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Abstract. In this paper, we study the Dirichlet problem for a semilinear pseudo-parabolic equation. By using
the energy estimates and ordinary differential inequalities, we studied the upper and lower bounds of blow-
up time of the solutions. The results of this paper extend and complete the results on this model.
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1. Introduction

The pseudo-parabolic equation

ur—aluy—Au= f(u) (@))]
with a > 0 can be used to describe many interesting physical and biological phenomena [1-6],
for example, the non-stationary process in semiconductors in the presence of sources, where
alAu; — u; stands for the free electron density rate, Au stands for the linear dissipation of free
charge current and the nonlinear term stands for the source of free electron current (see [3, 5]).
Showalter and Ting [7] investigated the initial boundary value problem of (1) with f(u) = 0,
and the global existence, uniqueness and regularity of solutions were studied. When f(u) is a
polynomial, i.e., f(u) = uP~! or f(u) = |u|”~?u, the initial and boundary value problem of (1)
was studied in [8-13], and the existence, asymptotic behavior of the global solutions and global
nonexistence of solutions were studied. When f(u) is a logarithmic function, i.e., f(u) = uln|ul,
the initial boundary value problem of (1) was studied in [14], where global existence, infinite-
time blow-up of solutions, and behavior of vacuum isolation of solutions were studied. When
f(u) is a nonlocal function, i.e., f(u) = |u|P~?u - I% JolulP~2udx, where Q < RY is a bounded
domain, problem (1) with homogeneous Neumann boundary and initial value was studied [15],
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and the existence, uniqueness and asymptotic behavior of the global solution and the blow-up
phenomena of solution were studied. For the study of global existence and finite time blow-up of
solutions for pseudo-parabolic equation with potential terms, we refer the readers to [16,17].
In this paper, we consider the following initial boundary-value problem (IBVP) for a class of
pseudo-parabolic equation proposed by Zhu el al. in [18]:
u—Au;—Au+u=ul’?u, xe€Q, t>0,
u(x,0) = up(x), xeQ, 2)
u(x, 1) =0, x€oQ, t>0,

where p € (2,2*) and either Q = RY (N = 3) or Q cRM (N = 3) is a bounded domain with smooth
boundary 09, ug € Hy (). Here
. 2N
2= ——.
N-2

When Q = RY, the boundary condition that u(x, t) = 0 for x € Q and ¢ > 0 is ineffective.

Problem (2) was studied by Zhu el al. in [18] via the potential well method (see, for example,
[19-21]), where the existence, uniqueness, polynomial decay of the global solutions, and blow-up
of solutions were studied. Zhou [22] improve the results of [18] by showing the global solutions
decay exponentially. The main purpose of this paper is to complete the blow-up result given in [18]
by estimating the upper and lower bounds of the blow-up time. To introduce the previous results
and give the main results of the present paper, let’s firstly recall some notations used in [18].
Throughout this paper, we use || - ||, as the usual LP-norm, (-,-) and || - | as the inner product and
the associated norm on H(} (Q) respectively, that is

(u,v):f(Vu-Vv+uv)dx 3)
Q

and

lull = v/(u, ). )
By [18, Theorem 1.3], when p € (2,2%) and uy € H& (Q), IVBP (2) admits a (weak) solution
ue C ([0, Tmax), Hy (), 5)
which satisfies u(0) = ug € Hj (Q) and

(u’(t),u)+(u(t),u)=f|u(t)|ﬁ’*2u(t)udx, Y ve H) (Q) 6)
Q

where Ty is the maximum existence time.
As in [18], the energy functional J(u) can be defined through

_p=2, o 1 1
J(u):= lwll® +—1(w), YV ue Hy(€), @
2p p

where

Iw):=lul® = llull, ¥V ue Hy(Q). 8)

By (5), J(u(1)) and I(u(¢)) are well-defined and are continuous differentiable with respect to ¢.
Let
N i={ue H} () \{0}: I(w) = 0} 9)
denote the Nehari manifold. We also define two sets A% related to A as follows:
N ={ue Hy(Q): I(u) >0},

10
N :={ue Hy(Q): I(u) <0}. 1o
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The main result on global existence and blow-up of [18] is the following theorem (see [18,

Theorem 1.4]):

Theorem 1. Let u = u(t) be a solution of IBVP (2), whose maximal existence time is Trax. Then
Tmax < oo ifand only if there exists a ty € [0, Tmax) Such that u(ty) € N_. Moreover, if Tiax < 00, then

limyy 73, ()1 = co.

When blow-up occurs, the blow-up time Tyax cannot usually be computed exactly. It is
therefore of great importance in practice to determine the upper and lower bounds for Tyax.

So we complete Theorem 1 by showing the upper and lower bounds of Tyax:

Theorem 2. Let u = u(t) be a solution of IBVP (2) with initial value uy € N_, ie., I(uy) =

luoll> = lugll}, < 0. Then

o0

lf dé B 4(p-Dllugl?

<

xpet2—¢ T (p=22 (luollh— luol)’

2

lluo 12

where k is the optimal constant of the embedding H& (Q)— LP(Q), i.e.,

k= sup |ullp.
ue H} (Q)
lul=1

Remark 3.

(1) Since p € (2,2%), it follows Hj(Q) — LP(Q);
(2) We show that

(o]

lf i 4p-Diuwl’®
xPe?2 & (p=22(luollh — lluol2)

2

lluoll?

So, (11) makes sense. By using I(u) < 0, it follows from (8) and (12) that
luoll® < lluolly < xPluoll”,

which implies
p

luoll >x P2,
Let f(£) = okPE"2 — & for & = 0, where
o =x"Pllugl*P.
Since p > 2, by (14),

-p
o<k P (K p=2

2-p
) =1
Then, for & € [||ug |2, 00),

G BZUK’”EEZ_I —-1= 22” u0||2—p532—1 1

_ Po_1
> Lollugl2 P (lugl?)

=BZ—I>O.

-1

So,

F@=f(luol®)=0, €€ lllugl® 00).

(11

(12)

13)

(14)

(15)
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Then, note o € (0, 1), we can estimate the integral to the left of (13) as

o0 o0

lf 3 _1f dg
2 Ez_ _5 _ )
(e KPEE=¢ oz 1 OIPEE+ Q)
1 rd 1
< f &L e
2(1-o0)xP &2 (1-o0)xP(p-2) (16)
lluolI2
1
- ol >~P
(L—x Pl P)xP(p-2)
1

T (p-2) (xPluolP2-1)

By (12), we can estimate the right of (13) as

Ap-Dlul* 4(p - Dlluol®
(p=22(luolly = lluoll?) ~ (p=2)% (kP llug 1P~ uol1?) an
4(p-1)

C(p-22(kPlluglP2-1)

Since 4(p —1)/(p —2) > 4, (13) follows from (16) and (17).
(3) It obvious that

oo oo
f dpf = f di -2 o I°77.
KPET2_¢ xpe2 kP(p=2)
luol2 luol?

Then it follows from (11) that

1 _ A(p—Dlluol®
gl P S Typay < —— L
kP (p—2) (=22 (lluoll}y = 1o 12)

2. Proof of Theorem 2

In this section, we give the proof of Theorem 2 by using the following lemma:
Lemma 4 ( [23]). Suppose that 0 < T < +oo and suppose a nonnegative function F(t) € C2[10,T)
satisfies
F'(OF (@) - 1+7) (F'(1)* =0
for some constanty > 0. If F(0) > 0, F'(0) > 0, then

F(0)
<
- YF'(0)

<00

and F(t) —» +ooast]T.

Proof of Theorem 2. Let u = u(t) be a solution of problem (2) with initial value uy € A_. By
Theorem 1, the maximal existence Tax < co. So we only need to prove the inequality (11).
(1) Upper bound estimate. In the part, we will give the upper bound estimate, i.e., show that

- 4(p—Dlluoll?®
~(p-22(lluollh = lul2)’

(18)

Tmax
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For t € [0, Trhax), let

t 2
£(t) = (f ||u(s)||2ds) ,
0
1
t 2
n(t) = (f ||u’(s)||2ds) :
0

The following facts can be found in [18, Lemma 3.2 and the proof of Theorem 5.1]:

(R) J(u(r) +0*(0) = J(uo), £ € [0, Tiax);
(R) Llu(0)l? = —21(u(1), £ € [0, Tmay);
(R3) u(r)e AN, i.e., I(u(r) <0, te |0, Tmax)-

By (R1)-(R3), it is easy to see
(Ry) llu(B)|?is strictly increasing with respect to t;
(Rs) the function ¢ (1) := (p —2) | u(t) 12 - 2p(J(u(1))) satisfies
@) = (p—lluoll® —2p (J(uo) —n* (1))
=2(luollly = luoll®) +2pn” (1), €0, Tmax)-

by (7) and (®)
Consider the following functional
F(1) = &) + (Tmax — Dlluoll® + Bt + @), £€ [0, Tmax) » 19)

where a and f are two positive constants to be determined later. Then by (R,), we have

F'(0) = lu)I” = luol® +2(t +a) 20)
=>2B(t+a)>0, te€[0, Tmax),
which implies
F(t) 2 F(0) = Taxlluoll? + fa® > 0, t € [0, Tyax) (21)
and (by (R»), (7) and (Rs))

F'(t)y=-2I((1)) +2
=) +2p (22)
> 2 (lluollhy - luoll? 2
> ollp = lugll®) +2pn” (1) + 28, 1 € [0, Tray) -

By (3), the Cauchy-Schwarz inequality and Holder’s inequality, we have

t
.
2

0

&l&

N

t
lu(s)|?ds = /(u(S), u'(s))ds
0

t
< f lu) I () ds
0

=$(0n(1), €10, Tmax),
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which, together with (19), implies

(F(8) = (Tmax — Dllugll3) (n° (1) + B) = (62 () + Ble + @)*) (n° (1) + B)
= (O (1) + BEX (D) + Bt + )’ n (1) + B2 (£ + a)?
=N (D) + 28N Bt + a) + (L + a)?
= (EOnD) + Bt +a)*

‘ 2
11d
> (E[Euu(mnmsw(wa)J » L€10, Tmax) -
0

Then it follows from (20) and the above inequality that

2
F’(t) = ( f—llu(s)ll ds+,6(t+a))

(23)
<4F()(n* (D) +B), t [0, Tmax) -
In view of (21), (22) and (23), we have
FOF' (1) - 22(F'0)? = Fo) (2 (luollh — luol1?) +2pm (1) + 26 —2p (1°(0) + )
= F(0) (2(lluoll}y — luoll*) = 2(p = D)), £€ [0, Tmax) »
which is nonnegative if we take § small enough such that
luoll, — lluol®
<ps—p 0 (24)
p-1
Then it follows from Lemma 4 that
F(0)
Thax < —5—————
T (22-1) F'(0)
2 (25)
_ 1 (a+ lluoll T )
By taking a large enough such that
S lluol)® 26)
(p-2)p’
we get from (25) that
Ba’?
—_— 27
S 2)pa—lugl?’
The above analysis shows that (p := fa)
Trmax s 1nf fpa), (28)

,a)eD

where

={(pa):p>"“°”2 ye  P=DP }

p-2 ol — w12
oa

f{p.a):= (p-2p—luol?’
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Since f(p,) is increasing, we get
-1
Tmax < inf 2f(p,(pp—)pz)
p> Ll ol — luoll
—1o?
= inf (P 5 ) 7 5
p>nz+u22 ((p=2)p = lluoll?) (Nuolly, = lleoll?)

_ (p-1)p?
((P =-2)p—I| uollz) (ll uollg =l uollz) p=2||uon2
p-2
4(p - Dlluoll?

C (p-22(luollh ~ lluel2)”
So, (18) is true.
(2) Lower bound estimate. In the part, we will give the low bound estimate, i.e., show that

1 [ de
Tmax_i f pE—Z (29)
B

By (R»), (8), and (12), we have
d 2
w1 = =21(w)
==2[lu@* + 2w},
< =2lu®? +2xPlu@)|?, te[0, Tmax-

Since I(u(t)) < 0 (see (R3)), we get =2llu(ON? + 2xPlu(D)|? = =21(u(r)) > 0, then the above
inequality can be rewritten as
Llun)|?
=2lu()? +2xP | u(®)|?
Since u blow up at Tax, by Theorem 1,

=<1, t€[0, Tnax). (30)

lim Ju()? = oo,
1T,

max

integrating (30) from 0 to Tihax, We get (29). O
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