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1. Introduction

The pseudo-parabolic equation
ut −a∆ut −∆u = f (u) (1)

with a > 0 can be used to describe many interesting physical and biological phenomena [1–6],
for example, the non-stationary process in semiconductors in the presence of sources, where
a∆ut −ut stands for the free electron density rate, ∆u stands for the linear dissipation of free
charge current and the nonlinear term stands for the source of free electron current (see [3, 5]).
Showalter and Ting [7] investigated the initial boundary value problem of (1) with f (u) = 0,
and the global existence, uniqueness and regularity of solutions were studied. When f (u) is a
polynomial, i.e., f (u) = up−1 or f (u) = |u|p−2u, the initial and boundary value problem of (1)
was studied in [8–13], and the existence, asymptotic behavior of the global solutions and global
nonexistence of solutions were studied. When f (u) is a logarithmic function, i.e., f (u) = u ln |u|,
the initial boundary value problem of (1) was studied in [14], where global existence, infinite-
time blow-up of solutions, and behavior of vacuum isolation of solutions were studied. When
f (u) is a nonlocal function, i.e., f (u) = |u|p−2u − 1

|Ω|
∫
Ω |u|p−2ud x, where Ω ⊂ RN is a bounded

domain, problem (1) with homogeneous Neumann boundary and initial value was studied [15],
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and the existence, uniqueness and asymptotic behavior of the global solution and the blow-up
phenomena of solution were studied. For the study of global existence and finite time blow-up of
solutions for pseudo-parabolic equation with potential terms, we refer the readers to [16, 17].

In this paper, we consider the following initial boundary-value problem (IBVP) for a class of
pseudo-parabolic equation proposed by Zhu el al. in [18]:

ut −∆ut −∆u +u = |u|p−2u, x ∈Ω, t > 0,

u(x,0) = u0(x), x ∈Ω,

u(x, t ) = 0, x ∈ ∂Ω, t > 0,

(2)

where p ∈ (2,2∗) and either Ω= RN (N ≥ 3) or Ω⊂RN (N ≥ 3) is a bounded domain with smooth
boundary ∂Ω, u0 ∈ H 1

0 (Ω). Here

2∗ = 2N

N −2
.

When Ω=RN , the boundary condition that u(x, t ) = 0 for x ∈ ∂Ω and t > 0 is ineffective.
Problem (2) was studied by Zhu el al. in [18] via the potential well method (see, for example,

[19–21]), where the existence, uniqueness, polynomial decay of the global solutions, and blow-up
of solutions were studied. Zhou [22] improve the results of [18] by showing the global solutions
decay exponentially. The main purpose of this paper is to complete the blow-up result given in [18]
by estimating the upper and lower bounds of the blow-up time. To introduce the previous results
and give the main results of the present paper, let’s firstly recall some notations used in [18].
Throughout this paper, we use ∥ · ∥p as the usual Lp -norm, (·, ·) and ∥ · ∥ as the inner product and
the associated norm on H 1

0 (Ω) respectively, that is

(u, v) =
∫
Ω

(∇u ·∇v +uv)d x (3)

and

∥u∥ =
√

(u,u). (4)

By [18, Theorem 1.3], when p ∈ (2,2∗) and u0 ∈ H 1
0 (Ω), IVBP (2) admits a (weak) solution

u ∈C 1 (
[0,Tmax) , H 1

0 (Ω)
)

, (5)

which satisfies u(0) = u0 ∈ H 1
0 (Ω) and(

u′(t ), v)+ (u(t ), v
)= ∫

Ω

|u(t )|p−2u(t )vd x, ∀ v ∈ H 1
0 (Ω) (6)

where Tmax is the maximum existence time.
As in [18], the energy functional J (u) can be defined through

J (u):=p −2

2p
∥u∥2 + 1

p
I (u), ∀ u ∈ H 1

0 (Ω), (7)

where

I (u):=∥u∥2 −∥u∥p
p , ∀ u ∈ H 1

0 (Ω). (8)

By (5), J (u(t )) and I (u(t )) are well-defined and are continuous differentiable with respect to t .
Let

N := {
u ∈ H 1

0 (Ω) \ {0} : I (u) = 0
}

(9)

denote the Nehari manifold. We also define two sets N± related to N as follows:

N+ := {
u ∈ H 1

0 (Ω) : I (u) > 0
}

,

N− := {
u ∈ H 1

0 (Ω) : I (u) < 0
}

.
(10)
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The main result on global existence and blow-up of [18] is the following theorem (see [18,
Theorem 1.4]):

Theorem 1. Let u = u(t ) be a solution of IBVP (2), whose maximal existence time is Tmax. Then
Tmax <∞ if and only if there exists a t0 ∈ [0,Tmax) such that u(t0) ∈N−. Moreover, if Tmax <∞, then
limt↑Tmax ∥u(t )∥ =∞.

When blow-up occurs, the blow-up time Tmax cannot usually be computed exactly. It is
therefore of great importance in practice to determine the upper and lower bounds for Tmax.
So we complete Theorem 1 by showing the upper and lower bounds of Tmax:

Theorem 2. Let u = u(t ) be a solution of IBVP (2) with initial value u0 ∈ N−, i.e., I (u0) =
∥u0∥2 −∥u0∥p

p < 0. Then

1

2

∞∫
∥u0∥2

dξ

κpξ
p 2 −ξ

≤ Tmax ≤ 4(p −1)∥u0∥2

(p −2)2
(∥u0∥p

p −∥u0∥2
) , (11)

where κ is the optimal constant of the embedding H 1
0 (Ω) ,→ Lp (Ω), i.e.,

κ= sup
u∈H 1

0 (Ω)
∥u∥=1

∥u∥p . (12)

Remark 3.

(1) Since p ∈ (2,2∗), it follows H 1
0 (Ω) ,→ Lp (Ω);

(2) We show that

1

2

∞∫
∥u0∥2

dξ

κpξ
p 2 −ξ

< 4(p −1)∥u0∥2

(p −2)2
(∥u0∥p

p −∥u0∥2
) . (13)

So, (11) makes sense. By using I (u0) < 0, it follows from (8) and (12) that

∥u0∥2 < ∥u0∥p
p ≤ κp∥u0∥p ,

which implies

∥u0∥ > κ
−p

p−2 . (14)

Let f (ξ) =σκpξ
p 2 −ξ for ξ≥ 0, where

σ= κ−p∥u0∥2−p .

Since p > 2, by (14),

σ< κ−p
(
κ

−p
p−2

)2−p
= 1.

Then, for ξ ∈ [∥u0∥2,∞),

f ′(ξ) = p
2σκpξ

p 2−1 −1 = p
2∥u0∥2−pξ

p 2−1 −1

≥ p
2∥u0∥2−p (∥u0∥2) p 2−1 −1

= p
2−1 > 0.

(15)

So,

f (ξ) ≥ f
(∥u0∥2)= 0, ξ ∈ [∥u0∥2,∞).
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Then, note σ ∈ (0,1), we can estimate the integral to the left of (13) as

1

2

∞∫
∥u0∥2

dξ

κpξ
p 2 −ξ

=1

2

∞∫
∥u0∥2

dξ

(1−σ)κpξ
p 2 + f (ξ)

≤ 1

2(1−σ)κp

∞∫
∥u0∥2

dξ

ξ
p 2

= 1

(1−σ)κp (p −2)
∥u0∥2−p

= 1(
1−κ−p∥u0∥2−p

)
κp (p −2)

∥u0∥2−p

= 1

(p −2)
(
κp∥u0∥p−2 −1

) .

(16)

By (12), we can estimate the right of (13) as

4(p −1)∥u0∥2

(p −2)2
(∥u0∥p

p −∥u0∥2
) ≥ 4(p −1)∥u0∥2

(p −2)2
(
κp∥u0∥p −∥u0∥2

)
= 4(p −1)

(p −2)2
(
κp∥u0∥p−2 −1

) .

(17)

Since 4(p −1)/(p −2) > 4, (13) follows from (16) and (17).
(3) It obvious that

∞∫
∥u0∥2

dξ

κpξ
p 2 −ξ

≥
∞∫

∥u0∥2

dξ

κpξ
p 2

= 2

κp (p −2)
∥u0∥2−p .

Then it follows from (11) that

1

κp (p −2)
∥u0∥2−p ≤ Tmax ≤ 4(p −1)∥u0∥2

(p −2)2
(∥u0∥p

p −∥u0∥2
) .

2. Proof of Theorem 2

In this section, we give the proof of Theorem 2 by using the following lemma:

Lemma 4 ( [23]). Suppose that 0 < T ≤ +∞ and suppose a nonnegative function F (t ) ∈ C 2[0,T )
satisfies

F ′′(t )F (t )− (1+γ)
(
F ′(t )

)2 ≥ 0

for some constant γ> 0. If F (0) > 0, F ′(0) > 0, then

T ≤ F (0)

γF ′(0)
<∞

and F (t ) →+∞ as t ↑ T .

Proof of Theorem 2. Let u = u(t ) be a solution of problem (2) with initial value u0 ∈ N−. By
Theorem 1, the maximal existence Tmax <∞. So we only need to prove the inequality (11).

(1) Upper bound estimate. In the part, we will give the upper bound estimate, i.e., show that

Tmax ≤ 4(p −1)∥u0∥2

(p −2)2
(∥u0∥p

p −∥u0∥2
) , (18)
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For t ∈ [0,Tmax), let

ξ(t ) :=
 t∫

0

∥u(s)∥2d s


1
2

,

η(t ) :=
 t∫

0

∥u′(s)∥2d s


1
2

.

The following facts can be found in [18, Lemma 3.2 and the proof of Theorem 5.1]:

(R1) J (u(t ))+η2(t ) = J (u0), t ∈ [0,Tmax);
(R2) d

d t ∥u(t )∥2 =−2I (u(t )), t ∈ [0,Tmax);
(R3) u(t ) ∈N−, i.e., I (u(t )) < 0, t ∈ [0,Tmax).

By (R1)-(R3), it is easy to see

(R4) ∥u(t )∥2 is strictly increasing with respect to t ;
(R5) the function φ(t ) := (p −2)∥u(t )∥2 −2p(J (u(t ))) satisfies

φ(t ) ≥ (p −2)∥u0∥2 −2p
(

J (u0)−η2(t )
)

= 2
(∥u0∥p

p −∥u0∥2)+2pη2(t )︸ ︷︷ ︸
by (7) and (8)

, t ∈ [0,Tmax) .

Consider the following functional

F (t ) := ξ2(t )+ (Tmax − t )∥u0∥2 +β(t +α)2, t ∈ [0,Tmax) , (19)

where α and β are two positive constants to be determined later. Then by (R4), we have

F ′(t ) = ∥u(t )∥2 −∥u0∥2 +2β(t +α)

≥ 2β(t +α) > 0, t ∈ [0,Tmax) ,
(20)

which implies

F (t ) ≥ F (0) = Tmax∥u0∥2 +βα2 > 0, t ∈ [0,Tmax) (21)

and (by (R2), (7) and (R5))

F ′′(t ) =−2I ((t ))+2β

=φ(t )+2β

≥ 2
(∥u0∥p

p −∥u0∥2)+2pη2(t )+2β, t ∈ [0,Tmax) .

(22)

By (3), the Cauchy–Schwarz inequality and Hölder’s inequality, we have

1

2

t∫
0

d

d s
∥u(s)∥2d s =

t∫
0

(u(s),u′(s))d s

≤
t∫

0

∥u(s)∥∥u′(s)∥d s

≤ ξ(t )η(t ), t ∈ [0,Tmax),
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which, together with (19), implies(
F (t )− (Tmax − t )∥u0∥2

2

)(
η2(t )+β)= (

ξ2(t )+β(t +α)2)(η2(t )+β)
= ξ2(t )η2(t )+βξ2(t )+β(t +α)2η2(t )+β2(t +α)2

≥ ξ2(t )η2(t )+2ξ(t )η(t )β(t +α)+β2(t +α)2

≥ (
ξ(t )η(t )+β(t +α)

)2

≥
1

2

t∫
0

d

d s
∥u(s)∥2d s +β(t +α)

2

, t ∈ [0,Tmax) .

Then it follows from (20) and the above inequality that

(
F ′(t )

)2 = 4

1

2

t∫
0

d

d s
∥u(s)∥2d s +β(t +α)

2

≤ 4F (t )
(
η2(t )+β)

, t ∈ [0,Tmax) .

(23)

In view of (21), (22) and (23), we have

F (t )F ′′(t )− p
2
(
F ′(t )

)2 ≥ F (t )
(
2
(∥u0∥p

p −∥u0∥2)+2pη2(t )+2β−2p
(
η2(t )+β))

= F (t )
(
2
(∥u0∥p

p −∥u0∥2)−2(p −1)β
)

, t ∈ [0,Tmax) ,

which is nonnegative if we take β small enough such that

0 <β≤ ∥u0∥p
p −∥u0∥2

p −1
. (24)

Then it follows from Lemma 4 that

Tmax ≤ F (0)( p 2−1
)

F ′(0)

= 1

p −2

(
α+ ∥u0∥2

βα
Tmax

)
.

(25)

By taking α large enough such that

α> ∥u0∥2

(p −2)β
, (26)

we get from (25) that

Tmax ≤ βα2

(p −2)βα−∥u0∥2 . (27)

The above analysis shows that (ρ :=βα)

Tmax ≤ inf
(ρ,α)∈Φ

f
(
ρ,α

)
, (28)

where

Φ :=
{(
ρ,α

)
: ρ > ∥u0∥2

p −2
, α≥ (p −1)ρ

∥u0∥p
p −∥u0∥2

}
,

f
(
ρ,α

)
:= ρα

(p −2)ρ−∥u0∥2 .



Jun Zhou and Xiongrui Wang 225

Since f (ρ, ·) is increasing, we get

Tmax ≤ inf
ρ> ∥u0∥2

p−2

f

(
ρ,

(p −1)ρ

∥u0∥p
p −∥u0∥2

)

= inf
ρ> ∥u0∥2

p−2

(p −1)ρ2(
(p −2)ρ−∥u0∥2

)(∥u0∥p
p −∥u0∥2

)
= (p −1)ρ2(

(p −2)ρ−∥u0∥2
)(∥u0∥p

p −∥u0∥2
) ∣∣∣∣∣
ρ= 2∥u0∥2

p−2

= 4(p −1)∥u0∥2

(p −2)2
(∥u0∥p

p −∥u0∥2
) .

So, (18) is true.
(2) Lower bound estimate. In the part, we will give the low bound estimate, i.e., show that

Tmax ≥ 1

2

∞∫
∥u0∥2

dξ

κpξ
p 2 −ξ

. (29)

By (R2), (8), and (12), we have

d

d t
∥u(t )∥2 =−2I (u(t ))

=−2∥u(t )∥2 +2∥u(t )∥p
p

≤−2∥u(t )∥2 +2κp∥u(t )∥p , t ∈ [0,Tmax).

Since I (u(t )) < 0 (see (R3)), we get −2∥u(t )∥2 + 2κp∥u(t )∥p ≥ −2I (u(t )) > 0, then the above
inequality can be rewritten as

d
d t ∥u(t )∥2

−2∥u(t )∥2 +2κp∥u(t )∥p ≤ 1, t ∈ [0,Tmax). (30)

Since u blow up at Tmax, by Theorem 1,

lim
t↑Tmax

∥u(t )∥2 =∞,

integrating (30) from 0 to Tmax, we get (29). □
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