2) If rf > 0, then loc/f,p(z1) = 0 ∈ H1

/f(Qp, T ).

Proof. — The assertion (1) (resp. (2)) follows from [31, Theorem 2.2.3]
(resp. [31, Theorem 2.2.10]) and Lemma 3.1. □
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5.1.2. Notation

Let q be an ideal of Op which is not equal to {0} or Op. For a finitely
generated Op-module M , we define an integer rq(M) by

M ⊗Op
Op/qOp

∼= (Op/qOp)⊕rq(M) ⊕M ′,

where M ′ is killed by the ideal qp−1 ⊆ Op.

Lemma 5.2. — For an exact sequence of finite Op/qOp-modules 0 →
M ′ →M →M ′′, we have rq(M) ⩽ rq(M ′) + rp(M ′′).

Proof. — This is [20, Lemma 3.4]. □

Definition 5.3. — Let D be a Darmon–Kolyvagin derivative with sup-
port S ∈ N . We define the weight of D as

wq(D) = ord(D)−# {l ∈ Rf,q | l divides S} .

Proposition 5.4. — Let D be a Darmon–Kolyvagin derivative such
that its support S lies in Nq. Suppose that n > 0 is an integer such that
pn−1 ∈ q. If wpn(D) := wpnOp

(D) < 0 and maxl|S{el(D)} < p (see Defini-
tion 4.2 for el(D)), then for a ⩾ 0 we have

D
(a)
pn DzpnS ≡ 0 mod qH1(Q(pnS), T ).

Proof. — We first note that the assumption wpn(D) < 0 implies that
there exist a prime l ∈ Rf,pn dividing S and a derivative D′ such that

(5.1) D = D′Nl, Supp(D′) = S/l, ord(D′) = ord(D).

As in [26, Proposition 4.7], we prove the proposition by induction on the
number of primes dividing S. If S = l is a prime, then l ∈ Rf,pn := Rf,pnOp

and D = Nl. Since Pl(1) ≡ 0 mod q and since l splits completely in Q(pn),
we have

D
(a)
pn Dzpnl = D

(a)
pn Nlzpnl = D

(a)
pn Pl(Fr−1

l )zpn = Pl(1)D(a)
pn zpn ≡ 0 mod q.

For general S, since wpn(D) < 0, there exist a prime l ∈ Rf,pn dividing S

and a derivative D′ as in (5.1). Then, we have wpn(D′) = wpn(D) + 1 ⩽ 0.

We write S/l = l1 · · · lb. We shall first show that for 1 ⩽ i ⩽ b,

(5.2) (σli − 1)D(a)
pn D′zpnS/l ≡ 0 mod q,

where σli is the generator of Γli fixed in Definition 4.2. It suffices to consider
the case i = 1. We write D′ = D

(k1)
l1
· · ·D(kb)

lb
. In the case where k1 = 0,

we have D′ = Nl1D
(k2)
l2
· · ·D(kb)

lb
, and hence (5.2) is clear. We may then
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assume that k1 ⩾ 1. Since the order of σl1 is congruent to 0 modulo q and
since 0 < k1 < p, Lemma 4.1 implies that

(5.3) (σl1 − 1)D′ ≡ −σl1D
(k1−1)
l1

D
(k2)
l2
· · ·D(kb)

lb
mod q.

We note that

Supp(D(k1−1)
l1

D
(k2)
l2
· · ·D(kb)

lb
) = S/l,

w(D(k1−1)
l1

D
(k2)
l2
· · ·D(kb)

lb
) = w(D′)− 1 < 0.

Then, the induction hypothesis implies that

D
(a)
pn D

(k1−1)
l1

D
(k2)
l2
· · ·D(kb)

lb
zpnS/l ≡ 0 mod q,

and hence by (5.3), we deduce (5.2).
Since each Γli is generated by σli , the assertion (5.2) implies that

D
(a)
pn D′zpnS/l mod q ∈ H0 (ΓS/l, H1(Q(pnS/l), T )/q

)
,

that is, the action of ΓpnS/l on D
(a)
pn D′zpnS/l mod q factors through Γpn .

Therefore, by l ∈ Rf,pn and (5.1), we have

D
(a)
pn DzpnS = D

(a)
pn D′NlzpnS = D

(a)
pn Pl(Fr−1

l )D′zpnS/l

≡ D
(a)
pn Pl(1)D′zpnS/l ≡ 0 mod q. □

5.1.3. The theorem and its proof

Let q be an ideal of Op which is not equal to {0} or Op.

Theorem 5.5. — Let D be a Darmon–Kolyvagin derivative. Suppose
that maxl|S{el(D)} < p, where S := Supp(D). Suppose also that S ∈ Nq

and that every prime l | S satisfies (1.1). Then, the following assertions
hold.

(1) If ord(D) < rq
(
H1

f,p(Q, A[q])
)
, then for m ⩾ 0, we have DzS =

D
(0)
pmDzpmS ≡ 0 mod qH1(Q(S), T ).

(2) Let n > 0 be an integer such that #Γpn = pn−1 ∈ q. Let a be an
integer such that 0 ⩽ a < p. If a + ord(D) < rq

(
H1

f,p(Q, A[q])
)

,

then

(5.4) D
(a)
pn DzpnS ≡ 0 mod qH1(Q(pnS), T ).

The proof of the assertion (1) is the same as [26, Theorem 4.9] and is
omitted. Before the proof of (2), we show some lemmas.
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Lemma 5.6. — Let D be a Darmon–Kolyvagin derivative whose support
S lies in Nq. Let a and n be non-negative integers such that pn−1 ∈ q.

Assume that the image of D
(a)
pn DzpnS in H1(Q(pnS), T )/q is fixed by ΓpnS .

Let κ ∈ H1(Q, T/q) be as in Proposition 4.5. If rq(H1
f,pS′(Q, A[q])) > 0,

where S′ := Cond(D), then there exists a prime l ∈ Rpn := RpnOp
such

that
(1) l splits completely in Q(Spn), and H1

f (Ql, T/q) ∼= Op/qOp,
(2) we have

ord
(

D
(a)
pn DzpnS mod q, H1(Q(pnS), T )/q

)
= ord(locl(κ), H1

f (Ql, T/q)),

(3) the localization map H1
f,pS′(Q, A[q])→ H1

f (Ql, A[q]) is surjective.

In addition, if the image of D
(a)
pn DD

(1)
l zSlpn in H1(Q(Slpn), T )/q is fixed

by ΓpnSl, then

D
(a)
pn DzSpn ≡ 0 mod qH1(Q(Spn), T ).

Proof. — By the same argument as in the proof of [26, Lemma 4.10],
which is based on an application of Chebotarev’s density theorem, one can
find a prime l satisfying (1), (2) and (3).

We assume that the image of D
(a)
pn DD

(1)
l zSlpn in H1(Q(Slpn), T )/q is

fixed by ΓpnSl. We denote by κl ∈ H1(Q, T/q) the element whose image
in H1(Q(Spnl), T/q) coincides with that of D

(a)
pn DD

(1)
l zSpn . By the con-

ditions (1) and (2) above, Proposition 4.6(3) reduces us to proving that
loc/f,l(κl) = 0. By taking the dual of the map in the condition (3) above,
it suffices to show that loc/f,l(κl) lies in the kernel of the injection

H1
/f(Ql, T/q)→ HomOp

(
H1

f,pS′(Q, A[q]), Op/q
)

; z 7→ (x 7→ (z, locl(x))l,q) ,

where for a prime v, we denote by (−,−)v,q : H1(Qv, T/q)×H1(Qv, A[q])→
Op/q the perfect pairing induced by the local duality. Let x∈H1

f,pS′(Q,A[q]).
Then, by the Hasse principle and the definition of H1

f,pS′(Q, A[q]), we have

(5.5) (loc/f,l(κl), locl(x))l,q = −
∑
v∤pS′l

(locv(κl), locv(x))v,q,

where v ranges over all primes not dividing pS′l. Hence, it suffices to show
that for v ∤ pS′l

(5.6) (locv(κl), locv(x))v,q = 0.

By Assumption A(3), every v ∤ pS′l satisfies at least one of the following
two conditions:

(i) tf,v = 0 (see (4.2) for tf,v),
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(ii) H0(Qv, A[p]) = {0}.
In the case (i), by Proposition 4.5, we have locv(κl) ∈ H1

f (Qv, T/q). Since
H1

f (Qv, T/q) and H1
f (Qv, A[q]) are orthogonal complements of each other

(cf. [31, Proposition 1.4.3]), by locv(x) ∈ H1
f (Qv, A[q]), we obtain (5.6). In

the case (ii), the assertion (5.6) follows from Lemma 3.4. □

Lemma 5.7. — Let D be a Darmon–Kolyvagin derivative such that S :=
Supp(D) ∈ Nq and maxl|S{el(D)} < p. Let 0 ⩽ a < p and n ⩾ 0 such that
pn−1 ∈ q, and put w = wpn(D). Assume that D

(b)
pn D′zpnS ≡ 0 mod q for

every D
(b)
pn D′ satisfying the assumptions as in Theorem 5.5(2) such that

wpn(D′) + b < w + a. If a + ord(D) ⩽ rq(H1
f,p(Q, A[q])), then the image of

D
(a)
pn DzpnS in H1(Q(pnS), T )/q is fixed by ΓpnS .

Proof. — By Lemma 4.1 and the assumption that D
(a−1)
pn DzpnS ≡ 0 mod

q, we have

D
(a)
pn DzpnS mod q ∈ H0 (Γpn , H1(Q(pnS), T )/q

)
.

The case where S = 1 is completed by the congruence above, and then we
may assume that S ̸= 1. We write S = l1 · · · ls. It suffices to show that for
each 1 ⩽ i ⩽ s

(5.7) D
(a)
pn DzpnS mod q ∈ H0 (Γli , H1(Q(pnS), T )/q

)
.

To prove (5.7), without loss of generality, we only need to consider the case
where i = 1. If el1(D) = 0, then we have D = Nl1D′ for some derivative D′,
and hence we have (5.7). We assume that el1(D) ⩾ 1. Then, by Lemma 4.1
we have

(σl1 − 1)D ≡ −σl1D′ mod qOp[ΓS ],
where D′ is a derivative such that ord(D′) = ord(D)−1 and Supp(D′) = S.
Hence, we have wpn(D′) = wpn(D) − 1. Therefore, by our assumption we
have D

(a)
pn D′zpnS ≡ 0 mod qH1(Q(pnS), T ). Hence, we obtain

(σl1 − 1)D(a)
pn DzpnS ≡ −σl1D

(a)
pn D′zpnS ≡ 0 mod q,

which implies (5.7). □

Proof of Theorem 5.5(2). — We prove it by induction on a + wpn(D).
We note that the theorem obviously follows from Proposition 5.4 when
w := wpn(D) < 0. We assume that the theorem holds for every D

(b)
pn D′

satisfying the assumptions as in Theorem 5.5(2) such that b + wpn(D′) <

a + w. Then, by Lemma 5.7, the image of D
(a)
pn DzpnS in H1(Q(pnS), T )/q

is fixed by ΓpnS , and we let κ ∈ H1(Q, T/q) be as in Proposition 4.5.
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We shall first prove that

(5.8) rq
(
H1

f,pS′(Q, A[q])
)

> 0.

We assume that rq
(
H1

f,pS′(Q, A[q])
)

= 0. By Lemma 5.2 and the exact
sequence

0→ H1
f,pS′(Q, A[q])→ H1

f,p(Q, A[q])→
⊕
l|S′

H1
f (Ql, A[q]),

we have

rq
(
H1

f,p(Q, A[q])
)
⩽ rq(H1

f,pS′(Q, A[q])) + rp

(⊕
l|S′

H1
f (Ql, A[p])

)
,

and hence by our assumption,

ord(D) <
∑
l|S′

rp(H1
f (Ql, A[p])).

For each prime l | S, by the assumption (1.1) and Lemma 3.4(2), we
have rp(H1

f (Ql, A[p])) ⩽ 1. Then, ord(D) <
∑
l|S′ 1, which contradicts the

definition of S′ = Cond(D). Hence, rq
(
H1

f,pS′(Q, A[q])
)

> 0.

By (5.8), there exists a prime l ∈ Rf,pn satisfying the conditions (1), (2)
and (3) in Lemma 5.6 for D

(a)
pn DzS . Since ord(DD

(1)
l ) ⩽ rq(H1

f,p(Q, A[q]))
and wpn(DD

(1)
l ) = w, by Lemma 5.7 we have

D
(a)
pn DD

(1)
l zpnSl mod q ∈ H0(ΓpnSl, H1(Q(pnSl), T )/q).

Hence, Lemma 5.6 implies that D
(a)
pn DzpnS ≡ 0 mod q. □

By the same argument as in the proof of [26, Theorem 4.15], one can
prove a modification of Theorem 5.5 stated as follows:

Theorem 5.8. — Let D and S be as in Theorem 5.5. Assume further
that for each prime l dividing S, the Op-module H0(Ql, A[q]) is isomor-
phic to Op/qOp or {0}. If ord(D) < rq

(
H1

f,pS′(Q, A[q])
)

+ rp(Bq(S′)), then
DzS ≡ 0 mod qH1(Q(S), T ), where Bq(S′) :=

⊕
v|S′ H1

f (Qv, A[q]).

5.2. Applications

5.2.1. On the refined conjecture for Euler systems

Theorem 5.9. — Assume Assumption A. Let S ∈ N such that every
prime l | S satisfies (1.1). Then, for n ⩾ 0∑

σ∈ΓpnS

σ−1zpnS ⊗ σ ∈ H1(Q(pnS), T )⊗Op
I

min{rf ,p}
ΓpnS

,
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where we recall that rf := corankOp
(H1

f,p(Q, A)).

Proof. — We may assume that rf ⩾ 1. To apply Lemma 4.3 to
H1(Q(pnS), T ) and zpnS , we take a derivative D such that Supp(D) = S

and an integer a such that 0 < a + ord(D) < min{rf , p}. We denote by S′

the conductor of D, and then D = D′N S
S′

, where the derivative D′ satisfies

Supp(D′) = Cond(D′) = S′, n(D′) = n(D), ord(D′) = ord(D).

Therefore,

D
(a)
pn DzSpn = D

(a)
pn

 ∏
l|(S/S′)

Pl(Fr−1
l )

D′zS′pn ,

where l ranges over all the primes dividing S/S′. If we put q = n(D(a)
pn D)Op,

then S′ ∈ Nq. We note that Lemma 3.6 implies that rf ⩽ rq(H1
f,p(Q, A[q])).

Then, Theorem 5.5 implies that D
(a)
pn D′zpnS′ ≡ 0 mod q, and hence we have

D
(a)
pn DzSpn ≡ 0 mod q. Consequently, Lemma 4.3 shows that

(5.9)
∑

σ∈ΓSpn

σ−1zSpn ⊗ σ −NSpnzSpn ⊗ 1 ∈ H1(Q(Spn), T )⊗ I
min{rf ,p}
ΓSpn

.

Hence, by Proposition 5.1(1) we complete the proof. □

5.2.2. Localization of derivative classes at p

We state results which are applied to the case (1) of Theorem 1.1.
For a finite extension K of Q, we put H1(K⊗Qp,−) =

⊕
λ|p H1(Kλ,−),

where λ ranges over all the primes of K dividing p. We also define

H1
f (K ⊗Qp,−) =

⊕
λ|p

H1
f (Kλ,−), H1

/f(K ⊗Qp,−) =
⊕
λ|p

H1
/f(Kλ,−).

For η ∈ H1(K,−), we denote by locp(η) (resp. loc/f,p(η)) the image of η in
H1(K ⊗Qp,−) (resp. H1

/f(K ⊗Qp,−)).

Corollary 5.10. — Assume that Assumption A holds. Let D be a
Darmon–Kolyvagin derivative such that maxl|S{el(D)} < p, where S :=
Supp(D). Suppose that S ∈ Np and that each prime l | S satisfies (1.1).
We put S′ = Cond(D). Let 0 ⩽ a < p and 0 ⩽ n ⩽ 2. If a + ord(D) <

rp
(
H1

f,S′(Q, A[p])
)

+ rp(Bp(S′)), then the following assertions hold.

(1) The image of D
(a)
pn DzSpn in H1(Q(Spn), T )/p is fixed by ΓSpn .

(2) If we let κ ∈ H1(Q, T/p) be as in Proposition 4.5 (q = p), then

locp(κ) ∈ H1
f (Qp, T/p).
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Proof. — The proof of the corollary is the same as in [26, Theorem 4.18],
which is a consequence of Theorem 5.8. We omit the details. □

We note that rf ⩽ rp
(
H1

f,S(Q, A[p])
)

+ rp(Bp(S)). Then, by a simi-
lar argument to the proof of Corollary 5.9 and by Proposition 5.1(2) and
Corollary 5.10, we obtain the following.

Corollary 5.11. — Assume that Assumption A holds and that Fp/Qp
is unramified. Let S be as in Theorem 1.1(a). If 0 ⩽ n ⩽ 2, then∑

τ∈ΓS

τ−1 loc/f,p(zSpn)⊗ τ ∈ H1
/f(Q(Spn)⊗Qp, T )⊗ I

min{rf ,p}
S .

Proof. — By Assumption A(1) and the assumption that Fp/Qp is un-
ramified, we have a commutative diagram (with exact rows)

0 // H1
f (Qp, T )

×p //

��

H1
f (Qp, T ) //

��

H1
f (Qp, T/p) //

��

0

0 // H1(Qp, T )
×p // H1(Qp, T ) // H1(Qp, T/p) // 0,

where the vertical arrows are the inclusions. By the snake lemma, we have
an exact sequence

0 // H1
/f(Qp, T )

×p // H1
/f(Qp, T ) // H1

/f(Qp, T/p) // 0 .

Hence, for D
(a)
pn Dzspn as in Corollary 5.10, we have

loc/f,p(D
(a)
pn Dzspn) ∈ pH1

/f(Q(Spn)⊗Qp, T ).

Noting that the exponent of the abelian group ΓSpn is killed by p, by
Proposition 5.1(2), the proof is the same as that of Corollary 5.9. □

6. Kato’s Euler system and Mazur–Tate elements

By using a method of Perrin-Riou [28], we construct local cohomology
classes to connect Kato’s Euler system with Mazur–Tate elements. The
main result (Theorem 6.22) of this section may be regarded as a general-
ization of work of Otsuki [27] to higher weight modular forms with more
care about integrality.
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6.1. Construction of families of local points

In this subsection, we construct a family of local points to connect Kato’s
Euler system and p-adic L-functions which interpolate the special values
of L-function twisted by tame characters as well.

6.1.1. Review of Perrin-Riou’s method

Regarding Vf as a representation of GQp , we consider the filtered φ-
module Dcris(Vf ) associated to Vf , whose filtration is given by

Fili Dcris(Vf ) =


Dcris(Vf ) (i ⩽ 0),
S(f)⊗F Fp (1 ⩽ i ⩽ k − 1),
0 (i ⩾ k).

We note that Dcris(Vf ) is a two-dimensional Fp-vector space and its φ is
Fp-linear. We recall that Tf is the fixed lattice of Vf , and we denote by
M ⊆ Dcris(Vf ) the φ-stable lattice which is attached to Tf as in [3, §3.2].
We note that by [5, Proposition V.1.2], the determinant of the comparison
isomorphism

BdR ⊗Qp
Vf ∼= BdR ⊗Qp

Dcris(Vf )

with respect to basis of Tf and M lies in tk−1(Ẑur
p )×, where Ẑur

p denotes
the p-adic completion of the ring of integers in the maximal unramified
extension of Qp, and t ∈ BdR is the element associated to the fixed basis
{ζpn}n of Zp(1) (see [2, §1.1.2] for t).

Let H be a finite unramified extension of Qp and W the ring of integers
in H. Let σ : H → H denote the absolute Frobenius map. We let σ act on
W [[X]] by σ(

∑
n⩾0 anXn) =

∑
n⩾0 aσnXn. We define φ : W [[X]] → W [[X]]

by

φ

∑
n⩾0

anXn

 =
∑
n⩾0

aσn((1 + X)p − 1)n.

By abuse of notation, we denote by φ the operator φ ⊗ φ on W [[X]] ⊗Zp

M. We put Hn = H(ζpn), H∞ = ∪nHn and G∞ = Gal(Q(µp∞)/Q) =
Gal(H∞/H). Then, G∞ acts on W [[X]] by

γ

∑
n⩾0

anXn

 =
∑
n⩾0

an((1 + X)κcyc(γ) − 1)n,
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where we recall κcyc : G∞ → Z×
p denotes the p-adic cyclotomic character.

As in Subsection 3.2, for h ∈ Z we put

H1
f (Hn, Tf (h)) = Ker

(
H1(Hn, Tf (h))→ H1(Hn, Vf (h)⊗Bcris)

)
,

H1
f (Hn, Vf (h)) = Ker

(
H1(Hn, Vf (h))→ H1(Hn, Vf (h)⊗Bcris)

)
.

We define HW (Tf (h)) ⊆W [[X]]⊗Zp
Dcris(Vf (h)) asG ∈W [[X]]⊗M ⊗Zp

e−hZp

∣∣∣∣∣∣
∑
ζ∈µp

G(ζ(1 + X)− 1) = pφ(G(X))

 ,

where e−h := t−h ⊗ {ζpn}⊗h, the basis of Dcris(Qp(h)). For a Zp-module
L and g(X) =

∑n
i=1 gi(X) ⊗ mi ∈ W [[X]] ⊗Zp

L, if ζ is an element of
the maximal ideal of Qp, then we simply write g(ζ) =

∑n
i=1 gi(ζ) ⊗mi ∈

W [ζ]⊗Zp L.

For n ⩾ 0 and h ⩾ 1, Perrin-Riou [28] constructs a family of homomor-
phisms

ΣH,h,n : HW (Tf )→ H1
f (Hn, Tf (h))

satisfying the following conditions (see [2, Theorem 4.3] or [3, §3.2] for
details):

• for G ∈HW (Tf ), if n ⩾ 1, then

(6.1) CorHn+1/Hn
(ΣH,h,n+1(G)) = ΣH,h,n((σ ⊗ φ)G),

• for G(X) ∈HW (Tf (h)),

(6.2) ΣH,h,n(DhG(X)⊗ eh)

= (−1)h(h− 1)!p(h−1)n expVf (h),Hn
(G(ζpn − 1)),

where D denotes the differential operator (1 + X) d
dX , and

expVf (h),Hn
: Hn ⊗Dcris(Vf (h))/ Fil0 Dcris(Vf (h))→ H1

f (Hn, Vf (h))

denotes the Bloch–Kato exponential map (cf. [7]).
In the rest of this section, we fix a root α ∈ Cp of X2− apX + pk−1 such

that

(6.3) ordp(α) < k − 1.

Let β be the other root. We note that if f is ordinary (i.e. ap ∈ O×
p ), then

α is the unit root, that is, α ∈ O×
p .

Proposition 6.1. — If α[H:Qp] ̸≡ 1 mod p, then 1 − φ : W ⊗ M →
W ⊗M is surjective.
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Remark 6.2. — If f is non-ordinary, then the assumption that α[H:Qp] ̸≡
1 mod p is automatic. In the case where f is ordinary (α is the unit root in
this case), if ap ∈ Zp and ap ̸≡ 1 mod p, then α ∈ Z×

p \ 1 + pZp, and hence
αd ̸≡ 1 mod p for any power d of p.

Proof. — Let x ∈ W ⊗ M. If neither α nor β is a unit, then A =∑
n⩾0 φn(x) converges, and (1 − φ)A = x. Hence, we obtain the propo-

sition. We assume that f is ordinary. Then, α ∈ O×
p , and β is not a unit.

In this case, we write x = axα + bxβ , where a, b ∈ W , and xα, xβ ∈ M

are elements such that φxα = αxα and φxβ = βxβ (we note that M is an
Op-module). We put d = [H : Qp] and

Aα = 1
1− αd

∑
0⩽i⩽d−1

φi(axα), Aβ =
∑
n⩾0

φn(bxβ).

We note that by the assumption that αd ̸≡ 1 mod p, we have Aα ∈W⊗M.

Since σd = 1 on W , we have (1− φ)(Aα + Aβ) = x. □

6.1.2. Construction

We assume the following assumption.

Assumption B. — For every n ⩾ 0, we have αp
n ̸≡ 1 mod p.

Remark 6.3. — The assumption is automatic if f is non-ordinary. Even
in the case where f is ordinary and α is the unit root, if ap ∈ Zp and
ap ̸≡ 1 mod p then by Remark 6.2, Assumption B holds.

For a positive integer S relatively prime to p, we denote by OS the ring of
integers of Q(S), and for h ∈ Z we define HS(Tf (h)) ⊆ (OS⊗ZZp)[[X]]⊗Zp

Dcris(Vf (h)) as the submodule consisting of G(X) ∈ (OS⊗ZZp)[[X]]⊗M⊗
Zpe−h such that

∑
ζ∈µp

G(ζ(1+X)−1) = pφ(G(X)). For h ⩾ 1, we define

ΣS,h,n : HS(Tf )→ H1
f (Q(S)⊗Q Qp(ζpn), Tf (h))

by ΣS,h,n =
∏
v|p ΣQ(S)v,h,n, where v ranges over all primes of Q(S) above

p, and the cohomology group H1
f (Q(S)⊗Q Qp(ζpn), Tf (h)) may be defined

as
∏
v|p H1

f (Q(S)v(ζpn), Tf (h)).
Since Q(S) is a p-extension of Q, Proposition 6.1 implies that the map

in [2, p. 247]

∆0 : (OS ⊗ Zp)[[X]]⊗ M → OS ⊗M / (1− φ)OS ⊗M ; g(X) 7→ g(0)
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is the zero-map. Hence, by the short exact sequence in the proof of [2,
Lemma 4.1.3], for each η ∈ M ⊗Op

Op[α], there exists a unique GS,η ∈
HS(Tf )⊗Op

Op[α] such that

(6.4) (1− φ)GS,η = 1
S

γ−1
S (ξS(1 + X)⊗ η) = 1

S
ξS(1 + X)1/S ⊗ η,

where ξS := trQ(µS)/Q(S)(ζS), and γS ∈ G∞ is the element such that
κcyc(γS) = S ∈ Z×

p . By the abuse of notation, we let ΣS,h,n denote the
homomorphism

HS(Tf )⊗ Fp[α]→ H1
f (Q(S)⊗Qp(ζpn), Vf (h))⊗ Fp[α]

obtained by extension of scalars.
For an Op-module B, we put

B∗ = HomOp
(B, Op).

Proposition 6.4. — There exists an element ηα of Dcris(Vf )⊗Op
Op[α]

satisfying the following conditions:
(1) For a nonzero element ω ∈ S(f) ∼= F , we have

φηα = αηα, [ω, ηα] = cek−1,

for some c ∈ F ×, where [−,−] denotes the scalar extension of the
natural pairing

[−,−] : Dcris(Vf )×Dcris(Vf )→ Dcris(Fp(1− k))

induced by the isomorphism HomFp
(Vf , Fp) ∼= Vf (k − 1).

(2) For 1 ⩽ i ⩽ k − 1, n ⩾ 0 and S with (S, p) = 1, the element
ΣS,i,n(Gσ−n

S,ηα
) of H1

f (Q(S)⊗Qp(ζpn), Vf (i))⊗ Op[α] lies in

H1
/f (Q(S)⊗Qp(ζpn), Tf (k − i))∗ ⊗ Op[α],

which is regarded as a subgroup of H1
f (Q(S)⊗Qp(ζpn), Vf (i))⊗Op[α]

by the cup product (cf. [7, Proposition 3.8]) and the isomorphism
HomFp

(Vf (i), Fp(1)) ∼= Vf (k − i).

Proof. — By (6.3) and [13, Theorem 16.6(1)], there exists ηα such that
φηα = αηα and [ω, ηα] = ek−1. We note that the image of H1

f (Q(S) ⊗
Qp(ζpn), Tf (i)) in the vector space H1(Q(S)⊗Qp(ζpn), Vf (i)) is contained in

HomOp

(
H1
/f (Q(S)⊗Qp(ζpn), Tf (k − i)) , Op

)
.

It then suffices to show that there exists c ∈ F × such that the element
ΣS,i,n(cηα) of H1

f (Q(S) ⊗ Qp(ζpn), Vf (i)) ⊗ Fp[α] lies in the submodule
H1

f (Q(S)⊗Qp(ζpn), Tf (i))⊗Op[α]. Since M is a lattice of Dcris(Vf ), there
exists c ∈ F × such that cηα lies in M ⊗ Op[α]. Since ΣS,i,n is induced by
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the extension of scalars of HS(Tf )→ H1
f (Q(S)⊗Qp(ζpn), Tf (i)), we deduce

that cηα satisfies (2) as well as (1). □

By replacing ω by c−1ω, where c ∈ F × as in Proposition 6.4(1), we
obtain the following.

Corollary 6.5. — There exists a pair

(ω, ηα) ∈ S(f)× (Dcris(Vf )⊗ Fp[α])

such that ηα satisfies the conditions (1) and (2) in Proposition 6.4, and
[ω, ηα] = ek−1 ∈ Dcris(Fp(1− k)).

Definition 6.6. — In the rest of this paper, we fix a pair (ω, ηα) ∈
S(f) × (Dcris(Vf )⊗ Fp[α]) as in Corollary 6.5. We write GS,α = GS,ηα

∈
HS(Tf ) ⊗ Fp[α], which is defined by (6.4). For 1 ⩽ i ⩽ k − 1 and n ⩾ 0,
we put

dαS,i,n = −ΣS,i,n(Gσ−n

S,α ) ∈ H1
f (Q(S)⊗Qp(ζpn), Vf (i))⊗ Op[α].

To simplify the notation, we denote by Ω± the associated periods Ω±
ω (see

Definition 2.1 for the notation). We also write θS,i = θS,i,ω and ϑS,i =
ϑS,i,ω.

Remark 6.7.
(1) We explain how many the pairs as in the Corollary 6.5 exist. Re-

quiring the condition in Corollary 6.5, the choice of ω is equivalent
to ηα. If (ω, ηα) is as in the corollary, then for a nonzero element
c ∈ OF,(p) := F∩Op, the pair (c−1ω, cηα) also satisfies the condition
in the corollary. Hence, the set of pairs (ω, ηα) as in the corollary
may be identified with OF,(p)\{0}. We note that Theorem 1.1 holds
for every pair.

(2) By the proof of Proposition 6.4, we may take a pair (ω, ηα) such
that ηα is a member of a basis of the lattice M⊗Op[α] of Dcris(Vf )⊗
Op[α].

Proposition 6.8. — We have the following norm relations.
(1) If l is a prime not dividing pS, then we have CorQ(Sl)/Q(S)(dαSl,i,n) =
−li−1 Fr−1

l dαS,i,n, where CorQ(Sl)/Q(S) : H1(Q(Sl) ⊗ Qp(ζpn),−) →
H1(Q(S)⊗Qp(ζpn),−) is induced by the corestriction maps.

(2) We have

CorQp(ζpn+1 )/Qp(ζpn )(dαS,i,n+1) =
{

αdαS,i,n (n ⩾ 1),
(α− pi−1 Fr−1

p )dαS,i,0 (n = 0),
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where

CorQp(ζpn+1 )/Qp(ζpn ) : H1(Q(S)⊗Qp(ζpn+1),−)→ H1(Q(S)⊗Qp(ζpn),−)

denotes the corestriction map.
Proof. — By [28, 2.2.7] and [2, Lemma 4.1.3(i)], there exists a unique

GS,i ∈HS(Tf (i))⊗ Fp(α) such that

(6.5)
(1− φ)(GS,i(X)) = γ−1

S (ξS(1 + X))⊗ ηα ⊗ e−i

= ξS(1 + X)1/S ⊗ ηα ⊗ e−i.

Since (Di ⊗ ei)(ξS(1 + X)1/S ⊗ ηα ⊗ e−i) = 1
Si ξS(1 + X)1/S ⊗ ηα, by [2,

Lemma 4.1.3(ii)] we have (Di ⊗ ei)GS,i = S−(i−1)GS,α. Hence, by (6.2)

(6.6) dαS,i,n = (−1)i−1(i− 1)!Si−1p(i−1)n expS,n,Vf (i)(Gσ−n

S,i (ζpn − 1)),

where

expS,n,Vf (i) : (Q(S)⊗Qp(ζpn))⊗Qp

Dcris(Vf (i))
Fil0(Dcris(Vf (i)))
→ H1

f (Q(S)⊗Qp(ζpn), Vf (i))

denotes the direct sum of the exponential maps. The assertion (1) fol-
lows from (6.5) and (6.6). If n ⩾ 1, then the assertion (2) follows from
φηα = αηα and (6.1). See [28, §2.4.2] for the case n = 0 (we note that
dαS,i,n = (−1)i−1(i − 1)!Si−1Σn−1,i(Gσ−n

S,i (X)) where Σn−1,i is as in [28]
and associated to Vf (i)). □

6.2. Kato’s Euler system

We recall Kato’s Euler system constructed in [13]. We assume the hy-
pothesis (2) in Assumption A.

For a finite extension L of Q or Qp and for i, j ∈ Z we denote by Twj,Tf (i)
the composite

Twj,Tf (i) : lim←−
n

H1(L(ζpn), Tf (i))→ lim←−
n

H1(L(ζpn), Tf (i))(j)

∼→ lim←−
n

H1(L(ζpn), Tf (i + j)),

where the first map is induced by the product with {ζpm}⊗i
m⩾1 ∈ Zp(i), and

we refer the reader to [31, Proposition 6.2.1] for the second map.
For n ⩾ 0, we put Kn = Q(ζpn), K∞ = ∪n⩾0Kn and Gpn = Gal(Kn/Q).

For a positive integer S relatively prime to p, we denote by Kn(S) the com-
positum KnQ(S). By applying [31, Lemma 9.6.1] to Kato’s Euler system
(cf. [13, Theorems 9.7 and 12.5]), we have the following.
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Theorem 6.9. — There exists an element

{zSpn}n⩾0,(S,p)=1 ∈
∏
n,S

H1(Kn(S), Tf (k))

satisfying the following conditions.
(1) For a prime l ̸= p, we have

CorKn(Sl)/Kn(S)(zSlpn) =
{

(1− all Fr−1
l +ϵ(l)lk Fr−2

l )zSpn (l ∤ S),
zSpn (l | S).

(2) We have {zSpn}n ∈ lim←−n H1(Kn(S), Tf (k)).
(3) For 1 ⩽ i ⩽ k − 1, S > 0 and n ⩾ 0, we denote by z

(k−i)
Spn the image

of {zSpm}m⩾0 under the composite

lim←−
m

H1(Km(S), Tf (k))
Tw−i,Tf (k)
−−−−−−−→ lim←−

m

H1(Km(S), Tf (k − i))

→H1(Kn(S), Tf (k − i)),

where the second map is the natural projection. Then, for a Dirich-
let character χ of Gal(Kn(S)/Q) of conductor Spn, we have∑

γ∈Gal(Kn(S)/Q)

χ(γ) exp∗
S,n,Vf (i)∗(1)(γ locp(z(k−i)

Spn ))

= (2π
√
−1)k−i−1 L{p}(f, χ, i)

Ω±
ω

ω ⊗ ei−k,

where the sign ± is equal to that of (−1)i−1χ(−1),

exp∗
S,n,Vf (i)∗(1) : H1(Kn(S)⊗Qp, Vf (k − i))→ Kn(S)⊗Q Dcris(Vf (k − i))

denotes the sum of the dual exponential maps, and L{p}(f, χ, s) is
the L-function without Euler factor at p.

Remark 6.10.

(1) Although in [13] the integrality of such a system is verified only in
the case where S = 1, one can generalize the arguments to general
S under Assumption A(2). Let us briefly explain about it. Follow-
ing [13, §13.9] (cf. [9, Definition A.1]), for δ ∈ Vf = VFp

(f), we de-
fine z(p)

δ ∈ lim←−m H1(Km(S), Tf )⊗Λ(S) Q(Λ(S)), where we put Λ(S) =
O[[Gal(K∞/Q)]][ΓS ] and Q(Λ(S)) denotes its total quotient ring. By
the same argument as in [13, §13.12], one can show that z(p)

δ lies in(
lim←−m H1(Km(S), Tf )

)
⊗Zp

Qp and that if δ ∈ Tf and P is a height-
one prime ideal of Λ(1), then z(p)

δ ∈
(
lim←−m H1(Km(S), Tf )

)
⊗Λ(1)
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Λ(1)
P . Here, Λ(1)

P denotes the localization at P. We also note that by
Shapiro’s lemma, we have lim←−mH1(Km(S), Tf ) = lim←−mH1(Km, Tf⊗
O[ΓS ]). Under Assumption A(2), by Lemma 3.1 and applying the
same argument as in [13, §13.8] to the representation Tf ⊗ O[ΓS ],
we have that lim←−m H1(Km(S), Tf ) is Λ(1)-free (see also [19, Lem-
ma 6.8.12]). Then, as in [13, §13.14], if δ ∈ Tf , then z(p)

δ ∈
lim←−m H1(Km(S), Tf ) (a similar phenomenon is observed in [19, Cor-
ollary 6.8.13]). If we put {z′

Spn}n⩾0 = Twk,Tf
(z(p)
δ+

f
+δ−

f

), where δ±
f

are as in Definition 2.1, then the system {z′
Spn}S,n satisfies the as-

sertion (3), which follows in the same way as in the case where
S = 1 (cf. [13, Theorem 12.5]). By [13, Proposition 8.12], it suf-
fices to apply [31, Lemma 9.6.1] to {z′

Spn} in order to obtain {zSpn}
which satisfies the norm relations (1) and (2) as well as (3).

(2) By the argument as in the proof of [31, Theorem 6.3.5], for a prime
l ∤ pS, we have

CorKn(Sl)/Kn(S)(z
(k−i)
Slpn ) = (1− all

1−i Fr−1
l +ϵ(l)lk−2i Fr−2

l )z(k−i)
Spn .

In particular, {z(k/2)
Spn }n,(S,pN)=1 gives rise to an Euler system in the

sense of Definition 4.4.

For n ⩾ 0 and a square-free integer S > 0 relatively prime to p, we put

ZSpn,i =
∑

γ∈ΓSpn

γ−1z
(k−i)
Spn ⊗ γ ∈ H1(Kn(S), Tf (k − i))⊗Op

Op[ΓSpn ].

Proposition 6.11. — For n ⩾ 0 and a square-free integer S > 0 rela-
tively prime to p, we have

ZSpn,i ∈ H1(Kn(S), T (k − i))⊗Op
I
ai(S)
Kn(S),

where ai(S) denotes the number of primes l of dividing S such that li−1 −
al + ϵ(l)lk−i−1 = 0, and we write IKn(S) for the augmentation ideal of
Op[Gal(Kn(S)/Q)].

Proof. — The proof is the same as that of [26, Proposition 5.10]. □

6.3. Kato’s Euler system and p-adic L-functions with tame
characters

We recall the p-adic L-function associated to f , which is originally con-
structed by [1, 34], and we describe its relation with Kato’s Euler system by
using local points dαS,i,n (cf. Definition 6.6). We assume Assumption A(2).
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For h ⩾ 1 and a subfield L of Cp, we put

Hh,L[[Γ]] =

∑
n⩾0

an(γ − 1)n ∈ L[[γ − 1]]

∣∣∣∣∣∣ lim
n→∞

|an|p
nh

= 0

 ,

where Γ ∼= Zp denotes the Galois group of the cyclotomic Zp-extension of
Qp, γ ∈ Γ is a topological generator, and | · |p denotes the multiplicative
valuation of Cp. Noting G∞ = Γ×Gp, we put Hh,L[[G∞]] = Hh,L[[Γ]][Gp].
For j ∈ Z, we denote by Twj : Hh,L[[G∞]]→Hh,L[[G∞]] the twist defined as∑

n⩾0,τ∈Gp

an(γ − 1)nτ 7→
∑

an(κcyc(γ)jγ − 1)nκcyc(τ)jτ.

Let
prn : Hh,L[[G∞]][GS ]→ L[Gpn ][GS ]

denote the projection which is induced by H∞,L[[G∞]]/(γpn −1) ∼= L[Gpn ].
Here, GS := Gal(Q(ζS)/Q), and H∞,L[[G∞]] = ∪h⩾1Hh,L[[G∞]]. For a
square-free integer S > 0 relatively prime to p, by [23] there exists a unique
Lp,S,α(f) ∈Hk−1,Fp[α][[G∞]][GS ] such that for 0 ⩽ i ⩽ k − 2 and n ⩾ 0

(6.7) prn ◦ Twi(Lp,S,α(f))

=
{

α−n (ϑSpn,i+1 − pk−2α−1νSpn−1,Spn(ϑSpn−1,i+1)
)

(n ⩾ 1),
(1− piα−1 Frp)(1− pk−i−2α−1 Fr−1

p )ϑS,i+1 (n = 0),
∈ Fp(α)[Gpn ][GS ].

Definition 6.12. — Let Lp,S,α(f) be the image of Tw−1 (Lp,S,α(f))
under the natural projection Hk−1,Fp[α][[G∞]][GS ]→Hk−1,Fp[α][[G∞]][ΓS ].

Proposition 6.13. — The p-adic L-functions Lp,S,α(f) are elements
of Hk−1,Fp[α][[G∞]][ΓS ] which have the following properties and are char-
acterized by them:

(1) For all 1 ⩽ i ⩽ k− 1 and all characters χ : G∞×ΓS → Q× of finite
order whose conductor is divisible by S, we have

(6.8) κicycχ(Lp,S,α(f))

= ep(α, i− 1, χ)Si−1pn(i−1)τ(χ)(i− 1)!(−2π
√
−1)k−i−1 L(f, χ−1, i)

Ω± ,

where n ⩾ 0 is the integer such that pn exactly divides the conduc-
tor of χ, the sign ± is that of (−1)i−1χ(−1), and

ep(α, i− 1, χ) := 1
αn

(
1− χ−1(p)pk−1−i

α

)(
1− χ(p)pi−1

α

)
.
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(2) For a prime l relatively prime to pS,

πSl/S (Lp,Sl,α(f)) = −l−1 Frl
(
1− all Fr−1

l +ϵ(l)lk Fr−2
l

)
Lp,S,α(f),

where πSl/S : Hk−1[[G∞]][ΓSl] → Hk−1[[G∞]][ΓS ] is induced by
ΓSl → ΓS , and by abuse of notation, Frl ∈ G∞ × ΓS denotes the
element whose image in G∞ is γS and whose image in ΓS is Frl.

Remark 6.14.
(1) By our choice of periods, if f is ordinary, then we have Lp,S,α(f) ∈

Op[[G∞]][ΓS ] (cf. Corollary 6.16).
(2) The p-adic L-function Lp,S,α(f) is in fact characterized by the

property (2) above and the more relaxed condition as follows: for
1 ⩽ i ⩽ k − 1 and for almost all characters χ of G∞ × ΓS of finite
order whose conductor is divisible by S, we have (6.8).

Proof. — The assertion (1) follows from (6.7) and Proposition 2.2(2).
The assertion (2) is deduced from Proposition 2.2(1).

We next prove that our p-adic L-functions are characterized by (1) and
(2). If there is another family {MS}S of elements of Hk−1,Fp[α][[G∞]][ΓS ]
satisfying the properties (1) and (2), then for each S, κicycχ(Lp,S,α(f)) =
κicycχ(MS) for all 1 ⩽ i ⩽ k − 1 and for almost all characters χ : G∞ ×
ΓS → Q× of finite order. Hence, by using [28, §1.3.1], we have Lp,S,α(f) =
MS . □

For S > 0 with (S, p) = 1, the pairings induced by the cup product

(−,−)Tf (k−i),S,n : H1(Kn(S)⊗Qp, Tf (k−i))×H1(Kn(S)⊗Qp, Tf (i))→ Op

induce a paring

⟨−,−⟩Tf (k−i),S : Z∞,S(Tf (k − i))× Z∞,S(Tf (i))→ Λ[ΓS ]

as follows, where Λ := Op[[G∞]] and Z∞,S(−) := lim←−n H1(Kn(S)⊗Qp,−).
For x∞ = (xn) ∈ Z∞,S(Tf (k − i)), y∞ = (yn) ∈ Z∞,S(Tf (i)), the pairing
⟨x∞, y∞⟩Tf (k−i),S is defined as the limit of

(6.9)
∑

τ∈Gpn ×ΓS

(τ−1xn, yn)Tf (k−i),S,nτ ∈ Op[Gpn ][ΓS ].

By abuse of notation, we denote by ⟨−,−⟩Tf (k−i),S the base change

Hk−1[[G∞]]⊗Λ Z∞,S(Tf (k − i))×Hk−1[[G∞]]⊗Λ Z∞,S(Tf (i))
→Hk−1[[G∞]][ΓS ].
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We put

RS,ψ =

f(X) ∈ (OS ⊗ Zp)[[X]]

∣∣∣∣∣∣
∑
ζ∈µp

f(ζ(1 + X)− 1) = 0

 ,

which is the (OS ⊗ Zp)[[G∞]]-submodule of (OS ⊗ Zp)[[X]] freely generated
by 1 + X, and we put DS(Vf ) = RS,ψ ⊗Zp

Dcris(Vf ). Let

Ω(0)
Vf ,S

: DS(Vf )⊗ Op[α]→Hk,Fp(α)[[G∞]]⊗Op[[G∞]] Z∞,S(Tf )

be Perrin-Riou’s big exponential map such that for i, n ⩾ 1,

(6.10) prn ◦ Twi ◦ Ω(0)
Vf ,S

(g) = ΣS,i,n((σ ⊗ φ)−nG),

where (1− φ)G = g, and

prn : Hk,Fp(α)[[G∞]]⊗ Z∞,S(Tf (i))→ H1(Kn(S)⊗Qp, Vf (i))⊗ Fp(α)

denotes the projection. See [28], [29, §3.3] or [2, §5] for the details (although
in those paper, the quotient Z∞,S(Tf )/H0(K∞(S)⊗Qp, Tf ) is considered,
by [4, Remark II. 14] we do not need to take the quotient).

Proposition 6.15. — We put gS = − 1
S ξS(1 + X)1/S ⊗ ηα ∈ DS(Vf )⊗

Op[α] and z∞,S = {zSpn}n ∈ Z∞,S(Tf (k)). Then, ⟨z∞,S , Ω(0)
Vf ,S

(gS)⟩Tf (k),S =
Lp,S,α(f).

Proof. — Let MS = ⟨z∞,S , Ω(0)
Vf ,S

(gS)⟩Tf (k),S . Since ηα ∈ Dcris(Vf ) is an
eigenvector such that the slope of its eigenvalue is less than k− 1, MS lies
in Hk−1,Fp(α)[[G∞]][ΓS ] (cf. [13, Theorem 16.4]). Hence, it suffices to show
that MS verifies the properties (1) and (2) in Proposition 6.13.

(1). — We verify the slightly more relaxed condition in Remark 6.14(2).
Let χ be a character of G∞ × ΓS of finite order whose conductor is Spn

with n ⩾ 1. Let GS,i ∈ HS(Tf (i)) ⊗ Fp[α] be as in (6.5). Then, by [28,
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§3.6.1], for 1 ⩽ i ⩽ k − 1 we have

(6.11) κicycχ(MS)

= χTwi
(
⟨z∞,S , Ω(0)

Vf ,S
(gS)⟩Tf (k),S

)
= χ⟨Tw−i,Tf (k) (z∞,S) , Twi(Ω(0)

Vf ,S
(gS))⟩Tf (k−i),S

= −χ

 ∑
τ∈Gpn ×ΓS

(
τ−1z

(k−i)
Spn , ΣS,i,n((σ ⊗ φ)−nGS,α)

)
Tf (k−i),S,n

τ


= −χ

(∑
τ

(
τ−1z

(k−i)
Spn ,

1
αn

ΣS,i,n(Gσ−n

S,α )
)
Tf (k−i),S,n

τ

)

= − (−1)iSi−1p(i−1)n

αn

×
∑
τ

(
τ−1z

(k−i)
Spn , expS,n,Vf (i)(Gσ−n

S,i (ζpn − 1))
)
Tf (k−i),S,n

χ(τ)

= (−1)i−1Si−1p(i−1)n

αn

×
∑
τ

[
exp∗

S,n,Vf (i)∗(τ−1z
(k−i)
Spn ), Gσ−n

S,i (ζpn − 1)
]
S,n

χ(τ),

where

• [−,−]S,n denotes the composite

(Kn(S)⊗Dcris(Vf (k − i)))× (Kn(S)⊗Dcris(Vf (i)))
→ Kn(S)⊗Dcris(Fp(1))→ Fp.

Here, the first map is the natural pairing, and the last map is the
tensor product of the trace map Kn(S)→ Q and the natural iden-
tification Dcris(Fp(1)) = Fp.

• the fourth equality follows from φηα = αηα.
• the fifth equality follows from (6.6).

Since χ is primitive as a character of ΓS × Gpn and (φGσ−n

S,i )(ζpn − 1) =
Gσ−(n−1)

S,i (ζpn−1 − 1), by Theorem 6.9 (3), (6.5) and Corollary 6.5, we have
that the last term of the computation (6.11) is equal to κicycχ(Lp,S,α(f)).

(2). — It follows from Proposition 6.8 and the norm relation of
{zSpn}. □
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Corollary 6.16. — For 1 ⩽ i ⩽ k − 1 and n ⩾ 0,

prn ◦ Twi(Lp,S,α(f))

=

α−n∑
τ∈Gpn ×ΓS

(
τ−1 locp(z(k−i)

Spn ), dαS,i,n

)
Tf (k−i),S,n

τ (n ⩾ 1),∑
τ∈ΓS

(
τ−1 locp(z(k−i)

S ), (1− pi−1α−1 Fr−1
p )dαS,i,0

)
τ (n = 0),

∈ F (α)[Gpn ][ΓS ].

Moreover, if f is ordinary, then the p-adic L-function Lp,S,α(f) lies in
Op[[G∞]][ΓS ] := lim←−n Op[Gpn ][ΓS ].

Proof. — The first assertion follows from Propositions 6.8 and 6.15.
If f is ordinary, then by Proposition 6.4(2), for n ⩾ 1 the projection prn◦

Twi ◦Ω(0)
Vf ,S

(gS) = 1
αn dαS,i,n lies in H1

/f(Kn(S)⊗Qp, Tf (k− i))∗. Therefore,

α−n
∑

τ∈Gpn ×ΓS

(
τ−1 locp(z(k−i)

Spn ), dαS,i,n

)
Tf (k−i),S,n

τ ∈ Op[Gpn ][ΓS ].

Hence, by the first assertion and [28, §3.6.1], Lp,S,α(f) ∈ Op[[G∞]][ΓS ]. □

Definition 6.17. — For 1 ⩽ i ⩽ k − 1, n ⩾ 1 and a positive integer S

relatively prime to p, we put

θSpn,i,α =
{

θSpn,i − pk−2α−1νSpn−1,Spn(θSpn−1,i) (n ⩾ 2),
θSp,i − (p− 1)pk−2α−1θS,i (n = 1),
∈ Fp[ΓSpn ]⊗ Op[α],

z
(i)
Spn = CorKn(S)/Q(Spn)

(
z
(i)
Spn

)
∈ H1(Q(Spn), Tf (i)),

c
(i)
Spn,α = CorKn(S)/Q(Spn)

(
dαS,i,n

)
∈ H1

f (Q(Spn)⊗Qp, Vf (i))⊗ Op[α]

where by abuse of notation, we denote by CorKn(S)/Q(Spn) the corestriction
map H1(Kn(S)⊗Qp,−)→ H1(Q(Spn)⊗Qp,−). For n = 0, we define z

(i)
S =

z
(i)
S ∈ H1(Q(S), Tf (i)), which coincides with z

(i)
Sp (we note that Q(Sp) =

Q(S)).

We note that by (6.7), for n ⩾ 1, α−nθSpn,i,α is equal to the image of
prn ◦ Twi(Lp,S,α(f)) in Fp[α][ΓSpn ]. Hence, Proposition 6.15, (6.10) and
Proposition 6.4(2) imply the following corollary.

Corollary 6.18. — If (S, p) = 1 and n ⩾ 1, then

θSpn,i,α =
∑

τ∈ΓSpn

(
τ−1 locp(z(k−i)

Spn ), c
(i)
Spn,α

)
Tf (k−i),S,n

τ ∈ Op[α][ΓSpn ].
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Proposition 6.19.
(1) For n ⩾ 1, πQ(Spn+1)/Q(Spn)(θSpn+1,i,α) = αθSpn,i,α where

πQ(Spn+1)/Q(Spn) : Cp[ΓSpn+1 ]→ Cp[ΓSpn ] denotes the natural pro-
jection.

(2) We have θSp,i,α = α(1 − pi−1α−1 Frp)(1 − pk−i−1α−1 Fr−1
p )θS,i in

Op[α][ΓSp] = Op[α][ΓS ].

Proof. — The proposition follows from simple computation combined
with Proposition 2.2(1). □

6.4. Mazur–Tate elements and Kato’s Euler system

Finally we construct local points to connect Mazur–Tate elements with
Kato’s Euler system. We keep the same assumption and notation as in the
previous section. In particular, we assume Assumptions A(2) and B.

Lemma 6.20. — Under Assumption B, there exists a root α ∈ Cp of
X2 − apX + pk−1 such that ordp(α) < k − 1, and for 1 ⩽ i ⩽ k − 1 and
m ∈ Z, we have ordp(1− (pk−i−1α−1)m) ⩽ 0.

Proof. — In the case where f is ordinary, it suffices to take α to be the
unit root (we need Assumption B only for the case where i = k − 1).

We next consider the case where f is non-ordinary. Then, all the roots α

and β satisfy ordp(α) < k− 1 and ordp(β) < k− 1. If ordp(α) = ordp(β) =
k − i − 1 for some 1 ⩽ i ⩽ k − 1, then k − 1 = ordp(αβ) = 2(k − i − 1),
which contradicts the assumption that k is even. Hence, there is a root α

such that for all 1 ⩽ i ⩽ k − 1, we have ordp(α) ̸= k − i− 1, which implies
that for m ∈ Z we have ordp(1− (pk−i−1α−1)m) ⩽ 0. □

We consider the following assumption.

Assumption C. — If a root α of X2 − apX + pk−1 lies in Fp, then
ordp(α) ̸= ordp(β), where β is the other root.

Proposition 6.21. — If either Fp/Qp is unramified or f is ordinary,
then Assumption C holds.

Proof. — The case where f is ordinary is immediate. We assume that
Fp/Qp is unramified and that α ∈ Fp, which implies that β ∈ Fp. Since Fp
is unramified, ordp(α) and ordp(β) are integers. If ordp(α) = ordp(β), then
ordp(αβ) = ordp(pk−1) = k − 1 is even, which contradicts the assumption
that k is even. □
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Theorem 6.22. — Let S be a positive integer relatively prime to p. Let
c

(i)
Spn be the elements defined in (6.13), (6.15), (6.16) or (6.17) below.

(1) For n ⩾ 0 and 1 ⩽ i ⩽ k − 1,

(6.12) θSpn,i =
∑

τ∈ΓSpn

(
τ−1 locp

(
z

(k−i)
Spn

)
, c

(i)
Spn

)
Tf (k−i),S,n

τ ∈ Fp[ΓSpn ].

(2) The element c
(i)
S lies in H1

/f(Q(S) ⊗ Qp, Tf (k − i))∗ ⊗ Op[α], and
hence θS,i also lies in the integral ring Op[ΓS ].

(3) Under Assumption C, for n⩾1, c
(i)
spn ∈H1

/f(Q(Spn)⊗Qp, Tf (k−i))∗,
and hence θSpn,i ∈ Op[ΓSpn ].

Remark 6.23. — Even without assuming Assumption A(2) or Assump-
tion B, we may obtain at least the assertion (1). The reason that we are
assuming those assumption in this section is to guarantee the integrality of
c

(i)
Spn and z

(i)
Spn .

In the rest of this section, we prove Theorem 6.22. Let α be a root of
X2 − apX + pk−1 such that ordp(α) < k − 1, and β the other root.

6.4.1. The case where n = 0

Let α be as in Lemma 6.20. We define c
(i)
S by

(6.13) c
(i)
S = (1−pk−i−1α−1 Fr−1

p )−1dαS,i,0 ∈ H1
f (Q(S)⊗Qp, Vf (i))⊗Op[α].

By Corollary 6.18 and Propositions 6.8 and 6.19, we obtain (6.12) for
n = 0, that is,

(6.14) θS,i =
∑
τ∈ΓS

(τ−1 locp(z(k−i)
S ), c

(i)
S )Tf (k−i),S,0τ.

We note that since ordp
(
1− (pk−i−1α−1)[Q(S)v :Qp]) ⩽ 0, where v is any

prime of Q(S) above p, we have (1− pk−i−1α−1 Fr−1
p )−1 ∈ Op[α][ΓS ], and

hence Proposition 6.4(2) implies the assertion (2).

6.4.2. The case where n ⩾ 1

In the following, we construct c
(i)
Spn for n ⩾ 1 and complete the proof

of the theorem. We assume Assumption C holds. In order to obtain (6.12)
without assuming Assumption C, it suffices to consider c

(i)
Spn as in (6.15)

below (even if f is non-ordinary, the construction and the proof of (6.12)
works).
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The case where f is ordinary

In this case, α is the unit root of X2 − apX + pk−1, and α ∈ Fp. We
define c

(i)
Spn (n ⩾ 1) inductively by

(6.15) c
(i)
Spn =

{
c

(i)
Sp,α + (p− 1)pk−2α−1c

(i)
S (n = 1),

c
(i)
Spn,α + α−1pk−2 resn−1,n(c(i)

Spn−1) (n ⩾ 2),

where resn−1,n : H1(Q(Spn−1)⊗Qp, Vf (i))→ H1(Q(Spn)⊗Qp, Vf (i)) de-
notes the map induced by the restriction maps. Since c

(i)
S ∈ H1

/f(Q(S) ⊗
Qp, Tf (k− i))∗ and since c

(i)
Spn,α ∈ H1

/f(Q(Spn)⊗Qp, Tf (k− i))∗ for n ⩾ 1,
we have c

(i)
Spn ∈ H1

/f(Q(Spn)⊗Qp, Tf (k − i))∗.

The assertion (6.12) follows from (6.14), Corollary 6.18 and the definition
of θSpn,i,α.

The case where α ̸∈ Fp

In this case, for n ⩾ 1 we define c
(i)
Spn ∈ H1

f (Q(Spn)⊗Qp, Vf (i)) by

(6.16) αc
(i)
Spn,α = αc

(i)
Spn + y,

where y is an element of H1
f (Q(Spn) ⊗ Qp, Vf (i)). We note that since for

1 ⩽ i ⩽ k − 1, c
(i)
Spn,α ∈ H1

/f(Q(Spn)⊗Qp, Tf (k − i))∗ ⊗Op[α], the element
c

(i)
Spn lies in H1

/f(Q(Spn)⊗Qp, Tf (k − i))∗.

The assertion (6.12) follows from Corollary 6.18 and from that θSpn,i ∈
Fp[ΓSpn ] ⊊ Fp[ΓSpn ][α].

The case where ordp(α) ̸= ordp(β) and f is non-ordinary

In this case, β also satisfies ordp(β) < k − 1 and then, the results in
the previous section may be applied with replacing α by β. For n ⩾ 1, we
define

(6.17) c
(i)
Spn =

αc
(i)
Spn,α − βc

(i)
Spn,β

α− β
.

Since ordp(α) ̸= ordp(β), for any i ⩾ 0 the element c
(i)
Spn lies in H1

/f(Qp ⊗
Q(Spn), Tf (k − i))∗. The assertion (6.12) follows from Corollary 6.18 and

θSpn,i = αθSpn,i,α − βθSpn,i,β

α− β
.
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7. Proof of the results

We prove the theorems stated in Section 1 (Theorems 7.2, 7.4 and Corol-
lary 7.5). We also prove a result on exceptional zeros of Mazur–Tate ele-
ments (Theorem 7.3).

We keep the same notation as in the previous section. We write θSpn =
θSpn,k/2 and θSpn,α = θSpn,k/2,α, where α is a root of X2−apX+pk−1 satis-
fying such that ordp(α) < k−1. We put {zSpn}S∈N ,n⩾0 = {z(k/2)

Spn }S∈N ,n⩾0
(cf. Definition 6.17), which is an Euler system for T = Tf (k/2) in the sense
of Definition 4.4. Here, N is the set of square-free, positive integers rela-
tively prime to pN , with the convention that 1 ∈ N .

7.1. Applications of local points c
(k/2)
Spn,α and c

(k/2)
Spn

7.1.1. Proof of a part of Theorem 1.1

Corollary 7.1. — Assume Assumptions A and B. Let S be a positive
integer relatively prime to pN such that every prime l | S satisfies (1.1).

(1) We have

θS ∈ I
min{p,rf }
S , θSpn,α ∈ I

min{p,rf }
Spn ⊗ Op[α] for n ⩾ 1.

(2) If Assumption C holds, then for n ⩾ 1, we have θSpn ∈ I
min{p,rf }
Spn .

Proof. — If we denote by S′ the square-free integer divisible by the prime
factors of S, then ΓS = ΓS′ . Hence, we may assume that S is square-free.

We first prove the assertion on θSpn,α. Since c
(k/2)
Spn,α ∈ H1

/f(Q(Spn) ⊗
Qp, T )∗ ⊗ Op[α] (cf. Definition 6.17), it induces a homomorphism of Op-
modules

(7.1) H1
/f(Q(Spn)⊗Qp, T )⊗ Op[ΓSpn ]→ Op[α][ΓSpn ]

which sends
∑
τ∈ΓSpn

aτ ⊗ τ to
∑
τ (aτ , c

(k/2)
Spn )T,S,nτ . If we regard the Op-

module H1
/f(Q(Spn)⊗Qp, T )⊗Op[ΓSpn ] as an Op[ΓSpn ]-module by its action

on the second factor, then the map (7.1) is a homomorphism of Op[ΓSpn ]-
modules. Since (7.1) sends

∑
τ τ−1zSpn ⊗ τ to θSpn,α (by Corollary 6.18),

by Theorem 5.9 we obtain the assertion (1).
The other assertions similarly follow from Theorem 6.22. □

The following is a part of the main result.
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Theorem 7.2. — Under the assumption and notation as in Cor-
ollary 7.1, assume further that Fp/Qp is unramified and that every prime
l | S satisfies p2 ∤ l − 1. Then, for n = 1, 2, we have

θSpn,α ∈ I
min{p,rf }
Spn ⊗ Op[α], θSpn ∈ I

min{p,rf }
Spn , and θS ∈ I

min{p,rf }
S .

Proof. — By using Corollary 5.11 instead of Theorem 5.9 and by Propo-
sition 6.21, the same argument as in the proof of Corollary 7.1, we deduce
the theorem. □

7.1.2. Exceptional zeros

By Proposition 6.11 and Theorem 6.22, following the same argument of
the proof of Corollary 7.1, we obtain the following theorem on the excep-
tional zeros of Mazur–Tate elements.

Theorem 7.3. — Assume Assumptions A(2) and B. Let S be a positive
integer relatively prime to p and n a non-negative integer. If either Assump-
tion C holds or n = 0, then for 1 ⩽ i ⩽ k−1, we have θSpn,i ∈ I

ai(S)
Spn ,where

we recall that ai(S) denotes the number of primes dividing S such that
li−1 − al + ϵ(l)lk−i−1 = 0.

7.2. Proof of the main result

It remains to prove Theorems 1.1 under (b) and 1.3.

Theorem 7.4. — Assume Assumptions A and B. Assume also that the
p-parity conjecture holds. Let S be a positive integer relatively prime to pN

such that every prime l | S satisfies (1.1). Then, the following assertions
hold.

(1) We have θS ∈ I
min{rf ,p}
S , and for n ⩾ 1, θSpn,α ∈ I

min{rf ,p}
Spn ⊗Op[α].

(2) Assume further Assumption C (which holds if Fp/Qp is unramified).
Then, for n ⩾ 1 we have θSpn ∈ I

min{rf ,p}
Spn .

Proof. — We first note that Proposition 2.5 implies that

(7.2) θSpn,α = (−1) k
2 εf Fr−1

−N ι(θSpn,α).

Let R = Op[α] (resp. R = Op) and ΘSpn = θSpn,α (resp. ΘSpn = θSpn).
Lemma 3.5(1) implies that rf ⩽ rf ⩽ rf + 1. By Corollary 7.1, we may
assume that 1 ⩽ rf = rf +1 ⩽ p. Then, we have ΘSpn ∈ I

rf −1
Spn ⊗Op

R. Since
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ι acts on I
rf −1
Spn /I

rf

Spn by the multiplication by (−1)rf −1 and since ΓSpn acts
on I

rf −1
Spn /I

rf

Spn trivially, Proposition 2.5 or (7.2) implies that

ΘSpn ≡ εf (−1)rf −1+ k
2 ΘSpn mod I

rf

Spn ⊗Op
R.

Then, by (2.3) and the assumption that ords=k/2(L(f, s)) ≡ rf mod 2, we
conclude the theorem. □

Corollary 7.5. — Assume Assumptions A and B. Let S be a pos-
itive integer relatively prime to pN such that every prime l | S satis-
fies (1.1). If f is ordinary, then Lp,S,α(f) ∈ Op[[G∞]][ΓS ], and Lp,S,α(f) ∈
I

min{rf ,p}
∞,S,k/2 ,where I∞,S,k/2 is as in Theorem 1.3.

Proof. — The assertion that Lp,S,α(f) ∈ Op[[G∞]][ΓS ] is proved in Corol-
lary 6.16. If we put ΞSpn = prn ◦ Twk/2(Lp,S,α(f)) ∈ Op[Gpn ][ΓS ], then it
suffices to show that for every n ⩾ 1

(7.3) ΞSpn ∈ I
min{rf ,p}
n ,

where I
min{rf ,p}
n denotes the augmentation ideal of Op[Gpn ][ΓS ]. By Corol-

laries 6.16 and 6.18, the image of ΞSpn under Op[Gpn ][ΓS ] → Op[Γpn ][ΓS ]
coincides with θSpn,α. Hence, since Γpn is the p-Sylow subgroup of Gpn ,
[26, Lemma 5.3] and Theorem 7.4 imply (7.3). □
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