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Interval groups related to
finite Coxeter groups I

Barbara Baumeister, Georges Neaime & Sarah Rees

Abstract We derive presentations of the interval groups related to all quasi-Coxeter elements
in the Coxeter group of type Dn. Type Dn is the only infinite family of finite Coxeter groups that
admits proper quasi-Coxeter elements. The presentations we obtain are over a set of generators
in bijection with what we call a Carter generating set, and the relations are those defined by the
related Carter diagram together with a twisted cycle or a cycle commutator relator, depending
on whether the quasi-Coxeter element is a Coxeter element or not. The proof is based on the
description of two combinatorial techniques related to the intervals of quasi-Coxeter elements.

In a subsequent work [4], we complete our analysis to cover all the exceptional cases of
finite Coxeter groups, and establish that almost all the interval groups related to proper quasi-
Coxeter elements are not isomorphic to the related Artin groups, hence establishing a new
family of interval groups with nice presentations [4, 5]. Alongside the proof of the main results,
we establish important properties related to the dual approach to Coxeter and Artin groups.
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1. Introduction
The philosophy of interval Garside theory is that starting from suitable intervals
in a given group, we construct an interval Garside monoid and group, along with
a complex whose fundamental group is the interval Garside group, such that the
divisibility relations of the interval provide relevant information about the interval
Garside group. Part of the information we obtain are efficient solutions to the word and
conjugacy problems, as well as important group-theoretical properties [15]. Interval
Garside groups also enjoy important homological, and homotopical properties [14].

Garside theory is relevant in the context of Coxeter and Artin groups. Actually,
Garside structures first arose out of observations of properties of Artin’s braid group
that were made in Garside’s Oxford thesis [19] and his article [20]. It was then re-
alised that Garside’s approach extends to all Artin groups of spherical type, indepen-
dently by Brieskorn–Saito and Deligne in two adjacent articles in the Inventiones [11]
and [16]. This approach is called the standard approach to Coxeter and Artin groups.

The dual approach consists of analysing the Coxeter group as a group generated
by all its reflections. Spherical Artin groups are constructed from intervals called
the generalised non-crossing partitions. The dual approach was first considered by
Birman–Ko–Lee [9] for the usual braid group, and then generalised by Bessis in [7].
The relevant intervals consist of elements lying below the so-called Coxeter elements
that play a prominent role within the dual approach. The Coxeter elements are all
conjugate to one another and some of them can be found by taking the product of
the elements in the standard generating set in any order.

Coxeter elements are of maximal length over the set of reflections, but they do
not exhaust all the elements of maximal length. Quasi-Coxeter elements [3] are of
maximal length such that the reflections in a certain reduced decomposition generate
the Coxeter group. Among them are Coxeter elements. We call a proper quasi-Coxeter
element a quasi-Coxeter element that is not a Coxeter element. Amongst the infinite
families of finite Coxeter groups, proper quasi-Coxeter elements exist only in type Dn.
Carter [13] classified the conjugacy classes in Weyl groups. Among them are the
conjugacy classes of quasi-Coxeter elements. He also defined diagrams related to the
conjugacy classes that we call Carter diagrams. Cameron-Seidel-Tsaranov [12] defined
presentations of Weyl groups defined on Carter diagrams by adding cycle commutator
relators.

We establish presentations of the interval groups related to all quasi-Coxeter ele-
ments. Our presentations are compatible with the analysis of Carter [13]. Actually,
they are always nicely defined on Carter diagrams by adding either cycle commutator
relators or twisted cycle commutator relators depending on whether the quasi-Coxeter
element is a Coxeter element or not. Twisted cycle and cycle commutator relators can
be written as relations between positive words. For Coxeter elements, where the inter-
val group is the Artin group, some of our group presentations also arise from cluster
algebras (see [1, 21] and also [23]). For almost all the other proper quasi-Coxeter
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elements, we can establish that the interval group related to each of them is not iso-
morphic to the corresponding Artin group. Although we obtain nice presentations of
these groups, the intervals of proper quasi-Coxeter elements are not lattices in almost
all the cases, hence not giving rise to Garside structures. This classifies the interval
Garside structures one obtains for quasi-Coxeter elements within the dual approach.
Along with the description of the presentations of interval groups, we describe im-
portant properties for quasi-Coxeter elements, their divisors, and their lifts to the
interval groups.

We divide our analysis into two parts. This paper is the first part of the series.
It concerns the only infinite family of Coxeter groups (that of type Dn), where
proper quasi-Coxeter elements exist. This family needs a special treatment. The sec-
ond part [4] deals with the exceptional cases, and (together with [5]) establishes the
non-isomorphism results.

The main theorem of this paper is the following. We refer to Sections 2 and 3 for
the definitions of a quasi-Coxeter element, its associated Carter diagram ∆, and the
group A(∆).

Theorem A. Let w be a quasi-Coxeter element of the Coxeter group W of type Dn

and ∆ its associated Carter diagram, as shown in Figure 1 of Section 3.3. Then the
interval group G([1, w]) admits a presentation over the generators x1, . . . , xn corre-
sponding to the vertices of ∆ together with the relations described by ∆ and the twisted
cycle commutator relator tc(xi, xj , xk, xl), associated with the 4-cycle (xi, xj , xk, xl)
within ∆, that is,

G([1, w]) ∼= A(∆)/⟨⟨
[
xi, x−1

j xkxlx
−1
k xj

]
⟩⟩.

We shall reformulate Theorem A as Theorem 5.1, and prove that theorem in Sec-
tion 6.

Our use of the word ‘twisted’ comes from the fact that when following the cycle
(xi, xj , xk, xl) in the cycle commutator relator, we invert the element xj . We call the
set {x1, . . . , xn} of generators that appears in Theorem A a Carter generating set.

The case where w is a Coxeter element is a particular case of Theorem A, where
there is no 4-cycle. Therefore, in this case, we get a new proof of the fact that G([1, w])
is the Artin group of type Dn, that was covered before in [7].

Within the proof of Theorem A, we describe an important combinatorial tech-
nique that derives reduced expressions over the set of reflections for the divisors of
length n − 1 of quasi-Coxeter elements. This reveals important information on the
poset of quasi-Coxeter elements, on parabolic subgroups, and enables us to estab-
lish nice presentations of the interval groups in accordance with Carter diagrams.
The algorithms we define use the description of the elements in the Coxeter group
of type Dn as monomial matrices. This is relevant to the dual approach for complex
reflection groups. We suspect that our algorithms generalise to the context of the
infinite families of complex reflection groups.

This first paper is structured as follows. After some preparations and after intro-
ducing the notation, Section 2 contains our strategy for the proof of Theorem A. The
section also contains a good summary of our results (see Section 2.5). In Section 3,
we recall the dual approach to the Coxeter group of type Dn. Next, we describe the
combinatorial technique that defines reduced decompositions and introduce diagrams
for these decompositions in Section 4. Within our proof, parabolic subgroups play an
important role. In Section 5, we decompose the reflections over the Carter generating
set and define the lift of these decompositions to the interval groups. Finally, Section 6
finishes our proof by induction.
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2. Definitions and Preliminaries
2.1. Coxeter groups and Artin groups.

Definition 2.1. Suppose that W is a group and S is a subset of W . For s and t in S,
let mst be the order of st if this order is finite, and be ∞ otherwise. We say that (W, S)
is a Coxeter system, and that W is a Coxeter group with Coxeter system S, if W
admits the presentation with generating set S together with the quadratic relations:
s2 = 1 for all s ∈ S, and the braid relations: sts . . .︸ ︷︷ ︸

mst

= tst . . .︸ ︷︷ ︸
mst

for s, t ∈ S, s ̸= t and

mst ̸= ∞. We define an element t of W to be a reflection if it is a conjugate of an
element of S.

We define the Artin group A(W ) associated with a Coxeter system (W, S) as fol-
lows.

Definition 2.2. The Artin group A(W ) associated with a Coxeter system (W, S) is
defined by a presentation with generating set S in bijection with S and the braid
relations: sts . . .︸ ︷︷ ︸

mst

= tst . . .︸ ︷︷ ︸
mst

for s, t ∈ S and s ̸= t, where mst ∈ Z⩾2 is the order of st

in W .

These presentations are often represented graphically using a Coxeter diagram Γ.
This is a graph with vertex set S, in which the edge {s, t} exists if mst ⩾ 3, and
is labelled with mst when mst ⩾ 4. Let Γ be such a diagram. We denote by W (Γ)
and A(Γ) the related Coxeter and Artin groups W and A(W ). The finite Coxeter
groups are precisely the real reflection groups, and the spherical Artin groups are
the Artin groups related to the finite Coxeter groups. The corresponding Coxeter
diagrams are the three infinite families of types A, B, and D, and the exceptional
cases of types E6, E7, E8, F4, H3, H4, and I2(e). In the remainder of the article, W
will always be a finite Coxeter group.

Recall that the Coxeter group of type An (n ⩾ 1) is the symmetric group Sym(n+1)
and the related Artin group is the usual braid group

Bn+1 = ⟨s1, . . . , sn | sisi+1si = si+1sisi+1 for 1 ⩽ i ⩽ n − 1 and

sisj = sjsi for |i − j| > 1⟩.

2.2. Quasi-Coxeter elements. Let (W, S) be a finite Coxeter system, and let the
set of all its reflections be T := ∪w∈W Sw. As each w ∈ W is a product of reflections
in T , we can define

ℓT (w) := min{k ∈ Z⩾0 | w = t1t2 . . . tk; ti ∈ T},

the reflection length of w. If w = t1t2 . . . tk with ti ∈ T and k = ℓT (w), we call
(t1, t2, . . . , tk) (or t1t2 . . . tk by abuse of notation) a reduced decomposition of w.

Now we define the notion of quasi-Coxeter elements.

Definition 2.3. An element w of a finite Coxeter group W is called a quasi-Coxeter
element if there exists a reduced decomposition t1t2 . . . tn of w where n is the cardi-
nality of S such that ⟨t1, t2, . . . , tn⟩ = W .

A Coxeter element is a conjugate of any element that is written as the product
of the simple generators of W in any order. Note that every Coxeter element is a
quasi-Coxeter element. A quasi-Coxeter element is called proper if it is not a Coxeter
element.

It is shown in [6] that the quasi-Coxeter elements in simply laced Coxeter groups
are precisely those elements that admit a reduced decomposition into reflections such
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that the roots related to these reflections form a basis of the related root lattice. In
the non simply laced case, it is also required that the system of coroots generates the
coroot lattice.

Recall that a parabolic subgroup of W is a subgroup generated by a conjugate of
a subset of S. Note that a more general definition of parabolic subgroups, which is in
fact equivalent to our definition for finite Coxeter systems, is used in [2, 3]. We call
an element in W a parabolic quasi-Coxeter element if it is a quasi-Coxeter element in
a parabolic subgroup of W .

Since the set T of reflections is closed under conjugation, there is a natural way to
obtain new reflection decompositions from a given one. The braid group Bn acts on
the set T n of n-tuples of reflections via

si(t1, . . . , tn) = (t1, . . . , ti−1, titi+1ti, ti , ti+2, . . . , tn),
s−1

i (t1, . . . , tn) = (t1, . . . , ti−1, ti+1 , ti+1titi+1, ti+2, . . . , tn), i = 1, . . . , n − 1,

the so-called Hurwitz action of Bn on T n. It is readily observed that this action
restricts to the set of all reduced reflection decompositions of a given element w ∈ W .
If the latter action is transitive, then we say that the dual Matsumoto property holds
for w.

The dual Matsumoto property characterises the parabolic quasi-Coxeter elements
(see [3, Theorem 1.1]).
Theorem 2.4. An element w ∈ W is a parabolic quasi-Coxeter element if and only if
the dual Matsumoto property holds for w.

We recall the following fact, and thereby introduce the notation Pw for parabolic
quasi-Coxeter elements w ∈ W . The result is a consequence of [2, Theorem 1.4] and
[3, Theorem 1.2].
Lemma 2.5. Let w be a parabolic quasi-Coxeter element in a Coxeter group W and
w = t1t2 . . . tk be a reduced decomposition into reflections. Then Pw := ⟨t1, . . . , tk⟩
is a parabolic subgroup and the definition of Pw is independent of the choice of the
reduced reflection decomposition of w.
2.3. Decomposition diagrams. We introduce diagrams related to reduced decom-
positions.
Definition 2.6. Let t1t2 . . . tk be a reduced decomposition of w ∈ W . We define a
decomposition diagram related to t1t2 . . . tk as follows. The vertices of the diagram
correspond to the reflections t1, t2, . . . , tk. If two reflections commute, we put no edge
between the related vertices. Otherwise, we put an edge, and we label it by the order
of the product of the two reflections when this order is strictly bigger than 3.

In Carter’s classification of the conjugacy classes in the Weyl groups [13], it is
shown that every element w in W is the product w = w1w2 of two involutions, and
that each involution is the product of commuting reflections, which then provides a
bipartite decomposition of w. Carter exhibited the list of conjugacy classes of proper
quasi-Coxeter elements by describing for each class a diagram related to a bipartite
decomposition for a representative of the class (see [13, Table 2]) which we call a
Carter diagram. Note that Definition 2.6 generalises the notion of Carter diagrams.

2.4. Interval groups of quasi-Coxeter elements. We start by defining left
and right division.
Definition 2.7. Let v, w ∈ W . We say that v is a (left) divisor of w, and write v ⪯ w,
if w = vu with u ∈ W and ℓT (w) = ℓT (v) + ℓT (u), where ℓT (w) is the length over T
of w ∈ W . The order relation ⪯ is called the absolute order relation on W .
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The interval [1, w] related to an element w ∈ W is defined to be the set of divisors
of w for ⪯, that is [1, w] = {v ∈ W | v ⪯ w}.

Similarly, we define divisibility from the right. We say that v is a right divisor of w,
and write v ⪯r w, if w = uv with u ∈ W and ℓT (w) = ℓT (v) + ℓT (u). Similarly, we
also define the interval [1, w]r of right divisors of an element w ∈ W .

Remark 2.8. A quasi-Coxeter element has the inductive property that every left
divisor of it is a parabolic quasi-Coxeter element (see [3, Corollary 6.11]). Therefore,
if w is a quasi-Coxeter element, then every element in the interval [1, w] is a parabolic
quasi-Coxeter element.

Now we introduce the definition of an interval group related to quasi-Coxeter ele-
ments in W . Let w be a quasi-Coxeter element in W . Consider the interval [1, w] of
divisors of w.

Definition 2.9. We define the group G([1, w]) by a presentation with set of gener-
ators [1, w] in bijection with the interval [1, w], and relations corresponding to the
relations in [1, w], meaning that uv = r if u, v, r ∈ [1, w], uv = r, and u ⪯ r, i.e.,
ℓT (r) = ℓT (u) + ℓT (v).

By transitivity of the Hurwitz action on the set of reduced decompositions of w
(see Lemma 2.4), the next result follows immediately.

Proposition 2.10. Let w ∈ W be a quasi-Coxeter element, and let T ⊂ [1, w] be the
copy of the set of reflections T in W . Then

G([1, w]) = ⟨T | tt′ = t′t′′ for t, t′, t′′ ∈ T if t ̸= t′, t′′ ∈ T and tt′ = t′t′′ ⪯ w⟩
is a presentation of the interval group with respect to w.

Notice that the relations described in Proposition 2.10 are the relations that are
visible in the poset ([1, w] , ⪯) in heights one and two. They are called the dual braid
relations (see [7]).

The following result is due to Michel as stated by Bessis in [7, Theorem 0.5.2] and
explained in [15, Chapter VI, pg. 318] (see also [8]). It is the main theorem in interval
Garside theory.

Theorem 2.11. If the two intervals [1, w] and [1, w]r are equal (we say that w is
balanced) and if both posets ([1, w] , ⪯) and ([1, w]r , ⪯r) are lattices, then the interval
group G([1, w]) is an interval Garside group.

Since T is stable under conjugation, quasi-Coxeter elements are always balanced.
The only obstruction to obtaining interval Garside groups is the lattice property. In
the case when the quasi-Coxeter element is a Coxeter element, Bessis [7] showed the
following.

Theorem 2.12. Let W be a finite Coxeter group. Then the interval group G([1, w])
for w ∈ W a Coxeter element is an interval Garside group isomorphic to the corre-
sponding Artin group A(W ).

The main purpose of our work is to continue the analysis of the interval groups
related to all quasi-Coxeter elements.

We introduce the following notation, which we shall use in the remainder of the
article.

Notation 2.13. We denote by b(x, y) the braid relator xyx(yxy)−1 or xy(yx)−1, by
tc(x, y, z, t) the twisted cycle commutator relator

[
x, y−1ztz−1y

]
, and by cc(x, y, z, t)

the cycle commutator relator
[
x, yztz−1y−1]

.
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2.5. Strategy of the proof. We describe here our general strategy for the proof
of Theorem A (see also Theorem 5.1). We are also going to mention some important
results that we established within the proof, as they are interesting in themselves.

Let W be the Coxeter group of type Dn. We employ the description of W as a
group of monomial matrices as will be explained in Section 3.1. Let w be a quasi-
Coxeter element of the Coxeter group W of type Dn. Actually, there exists a reduced
decomposition of w whose reflections s1, s2, . . . , sn satisfy the relations that can be
described by the Carter diagram ∆ (see Figure 1 in Section 3.3). The quasi-Coxeter
elements in type Dn are characterised in Proposition 3.8. We let S := {s1, s2, . . . , sn}
from now on.

By [12], the Coxeter group W admits a presentation on the set S of generators
whose relations are the quadratic relations (s2

i = 1 for 1 ⩽ i ⩽ n) along with the rela-
tions of the diagram ∆ and the cycle commutator relator cc(si, sj , sk, sl) correspond-
ing to the unique 4-cycle (si, sj , sk, sl) of ∆. Note that in W , the cycle commutator
and the twisted cycle commutator relators associated with the 4-cycle are the same.
All this is described in Section 3.

Consider the interval group G([1, w]). By Proposition 2.10, the group G([1, w]) is
generated by a copy T of T along with the dual braid relations tt′ = t′t′′ (t ∈ T
corresponds to t ∈ T ), whenever tt′ = t′t′′ ⪯ w, t ̸= t′ and t, t′, t′′ ∈ T .

We want to prove that G([1, w]) is isomorphic to the group G that is defined by a
presentation on the set of generators S = {s1, s2, . . . , sn} ⊂ T corresponding to the
subset S of T with the corresponding relations described by ∆, along with the twisted
cycle commutator relator tc(si, sj , sk, sl) corresponding to the 4-cycle (si, sj , sk, sl),
where si, sj , sk, sl correspond to si, sj , sk, sl, respectively.

Step 1: Definition of f : We define a map f from G to G([1, w]) by setting
f(si) = si for each i. It will follow from Proposition 3.12 and Lemma 5.12
that the braid relators b(si, sj) and the twisted cycle commutator relator
tc(si, sj , sk, sl) specified by the presentation given for G hold in G([1, w])
as well. Hence f extends to a homomorphism from G to G([1, w]).

Step 2: Reduced decompositions and their diagrams: Let w0 be a divisor of
length n − 1 of w. We will describe a particular reduced decomposition of
w0 = t1t2 . . . tn−1 in Sections 4.2 and 4.3, and characterise whether w0 is
a Coxeter element or a proper quasi-Coxeter element in the corresponding
subgroup Pw0 := ⟨t1, . . . , tn−1⟩ ⊆ W (see for instance Propositions 4.5, 4.15,
and 4.16). In order to describe these reduced decompositions, we describe
a combinatorial technique (in Section 4.1) by using the description of the
elements of W as monomial matrices.

The reduced decomposition t1t2 . . . tn−1 of w0 corresponds to a decompo-
sition diagram (see Definition 2.6) that we denote by ∆0. We show that ∆0
is a disjoint union of Coxeter diagrams of types A or D or of the same type
as ∆ (but with fewer generators) with a (single) 4-cycle (see Propositions 4.5,
4.15, and 4.16). Thereby we are able to determine the type of w0.

If w0 is a Coxeter element in Pw0 , then by [7], the dual braid relation
tt′ = t′t′′ satisfied in G([1, w0]) where tt′ = t′t′′ ⪯ w is a consequence of the
relators b(ti, tj) for ti, tj ∈ {t1, t2, . . . , tn−1} (i ̸= j). If w0 is a proper quasi-
Coxeter element, then induction on n implies that the dual braid relation
tt′ = t′t′′ satisfied in G([1, w0]) is a consequence of the relations b(ti, tj) and
tc(ti, tj , tk, tl) for ti, tj ∈ {t1, t2, . . . , tn−1} (i ̸= j) and (ti, tj , tk, tl) the 4-
cycle of ∆0. In this way, we have shown that all the dual braid relations are
consequences of the relations between t1, t2, . . . , tn−1 corresponding to the
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relations between t1, t2, . . . , tn−1 implied by each decomposition diagram ∆0
corresponding to a divisor w0 of length n − 1 of w.

Step 3: Decomposition of elements in T and T : In order to find a homomor-
phism g : G([1, w]) → G, we describe a decomposition of each element t in T
in terms of elements in S. This can be done because of the dual Matsumoto
property for w, i.e. the transitive Hurwitz action on the set of reduced de-
compositions over T of w. This is based on particular decompositions over S
of the reflections in T . This is done in Propositions 5.7 and 5.10.

Let g be the map that sends ti ∈ G([1, w]) to its decomposition over S
as given in Proposition 5.10. We show that the map g is a homomorphism.
Suppose that tt′ = t′t′′ is a dual braid relation of G([1, w]). We need to check
that the image of this relation under g holds within G. There exists a divisor
w0 of length n − 1 of w such that tt′ is a prefix of w0. Therefore, tt′ = t′t′′

holds in G([1, w0]). So rather than checking that the images by g of all the
dual braid relations hold in G, our strategy is to shift the analysis to the
groups G([1, w0]), from which we can establish the desired homomorphism.
This analysis was done in Step 2.

Step 4: Lift of the relations: In order to conclude homomorphism for g, we finally
need to show that the image by g of all the defining relations between the
elements t1, t2, . . . , tn−1 of G([1, w0]) corresponding to the relations between
t1, t2, . . . , tn−1 implied by each decomposition diagram ∆0 can be derived
from the relations between the elements of S that are implied by the diagram
∆. This is proved in Section 6.3 by induction on n. The base of our induction
is the cases n = 4 and n = 5 (see Sections 6.1 and 6.2). Note that we also
separate n = 5 as a base of induction so that we do not need anymore to
show twisted cycle commutator relators in Section 6.3. This is possible since,
apart from one special case (Equation (11) with i = n − 1), in the reduced
decomposition t1t2 . . . tn−1 of each w0, the only reflection ti such that g(ti)
contains sn in its decomposition over S is precisely the last one, that is tn−1.

Section 6.4 concludes the proof that g is a homomorphism. Isomorphism be-
tween G([1, w]) and G is proved once the composites f ◦ g and g ◦ f have been shown
to be identity maps.

Note that it might be possible to apply this strategy more generally, but this article
only deals with the case where W is of type Dn.

3. Dual approach to the Coxeter group of type Dn

3.1. The Coxeter group of type Dn. We employ the description of the Coxeter
group W of type Dn (n ⩾ 4) as the group of n × n monomial matrices such that
the nonzero coefficients are equal to 1 or −1 and their product is equal to 1. This
description will help us to describe our combinatorial technique and to easily explain
our arguments.

Note that this description of W corresponds to the case d = 1, e = 2 of the infinite
series G(de, e, n) of complex reflection groups (see [27]).

Notation 3.1. A monomial matrix w ∈ W is associated with a permutation
in Sym(n) that has been marked by overlining some elements within its cycles. We
call the result, σw, a marked permutation, where an entry i (1 ⩽ i ⩽ n) of a cycle
indicates that the coefficient in row i of w is equal to 1, while an entry i indicates
that this coefficient is equal to −1.

The monomial matrix w is denoted by σw, so we have w = σw. When there is no
confusion, we remove the cycles (i), for 1 ⩽ i ⩽ n, of length 1 from σw.
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We note that, for w ∈ W , the marked permutation σw must always have an even
number of overlined entries. We also note that the notation σw is not the cycle de-
composition of the permutation πw of the unit vectors ±ei, 1 ⩽ i ⩽ n, of Rn that is
also naturally associated with w. In fact, each cycle of length k in σw corresponds to
either two cycles of length k or a single cycle of length 2k in πw.

Example 3.2. Let

w =


0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 1 0 0 0 0


be an element of W of type D6. Using Notation 3.1, we have w = (1, 3, 4)(2, 5, 6), while
we have πw = (1, −3, −4, −1, 3, 4)(2, 5, −6, −2, −5, 6) where, for brevity, we label the
unit vectors ±i with 1 ⩽ i ⩽ 6.

We set the following convention for the remainder of the article.

Convention 3.3. When i = i′, we interpret each cycle
(i′, i′ + 1, . . . , i), (i′, i′ − 1, . . . , i), (i, i − 1, . . . , i′), or (i, i + 1, . . . , i′)

as the 1-cycle (i). By convention, we also set i = i for any positive integer i. We also
suppose that a decreasing-index cycle of the form (xi, xi−1, . . . , xi′) is the identity
element when i ⩽ i′ and an increasing-index expression of the form (xi, xi+1, . . . , xi′)
is the identity element when i ⩾ i′. Finally, we also assume that a cycle of length ⩾ 3
that contains n should start by n.

Lemma 3.4. The set T of reflections in W is represented by the set of elements
{(i, j), (i, j) | 1 ⩽ i ̸= j ⩽ n}.

Note that the reflection (i, j) represents a transposition matrix whose entries are
all 1, while (i, j) represents a matrix derived from the previous one by changing the
signs in rows i and j. For 2 ⩽ i ⩽ n, we denote by si the reflection (i − 1, i).

The following lemma is straightforward to prove.

Lemma 3.5. Let t and t′ be two reflections in W , with t = (i, j) or (i, j) and t′ = (k, l)
or (k, l). If {i, j} does not intersect {k, l}, then the reflections t and t′ commute. If
the cardinality of the intersection is 1, then we get (i, j)(k, l)(i, j) = (k, l)(i, j)(k, l).

3.2. Length function over the set of reflections. Shi computed in [28] the
length function over the set of reflections in the infinite series of complex reflection
groups. The Coxeter group W of type Dn corresponds to the group G(2, 2, n). The
length function over the set of reflections in G(2, 2, n) appears in [28, Corollary 3.2].
Let us recall this result.

Proposition 3.6. Let w ∈ G(2, 2, n), and suppose that w is represented by a marked
permutation σw as described in Notation 3.1 Suppose that σw is written as a product
of r cycles, and define e to be the number of these cycles that have an even number
of overlined entries. Then, the length ℓT (w) over T of w is equal to n − e.

Example 3.7. Let w ∈ G(2, 2, 6) be as in Example 3.2. Then w = (1, 3, 4)(2, 5, 6).
Here we have C1 = (1, 3, 4) and C2 = (2, 5, 6). Both cycles have an odd number (equal
to 1) of overlined entries. Hence e = 0 and we get ℓT (w) = 6.
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Note also that the n × n identity matrix corresponds to the marked permutation
with n cycles each containing a single entry i. Each cycle then contains 0 overlined
entries. So e = n and we see that the ℓT (Id) = 0.

3.3. Quasi-Coxeter elements in type Dn. Let W be a Coxeter group of type Dn.
It is a consequence of Carter (see [13] and [3, Remark 8.3 (b)]) that W contains ⌊ n

2 ⌋
conjugacy classes of quasi-Coxeter elements. We fix an integer m with 1 ⩽ m ⩽ ⌊n/2⌋;
this fixes a conjugacy class of quasi-Coxeter elements in W . The m-th conjugacy class
is associated by Carter [13] with the diagram ∆m,n displayed in Figure 1. The elements
si where 2 ⩽ i ⩽ n are defined after Lemma 3.4 and we set s1 := (m, m + 1). When
there is no confusion, we denote ∆m,n by ∆.

s2 s3 sm−1

sm

sm+1

s1

sm+2

sm+3 sn−1 sn

Figure 1. Carter diagram ∆m,n of type Dn.

In ∆ an edge between two nodes si and sj describes the relation sisjsi = sjsisj , and
when there is no edge between si and si, this means that the two reflections commute.
In the next proposition, we choose a particular representative of each conjugacy class
of quasi-Coxeter elements that will be helpful in the description of our main result.

Proposition 3.8. The m-th conjugacy class of quasi-Coxeter elements contains a
representative

w = (m, m − 1, . . . , 2, 1)(n, n − 1, . . . , m + 1).
The element w can be written as the product s2s3 . . . sms1sm+1sm+2sm+3sm+4 . . . sn.

Proof. See [13, Proposition 25] for representatives of the conjugacy classes, where
Carter defines the notion of signed cycle-type. The second sentence of the proposition
is readily checked. □

We call the set {s1, s2, . . . , sn} a Carter generating set. As w is a quasi-Coxeter
element, every Carter generating set generates the Coxeter group.

Note that the Carter diagram ∆ contains m − 2 and n − m − 2 vertices on the left-
and right-hand sides of the single 4-cycle within ∆, respectively.

For m = 1, the element w is a Coxeter element and ∆1,n is the Coxeter diagram
of type Dn, and w becomes (1)(n, n − 1, . . . , 2). We call a proper Carter diagram
of type Dn a diagram ∆m,n that is not the Coxeter diagram of type Dn, that is
with m ⩾ 2.

The Carter diagram ∆ is the decomposition diagram (see Definition 2.6) related
to the reduced decomposition s2s3 . . . sms1sm+1sm+2sm+3sm+4 . . . sn of the quasi-
Coxeter element w. We are using this particular decomposition of the quasi-Coxeter
element since it will be helpful to describe the divisors of length n−1 of w in Section 4
and to describe necessary combinatorial techniques for our analysis in Sections 4 and 5.

Example 3.9. The element w = (3, 2, 1)(6, 5, 4) is a representative of a conjugacy
class of quasi-Coxeter elements in type D6. In this case m = 3.
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Lemma 3.10. If h ∈ W has a reduced reflection decomposition h = t1 . . . tr, ti ∈ T ,
whose decomposition diagram is a Coxeter diagram, then this diagram is the Carter di-
agram of the conjugacy class that contains h, and h is a Coxeter element in ⟨t1, . . . , tr⟩.

Proof. The reflection subgroup Wh := ⟨t1, . . . , tr⟩ of W is a Coxeter group itself, ac-
cording to Dyer [17, Theorem (3.3)]. If the decomposition diagram of h is a Coxeter
diagram, we can choose the signs of the roots α1, . . . , αr related to the reflections
t1, . . . , tr such that their dihedral angles are obtuse, as the diagram does not contain
any cycles. Therefore {α1, . . . , αr} is a simple system for Wh (see Dyer [17, Theo-
rem 4.4] or [6, Lemma 4.1]). This yields that h is a Coxeter element in Wh. Therefore
the decomposition diagram is the Carter diagram of the conjugacy class which con-
tains h. □

The next result is a consequence of Cameron–Seidel–Tsaranov [12, Theorem 3.10].

Proposition 3.11. The Coxeter group has a presentation with set of generators the
Carter generators. The relations are s2

i = 1 for 1 ⩽ i ⩽ n and the relations described
by ∆m,n together with the cycle commutator relation

[sm, sm+1sm+2s1sm+2sm+1] = (smsm+1sm+2s1sm+2sm+1)2 = 1.

We end this section by the following statement that will be used to construct the
homomorphism f introduced in Step 1 of the strategy of our proof in Section 2.5.

Proposition 3.12.
(1) We have either sisj ⪯ w or sjsi ⪯ w or sisj = sjsi ⪯ w, and sisj is of

order 2, for |i − j| > 1.
(2) We have that sisi+1 ⪯ w, and sisi+1 is of order 3, for 2 ⩽ i ⩽ n − 1.
(3) Let 2 ⩽ i ⩽ n. We have that s1sm ⪯ w, sm+2s1 ⪯ w, and s1si ⪯ w. Further

the elements s1sm and sm+2s1 are of order 3, and else s1si is of order 2.
(4) Let t := s

smsm+1
1 = (m − 1, m). We have that tsm+2 ⪯ w and tsm+2 is of

order 2.

Proof. The result is an immediate consequence of the Hurwitz action and of the choice
of the elements si. □

4. Maximal divisors of quasi-Coxeter elements
As we pointed out in the strategy of our proof (Step 2), our method depends on
an analysis of maximal divisors of a quasi-Coxeter element w, and in particular of
the decomposition of each such as a product of n − 1 reflections. In Section 4.1 we
identify 11 different cases for such maximal divisors w0, which fall into three types,
I, II and III, and then in the following sections, we find reduced decompositions for
elements w0 of type I (in Section 4.2), and of types II and III (in Section 4.3), as well
as their decomposition diagrams (see Definition 2.6).

4.1. Divisors of length n − 1. Let w = (m, m − 1, . . . , 2, 1)(n, n − 1, . . . , m + 1)
be a quasi-Coxeter element. Since the maximum possible length of an element in W
is n, the elements of length n − 1 that divide w consist of all the products w(i, j) and
w(i, j) for which 1 ⩽ i < j ⩽ n. We denote by w0 a divisor of length n − 1 of w. We
compute these divisors in Equations (1) to (11) below. We distinguish 3 types that
we denote by I, II, and III and that are displayed in the following Tables 1, 2, and 3.
The first column of each table represents the cases for i and j. The second column is
the divisor w0. Notice that we get from type II to type III by applying symmetry.
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1 ⩽ i ⩽ m,
m+1⩽j ⩽n (1) w(i, j) = (n, n − 1, . . . , j + 1, i, i − 1, . . . , 1, m, m − 1, . . . , i + 1, j, j − 1, . . . , m + 1).

i ̸= m,
j ̸= n

(2) w(i, j) = (n, n − 1, . . . , j + 1, i, i − 1, . . . , 1, m, m − 1, . . . , i + 1, j, j − 1, . . . , m + 1).

i = m,
j ̸= n (3) w(m, j) = (n, n − 1, . . . , j + 1, m, m − 1, . . . , 1, j, j − 1, . . . , m + 1).

i ̸= m,
j = n

(4) w(i, n) = (n, n − 1, . . . , m + 1, i, i − 1, . . . , 1, m, m − 1, . . . , i + 1).

i = m,
j = n (5) w(m, n) = (n, n − 1, . . . , m + 1, m, m − 1, . . . , 1) = (n, n − 1, . . . , 1).

Table 1. Type I: 1 ⩽ i ⩽ m and (m + 1) ⩽ j ⩽ n.

1⩽ i <

j ⩽m (6) w(i, j)=(m, m − 1, . . . , j + 1, i, i − 1, . . . , 1)(i + 1, j, j − 1, . . . , i + 2)(n, n − 1, . . . , m + 1).

j ̸=m
(7) w(i, j)=(m, m − 1, . . . , j + 1, i, i − 1, . . . , 1)(i + 1, j, j − 1, . . . , i + 2)(n, n − 1, . . . , m + 1).

j =m
(8) w(i, m) = (i, i − 1, . . . , 1)(i + 1, m, m − 1, . . . , i + 2)(n, n − 1, . . . , m + 1).

Table 2. Type II: 1 ⩽ i < j ⩽ m.

m+1 ⩽ i

< j ⩽ n (9) w(i, j) = (m, m − 1, . . . , 1)(n, n − 1, . . . , j + 1, i, i − 1, . . . , m + 1)(j, j − 1, . . . , i + 1).

j ̸= n
(10) w(i, j) = (m, m − 1, . . . , 1)(n, n − 1, . . . , j + 1, i, i − 1, . . . , m + 1)(j, j − 1, . . . , i + 1).

j = n
(11) w(i, n) = (m, m − 1, . . . , 1)(i, i − 1, . . . , m + 1)(n, n − 1, . . . , i + 1).

Table 3. Type III: (m + 1) ⩽ i < j ⩽ n.

Remark also that Equation (2) is similar to Equation (1); the difference is that two
entries are further overlined in Equation (2). We see the same similarities between
Equations (6) and (7), and Equations (9) and (10).

Notice that each element w0 of the 11 Equations admits exactly one cycle with an
even number of overlined elements (we assume that 0 is even). Hence each element
is of length n − 1 by Proposition 3.6. In Sections 4.2 and 4.3, we describe a reduced
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decomposition over the set T of reflections for each divisor w0 of w of type I and of
types II and III, respectively.

We provide an example where we explicitly write the monomial matrices.
Example 4.1. Let W be a Coxeter group of type D5. Let m = 2 and let w =
(2, 1)(5, 4, 3) be a proper quasi-Coxeter element. As a monomial matrix,

w =


0 −1 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 1 0 0
0 0 0 1 0

.

Let us multiply w from the right by the transposition (1, 4) as described in Equa-
tion (1). So we get

w(1, 4) =


0 −1 0 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 1 0 0
1 0 0 0 0

.

Using the marked permutation notation introduced in Notation 3.1, we have that
w(1, 4) = (5, 1, 2, 4, 3) (the coefficient is equal to −1 on row numbers 1 and 3 of the
matrix w1) which is compatible with the result of Equation (1).
4.2. Reduced decompositions and diagrams for type I. Suppose that
w0 has type I (see Table 1). As a marked permutation, it is a cycle of the
form (x1, x2, x3, . . . , xn), where each xk is equal to p or p (1 ⩽ p ⩽ n), with
{x1, x2, . . . , xn} = {1, 2, . . . , n}, and with an even number of overlined entries
(see Equations (1) to (5)). We will describe how to produce a reduced reflection
decomposition of length n − 1 for this element.

We continue the study of Example 4.1 that will help the understanding of a pro-
cedure that describes the reduced decompositions. The general idea is to multiply
the marked permutation w0 = (x1, x2, x3, . . . , xn) from the right by a sequence of
reflections in order to obtain the identity matrix. A decomposition of w0 is given by
the product in reverse order of all the reflections used in the procedure. It turns out
that this decomposition is reduced.
Example 4.2. Let w = (2, 1)(5, 4, 3) and w0 = w(1, 4) = (5, 1, 2, 4, 3) be as in Exam-
ple 4.1. We follow the cycle (5, 1, 2, 4, 3). The first two entries are 5 and 1. We multiply
w0 from the right by the transposition (1, 5) and get

w1 = w0(1, 5) =


0 −1 0 0 0
0 0 0 1 0

−1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 = (1, 2, 4, 3)(5),

and 5 becomes a fixed point.
We continue by following the cycle (1, 2, 4, 3). The first two entries are 1 and 2. We

multiply w1 from the right by the reflection (1, 2) and get

w2 = w1(1, 2) =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 = (2, 4, 3)(5)(1).
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This operation permutes the columns 1 and 2 and multiplies their entries by −1. This
then yields that 1 becomes a fixed point. Remark that by this operation, the third
entry in (2, 4, 3)(5)(1) is not overlined anymore.

We continue by following the cycle (2, 4, 3). Here, the first two entries are 2 and 4.
Then, we multiply w2 from the right by the transposition (2, 4). We therefore obtain
a coefficient equal to 1 in diagonal position [2, 2]. We get

w3 = w2(2, 4) =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 = (4, 3)(5)(1)(2).

Now, we arrive at the last step. We multiply w3 from the right by the transposition
(3, 4) and finally obtain the identity matrix denoted by I5 = (5)(1)(2)(4)(3).

This implies that w0 = (3, 4)(2, 4)(1, 2)(1, 5) = s4(2, 4)(1, 2)(1, 5). These are the
reflections that we used before in reverse order. By Proposition 3.6, the length of w0 is
equal to 4. Hence (3, 4)(2, 4)(1, 2)(1, 5) is a reduced decomposition of w0 as it consists
of 4 reflections. By Lemma 3.5, the related decomposition diagram is described by
the following standard type A4 diagram.

s4 (2, 4) (1, 2) (1, 5)

The general procedure is as follows.

Procedure 4.3. Let x = (x1, x2, . . . , xr). For k from 1 to r − 1:
• If xk = p, then whether xk+1 = q or q, we multiply (xk, xk+1, . . . , xr) from

the right by the reflection (p, q) and get (xk)(xk+1, xk+2, . . . , xr), whose length
is one less than the length of (xk, xk+1, . . . , xr).

• If xk = p, then whether xk+1 = q or q, we multiply (xk, xk+1, . . . , xr) from
the right by the reflection (p, q) and get (xk)(xk+1, xk+2, . . . , xr), whose length
is one less than the length of (xk, xk+1, . . . , xr).

Remark that the entry xr can be equal to u for 1 ⩽ u ⩽ n in which case it is equal
to u, by the convention that i = i for any positive integer i (see Convention 3.3).

Proposition 4.4. Let w0 be a divisor of w of type I. A reduced decomposition of
w0 is obtained as the product in reverse order of the reflections that are applied in
Procedure 4.3.

Proof. Let w0 be a divisor of w of type I. It is of the form (x1, x2, x3, . . . , xn). Applying
Procedure 4.3 for all k from 1 to n − 1, the element (x1, x2, x3, . . . , xn) is transformed
into the identity matrix (x1)(x2) . . . (xn) in n − 1 steps. Since all reflections are of
order two, a decomposition of the element (x1, x2, x3, . . . , xn) is given by the product
in reverse order of all the reflections used in this procedure.

Since ℓ(w0) = n − 1 by Proposition 3.6, the decomposition we obtain is reduced
(as it consists of n − 1 reflections). □

Proposition 4.5. The decomposition diagram of each reduced decomposition corre-
sponding to Type I is represented by a Coxeter diagram of type An−1, and w0 is a
Coxeter element in Pw0 . In particular, w0 is a parabolic Coxeter element in W .

Proof. It is an immediate consequence of Proposition 4.4 that the decomposition
diagram of the reduced decomposition of w0 produced in Procedure 4.3 is a string.
Therefore, Lemmas 3.10 and 2.5 yield the assertion. □
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We apply Proposition 4.4 to establish decompositions of type I divisors w0 of w,
as described in the following lemmas.

Lemma 4.6. Let w0 = w(i, j) be a divisor of w of type I, with 1 ⩽ i ⩽ m, m+1 ⩽ j ⩽ n,
so that we are in the situation of Equation (1). Then w0 has one of the following
decompositions of length n − 1 over T .
(1) Suppose i ̸= m, j ̸= n − 2, n − 1, n :

w0 = sm+2sm+3 . . . sj−1sj(i + 1, j)si+2si+3 . . . sm−1sm(1, m)s2s3 . . .

. . . si−1si(i, j + 1)sj+2 . . . sn−1sn.

(2) Suppose i ̸= m, j = n − 2 :
w0 =sm+2 . . . sn−2sn−1(i + 1, n − 2)si+2 . . . sm−1sm(1, m)s2 . . . si−1si(i, n − 1)sn.

(3) Suppose i = m, j = n − 2 :
w0 = sm+2 . . . sn−3sn−2(1, n − 2)s2 . . . sm−1sm(m, n − 1)sn.

(4) Suppose i ̸= m, j = n − 1 :
w0 = sm+2 . . . sn−2sn−1(i + 1, n − 1)si+2 . . . sm−1sm(1, m)s2 . . . si−1si(i, n).

(5) Suppose i = m, j = n − 1 :
w0 = sm+2 . . . sn−2sn−1(1, n − 1)s2 . . . sm−1sm(m, n).

(6) Suppose i ̸= m, j = n :
w0 = si+2 . . . sm−1sm(1, m)s2 . . . si−1si(i, m + 1)sm+2 . . . sn−1sn.

(7) Suppose i = m, j = n :
w0 = s2 . . . sm−1sms1sm+2 . . . sn−1sn.

Proof. We apply Proposition 4.4 to Equation (1). □

Lemma 4.7. Let w0 = w(i, j) be a divisor of w of type I, with 1 ⩽ i < m, m+1 ⩽ j < n,
so that we are in the situation of Equation (2). Then w0 has one of the following
decompositions of length n − 1 over T .
(1) Suppose i ̸= m, j < n − 2 :

w0 =sm+2 . . . sj−1sj(i + 1, j)si+2 . . . sm−1sm(1, m)s2 . . . si−1si(i, j + 1)sj+2 . . . sn.

(2) Suppose i ̸= m, j = n − 2 :
w0 =sm+2 . . . sn−3sn−2(i + 1, n − 2)si+2 . . . sm−1sm(1, m)s2 . . . si−1si(i, n − 1)sn.

(3) Suppose i ̸= m, j = n − 1 :
w0 = sm+2 . . . sn−2sn−1(i + 1, n − 1)si+2 . . . sm−1sm(1, m)s2 . . . si−1si(i, n).

Proof. We apply Proposition 4.4 to Equation (2). □

Lemma 4.8. Let w0 = w(m, j) be a divisor of w of type I, where m + 1 ⩽ j < n,
so that we are in the situation of Equation (3). Then w0 has one of the following
decompositions of length n − 1 over T .

(1) Suppose j < n − 2 :
w0 = sm+2 . . . sj−1sj(1, j) . . . sm−1sm(m, j + 1)sj+2 . . . sn−1sn.

(2) Suppose j = n − 2 :
w0 = sm+2 . . . sn−3sn−2(1, n − 2)s2 . . . sm−1sm(m, n − 1)sn.

(3) Suppose j = n − 1 :
w0 = sm+2 . . . sn−2sn−1(1, n − 1)s2 . . . sm−1sm(m, n).

Proof. We apply Proposition 4.4 to Equation (3). □
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Similarly, we get the next result.
Lemma 4.9. Let w0 be as in the situation of Equations (4) and (5). Then w0 has the
following decompositions of length n − 1 over T .

(1) Suppose i ̸= m and j = n, so that we are in the situation of Equation (4):
w0 = si+2 . . . sm−1sm(1, m)s2 . . . si−1si(i, m + 1)sm+2 . . . sn−1sn

(2) Suppose i = m and j = n, so that we are in the situation of Equation (5):
w0 = s2s3 . . . sn.

4.3. Reduced decompositions and diagrams for types II and III. In this
section, we find reduced decompositions for the maximal divisors w0 of w that are of
types II and III. They are listed in Equations (6) to (11).

We define a combinatorial technique that enables us to obtain a reduced decompo-
sition, whose decomposition diagram ∆0 is the union of Coxeter diagrams of type A
or D, or a proper Carter diagram of type D.

First, observe that each element w0 defined in one of the Equations (6)– (11) is the
product of three cycles. Since ℓ(w0) = n−1, by Proposition 3.6 each w0 admits exactly
one cycle with an even number of overlined elements. The other two cycles contain
an odd number of overlined elements. Observing these equations, we recognise that
these cycles contain exactly one overlined element at the end of the cycle. Assume
that the cycles are x := (x1, x2, . . . , xp), y := (y1, y2, . . . , yq), z := (z1, z2, . . . , zr) such
that an even number of entries of (z1, z2, . . . , zr) are overlined, xp = u, and yq = v.
Also, observe that we always have p + q + r = n.

The combinatorial technique is based on Procedure 4.3. We formulate it in the
following procedure.
Procedure 4.10.
Step 1: If r ⩾ 2, then apply Procedure 4.3 to the cycle (z1, z2, . . . , zr). In this way,

we obtain (z1)(z2) . . . (zr).
Step 2: If p ⩾ 2, then apply Procedure 4.3 to the cycle (x1, x2, . . . , xp). In this way,

we obtain (x1)(x2) . . . (xp−1)(u).
Step 3: If q ⩾ 2, then apply Procedure 4.3 to the cycle (y1, y2, . . . , yq). In this way,

we obtain (y1)(y2) . . . (yq−1)(v).
Furthermore, we impose an additional condition: if n does not appear in the cycle

(z1, z2, . . . , zr), then we choose (x1, x2, . . . , xp) to be the cycle that contains n in
Step 2.
Proposition 4.11. Let w0 be a divisor of w of type II or III. We continue with the
notations introduced at the beginning of the section. A reduced decomposition of w0 is
obtained as the product (u, v)(u, v) followed by the reflections used in Procedure 4.10
in reverse order.
Proof. After application of Procedure 4.10, the monomial matrix w0 is transformed
into the diagonal matrix with diagonal coefficients equal to 1 everywhere apart from
diagonal positions [u, u] and [v, v], where the two coefficients are equal to −1. Multi-
plying this diagonal matrix by (u, v)(u, v), it is transformed into the identity matrix.
A decomposition of w0 is therefore the product of (u, v) by (u, v) followed by the
reflections used in Procedure 4.10 in reverse order.

The decomposition is reduced if its length is equal to n − 1. In the first step of
Procedure 4.10, the number of reflections that have been used is equal to r − 1, while
p−1 and q −1 reflections are used in each of Steps 2 and 3. In addition, we multiplied
at the end by two reflections: (u, v) and (u, v). Therefore, the number of reflections
used in this decomposition is (r−1)+(p−1)+(q −1)+2 = (r+p+q)−1 = n−1. □
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We explain Procedure 4.10 and Proposition 4.11 in the following two examples.
The first example corresponds to type II and the second to type III.
Example 4.12. We continue with our running Example 4.1, so n = 5, m = 2 and
w = (2, 1)(5, 4, 3). Let w0 = w(1, 2) = (1)(2)(5, 4, 3), whose cycle decomposition is
given in Equation (6).

We apply Procedure 4.10 to w0.
Step 1: The even cycle is (2) and corresponds to r = 1 in Procedure 4.10. Step 1

does not apply and we move to Step 2.
Step 2: The cycle containing a unique overlined entry and containing n = 5 is

(5, 4, 3). Here, we have p = 3. Then, this step applies, and we execute Proce-
dure 4.3 to the cycle (5, 4, 3). Therefore, we first multiply (5, 4, 3) by (4, 5) and
then the result by (3, 4) from the right, and get (5, 4, 3)(4, 5)(3, 4) = (5)(4)(3).
We set w2 := w0(4, 5)(3, 4).

Step 3: The second cycle contains a unique overlined entry (1). In this case, we have
q = 1. Therefore, we do not modify w2 = (1)(2)(5)(4)(3) in Step 3.

By Proposition 4.11, we multiply w2 from the right by (1, 3)(1, 3) so that it is
transformed into the identity matrix. A reduced decomposition of w0 is then obtained
by adding to (1, 3)(1, 3) the reflections used in Procedure 4.10 in reverse order. Hence
we obtain w0 = (1, 3)(1, 3)(3, 4)(4, 5).

The decomposition diagram associated to this reduced decomposition is a Coxeter
diagram of type D4. This is readily checked by Lemma 3.5. The diagram is then the
following.

(3, 4) (4, 5)

(1, 3)

(1, 3)

The element w0 is therefore a Coxeter element in the subgroup generated by the
reflections (1, 3), (1, 3), (3, 4), (4, 5) that compose the reduced decomposition.
Example 4.13. Let n = 6 and m = 2. Consider the proper quasi-Coxeter element
w = (2, 1)(6, 5, 4, 3) and w0 = w(3, 6). By Equation (11), it is w0 = (2, 1)(3)(6, 5, 4).

We apply now Procedure 4.10. The cycle (3) contains only one element. So, we
move to Step 2.
Step 2: We apply Procedure 4.3 to the cycle (6, 5, 4) that contains n = 6. We obtain

(6, 5, 4)(5, 6)(4, 5) = (6)(5)(4). We set w2 := w0(5, 6)(4, 5).
Step 3: We apply Procedure 4.3 to the cycle (2, 1), and get w3 := w2(1, 2) =

(2)(1)(3)(6)(5)(4). By Proposition 4.11, a reduced decomposition of w0 is
obtained by adding to (1, 4)(1, 4) the reflections used in Procedure 4.10 in
reverse order. Therefore, we obtain w0 = (1, 4)(1, 4)(1, 2)(4, 5)(5, 6).

By Lemma 3.5, the decomposition diagram associated with this reduced decompo-
sition is a proper Carter diagram of type D5. The diagram is the following.

(1, 2)

(1, 4)

(1, 4)

(4, 5) (5, 6)
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We will show later that the element w0 = (1, 4)(1, 4)(1, 2)(4, 5)(5, 6) is a proper
quasi-Coxeter element in the subgroup generated by the reflections (1, 4), (1, 4), (1, 2),
(4, 5), (5, 6) that compose the reduced decomposition.

Now, we characterise the diagrams ∆0 of the reduced decompositions, and whether
the elements w0 are Coxeter or proper quasi-Coxeter elements in the subgroup Pw0

generated by the reflections that compose the reduced decomposition. In fact, Proce-
dures 4.3 and 4.10 are tailored in order to obtain a Coxeter diagram of type A or D,
or a proper Carter diagram of type D. Observe first the following. We continue to use
the notation of x, y and z introduced at the beginning of this section.

Lemma 4.14. The elements xy and z are parabolic quasi-Coxeter elements in W .

Proof. By Proposition 4.11, we have ℓT (z)+ℓT (w0z−1) = ℓT (w0) which yields z, xy ⪯
w0 ⪯ w. Therefore z as well as xy are parabolic quasi-Coxeter elements in W , see [3,
Corollary 6.11]. □

Proposition 4.15. Let w0 be a divisor of w of type II or III. Let x = (x1, x2, . . . , xp),
y = (y1, y2, . . . , yq) and z = (z1, z2, . . . , zr) be as introduced before. Consider the
reduced decomposition of w0 as described in Procedure 4.10 and Proposition 4.11.

• If p and q are equal to 1, then the diagram of the reduced decomposition is the
disjoint union of a diagram of type Ar−1 and two nodes.

• If p = 1 and q = 2 (or q = 1 and p = 2), then the diagram of the reduced
decomposition is a disjoint union of a Coxeter diagram of type A3 and a
Coxeter diagram of type Ar−1.

• If p = 1 and q > 2 (or q = 1 and p > 2), then the diagram of the reduced
decomposition is a disjoint union of a Coxeter diagram of type Dq+1 and a
Coxeter diagram of type Ar−1 (or a disjoint union of diagrams of types Dp+1
and Ar−1, respectively).

In all these cases, the element w0 is a Coxeter element in Pw0 and therefore a parabolic
Coxeter element in W .

Proof. By Lemma 4.14, xy as well as z are parabolic quasi-Coxeter elements in W .
Here we prove that xy and z are Coxeter elements in Pxy and Pz, respectively.

By Proposition 4.11 and Lemma 3.10 the cycle z is a Coxeter element of type Ar−1
in Pz. As xy and z are disjoint cycles, the two elements commute.

If p = q = 1, then w0 equals (u, v)(u, v)z. As (u, v) and (u, v) commute, the first
bullet of the proposition follows.

If p = 1 and q ⩾ 2, then it is straightforward to check that the decomposition
diagram of the reduced decomposition of xy given in Proposition 4.11 is a Coxeter
diagram of type Dq+1. Thus, by Lemma 3.10 xy is a Coxeter element of type Dq+1
in Pxy. This yields the other two bullets, as A3 = D3. □

Proposition 4.16. Suppose p, q ⩾ 2. Then the decomposition diagram of w0 is a
disjoint union of a proper Carter diagram of type Dp+q and a Coxeter diagram of
type Ar−1. Further

• the element z′ := xy is a proper quasi-Coxeter element of type Dp+q in Pz′ ,
• the decomposition of z′ is related to its Carter diagram as described in Propo-

sition 3.8,
• the element z is a Coxeter element of type Ar−1 in Pz .

In particular, w0 is a proper parabolic quasi-Coxeter element in W .

Proof. Since xy and z commute, we can apply Proposition 4.5 to z, and obtain the
assertion for z, as well as Procedure 4.10 along with Proposition 4.11 to xy. The latter
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yields the decomposition
xy = (u, v)(u, v)(v, yq−1)(yq−1, yq−2) . . . (y2, y1)(v, xp−1)(xp−1, xp−2) . . . (x2, x1),

whose decomposition diagram is the Carter diagram ∆q−1,n with p + q vertices. In
particular the decomposition diagram is connected, which yields that Pxy is either
of type Ap+q or of type Dp+q. By [13, Theorem A], ∆q−1,n is not a Carter diagram
in a group of type Ap+q (as in the latter type Carter diagrams contain no cycles).
Therefore Pxy is of type Dp+q. All the parabolic subgroups of type Dm, m ⩾ 4,
are conjugate in W (every parabolic subgroup is conjugate to a standard parabolic
subgroup, and there is just one standard parabolic subgroup, which is of type D4), and
all the Coxeter elements in a finite Coxeter group are conjugate. As xy has a different
cycle-type than the elements appearing in Proposition 4.15, it is not a Coxeter element
in Pxy. Thus, in this case xy is a proper quasi-Coxeter element in Pxy. Therefore, w0
is a proper parabolic quasi-Coxeter element in W . □

Example 4.17. Consider Equation (11) for m + 1 ⩽ i < j ⩽ n and n large enough.
We have that

w(i, n) = (m, m − 1, . . . , 1)(i, i − 1, . . . , m + 1)(n, n − 1, . . . , i + 1).
By Proposition 4.10, a reduced decomposition of w(i, n) is

w(i, n) = (1, i + 1)(1, i + 1)s2s3 . . . smsi+2 . . . sn−1snsm+2 . . . si−1si.

Its decomposition diagram is described in Figure 2.

sm sm−1 s2

(1, i + 1)

(1, i + 1)

si+2 sn−1 sn

sm+2 si−1 si

Figure 2. Decomposition diagram in the situation of Equation (11).

5. Decomposition of the reflections and their lifts
5.1. Interval groups and the claimed presentation. Let w be a quasi-Coxeter
element in W of type Dn. Consider the interval [1, w] of divisors of w for the absolute
order ⪯ given in Definition 2.7 and the interval group G([1, w]) with its presentation
given in Definition 2.9.

We denote by bold symbols the elements in G([1, w]). The copy [1, w] of the
interval [1, w] contains copies of the reflections (i, j) and (i, j) for 1 ⩽ i < j ⩽ n,
which we denote by (i, j) and (i, j).

By Proposition 2.10, the group G([1, w]) is described by a presentation on the set

T = {(i, j), (i, j) : 1 ⩽ i ̸= j ⩽ n},

with relations the dual braid relations. These relations are described as uv = vu
if uv ⪯ w and uv = vu, and as uv = vt = tu (t ∈ T ) if uv = vt ⪯ w for u, v ∈ T
and u ̸= v.
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It is convenient to reformulate our main result, Theorem A, as the following
Theorem, which we shall prove in Section 6. Again we choose 1 ⩽ m ⩽ ⌊ n

2 ⌋, and
consider the quasi-Coxeter element w = (m, m − 1, . . . , 1)(n, n − 1, . . . , m + 1). Let
S = {s1, . . . , sn} be the Carter generating set, where si+1 = (i, i+1) for 1 ⩽ i ⩽ n−1
and s1 = (m, m + 1). Let S = {s1, . . . , sn} ⊂ T be the set in G([1, w]) corresponding
to S.

Theorem 5.1. The interval group G([1, w]) is isomorphic to the group G defined by
the presentation with generating set S and relations described by the diagram ∆ in
Figure 3 together with the twisted cycle commutator relator

tc(s1, sm, sm+1, sm+2) = [s1, s−1
m sm+1sm+2s−1

m+1sm] = [s1, s
s−1

m+1sm

m+2 ],
associated with the cycle (s1, sm, sm+1, sm+2), that is,

G = A(∆)/⟨⟨tc(s1, sm, sm+1, sm+2) = [s1, s−1
m sm+1sm+2s−1

m+1sm] = [s1, s
s−1

m+1sm

m+2 ]⟩⟩.

Note that we will always describe the TC relator by a curved arrow inside the
corresponding cycle; see Figure 3.

s2 s3 sm−1

sm

sm+1

s1

sm+2

sm+3 sn−1 sn

⟳

Figure 3. The diagram presentation for the claimed presentation.

Proposition 5.2. Adding the quadratic relations to the presentation of G, we obtain
a group that is isomorphic to the Coxeter group W of type Dn.

Proof. In fact, the twisted cycle commutator relator becomes the cycle commutator
relator [s1, s

sm+1sm

m+2 ] = (s1smsm+1sm+2sm+1sm)2 introduced in Proposition 3.11.
The result follows immediately from the same proposition. □

The proof of the next lemma is easy and left as an exercise.

Lemma 5.3. The twisted cycle commutator relation [s1, s
s−1

m+1sm

m+2 ] = 1 can be written
as a relation between positive words as follows:

sms1sm+1sm+2smsm+1s1 = s1sm+1sm+2smsm+1s1sm,

meaning that sm commutes with s1sm+1sm+2smsm+1s1.

Remark 5.4. Consider the cycle (s1, sm, sm+1, sm+2) of the presentation of G.
Consider the twisted cycle commutator relators [s1, s

s−1
m+1sm

m+2 ], [sm, s
s−1

m+2
1 sm+1],

[sm+1, s
s−1

1
m+2sm], and [sm+2, s

s−1
m

1 sm+1]. It is an easy exercise to check that if one of
the twisted cycle commutator relators holds, then the three other relators also hold.

Remark 5.5. Suppose that m = 1, i.e. w is a Coxeter element. In this case, the
group G is the Artin group of type Dn. Our proof of Theorem 5.1 establishes a new
proof of a result of Bessis showing that the interval group related to a Coxeter element
in type Dn is isomorphic to the related Artin group (see [7]).
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We end the section by showing that the poset ([1, w] , ⪯) of a proper quasi-Coxeter
element w in type Dn is not a lattice. Hence the monoid defined by the same pre-
sentation as G([1, w]) viewed as a monoid presentation fails to be a Garside monoid.
Note that this fact does not mean that the group G([1, w]) cannot admit Garside
structures.

Proposition 5.6. Let w be a proper quasi-Coxeter element in type Dn for n ⩾ 4. The
poset ([1, w] , ⪯) is not a lattice.

Proof. We check using GAP that for w a proper quasi-Coxeter element in type D4, there
exists a bowtie in ([1, w] , ⪯), hence it is not a lattice, see [25, Proposition 1.10]. (The
bowtie consists of two reflections t1, t2 that commute in W such that t1t2 ̸∈ [1, w].)

Let w be a proper quasi-Coxeter element in type Dn for n > 4. Then it contains a
subword w′ of w whose Carter diagram is a 4-cycle. According to [18, Theorem 2.1],
all elements below w′ in ([1, w] , ⪯) are in ([1, w′] , ⪯) read as a poset in the rank 4
parabolic subgroup Pw′ . Therefore there is still the bowtie coming from the case n = 4
inside ([1, w] , ⪯) for n > 4. □

5.2. Decomposition of the reflections on Carter generators. The purpose
of this section is to find decompositions of the elements of T in terms of Carter
generators. This corresponds to Step 3 in the strategy of our proof as explained in
Section 2.5.

We recall that we fix an integer m with 1 ⩽ m ⩽ ⌊n/2⌋. We recall from Proposi-
tion 3.11 that a presentation of the Coxeter group W is defined on Carter generators
s1, s2, . . . , sn together with the relations described in the diagram presentation illus-
trated in Figure 1 together with the quadratic relations.

Recall that the reflections s2, s3, . . . , sn are the transpositions (1, 2), (2, 3), . . . ,
(n − 1, n), respectively, while the reflection s1 is the marked permutation (m, m + 1).
In the next proposition, we decompose each reflection (i, j) and (i, j) over the Carter
generators s1, s2, . . . , sn.

Proposition 5.7.
(1) Let t = (i, j) with 1 ⩽ i < j ⩽ n. We have

(12) t = s
sj−1sj−2...si+1
j .

(2) Let t = (i, j) with 1 ⩽ i ⩽ m and m + 1 ⩽ j ⩽ n. We have

(13) (i, j) = s
sm+2sm+3...sjsmsm−1...si+1
1 .

(3) Let t = (i, j) with 1 ⩽ i < j ⩽ m. We have

(14) (i, j) = s
smsm−1...si+1sm+1sm...sj+1
1 .

(4) Let t = (i, j) with m + 1 ⩽ i < j ⩽ n. We have

(15) (i, j) = s
sm+2sm+3...sjsm+1sm+2...si

1 .

Proof. The equations are easily obtained by direct calculation using the definition of
the reflections as marked permutations. □

Remark 5.8.
(1) In Equation (12), if j = i + 1, we get t = (i, i + 1) = si+1 (1 ⩽ i ⩽ n − 1)

visible among Carter generators.
(2) In Equation (13), if i = m and j = m + 1, we have t = s1 visible among

Carter generators.
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(3) The decompositions of (i, j) and (i, j) obtained in Equations (12)–(15) are
reduced decompositions over Carter generators. This result is not straightfor-
ward, but can be established using techniques from [26]. Since this fact is not
used in the proof of our main result, we will not include its proof here.

5.3. Lifting the reflections. The purpose of this section is to write each ele-
ment (i, j) and (i, j) (1 ⩽ i < j ⩽ n) of G([1, w]) in terms of the generators s1, s2,
. . . , sn that appear in the presentation of Theorem 5.1. This corresponds to Step 3 in
the strategy of our proof as explained in Section 2.5. Recall that (i, j) and (i, j) are
the copies of the reflections (i, j) and (i, j) within T , and s1, s2, . . . , sn are the copies
of the reflections s1 = (m, m + 1), s2, s3, . . . , sn. We employ the decompositions of
the reflections in terms of s1, s2, . . . , sn that we described in Equations (12) to (15)
of Section 5.2. These decompositions serve as a guide. In fact, we walk through the
reflections in the exponent expressions of these equations and derive our result. The
explicitness of these equations enables us to describe in a simple way the main result
of this section, Proposition 5.10.

As a preamble, let us illustrate our ideas in the following example.

Example 5.9. Let W be the Coxeter group of type D4. Let m = 2, and let w =
(2, 1)(4, 3) be a proper quasi-Coxeter element of length 4 by Proposition 3.6. Consider
the reflection (1, 4) ∈ T . It is equal to ss3s2

4 by Equation (12). We decompose the
copy (1, 4) ∈ T in terms of the generators s1, s2, s3, . . . , sn.

• Since w′ = s2(1, 4)w = (1, 3, 4)(2) is of length 2 by Proposition 3.6, then we
have (1, 4)s2 ⪯ w. So we get (1, 4)s2 = s2(1, 4)s2 = s2ss3

4 = s2(2, 4) ⪯ w.
Hence this gives (1, 4) = s2(2, 4)s−1

2 .
• Similarly, for ss3

4 = (2, 4), we have that (2, 4)s3 = s3(3, 4) ⪯ w also by a direct
application of Proposition 3.6. Hence we get (2, 4) = s3(3, 4)s−1

3 = s3s4s−1
3 .

It follows that (1, 4) = s2(2, 4)s−1
2 = s2s3s4s−1

3 s−1
2 = s

s−1
3 s−1

2
4 .

Proposition 5.10. The copies of the reflections to the interval group G([1, w]) de-
compose on the generators s1, s2, . . . , sn as follows.

(16) (i, j) = s
s−1

j−1s−1
j−2...s−1

i+1
j , for 1 ⩽ i < j ⩽ n,

(17) (i, j) = s
sm+2sm+3...sjs−1

m s−1
m−1...s−1

i+1
1 , for 1 ⩽ i ⩽ m, m + 1 ⩽ j ⩽ n.

(18) (i, j) = s
s−1

m s−1
m−1...s−1

i+1sm+1s−1
m s−1

m−1...s−1
j+1

1 , for 1 ⩽ i < j ⩽ m,

(19) (i, j) = s
sm+2sm+3...sjs−1

m+1sm+2...si

1 , for m + 1 ⩽ i < j ⩽ n,

Proof. We use the decompositions of the reflections (i, j) and (̄i, j̄) for 1 ⩽ i < j ⩽ n
in term of Carter generators s1, s2, . . . , sn that we described in Equations (12) to (15)
in Section 5.2. Each of these equations is of the form

t = yx1x2...xp ,

for p ⩾ 1. For k from p down to 1, we proceed as follows. Let tk = yx1x2...xk . We have
that tp = t.

• If tkxk ⪯ w, then we have tkxk = xktxk

k = xktk−1 ⪯ w. It follows that
tkxk = xktk−1, which implies that tk = xktk−1x−1

k .
• If xktk ⪯ w, then we have xktk = txk

k xk = tk−1xk ⪯ w. It follows that
xktk = tk−1xk, which gives tk = x−1

k tk−1xk.
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It turns out that for all k from p down to 1, we are in one of the previous two situations
in all Equations (12) to (15). It follows that t = yx

ϵ1
1 x

ϵ2
2 ...x

ϵp
p , where ϵk = −1 or 1,

for 1 ⩽ k ⩽ p, depending on whether we apply the first or the second situation,
respectively.

Let us explain this for the copy (i, j) of (i, j) for 1 ⩽ i < j ⩽ m. The same
argument applies for the other equations. For 1 ⩽ i < j ⩽ m, by Equation (14), we
have that

(i, j) = s
smsm−1...si+1sm+1sm...sj+1
1 .

Applying Proposition 3.6, we have that (i, j)sj+1 ⪯ w, so that (i, j)sj+1 =
sj+1(i, j)sj+1 = sj+1(i, j + 1) ⪯ w. Then we get

(i, j) = sj+1(i, j + 1)s−1
j+1.

Next, applying Proposition 3.6, we have (i, j + 1)sj+2 ⪯ w, meaning that
(i, j + 1)sj+2 = sj+2(i, j + 1)sj+2 = sj+2(i, j + 2) ⪯ w. So, we get

(i, j + 1) = sj+2(i, j + 2)s−1
j+2.

Hence we have
(i, j) = (i, j + 2)s−1

j+2s−1
j+1 .

And so on, we apply the same computations for sj+2, sj+3, . . . , sm appearing in the
exponent part of Equation (14), and get

(i, j) = (i, m)s−1
m ...s−1

j+2s−1
j+1 .

Next, applying Proposition 3.6, we have sm+1(i, m) ⪯ w (and not (i, m)sm+1 ⪯ w),
meaning that sm+1(i, m) = (i, m + 1)sm+1 ⪯ w. Hence we get

(i, m) = s−1
m+1(i, m + 1)sm+1.

Then we obtain
(i, j) = (i, m + 1)sm+1s−1

m ...s−1
j+2s−1

j+1 .

Similarly, we have (i, m + 1)si+1 ⪯ w, so (i, m + 1)si+1 = si+1(i + 1, m + 1) ⪯ w.
Thus, we get

(i, m + 1) = si+1(i + 1, m + 1)s−1
i+1.

And so on, we apply the same calculation for si+1, si+2, . . . , sm until we obtain the
desired equation:

For 1 ⩽ i < j ⩽ m, (i, j) = s
s−1

m s−1
m−1...s−1

i+1sm+1s−1
m s−1

m−1...s−1
j+1

1 .

□

We provide an example where the decomposition that we obtain will appear in the
twisted cycle commutator relators in the next section.

Example 5.11. Let W be a Coxeter group of type D4. Let m = 2 and w = (2, 1)(4, 3)
be a proper quasi-Coxeter element. Consider the reflection t = (1, 2) of type II. By
Equation (14), we have that (1, 2) = ss2s3

1 .
• Since w′ = (1, 2)s3w = (2)(4, 3, 1) is of length 2 by Proposition 3.6, then

we have that s3(1, 2) ⪯ w. Note that we are in the situation of the second
bullet in the proof of Proposition 5.10. Hence we get s3(1, 2) = (1, 2)s3s3 =
ss2

1 s3 = (1, 3)s3 ⪯ w. Therefore, we obtain s3(1, 2) = (1, 3)s3, which gives
(1, 2) = s−1

3 (1, 3)s3.
• Next, we consider (1, 3) = ss2

1 . We have that w′ = s2(1, 3)w = (1)(4, 3, 2) is of
length 2. Thus, we have (1, 3)s2 ⪯ w, which says that (1, 3)s2 = s2(1, 3)s2 =
s2s1 ⪯ w. We obtain (1, 3)s2 = s2s1, which gives (1, 3) = s2s1s−1

2 .
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Therefore, we obtain

(1, 2) = s−1
3 (1, 3)s3 = s−1

3 s2s1s−1
2 s3 = s

s
−1
2 s3

1 .

We finish this section by the next lemma which is used to show that f is a homo-
morphism (see Step 1 of the strategy of the proof in Section 2.5). The proof of the
lemma uses Proposition 5.10.

Lemma 5.12. The braid relators b(si, sj) and the twisted cycle commutator relator
tc(sm+2, sm+1, sm, s1) specified by the presentation given for G hold in G([1, w]).

Proof. Consider case (1) of Proposition 3.12. It implies a commuting braid relation,
which lifts to sisj = sjsi for |i − j| > 1.

Consider case (2) of Proposition 3.12. It implies a dual braid relation sisi+1 =
si+1t, for 2 ⩽ i ⩽ n − 1, where t = (i − 1, i + 1). Applying Equation (16) of
Proposition 5.10, we have that t is equal to s

s
−1
i

i+1. The dual braid relation becomes

sisi+1 = si+1s
s

−1
i

i+1, that is sisi+1si = si+1sisi+1.
Case (3) of Proposition 3.12 is treated similarly. We will give details on case (4)

where the TC relator will appear.
Consider then Case (4) of Proposition 3.12. It implies that tsm+2 ⪯ w with tsm+2

of order 2. So we get a commuting dual braid relation. Now, we have to lift the
relation to prove that it lives in G([1, w]). Applying Equation (18) of Proposition 5.10
for i = m − 1 and j = m, we have that t is equal to s

s−1
m sm+1

1 . Then the dual
braid relation becomes [sm+2, s

s−1
m sm+1

1 ] = 1, which is exactly the TC relator (see
Remark 5.4). □

6. The proof of the main theorem
6.1. The case n = 4. Let W be the Coxeter group of type D4. By Proposition 3.11,
W has a presentation on the four generators s2 = (1, 2), s3 = (2, 3), s4 = (3, 4),
and s1 = (2, 3). We have m = 2 and the corresponding proper quasi-Coxeter element
is w = (2, 1)(4, 3).

We prove that the interval group G([1, w]) is isomorphic to the group G with
four generators s1, s2, s3, s4, corresponding to reflections s1, s2, s3, s4, with relations
described by the corresponding Carter diagram, along with the twisted cycle commu-
tator relator

tc(s1, s2, s3, s4) = [s1, s
s−1

3 s2
4 ].

We consider a reflection t in T to be of type I, II, or III according to the type of
the maximal divisor w0 = wt of w, and assign the same types to the elements of T .
We collect the information we need in Tables 4 and 5.

Table 4 provides decompositions for the elements of T by applying Proposition 5.10.
The second column of Table 5 contains the 12 divisors (the w0’s) of length 3 of

the quasi-Coxeter element w of types I, II, and III, where we separate each type by
two lines. We follow Section 4.1 in order to produce them. We also follow Sections 4.2
and 4.3 to produce reduced decompositions of these elements and their decomposition
diagrams (the ∆0’s). The last column produces a Coxeter-like diagram related to ∆0
that we call the lift of ∆0. It encodes the relations between the lift to the interval
group of two reflections that appear in the reduced decomposition of each w0.

Proposition 6.1. All the relations that describe the type A3 diagrams on the last col-
umn of Table 5 are consequences of the relations described by the diagram presentation
over s1, s2, s3, s4 illustrated in Figure 3.
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Number Decomposition of t (type I)
1. (1, 3) = s

s
−1
2

3

2. (1, 4) = s
s

−1
3 s

−1
2

4
3. (2, 3) = s3

4. (2, 4) = s
s

−1
3

4

5. (1, 3) = s
s

−1
2

1

6. (1, 4) = s
s4s

−1
2

1
7. (2, 3) = s1
8. (2, 4) = ss4

3
Decomposition of t (type II)

9. (1, 2) = s2

10. (1, 2) = s
s

−1
2 s3

1
Decomposition of t (type III)

11. (3, 4) = s4

12. (3, 4) = s
s4s

−1
3

1
Table 4. Decompositions of t in the case n = 4.

We prove the proposition by showing using kbmag [24] within GAP [22] that the
relations appearing in the last column of Table 5 are consequences of the relations
between s1, s2, s3, s4. For example, let us consider a diagram where some twisted cycle
commutator relators appear. Consider the element Number 6 of the table. We have to
show that (1, 2) commutes with s4, where (1, 2) = s

s
−1
2 s3

1 . The commuting relation
between (1, 2) and s4 is precisely the twisted cycle commutator relator [s4, s

s
−1
2 s3

1 ]
that is a consequence of the relations of the claimed presentation.

Now we can show that G([1, w]) is isomorphic to G, that is Theorem 5.1 in the
case where n = 4.

Proposition 6.2. In the case n = 4, the groups G and G([1, w]) are isomorphic.

Proof. By transitivity of the Hurwitz action on the reduced decompositions over T
of w, the group G([1, w]) is generated by a copy

T = {(i, j), (i, j) : 1 ⩽ i < j ⩽ 4}

of the set of reflections in T , and subject to the dual braid relations tt′ = t′t′′ that
correspond to relations tt′ = t′t′′ in W where tt′ = t′t′′ ⪯ w.

Consider the map f : G −→ G([1, w]) : si 7−→ si. By Lemma 5.12, the relations of
the presentation of G hold in G([1, w]).

Now consider the map g : G([1, w]) −→ G that maps each generator t of G([1, w])
to the expression for it over the generators s1, s2, s3, and s4 that is given by Propo-
sition 5.10. Let tt′, t′t′′ be the two sides of a dual braid relation. Then there exists
w0 ⪯ w of length 3 such that tt′ = t′t′′ ⪯ w0. By [7], we know that the group G([1, w0])
is isomorphic to the group defined by a presentation that we have described by Cox-
eter diagrams of type A3 in the last column of Table 5. Hence we obtain that the
dual braid relation tt′ = t′t′′ is a consequence of the relations of the corresponding
diagram in the table.
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Number Maximal divisor w0 Reduced Decomposition Lift of ∆0

1. w(1, 3) = (4, 1, 2, 3) (2, 3)(1, 2)(1, 4) (1, 4)(1, 2)(2, 3)

2. w(1, 4) = (4, 3, 1, 2) (1, 2)(1, 3)(3, 4) (3, 4)(1, 3)(1, 2)

3. w(2, 3) = (4, 2, 1, 3) (1, 3)(1, 2)(2, 4) (1, 3) (1, 2) (2, 4)

4. w(2, 4) = (4, 3, 2, 1) (1, 2)(2, 3)(3, 4) (1, 2) (2, 3) (3, 4)

5. w(1, 3) = (4, 1, 2, 3) (2, 3)(1, 2)(1, 4) (2, 3) (1, 2) (1, 4)

6. w(1, 4) = (4, 3, 1, 2) (1, 2)(1, 3)(3, 4) (1, 2) (1, 3) (3, 4)

7. w(2, 3) = (4, 2, 1, 3) (1, 3)(1, 2)(2, 4) (1, 3) (1, 2) (2, 4)

8. w(2, 4) = (4, 3, 2, 1) (1, 2)(2, 3)(3, 4) (1, 2) (2, 3) (3, 4)

9. w(1, 2) = (1)(2)(4, 3) (1, 3)(1, 3)(3, 4) (1, 3) (3, 4) (1, 3)

10. w(1, 2) = (1)(2)(4, 3) (2, 3)(2, 3)(3, 4) (2, 3) (3, 4) (2, 3)

11. w(3, 4) = (2, 1)(3)(4) (1, 3)(1, 3)(1, 2) (1, 3) (1, 2) (1, 3)

12. w(3, 4) = (2, 1)(3)(4) (1, 4)(1, 4)(1, 2) (1, 4) (1, 2) (1, 4)

Table 5. Reduced decompositions and diagram lifts in the case n = 4.

In addition, we have already shown in Proposition 6.1 that the relations of these
diagrams are consequences of the relations we have associated with the diagram ∆.
Hence the map g is a homomorphism.

Clearly, the composition f ◦g is equal to idG([1,w]) and g◦f equal to idG. Therefore,
the groups G and G([1, w]) are isomorphic. □

6.2. The case n = 5. Let W be the Coxeter group of type D5. It has a presentation
on the five generators s2 = (1, 2), s3 = (2, 3), s4 = (3, 4), s5 = (4, 5), and s1 = (2, 3)
(see Proposition 3.11). Here m is equal to 2 and the corresponding proper quasi-
Coxeter element is w = (2, 1)(5, 4, 3).

We prove that the interval group G([1, w]) is isomorphic to the group G with
five generators s1, s2, s3, s4, and s5 corresponding to s1, s2, s3, s4, s5, with relations
described by the diagram of Figure 3, where the curved arrow describes the twisted
cycle commutator relator: tc(s1, s2, s3, s4) = [s1, s

s
−1
3 s2

4 ].
Similarly to Table 4 in the case n = 4, we provide in Table 6 decompositions of t

in the case n = 5 by applying Proposition 5.10 and we divide them according to the
three types I, II, III of elements in T .

Table 7 contains for the case n = 5 the information that is displayed in Table 5 for
the case n = 4. We have 20 divisors of w of length 4 (the w0’s) obtained by multiplying
w from the right by (i, j) and (i, j) for 1 ⩽ i < j ⩽ 5. These divisors belong to types I,
II, and III. We separate each type by 2 lines in the table. The third column produces
the reduced decomposition from Sections 4.2 and 4.3. The last column describes the
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Number Decomposition of t (type I)
1. (1, 3) = s

s
−1
2

3

2. (1, 4) = s
s

−1
3 s

−1
2

4

3. (1, 5) = s
s

−1
4 s

−1
3 s

−1
2

5
4. (2, 3) = s3

5. (2, 4) = s
s

−1
3

4

6. (2, 5) = s
s

−1
4 s

−1
3

5

7. (1, 3) = s
s

−1
2

1

8. (1, 4) = s
s4s

−1
2

1

9. (1, 5) = s
s4s5s

−1
2

1
10. (2, 3) = s1
11. (2, 4) = ss4

1
12. (2, 5) = ss4s5

1
Decomposition of t (type II)

13. (1, 2) = s2

14. (1, 2) = s
s

−1
2 s3

1
Decomposition of t (type III)

15. (3, 4) = s4

16. (3, 5) = s
s

−1
4

5
17. (4, 5) = s5

18. (3, 4) = s
s4s

−1
3

1

19. (3, 5) = s
s4s5s

−1
3

1

20. (4, 5) = s
s4s5s

−1
3 s4

1
Table 6. Decompositions of t in the case n = 5.

lift of the diagram ∆0 that encodes the relations between the lift to the interval group
of two reflections that appear in the reduced decomposition of each w0.

We showed, using kbmag within GAP that all the relations described in the diagrams
of the last column are consequences of the relations of the claimed presentation (see
Theorem 5.1). The only cases that correspond to proper quasi-Coxeter elements are
numbers 15, 17, and 19 of Table 7. Let w0 be one of these elements. We know from
Proposition 6.2 that G([1, w0]) is isomorphic to the group defined by a presentation
associated to the square diagram with the twisted cycle commutator relator. We
conclude with the statement of the result for n = 5, whose proof we omit since it is
similar to the proof of Proposition 6.2.

Proposition 6.3. In the case n = 5, the groups G and G([1, w]) are isomorphic.

6.3. Lifting the reduced decompositions. This section establishes Step 4 in our
strategy that we have described in Section 2.5.

Let w be the quasi-Coxeter element (m, m − 1, . . . , 2, 1̄)(n, n − 1, . . . , m + 1) in
type Dn. We define g to be the map from G([1, w]) to G that sends ti to its decom-
position over the generating set S of G given by Proposition 5.10. In this section, we
prove the following.
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Maximal divisor w0 Reduced decomposition Lift of ∆0

1. w(1, 3) = (5, 4, 1, 2, 3) (2, 3)(1, 2)(1, 4)(4, 5) (2, 3) (1, 2) (1, 4) (4, 5)

2. w(1, 4) = (5, 1, 2, 4, 3) (3, 4)(2, 4)(1, 2)(1, 5) (3, 4) (2, 4) (1, 2) (1, 5)

3. w(1, 5) = (5, 4, 3, 1, 2) (1, 2)(1, 3)(3, 4)(4, 5) (1, 2) (1, 3) (3, 4) (4, 5)

4. w(2, 3) = (5, 4, 2, 1, 3) (1, 3)(1, 2)(2, 4)(4, 5) (1, 3) (1, 2) (2, 4) (4, 5)

5. w(2, 4) = (5, 2, 1, 4, 3) (3, 4)(1, 4)(1, 2)(2, 5) (3, 4) (1, 4) (1, 2) (2, 5)

6. w(2, 5) = (5, 4, 3, 2, 1) (1, 2)(2, 3)(3, 4)(4, 5) (1, 2) (2, 3) (3, 4) (4, 5)

7. w(1, 3) = (5, 4, 1, 2, 3) (2, 3)(1, 2)(1, 4)(4, 5) (2, 3) (1, 2) (1, 4) (4, 5)

8. w(1, 4) = (5, 1, 2, 4, 3) (3, 4)(2, 4)(1, 2)(1, 5) (3, 4) (2, 4) (1, 2) (1, 5)

9. w(1, 5) = (5, 4, 3, 1, 2) (1, 2)(1, 3)(3, 4)(4, 5) (1, 2) (1, 3) (3, 4) (4, 5)

10. w(2, 3) = (5, 4, 2, 1, 3) (1, 3)(1, 2)(2, 4)(4, 5) (1, 3) (1, 2) (2, 4) (4, 5)

11. w(2, 4) = (5, 2, 1, 4, 3) (3, 4)(1, 4)(1, 2)(2, 5) (3, 4) (1, 4) (1, 2) (2, 5)

12. w(2, 5) = (5, 4, 3, 2, 1) (1, 2)(2, 3)(3, 4)(4, 5) (1, 2) (2, 3) (3, 4) (4, 5)

13. w(1, 2) = (1)(2)(5, 4, 3) (1, 3)(1, 3)(3, 4)(4, 5)
(3, 4) (4, 5)

(1, 3)

(1, 3)

14. w(1, 2) = (1)(1)(5, 4, 3) (2, 3)(2, 3)(3, 4)(4, 5)
(3, 4) (4, 5)

(2, 3)

(2, 3)

15. w(3, 4) = (2, 1)(5, 3)(4) (1, 3)(1, 3)(1, 2)(3, 5) (1, 2)
(1, 3)

(1, 3)
(3, 5)⟳

16. w(3, 5) = (2, 1)(3)(5, 4) (1, 3)(1, 3)(1, 2)(4, 5) (1, 3) (1, 2) (1, 3) (4, 5)

17. w(4, 5) = (2, 1)(4, 3)(5) (1, 3)(1, 3)(1, 2)(3, 4) (1, 2)
(1, 3)

(1, 3)
(3, 4)⟳

18. w(3, 4) = (2, 1)(5, 3)(4) (1, 4)(1, 4)(1, 2)(3, 5) (1, 4) (1, 2) (1, 4) (3, 5)

19. w(3, 5) = (2, 1)(3)(5, 3) (1, 4)(1, 4)(1, 2)(4, 5) (1, 2)
(1, 4)

(1, 4)
(4, 5)⟳

20. w(4, 5) = (2, 1)(4, 3)(5) (1, 5)(1, 5)(1, 2)(3, 4) (1, 5) (1, 2) (1, 5) (3, 4)

Table 7. Reduced decompositions and diagram lifts in the case n = 5.
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Proposition 6.4. Let w0 be a divisor of length n − 1 of the quasi-Coxeter element w,
let t1t2 . . . tn−1 be the reduced decomposition of w0 obtained using the results of Sec-
tions 4.2, 4.3, and let ∆0 be the associated decomposition diagram (described in Propo-
sitions 4.5, 4.15 and 4.16). Then for each of the relators b(ti, tj) and tc(ti, tj , tk, tl)
between the reflections ti that is implied by the diagram ∆0 the corresponding relators
b(g(ti), g(tj)) or tc(g(ti), g(tj), g(tk), g(tl)) can be derived from the relations of the
presentation of G given in Theorem 5.1.

Proof. The proof is by induction on n. The proposition is proved for n = 4 and n = 5
in Sections 6.1 and 6.2 within the proofs of Propositions 6.2 and 6.3.

Now let n ⩾ 6. Set w′ := (m, m − 1, . . . , 2, 1)(n − 1, n − 2, . . . , m + 1). Then

w′ = s2s3 . . . sms1sm+1sm+2sm+3sm+4 . . . sn−1

has the diagram ∆m,n−1 by Proposition 3.8, and P := Pw′ = ⟨s1, . . . , sn−1⟩ is a
parabolic subgroup of W , which is of type Dn−1. Moreover, the braid relators in the
generators g(si) and g(sj) as well as the twisted cycle relator for w′, which we will
call the w′-relators, are a subset of the G-relators.

There are 11 different possibilities for w0 that are described in Section 4.1 by
Equations (1)–(11). For the 11-th equation we need to deal separately with the cases
n > i + 1 and n = i + 1.

Suppose first that w0 is either as in one of Equations 1 − 10 or as in Equation 11
with n > i + 1. In any of these cases, in the cycle decomposition of w0 the number
n is only overlined in a cycle that has an even number of overlined entries. This
implies that at most one of the reflections t1, . . . , tn−1 is not contained in P and that
this reflection corresponds to an end node of ∆0 and is without loss of generality
tn−1. Thus we have t1, . . . , tn−2 ∈ P . Set w1 := w0tn−1 = t1 · · · tn−2 ∈ P . Then we
get by [10, Lemma 5.3] that w1 is a divisor of length ℓT (w1) = n − 2 of w′ in P .
Further w′ is of length n − 1. By induction on (P, w′), the relators b(g(ti), g(tj)) and
tc(g(ti), g(tj), g(tk), g(tl)) are a consequence of the w′-relators, which are G-relators,
for 1 ⩽ i, j, k, l ⩽ n − 2.

Hence it only remains to show that b(g(ti), g(tj)) and tc(g(ti), g(tj), g(tk), g(tl))
are consequences of the G-relators under the assumption that i = n − 1. This is done
in the appendix in Lemmas A.1, . . . , A.6. Thereby notice, as tn−1 corresponds to an
end node of ∆0, it is not contained in a cycle of ∆0 and the relator tc(tn−1, tj , tk, tl)
does not appear.

Now suppose that w0 is as in Equation (11) and that n = i + 1. Then ∆0 is the
union of three strings, one of length 1. The reflections ti are in P beside that one
corresponding to the single vertex and one of the other four end nodes of the strings
of ∆0. By induction it remains to derive the braid relators for the two reflections just
mentioned from the G-relators, which is treated in Lemma A.6. □

In Appendix A we establish the proof of the lemmas we refer to in the proof of
Proposition 6.4.

6.4. The proof for n > 5. We are in position to prove Theorem 5.1. The details
of the proof are discussed and commented in our strategy developed in Section 2.5.

Consider the map f : G −→ G([1, w]) : si 7−→ si. By Proposition 3.12 and
Lemma 5.12, the relations of the presentation of G hold in G([1, w]). This is Step 1
in the strategy of the proof.

Consider the map g : G([1, w]) −→ G that maps each generator t of the generating
set T of G([1, w]) to its decomposition on the generators s1, s2, . . . , sn that we
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described in Equations (16) to (19) within Proposition 5.10. This is Step 3 in the
strategy of the proof that was established within Section 5.

We want to show that g is a homomorphism. Consider a dual braid relation
of G([1, w]), meaning a relation of the form tt′ = t′t′′ for t, t′, t′′ ∈ T . It corre-
sponds to the fact that tt′ = t′t′′ ⪯ w. Then we have to prove that the relation
g(t)g(t′) = g(t′)g(t′′) is a consequence of the relations of the presentation of G.
As ([1, w] , ⪯) is a graded poset in which all the maximal flags have the same length,
there are divisors w0 of length n − 1 of w such that tt′ ⪯ w0. By Proposition 6.4,
the braid relations and the twisted cycle commutator relator that correspond to the
reduced decomposition and the diagram ∆0 for w0 (produced in Sections 4.2 and 4.3)
are a consequence of the G-relations (see Step 4 of our strategy). By induction, the
relation g(t)g(t′) = g(t′)g(t′′) is a consequence of the braid relations and the twisted
cycle commutator relator related to the reduced decomposition in the g-image of the
lift of Pw0 to G. Therefore, g is a homomorphism.

Clearly, the composition f ◦ g is equal to idG([1,w]) and g ◦ f is equal to idG.
Therefore, the groups G and G([1, w]) are isomorphic.
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Appendix A. Proof of the lemmas
In the calculations within the proofs of the next lemmas, we underline an expression
being manipulated for emphasis.

Lemma A.1. Suppose that w0 = w(i, j), with 1 ⩽ i ⩽ m, m+1 ⩽ j ⩽ n, so that we are
in the situation of Equation (1). Let t1t2 . . . tn−1 be the reduced decomposition of w0
described in Lemma 4.6. Then we can deduce from the relations of the presentation
of G that g(tn−1)g(tn−2)g(tn−1) = g(tn−2)g(tn−1)g(tn−2) and g(tn−1) commutes
with each of the elements g(tk) with k < n − 2.

Proof. We consider the seven different possible decompositions of w0 that are de-
scribed in Lemma 4.6. In each case we do not need to consider the relations between
g(tn) and g(tk) if both elements are within the set S.

(1) Where i ̸= m and j ̸= n−2, n−1, n, we need to check that the element g(sn) =
g((n − 1, n)) commutes with each of g ((i + 1, j)), g ((i, j + 1)), and g

(
(1, m)

)
.

By Proposition 5.10, we have that

g ((i + 1, j)) = s
s−1

j−1s−1
j−2...s−1

i+2
j and g ((i, j + 1)) = s

s−1
j

s−1
j−1...s−1

i+1
j+1 .

It follows from the relations of the presentation of G that g (sn) commutes with both
g ((i + 1, j)) and g ((i, j + 1)).

We also have that g
(
(1, m)

)
= s

s−1
m s−1

m−1...s−1
2 sm+1

1 . Then it also follows from the
relations of the presentation of G that g (sn) commutes with g

(
(1, m)

)
.

(2) Where i ̸= m and j = n − 2, we need to check that the element g (sn) =
g ((n − 1, n)) commutes with each of g ((i + 1, n − 2)), g

(
(1, m)

)
, and that the

relation g (sn) g ((i, n − 1)) g (sn) = g ((i, n − 1)) g (sn) g ((i, n − 1)) holds.
We have already shown in item (1) of this proof that g (sn) commutes

with g
(
(1, m)

)
.
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We have that g ((i + 1, n − 2)) = s
s−1

n−3s−1
n−4...s−1

i+2
n−2 . It follows directly from the

relations of G that g (sn) commutes with g ((i + 1, n − 2)).
Now we prove that g (sn) g ((i, n − 1)) g (sn) = g ((i, n − 1)) g (sn) g ((i, n − 1)):

g (sn) g ((i, n − 1)) g (sn) =si+1 . . . sn−3sn−2snsn−1sns−1
n−2s−1

n−3 . . . s−1
i+1

=si+1 . . . sn−3sn−2sn−1snsn−1s−1
n−2s−1

n−3 . . . s−1
i+1

=(si+1 . . . sn−3sn−2sn−1s−1
n−2s−1

n−3 . . . s−1
i+1)

(si+1 . . . sn−3sn−2snsn−1s−1
n−2s−1

n−3 . . . s−1
i+1)

=(si+1 . . . sn−3sn−2sn−1s−1
n−2s−1

n−3 . . . s−1
i+1)

sn(si+1 . . . sn−3sn−2sn−1s−1
n−2s−1

n−3 . . . s−1
i+1)

=g ((i, n − 1)) g (sn) g ((i, n − 1)) .

(3) Where i = m and j = n − 2, we need to check that g (sn) commutes with
g

(
(1, n − 2)

)
and the relation

g (sn) g ((m, n − 1)) g (sn) = g ((m, n − 1)) g (sn) g ((m, n − 1)) .

We already proved this last relation in item (2). For the commuting relation, we
have that g

(
(1, n − 2)

)
= s

sm+2sm+3...sn−2s−1
m s−1

m−2...s−1
2

1 for n > 5. It follows that
g (sn) commutes with g

(
(1, n − 2)

)
.

(4) Where i ̸= m and j = n − 1, we need to prove that g (si) g ((i, n)) g (si) =
g ((i, n)) g (si) g ((i, n)) and g ((i, n)) commutes with all the images by g of elements
of T that correspond to reflections in the string of item (4) in Lemma 4.6:

sm+2 . . . sn−2sn−1(i + 1, n − 1)si+2 . . . sm−1sm(1, m)s2 . . . si−1.

We have that g ((i, n)) = s
s−1

n−1s−1
n−2...s−1

i+1
n . Then, we get

g (si) g ((i, n)) g (si) =si(si+1 . . . sn−2sn−1sns−1
n−1s−1

n−2 . . . s−1
i+1)si

=si(si+1 . . . sn−2s−1
n sn−1sns−1

n−2 . . . s−1
i+1)si

=s−1
n si(i, n − 1)sisn

=s−1
n (i, n − 1)si(i, n − 1)sn (by induction hypothesis)

=s−1
n (i, n − 1)snsis

−1
n (i, n − 1)sn,

with s−1
n g ((i, n − 1)) sn = g ((i, n)). Hence we get

g (si) g ((i, n)) g (si) = g ((i, n)) g (si) g ((i, n)) .

It is clear that g ((i, n)) commutes with s2, s3, . . . , si−1.
Let us show that g ((i, n)) commutes with sm. We have seen that g ((i, n)) =

s−1
n g ((i, n − 1)) sn. Then we get

g ((i, n)) sm =s−1
n g ((i, n − 1)) snsm

=s−1
n g ((i, n − 1)) smsn

=s−1
n smg ((i, n − 1)) sn (by induction hypothesis)

=sms−1
n g ((i, n − 1)) sn

=smg ((i, n)) .

Similarly g ((i, n)) commutes with sm−1, sm−2, . . . , si+2, sn−2, sn−3, . . . , sm+2,
and g

(
(1, m)

)
. It is done by just replacing sm by each of the previous elements.
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Let us now show that g ((i, n)) commutes with sn−1. We have that

g ((i, n)) sn−1 =(si+1 . . . sn−2sn−1)sn(s−1
n−1s−1

n−2 . . . s−1
i+1)sn−1

=(si+1 . . . sn−2sn−1)sn(s−1
n−1s−1

n−2sn−1s−1
n−3 . . . s−1

i+1)

=(si+1 . . . sn−2sn−1)sn(sn−2s−1
n−1s−1

n−2 . . . s−1
i+1)

=(si+1 . . . sn−2sn−1sn−2)sn(s−1
n−1s−1

n−2 . . . s−1
i+1)

=(si+1 . . . sn−3sn−1sn−2sn−1)sn(s−1
n−1s−1

n−2 . . . s−1
i+1)

=sn−1g ((i, n)) .

Finally, we show that g ((i, n)) commutes with g ((i + 1, n − 1)). Since

g ((i + 1, n − 1)) = s
s−1

n−2s−1
n−3...s−1

i+2
n−1 ,

we get g ((i + 1, n − 1)) = s−1
n−1g ((i + 1, n − 2)) sn−1. We obtain

g ((i + 1, n − 1)) g ((i, n)) =s−1
n−1g ((i + 1, n − 2)) sn−1g ((i, n))

=s−1
n−1g ((i + 1, n − 2)) g ((i, n))sn−1

(by the previous case)
=s−1

n−1g ((i + 1, n − 2)) s−1
n g ((i, n − 1)) snsn−1

=s−1
n−1s−1

n g ((i + 1, n − 2)) g ((i, n − 1))snsn−1

=s−1
n−1s−1

n g ((i, n − 1)) g ((i + 1, n − 2)) snsn−1

(by induction hypothesis)
=s−1

n−1s−1
n g ((i, n − 1)) sng ((i + 1, n − 2)) sn−1

=s−1
n−1g ((i, n))g ((i + 1, n − 2)) sn−1

=g ((i, n)) s−1
n−1g ((i + 1, n − 2)) sn−1

=g ((i, n)) g ((i + 1, n − 1)) .

(5) Where i = m and j = n − 1, we need to check that g (sm) g ((m, n)) g (sm) =
g ((m, n)) g (sm) g ((m, n)) and that g ((m, n)) commutes with all the images by g
of the elements of T that correspond to the reflections in the string from item (5) in
Lemma 4.6:

sm+2 . . . sn−2sn−1(1, n − 1)s2 . . . sm−1.

This is shown by following the same arguments as in (4).

(6) Where i ̸= m and j = n, we need to check that sn commutes with g
(
(1, m)

)
and g

(
(i, m + 1)

)
This is straightforward to show.

(7) Where i = m and j = n, the image by g of the copies of the reflections in the
decomposition in item (7) of Lemma 4.6 are only elements of S, so there is nothing
to check. □

Lemma A.2. Suppose that w0 = w(i, j), with 1 ⩽ i < m, m + 1 ⩽ j < n, so that we
are in the situation of Equation (2). Let t1t2 . . . tn−1 be the reduced decomposition of
w0 described in Lemma 4.7. Then we can deduce from the relations of the presentation
of G given in Theorem 5.1 that g (tn−1) g (tn−2) g (tn−1) = g (tn−2) g (tn−1) g (tn−2),
and that g (tn−1) commutes with each of the elements g (tk) with k < n − 2.
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Proof. We consider the three different possible decompositions of w0 that are de-
scribed in Lemma 4.7. In each case we do not need to consider the relations between
g(tn) and g(tk) if both elements are within the set S.

(1) Where i ̸= m and j ̸= n − 2, n − 1, n, we need to check that g (sn) commutes
with g

(
(1, m)

)
, g

(
(i, j + 1)

)
, and g

(
(i + 1, j)

)
.

The fact that g (sn) = sn commutes with g
(
(1, m)

)
is done in Lemma A.1(1).

We have that g
(
(i, j + 1)

)
= s

sm+2sm+3...sj+1s−1
m s−1

m−1...s−1
i+1

1 , and g
(
(i + 1, j)

)
=

s
sm+2sm+3...sjs−1

m s−1
m−1...s−1

i+2
1 that both obviously commute with sn.

(2) Where i ̸= m and j = n − 2, we need to check that g (sn) = sn commutes with
g

(
(1, m)

)
, g

(
(i + 1, n − 2)

)
, and check that g

(
(i, n − 1)

)
g (sn) g

(
(i, n − 1)

)
=

g (sn) g
(
(i, n − 1)

)
g (sn).

The fact that sn commutes with g
(
(1, m)

)
and g

(
(i + 1, n − 2)

)
is done in

Lemma A.2(1). For the last relation, we have that

g
(
(i, n − 1)

)
sng

(
(i, n − 1)

)
= s−1

n−1g
(
(i, n − 2)

)
sn−1sns−1

n−1g
(
(i, n − 2)

)
sn−1

= s−1
n−1g

(
(i, n − 2)

)
s−1

n sn−1sng
(
(i, n − 2)

)
sn−1

= s−1
n−1s−1

n g
(
(i, n − 2)

)
sn−1g

(
(i, n − 2)

)
snsn−1

= s−1
n−1s−1

n sn−1g
(
(i, n − 2)

)
sn−1snsn−1

(by induction hypothesis)
= sns−1

n−1s−1
n g

(
(i, n − 2)

)
snsn−1sn

= sns−1
n−1g

(
(i, n − 2)

)
s−1

n snsn−1sn

= sng
(
(i, n − 1)

)
sn.

(3) Where i ̸= m and j = n − 1, we need to check that sig
(
(i, n)

)
si =

g
(
(i, n)

)
sig

(
(i, n)

)
and that g

(
(i, n)

)
commutes with the images by g of elements

that correspond to the reflections in the string from item (3) in Lemma 4.7:

sm+2 . . . sn−2sn−1(i + 1, n − 1)si+2 . . . sm−1sm(1, m)s2 . . . si−1.

First, we have

sig
(
(i, n)

)
si = sis

−1
n g

(
(i, n − 1)

)
snsi

= s−1
n sig

(
(i, n − 1)

)
sisn

= s−1
n g

(
(i, n − 1)

)
sig

(
(i, n − 1)

)
sn (by induction hypothesis)

= s−1
n g

(
(i, n − 1)

)
snsis

−1
n g

(
(i, n − 1)

)
sn

= g
(
(i, n)

)
sig

(
(i, n)

)
.

Since s2, . . . , si−2, si−1, si+2, . . . , sm−1, sm, sm+2, . . . , sn−3, sn−2 commute with sn,
then they commute with g

(
(i, n)

)
= s−1

n g
(
(i, n − 1)

)
sn by applying the induction

hypothesis. Because g
(
(1, m)

)
commutes with sn, we also get that g

(
(i, n)

)
com-

mutes with g
(
(1, m)

)
by applying the same argument. Now, we prove that g

(
(i, n)

)
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commutes with sn−1. Actually, we have

g
(
(i, n)

)
sn−1 =s−1

n s−1
n−1g

(
(i, n − 2)

)
sn−1snsn−1

=s−1
n s−1

n−1g
(
(i, n − 2)

)
snsn−1sn

=s−1
n s−1

n−1sng
(
(i, n − 2)

)
sn−1sn

=sn−1s−1
n s−1

n−1g
(
(i, n − 2)

)
sn−1sn

=sn−1s−1
n g

(
(i, n − 1)

)
sn

=sn−1g
(
(i, n)

)
.

Finally, we show that g
(
(i, n)

)
commutes with g

(
(i + 1, n − 1)

)
. We have that

g
(
(i, n)

)
g

(
(i + 1, n − 1)

)
is equal to

s−1
n g

(
(i, n − 1)

)
sns−1

n−1g
(
(i + 1, n − 2)

)
sn−1 =

s−1
n s−1

n−1g
(
(i, n − 2)

)
sn−1sns−1

n−1g
(
(i + 1, n − 2)

)
sn−1 =

s−1
n s−1

n−1g
(
(i, n − 2)

)
s−1

n sn−1sng
(
(i + 1, n − 2)

)
sn−1 =

s−1
n s−1

n−1s−1
n g

(
(i, n − 2)

)
sn−1g

(
(i + 1, n − 2)

)
snsn−1 =

s−1
n−1s−1

n s−1
n−1g

(
(i, n − 2)

)
sn−1g

(
(i + 1, n − 2)

)
snsn−1 =

s−1
n−1s−1

n g
(
(i, n − 1)

)
g

(
(i + 1, n − 2)

)
snsn−1 = (by induction hypothesis)

s−1
n−1s−1

n g
(
(i + 1, n − 2)

)
g

(
(i, n − 1)

)
snsn−1 =

s−1
n−1g

(
(i + 1, n − 2)

)
s−1

n g
(
(i, n − 1)

)
snsn−1 =

s−1
n−1g

(
(i + 1, n − 2)

)
g

(
(i, n)

)
sn−1 = (by the previous case)

s−1
n−1g

(
(i + 1, n − 2)

)
sn−1g

(
(i, n)

)
=

g
(
(i + 1, n − 1)

)
g

(
(i, n)

)
.

□

Lemma A.3. Suppose that w0 = w(m, j), with m + 1 ⩽ j < n, so that we are in
the situation of Equation (3). Let t1t2 . . . tn−1 be the reduced decomposition of w0
described in Lemma 4.8. Then we can deduce from the relations of the presentation
of G given in Theorem 5.1 that g (tn−1) g (tn−2) g (tn−1) = g (tn−2) g (tn−1) g (tn−2),
and that g (tn−1) commutes with each of the elements g (tk) with k < n − 2.

Proof. We consider the three cases of Lemma 4.8.

(1) Where j < n − 2, we need to check that sn commutes with g ((1, j)) and
g

(
(m, j + 1)

)
. This is readily checked since

g ((1, j)) = s
s−1

j−1s−1
j−2...s−1

2
j and g

(
(m, j + 1)

)
= s

sm+2sm+3...sj+1
1 .

(2) Where j = n − 2, we need to check that sn commutes with g ((1, n − 2))
and g

(
(m, n − 1)

)
. The first check is straightforward. For the second, we have that

g
(
(m, n − 1)

)
= s−1

n−1g
(
(m, n − 2)

)
sn−1 and one shows that

g
(
(m, n − 1)

)
sng

(
(m, n − 1)

)
= sng

(
(m, n − 1)

)
sn

similarly to the case g
(
(i, n − 1)

)
sng

(
(i, n − 1)

)
= sng

(
(i, n − 1)

)
sn in the

proof of Lemma A.2(1).
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(3) Where j = n−1, we have g ((m, n)) = s
sm+2sm+3...sn

1 = s−1
n g

(
(m, n − 1)

)
sn.

All the commuting relations between g ((m, n)) and sm−1, sm−2, . . . , s2 are obvious.
We are left to prove that g ((m, n)) smg ((m, n)) = smg ((m, n)) sm, and g ((m, n))
commutes with g ((1, n − 1)), sn−1, sn−2, . . . , sm+2. This is done similarly to the
proof of Lemma A.2(3). □

The next lemma is readily checked.

Lemma A.4. Suppose that w0 = w(i, n), with 1 ⩽ i ⩽ m, so that we are in the
situation of Equation (4) or Equation (5). An identical result to the previous lemmas
holds in this situation.

This finishes the situation where w0 is of type I. The next two lemmas are for
types II and III, respectively.

Lemma A.5. Suppose that w0 = w(i, j) or w0 = w(i, j) with 1 ⩽ i < j ⩽ m, so that
we are in the situation of one of Equations (6)-(8). Let t1t2 . . . tn−1 be the reduced
decomposition of w0 as described in Section 4.3. Then we can deduce from the relations
of the presentation of G that g (tn−1) g (tn−2) g (tn−1) = g (tn−2) g (tn−1) g (tn−2),
and that g (tn−1) commutes with each of the elements g (tk) with k < n − 2.

Proof. In the case of this lemma, we have that g (tn−1) = sn and g (tn−2) = sn−1, so
the braid relation snsn−1sn = sn−1snsn−1 is clearly a consequence of the relations
of G. The commuting relations are also obvious since in the situation of Equations (6)–
(8), the indices i, j are such that 1 ⩽ i < j ⩽ m, so that they are far away from n (we
have i, j < n−2). Hence sn obviously commutes with the image by g of the elements ti

corresponding to the reflections in the reduced decomposition of w0 described in
Section 4.3. □

Lemma A.6. Suppose that w0 = w(i, j) or w0 = w(i, j) with m+1 ⩽ i < j ⩽ n, so that
we are in the situation of one of Equations (9)–(11). Let t1t2 . . . tn−1 be the reduced
decomposition of w0 as described in Section 4.3. Then we can deduce from the relations
of the presentation of G that g (tn−1) g (tn−2) g (tn−1) = g (tn−2) g (tn−1) g (tn−2),
and that g (tn−1) commutes with each of the elements g (tk) with k < n−2, except for
Equation (11) (with i = n − 1) where we need to show one additional non-commuting
relation.

Proof. The argument of the proof is identical to the situation of Equations (1)–(5)
treated in Lemmas A.1–A.4, which is appropriate to leave as an exercise. □
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