I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

 MécaniqueJun Zhou and Xiongrui Wang

Blow-up time of solutions to a class of pseudo-parabolic equations
Volume 351 (2023), p. 219-226
Published online: 25 May 2023
https://doi.org/10.5802/crmeca. 189

(c) Br
 This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Blow-up time of solutions to a class of pseudo-parabolic equations

Jun Zhou*, a and Xiongrui Wang ${ }^{b}$

${ }^{a}$ School of Mathematics and Statistics, Southwest University, Chongqing, 400715, P. R. China
${ }^{b}$ Department of Mathematics, Yibin University, Yibin, Sichuan, 644000, P. R. China
E-mails: jzhou@swu.edu.cn, wxr888x@163.com

Abstract

In this paper, we study the Dirichlet problem for a semilinear pseudo-parabolic equation. By using the energy estimates and ordinary differential inequalities, we studied the upper and lower bounds of blowup time of the solutions. The results of this paper extend and complete the results on this model.

Keywords. Pseudo-parabolic equation, Blow-up, Blow-up time, Potential well method, Global existence.
Mathematical subject classification (2010). 35K70, 35A01.
Funding. This work is supported by Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1674).
Manuscript received 25 October 2022, revised and accepted 7 April 2023.

1. Introduction

The pseudo-parabolic equation

$$
\begin{equation*}
u_{t}-a \Delta u_{t}-\Delta u=f(u) \tag{1}
\end{equation*}
$$

with $a>0$ can be used to describe many interesting physical and biological phenomena [1-6], for example, the non-stationary process in semiconductors in the presence of sources, where $a \Delta u_{t}-u_{t}$ stands for the free electron density rate, Δu stands for the linear dissipation of free charge current and the nonlinear term stands for the source of free electron current (see [3,5]). Showalter and Ting [7] investigated the initial boundary value problem of (1) with $f(u)=0$, and the global existence, uniqueness and regularity of solutions were studied. When $f(u)$ is a polynomial, i.e., $f(u)=u^{p-1}$ or $f(u)=|u|^{p-2} u$, the initial and boundary value problem of (1) was studied in [8-13], and the existence, asymptotic behavior of the global solutions and global nonexistence of solutions were studied. When $f(u)$ is a logarithmic function, i.e., $f(u)=u \ln |u|$, the initial boundary value problem of (1) was studied in [14], where global existence, infinitetime blow-up of solutions, and behavior of vacuum isolation of solutions were studied. When $f(u)$ is a nonlocal function, i.e., $f(u)=|u|^{p-2} u-\frac{1}{|\Omega|} \int_{\Omega}|u|^{p-2} u d x$, where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain, problem (1) with homogeneous Neumann boundary and initial value was studied [15],

[^0]and the existence, uniqueness and asymptotic behavior of the global solution and the blow-up phenomena of solution were studied. For the study of global existence and finite time blow-up of solutions for pseudo-parabolic equation with potential terms, we refer the readers to [16, 17].

In this paper, we consider the following initial boundary-value problem (IBVP) for a class of pseudo-parabolic equation proposed by Zhu el al. in [18]:

$$
\begin{cases}u_{t}-\Delta u_{t}-\Delta u+u=|u|^{p-2} u, & x \in \Omega, t>0 \tag{2}\\ u(x, 0)=u_{0}(x), & x \in \Omega, \\ u(x, t)=0, & x \in \partial \Omega, t>0\end{cases}
$$

where $p \in\left(2,2^{*}\right)$ and either $\Omega=\mathbb{R}^{N}(N \geq 3)$ or $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a bounded domain with smooth boundary $\partial \Omega, u_{0} \in H_{0}^{1}(\Omega)$. Here

$$
2^{*}=\frac{2 N}{N-2} .
$$

When $\Omega=\mathbb{R}^{N}$, the boundary condition that $u(x, t)=0$ for $x \in \partial \Omega$ and $t>0$ is ineffective.
Problem (2) was studied by Zhu el al. in [18] via the potential well method (see, for example, [19-21]), where the existence, uniqueness, polynomial decay of the global solutions, and blow-up of solutions were studied. Zhou [22] improve the results of [18] by showing the global solutions decay exponentially. The main purpose of this paper is to complete the blow-up result given in [18] by estimating the upper and lower bounds of the blow-up time. To introduce the previous results and give the main results of the present paper, let's firstly recall some notations used in [18]. Throughout this paper, we use $\|\cdot\|_{p}$ as the usual L^{p}-norm, (\cdot, \cdot) and $\|\cdot\|$ as the inner product and the associated norm on $H_{0}^{1}(\Omega)$ respectively, that is

$$
\begin{equation*}
(u, v)=\int_{\Omega}(\nabla u \cdot \nabla v+u v) d x \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|=\sqrt{(u, u)} . \tag{4}
\end{equation*}
$$

By [18, Theorem 1.3], when $p \in\left(2,2^{*}\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$, IVBP (2) admits a (weak) solution

$$
\begin{equation*}
u \in C^{1}\left(\left[0, T_{\max }\right), H_{0}^{1}(\Omega)\right), \tag{5}
\end{equation*}
$$

which satisfies $u(0)=u_{0} \in H_{0}^{1}(\Omega)$ and

$$
\begin{equation*}
\left(u^{\prime}(t), v\right)+(u(t), v)=\int_{\Omega}|u(t)|^{p-2} u(t) v d x, \quad \forall v \in H_{0}^{1}(\Omega) \tag{6}
\end{equation*}
$$

where $T_{\max }$ is the maximum existence time.
As in [18], the energy functional $J(u)$ can be defined through

$$
\begin{equation*}
J(u):=\frac{p-2}{2 p}\|u\|^{2}+\frac{1}{p} I(u), \quad \forall u \in H_{0}^{1}(\Omega), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
I(u):=\|u\|^{2}-\|u\|_{p}^{p}, \quad \forall u \in H_{0}^{1}(\Omega) . \tag{8}
\end{equation*}
$$

By (5), $J(u(t))$ and $I(u(t))$ are well-defined and are continuous differentiable with respect to t.
Let

$$
\begin{equation*}
\mathscr{N}:=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\}: I(u)=0\right\} \tag{9}
\end{equation*}
$$

denote the Nehari manifold. We also define two sets $\mathscr{N}_{ \pm}$related to \mathscr{N} as follows:

$$
\begin{align*}
& \mathscr{N}_{+}:=\left\{u \in H_{0}^{1}(\Omega): I(u)>0\right\}, \\
& \mathscr{N}_{-}:=\left\{u \in H_{0}^{1}(\Omega): I(u)<0\right\} . \tag{10}
\end{align*}
$$

The main result on global existence and blow-up of [18] is the following theorem (see [18, Theorem 1.4]):

Theorem 1. Let $u=u(t)$ be a solution of IBVP (2), whose maximal existence time is $T_{\max }$. Then $T_{\max }<\infty$ if and only if there exists a $t_{0} \in\left[0, T_{\max }\right)$ such that $u\left(t_{0}\right) \in \mathscr{N}_{-}$. Moreover, if $T_{\max }<\infty$, then $\lim _{t \uparrow T_{\max }}\|u(t)\|=\infty$.

When blow-up occurs, the blow-up time $T_{\max }$ cannot usually be computed exactly. It is therefore of great importance in practice to determine the upper and lower bounds for $T_{\text {max }}$. So we complete Theorem 1 by showing the upper and lower bounds of $T_{\max }$:

Theorem 2. Let $u=u(t)$ be a solution of $\operatorname{IBVP}(2)$ with initial value $u_{0} \in \mathscr{N}_{-}$, i.e., $I\left(u_{0}\right)=$ $\left\|u_{0}\right\|^{2}-\left\|u_{0}\right\|_{p}^{p}<0$. Then

$$
\begin{equation*}
\frac{1}{2} \int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{\kappa^{p} \xi^{\underline{p}}-\xi} \leq T_{\max } \leq \frac{4(p-1)\left\|u_{0}\right\|^{2}}{(p-2)^{2}\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)} \tag{11}
\end{equation*}
$$

where κ is the optimal constant of the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$, i.e.,

$$
\begin{equation*}
\kappa=\sup _{\substack{u \in H_{0}^{1}(\Omega) \\\|u\|=1}}\|u\|_{p} \tag{12}
\end{equation*}
$$

Remark 3.

(1) Since $p \in\left(2,2^{*}\right)$, it follows $H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$;
(2) We show that

$$
\begin{equation*}
\frac{1}{2} \int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{\kappa^{p} \xi^{\underline{p}}-\xi}<\frac{4(p-1)\left\|u_{0}\right\|^{2}}{(p-2)^{2}\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)} \tag{13}
\end{equation*}
$$

So, (11) makes sense. By using $I\left(u_{0}\right)<0$, it follows from (8) and (12) that

$$
\left\|u_{0}\right\|^{2}<\left\|u_{0}\right\|_{p}^{p} \leq \kappa^{p}\left\|u_{0}\right\|^{p}
$$

which implies

$$
\begin{equation*}
\left\|u_{0}\right\|>\kappa^{\frac{-p}{p-2}} \tag{14}
\end{equation*}
$$

Let $f(\xi)=\sigma \kappa^{p} \xi^{\underline{p}}-\xi$ for $\xi \geq 0$, where

$$
\sigma=\kappa^{-p}\left\|u_{0}\right\|^{2-p}
$$

Since $p>2$, by (14),

$$
\sigma<\kappa^{-p}\left(\kappa^{\frac{-p}{p-2}}\right)^{2-p}=1
$$

Then, for $\xi \in\left[\left\|u_{0}\right\|^{2}, \infty\right)$,

$$
\begin{align*}
f^{\prime}(\xi) & =\frac{p}{2} 2 \sigma \kappa^{p} \xi^{\underline{p}} 2-1 \\
& \geq \frac{p}{-} 2\left\|u_{0}\right\|^{2-p}\left(\left\|u_{0}\right\|^{2}\right)^{\underline{p}} 2-1 \tag{15}\\
& 2-1 \\
& =-\frac{p}{-p} \xi^{\underline{p}} 2-1>0
\end{align*}
$$

So,

$$
f(\xi) \geq f\left(\left\|u_{0}\right\|^{2}\right)=0, \xi \in\left[\left\|u_{0}\right\|^{2}, \infty\right)
$$

Then, note $\sigma \in(0,1)$, we can estimate the integral to the left of (13) as

$$
\begin{align*}
\frac{1}{2} \int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{\kappa^{p} \xi^{\underline{p}}-\xi} & =\frac{1}{2} \int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{(1-\sigma) \kappa^{p} \xi^{\underline{p}} 2}+f(\xi) \\
& \leq \frac{1}{2(1-\sigma) \kappa^{p}} \int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{\xi^{\underline{p}} 2}=\frac{1}{(1-\sigma) \kappa^{p}(p-2)}\left\|u_{0}\right\|^{2-p} \tag{16}\\
& =\frac{1}{\left(1-\kappa^{-p}\left\|u_{0}\right\|^{2-p}\right) \kappa^{p}(p-2)}\left\|u_{0}\right\|^{2-p} \\
& =\frac{1}{(p-2)\left(\kappa^{p}\left\|u_{0}\right\|^{p-2}-1\right)}
\end{align*}
$$

By (12), we can estimate the right of (13) as

$$
\begin{align*}
\frac{4(p-1)\left\|u_{0}\right\|^{2}}{(p-2)^{2}\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)} & \geq \frac{4(p-1)\left\|u_{0}\right\|^{2}}{(p-2)^{2}\left(\kappa^{p}\left\|u_{0}\right\|^{p}-\left\|u_{0}\right\|^{2}\right)} \tag{17}\\
& =\frac{4(p-1)}{(p-2)^{2}\left(\kappa^{p}\left\|u_{0}\right\|^{p-2}-1\right)}
\end{align*}
$$

Since $4(p-1) /(p-2)>4$, (13) follows from (16) and (17).
(3) It obvious that

$$
\int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{\kappa^{p} \xi^{\underline{p}}-\xi} \geq \int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{\kappa^{p} \xi^{\underline{p}}}=\frac{2}{\kappa^{p}(p-2)}\left\|u_{0}\right\|^{2-p}
$$

Then it follows from (11) that

$$
\frac{1}{\kappa^{p}(p-2)}\left\|u_{0}\right\|^{2-p} \leq T_{\max } \leq \frac{4(p-1)\left\|u_{0}\right\|^{2}}{(p-2)^{2}\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)}
$$

2. Proof of Theorem 2

In this section, we give the proof of Theorem 2 by using the following lemma:
Lemma 4 ([23]). Suppose that $0<T \leq+\infty$ and suppose a nonnegative function $F(t) \in C^{2}[0, T)$ satisfies

$$
F^{\prime \prime}(t) F(t)-(1+\gamma)\left(F^{\prime}(t)\right)^{2} \geq 0
$$

for some constant $\gamma>0$. If $F(0)>0, F^{\prime}(0)>0$, then

$$
T \leq \frac{F(0)}{\gamma F^{\prime}(0)}<\infty
$$

and $F(t) \rightarrow+\infty$ as $t \uparrow T$.
Proof of Theorem 2. Let $u=u(t)$ be a solution of problem (2) with initial value $u_{0} \in \mathscr{N}_{-}$. By Theorem 1, the maximal existence $T_{\max }<\infty$. So we only need to prove the inequality (11).
(1) Upper bound estimate. In the part, we will give the upper bound estimate, i.e., show that

$$
\begin{equation*}
T_{\max } \leq \frac{4(p-1)\left\|u_{0}\right\|^{2}}{(p-2)^{2}\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)} \tag{18}
\end{equation*}
$$

For $t \in\left[0, T_{\text {max }}\right)$, let

$$
\begin{aligned}
& \xi(t):=\left(\int_{0}^{t}\|u(s)\|^{2} d s\right)^{\frac{1}{2}} \\
& \eta(t):=\left(\int_{0}^{t}\left\|u^{\prime}(s)\right\|^{2} d s\right)^{\frac{1}{2}}
\end{aligned}
$$

The following facts can be found in [18, Lemma 3.2 and the proof of Theorem 5.1]:
$\left(R_{1}\right) J(u(t))+\eta^{2}(t)=J\left(u_{0}\right), t \in\left[0, T_{\max }\right) ;$
$\left(R_{2}\right) \frac{d}{d t}\|u(t)\|^{2}=-2 I(u(t)), t \in\left[0, T_{\max }\right)$;
$\left(R_{3}\right) u(t) \in \mathscr{N}_{-}$, i.e., $I(u(t))<0, t \in\left[0, T_{\max }\right)$.
By $\left(R_{1}\right)-\left(R_{3}\right)$, it is easy to see
$\left(R_{4}\right)\|u(t)\|^{2}$ is strictly increasing with respect to t;
$\left(R_{5}\right)$ the function $\phi(t):=(p-2)\|u(t)\|^{2}-2 p(J(u(t)))$ satisfies

$$
\begin{aligned}
\phi(t) & \geq(p-2)\left\|u_{0}\right\|^{2}-2 p\left(J\left(u_{0}\right)-\eta^{2}(t)\right) \\
& =\underbrace{2\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)+2 p \eta^{2}(t)}_{\text {by (7) and (8) }}, \quad t \in\left[0, T_{\max }\right) .
\end{aligned}
$$

Consider the following functional

$$
\begin{equation*}
F(t):=\xi^{2}(t)+\left(T_{\max }-t\right)\left\|u_{0}\right\|^{2}+\beta(t+\alpha)^{2}, t \in\left[0, T_{\max }\right) \tag{19}
\end{equation*}
$$

where α and β are two positive constants to be determined later. Then by $\left(R_{4}\right)$, we have

$$
\begin{align*}
F^{\prime}(t) & =\|u(t)\|^{2}-\left\|u_{0}\right\|^{2}+2 \beta(t+\alpha) \\
& \geq 2 \beta(t+\alpha)>0, t \in\left[0, T_{\max }\right) \tag{20}
\end{align*}
$$

which implies

$$
\begin{equation*}
F(t) \geq F(0)=T_{\max }\left\|u_{0}\right\|^{2}+\beta \alpha^{2}>0, t \in\left[0, T_{\max }\right) \tag{21}
\end{equation*}
$$

and (by $\left(R_{2}\right),(7)$ and $\left.\left(R_{5}\right)\right)$

$$
\begin{align*}
F^{\prime \prime}(t) & =-2 I((t))+2 \beta \\
& =\phi(t)+2 \beta \tag{22}\\
& \geq 2\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)+2 p \eta^{2}(t)+2 \beta, t \in\left[0, T_{\max }\right)
\end{align*}
$$

By (3), the Cauchy-Schwarz inequality and Hölder's inequality, we have

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{t} \frac{d}{d s}\|u(s)\|^{2} d s & =\int_{0}^{t}\left(u(s), u^{\prime}(s)\right) d s \\
& \leq \int_{0}^{t}\|u(s)\|\left\|u^{\prime}(s)\right\| d s \\
& \leq \xi(t) \eta(t), t \in\left[0, T_{\max }\right)
\end{aligned}
$$

which, together with (19), implies

$$
\begin{aligned}
\left(F(t)-\left(T_{\max }-t\right)\left\|u_{0}\right\|_{2}^{2}\right)\left(\eta^{2}(t)+\beta\right) & =\left(\xi^{2}(t)+\beta(t+\alpha)^{2}\right)\left(\eta^{2}(t)+\beta\right) \\
& =\xi^{2}(t) \eta^{2}(t)+\beta \xi^{2}(t)+\beta(t+\alpha)^{2} \eta^{2}(t)+\beta^{2}(t+\alpha)^{2} \\
& \geq \xi^{2}(t) \eta^{2}(t)+2 \xi(t) \eta(t) \beta(t+\alpha)+\beta^{2}(t+\alpha)^{2} \\
& \geq(\xi(t) \eta(t)+\beta(t+\alpha))^{2} \\
& \geq\left(\frac{1}{2} \int_{0}^{t} \frac{d}{d s}\|u(s)\|^{2} d s+\beta(t+\alpha)\right)^{2}, t \in\left[0, T_{\max }\right)
\end{aligned}
$$

Then it follows from (20) and the above inequality that

$$
\begin{align*}
\left(F^{\prime}(t)\right)^{2} & =4\left(\frac{1}{2} \int_{0}^{t} \frac{d}{d s}\|u(s)\|^{2} d s+\beta(t+\alpha)\right)^{2} \tag{23}\\
& \leq 4 F(t)\left(\eta^{2}(t)+\beta\right), t \in\left[0, T_{\max }\right)
\end{align*}
$$

In view of (21), (22) and (23), we have

$$
\begin{aligned}
F(t) F^{\prime \prime}(t)-\frac{p}{2} 2\left(F^{\prime}(t)\right)^{2} & \geq F(t)\left(2\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)+2 p \eta^{2}(t)+2 \beta-2 p\left(\eta^{2}(t)+\beta\right)\right) \\
& =F(t)\left(2 \left(\left\|u_{0}\right\|_{p}^{\left.\left.p-\left\|u_{0}\right\|^{2}\right)-2(p-1) \beta\right), t \in\left[0, T_{\max }\right),}\right.\right.
\end{aligned}
$$

which is nonnegative if we take β small enough such that

$$
\begin{equation*}
0<\beta \leq \frac{\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}}{p-1} \tag{24}
\end{equation*}
$$

Then it follows from Lemma 4 that

$$
\begin{align*}
T_{\max } & \leq \frac{F(0)}{(\underline{p} 2-1) F^{\prime}(0)} \tag{25}\\
& =\frac{1}{p-2}\left(\alpha+\frac{\left\|u_{0}\right\|^{2}}{\beta \alpha} T_{\max }\right)
\end{align*}
$$

By taking α large enough such that

$$
\begin{equation*}
\alpha>\frac{\left\|u_{0}\right\|^{2}}{(p-2) \beta} \tag{26}
\end{equation*}
$$

we get from (25) that

$$
\begin{equation*}
T_{\max } \leq \frac{\beta \alpha^{2}}{(p-2) \beta \alpha-\left\|u_{0}\right\|^{2}} \tag{27}
\end{equation*}
$$

The above analysis shows that $(\rho:=\beta \alpha)$

$$
\begin{equation*}
T_{\max } \leq \inf _{(\rho, \alpha) \in \Phi} f(\rho, \alpha) \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
\Phi & :=\left\{(\rho, \alpha): \rho>\frac{\left\|u_{0}\right\|^{2}}{p-2}, \alpha \geq \frac{(p-1) \rho}{\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}}\right\}, \\
f(\rho, \alpha) & :=\frac{\rho \alpha}{(p-2) \rho-\left\|u_{0}\right\|^{2}} .
\end{aligned}
$$

Since $f(\rho, \cdot)$ is increasing, we get

$$
\begin{aligned}
T_{\max } & \leq \inf _{\rho>\frac{\left\|u_{0}\right\|^{2}}{p-2}} f\left(\rho, \frac{(p-1) \rho}{\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}}\right) \\
& =\inf _{\rho>\frac{\left\|u_{0}\right\|^{2}}{p-2}} \frac{(p-1) \rho^{2}}{\left((p-2) \rho-\left\|u_{0}\right\|^{2}\right)\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)} \\
& =\left.\frac{(p-1) \rho^{2}}{\left((p-2) \rho-\left\|u_{0}\right\|^{2}\right)\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)}\right|_{\rho=\frac{2\left\|u_{0}\right\|^{2}}{p-2}} \\
& =\frac{4(p-1)\left\|u_{0}\right\|^{2}}{(p-2)^{2}\left(\left\|u_{0}\right\|_{p}^{p}-\left\|u_{0}\right\|^{2}\right)}
\end{aligned}
$$

So, (18) is true.
(2) Lower bound estimate. In the part, we will give the low bound estimate, i.e., show that

$$
\begin{equation*}
T_{\max } \geq \frac{1}{2} \int_{\left\|u_{0}\right\|^{2}}^{\infty} \frac{d \xi}{\kappa^{p} \xi^{\underline{p}}-\xi} \tag{29}
\end{equation*}
$$

By $\left(R_{2}\right),(8)$, and (12), we have

$$
\begin{aligned}
\frac{d}{d t}\|u(t)\|^{2} & =-2 I(u(t)) \\
& =-2\|u(t)\|^{2}+2\|u(t)\|_{p}^{p} \\
& \leq-2\|u(t)\|^{2}+2 \kappa^{p}\|u(t)\|^{p}, \quad t \in\left[0, T_{\max }\right)
\end{aligned}
$$

Since $I(u(t))<0$ (see $\left.\left(R_{3}\right)\right)$, we get $-2\|u(t)\|^{2}+2 \kappa^{p}\|u(t)\|^{p} \geq-2 I(u(t))>0$, then the above inequality can be rewritten as

$$
\begin{equation*}
\frac{\frac{d}{d t}\|u(t)\|^{2}}{-2\|u(t)\|^{2}+2 \kappa^{p}\|u(t)\|^{p}} \leq 1, t \in\left[0, T_{\max }\right) \tag{30}
\end{equation*}
$$

Since u blow up at $T_{\text {max }}$, by Theorem 1,

$$
\lim _{t \uparrow T_{\max }}\|u(t)\|^{2}=\infty
$$

integrating (30) from 0 to $T_{\text {max }}$, we get (29).

References

[1] G. I. Barenblatt, Y. P. Zheltov, I. N. Kochina, "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks", J. Appl. Math. Stochastic Anal. 24 (1961), p. 1286-1303.
[2] T. B. Benjamin, J. L. Bona, J. J. Mahony, "Model equations for long waves in nonlinear dispersive systems", Philos. Trans. R. Soc. Lond., Ser. A 272 (1972), no. 1220, p. 47-78.
[3] M. O. Korpusov, A. G. Sveshnikov, "Three-dimensional nonlinear evolutionary pseudoparabolic equations in mathematical physics", Zh. Vychisl. Mat. Mat. Fiz. 43 (2003), no. 12, p. 1835-1869.
[4] S. G. Sajjadi, T. A. Smith, "Model equation for long waves in nonlinear dispersive system on a viscous liquid", Adv. Appl. Fluid Mech. 3 (2008), no. 2, p. 219-237.
[5] S. L. Sobolev, "On a new problem of mathematical physics", Izv. Akad. Nauk SSSR, Ser. Mat. 18 (1954), p. 3-50.
[6] T. W. Ting, "Certain non-steady flows of second-order fluids", Arch. Ration. Mech. Anal. 14 (1963), p. 1-26.
[7] R. E. Showalter, T. W. Ting, "Pseudoparabolic partial differential equations", SIAM J. Math. Anal. 1 (1970), p. 1-26.
[8] W. Liu, J. Yu, "A note on blow-up of solution for a class of semilinear pseudo-parabolic equations", J. Funct. Anal. 274 (2018), no. 5, p. 1276-1283.
[9] P. Luo, "Blow-up phenomena for a pseudo-parabolic equation", Math. Methods Appl. Sci. 38 (2015), no. 12, article no. $10.1002 / \mathrm{mma} 3253$.
[10] G. Xu, J. Zhou, "Lifespan for a semilinear pseudo-parabolic equation", Math. Methods Appl. Sci. 41 (2018), no. 2, p. 705-713.
[11] R. Xu, J. Su, "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations", J. Funct. Anal. 264 (2013), no. 12, p. 2732-2763.
[12] R. Xu , J. Su, "Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations"", J. Funct. Anal. 270 (2016), no. 10, p. 4039-4041.
[13] R. Xu, X. Wang, Y. Yang, "Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy", Appl. Math. Lett. 83 (2018), p. 176-181.
[14] H. Chen, S. Tian, "Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity", J. Differ. Equations 258 (2015), no. 12, p. 4424-4442.
[15] X. Wang, R. Xu, "Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation", Adv. Nonlinear Anal. 10 (2021), p. 261-288.
[16] W. Lian, J. Wang, R. Xu, "Global existence and blow up of solutions for pseudo-parabolic equation with singular potential", J. Differ. Equations 269 (2020), no. 6, p. 4914-4959.
[17] S. Khomrutai, N. Kitisin, "Cauchy problems of sublinear pseudoparabolic equations with unbounded, timedependent potential", https://arxiv.org/abs/1504.02636v1, 2015.
[18] X. Zhu, F. Li, Y. Li, "Some sharp results about the global existence and blowup of solutions to a class of pseudoparabolic equations", Proc. R. Soc. Edinb., Sect. A, Math. 147 (2017), no. 6, p. 1311-1331.
[19] D. H. Sattinger, "On global solution of nonlinear hyperbolic equations", Arch. Ration. Mech. Anal. 30 (1968), p. 148172.
[20] L. E. Payne, D. H. Sattinger, "Saddle points and instability of nonlinear hyperbolic equations", Isr. J. Math. 22(1975) (1976), article no. 10.1007/BF02761595.
[21] Y. Liu, J. Zhao, "On potential wells and applications to semilinear hyperbolic equations and parabolic equations", Nonlinear Anal., Theory Methods Appl. 64 (2006), no. 12, p. 2665-2687.
[22] J. Zhou, "Blow-up and exponential decay of solutions to a class of pseudo-parabolic equation", Bull. Belg. Math. Soc. 26 (2019), p. 773-785.
[23] H. A. Levine, "Instability and nonexistence of global solutions of nonlinear wave equation of the form $P u_{t} t=$ $A u+F(u) "$, Trans. Am. Math. Soc. 192 (1974), p. 1-21.

[^0]: * Corresponding author.

