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Abstract 

Ravaged by hurricanes, Florida needed help restoring its natural beauty and returning its 

wildlife to their homes. This was the task for the IEEE SoutheastCon 2023 Hardware Competition. 

Florida’s restoration was simulated by returning various ducks and pillars that lay strewn across a 

game board to their proper places. Ducks needed to return to their pond, pillars needed to be 

stacked to create statues, and food needed to be placed in the manatee and alligator aquariums. 

Competing teams were challenged to create an autonomous robot capable of performing these 

tasks. During the first semester, sensor selection was tackled. Research was done on the 

appropriate sensors for each application, comparing their costs, abilities, and online resources. 

Eventually, four different sensors were selected. These were the Vl6180X time of flight sensor, 

two TCS34725 color sensors, a VL53L5CX time of flight sensor, and two Pixy2.1 cameras. 

Emphasis was then put on implementing those sensors at both the hardware and software levels 

within the team’s autonomous robot during the second semester. A Raspberry Pi was used to 

program each of the sensors mentioned previously as well as the robot’s servos, motors, and other 

electronics. The logic was then created and implemented for each gameplay function. The robot 

was built to start automatically, deliver the manatee and alligator food, intake and sort pillars based 

on color, and stack those pillars in the correct color order. At the competition, the robot could 

reliably auto start and deliver food to both the manatee and alligator aquariums. These processes 

were exceptionally consistent through three preliminary rounds, leading to the robot qualifying for 

the single elimination tournament. The team eventually placed seventh in the IEEE SoutheastCon 

2023 Hardware Competition.  
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1   Hardware Selection and Placement 

 

1.1   Sensor Selection 

The robot built for the IEEE Hardware Competition was fully autonomous. For a robot to 

perform such a complicated task with no external intervention, a wide variety of sensors was 

required. From vision to sorting to object avoidance, sensors gave the robot the information it 

needed to make the best choices. 

Programming any autonomous robot is a complex and time-intensive task. This complexity 

made the sensor and camera selection process essential to the success of the final robot. Properly 

selected sensors also simplify the programming, so being able to select the sensors before 

programming them enabled ideas to formulate for how certain processes might be coded later on. 

Various constraints required the IEEE robot’s sensors to be cost-effective, small, consistent, 

and versatile. The robot’s physical size was limited to one cubic foot, so any unnecessary 

electronics would consume valuable space while increasing the robot’s cost. Several 

environmental factors, e.g. differences in ambient light and humidity levels, also impacted the 

robot’s performance, so accurate and robust electronics were necessary. Most importantly, a 

rigorous sensor selection process would ensure that integration with the robot’s hardware was 

relatively simple and predictable. 

1.1.1   Procedure 

The robot required color sensors, distance sensors, and cameras. The costs, abilities, 

resources, and limitations for each candidate were compared to find the optimal sensor for each 

application. In addition, increased emphasis was put on desirable characteristics that changed 
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based on the unique requirements for each robot subsystem. The following sections will show this 

review process for each sensor type, introduce the sensor requirements for each application, and 

detail the best sensor for each application. 

1.1.2   Color Sensors 

The sorting system needed color sensing to know what color pillar the robot had just 

consumed. Robots earned more points if they stacked pillars with white on bottom, green in the 

middle, and red on top [1]. To achieve this, a color sensor needed to face the sorting mechanism 

entrance and identify the red, green, and white pillars. This sensor needed to be consistent and 

accurate to avoid assigning the wrong color to a pillar. 

The game startup mechanism also needed color sensing. According to the IEEE hardware 

competition rules, robots earn extra points by automatically starting when a red LED on the game 

board is illuminated [1]. A color sensor placed on the outside of the robot should detect this LED 

amidst varying ambient lighting conditions. 

The TCS3200 is shown in Figure 1. This color sensor cost $7.90. It had several online 

tutorials and resources, but it lacked an IR filter on the camera and needed to be calibrated to sense 

color [2].  

 

Figure 1: TCS3200 Color Sensor [3] 
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The ISL29125 is shown in Figure 2. This color sensor cost $8.50. It measured RGB 

intensity, not pulse-width like the TCS3200. A built-in IR blocker also provided more accurate 

color sensing results in varied lighting conditions. Lastly, it functioned over I2C connection, one 

of the most reliable sensor communication methods. The only drawback was that it needed an 

additional 2-channel logic converter to work [4]. 

 

Figure 2: ISL29125 Color Sensor [5] 

The TCS34725 is shown in Figure 3. This color sensor cost $7.95. It could sense RGB 

values without calibration, had a built-in IR filter, used I2C connection, and had several helpful 

libraries and tutorials online. Additionally, individuals online chose this sensor over the ISL29125 

for its high accuracy [6]. 

 

Figure 3: TCS34725 Color Sensor [6] 
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The results were tabulated in a decision matrix shown in Table 1. Each sensor’s accuracy, 

programmability (online resources), and cost was ranked on a scale from zero to five, five being 

the best possible score. The total of these values was then normalized based on a perfect score of 

30. Looking at the results, the TCS34725 was the cheapest by a small margin, but this difference 

was not enough to factor into the decision. The worst performing of all three was the TCS3200 

which needed calibration to sense color, had the least accurate results of the three sensors, and did 

not have libraries for easy coding. The ISL29125 was not much better, needing an additional logic 

converter and getting less accurate results than the TCS34725. 

The TCS34725 had the most functionality with the ability to get color values without 

calibration, and it was the most accurate when compared to all three sensors. The built-in IR filter 

and LED would also be very helpful in getting consistent measurements. Overall, the TCS34725 

was better in every way and was the clear choice for both the sorting mechanism and the starting 

mechanism. 

Table 1: Color Sensor Decision Matrix 

Weights: x1 x3 x2 Normalized 

Total  Cost Accuracy Programmability 

TCS3200 5 2 1 = 𝟏𝟐 → 𝟎. 𝟒 

ISL29125 5 3 3 = 𝟐𝟎 → 𝟎. 𝟔𝟕 

TCS34725 5 4 4 = 𝟐𝟓 → 𝟎. 𝟖𝟑 
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1.1.3   Distance Sensors 

Two of the robot’s systems required distance sensors. Sensing a pillar’s entry into the 

sorting mechanism was the first. Upon sensing this entry, the robot needed to rotate the circular 

sorting mechanism to an open position so that it was ready to receive another pillar. A distance 

sensor for this application needed to work well at close range and have a resolution small enough 

to distinguish a change in distance of approximately 50 mm (the diameter of a pillar) [1]. These 

parameters, therefore, were weighted more heavily when choosing this sensor. 

Sensing obstacles, such as walls and stacked pillars, also motivated the distance sensor 

selection. Without a sensor to detect and avoid the pillar stacks, the robot would run into them and 

ruin its progress. Recognizing walls would enable the robot to avoid them during gameplay and 

seek them when searching for and actuating the firework switch at the end of the run, a task to earn 

extra points. This sensor needed to have an 8 ft range to see across the entire gameboard and the 

capability of modeling a 3D space. 

When looking into the different types of distance sensors, four main types were found that 

could work: time of flight (ToF) distance sensors, ultrasonic distance sensors, LIDAR, and IR 

sensors. Eventually, this was narrowed down to time of flight sensors and ultrasonic sensors, as 

IR sensors were too dependent on material shape and LIDAR was far too expensive and over-

engineered for the given applications [7-8]. 

The VL53L0CX is shown in Figure 4. This time of flight sensor cost $7.25. It used I2C 

communication and had a range of 3 cm – 100 cm with a resolution of 1 mm in optimal conditions. 

Several online resources existed for this sensor as well, making it easy to program [9].  
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Figure 4: VL53L0CX Time of Flight Sensor [9] 

The VL6180X is shown in Figure 5. This time of flight sensor cost $13.95. It was an I2C 

sensor with a 5 mm – 200 mm range and a 1 mm resolution in most conditions. It also had a 

multitude of online resources and libraries for easy programming [10]. 

 

Figure 5: VL6180X Time of Flight Sensor [10] 

The VL53L5CX is shown in Figure 6. This time of flight sensor cost $24.95. It was an I2C 

sensor that could create a 4x4 or 8x8 grid of distance readings for the viewing area. The grid would 

function like a distance heat map of the surrounding area, returning 16 or 64 distances at a rate of 

60 Hz (i.e., 60 4x4 or 8x8 grids every second). Lastly, it boasted a maximum range of 4 m range 

and a 63° diagonal square field-of-view (45° x 45°) [11]. 
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Figure 6: VL53L5CX Time of Flight Sensor [11] 

The VL53L7CX is shown in Figure 7. This time of flight sensor cost $28.64. It was an I2C 

sensor, and it functioned exactly like the previous VL53L5CX time of flight sensor but had a 90° 

diagonal square field-of-view (63.6° x 63.6°) [12]. 

 

Figure 7: VL53L7CX Time of Flight Sensor [13] 

The Grove Ultrasonic Distance Sensor is shown in Figure 8. This sensor cost $3.95. It had 

a 3 cm – 350 cm range with a resolution of 1 cm. It also had several online resources and libraries 

for simple programming [14]. 

 

Figure 8: Grove - Ultrasonic Distance Sensor [14] 
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The widely used HC-SR04 ultrasonic distance sensor was not included in this report 

because the Grove ultrasonic distance sensor was better in nearly every capacity when compared 

to the HC-SR04. This comparison can be seen in Table 2 where the Grove’s broader voltage 

compatibility, reduced pin connections, and plug-and-play connection pushed it past the HC-

CR04. The HC-SR04 boasted a slightly broader measurement range and smaller resolution of 0.3 

cm (not included in the Table 2), but these were not enough to warrant choosing it over the Grove 

sensor [7]. 

Table 2: Grove vs HC-SR04 [7] 

 

Short-ranged, consistently accurate readings were most important for the sorting 

mechanism’s distance sensor. Table 3 compares these features and shows that the VL6180X 

performed best in both. Neither the VL53L0X nor the Grove ultrasonic sensor had a smaller 

resolution than the VL6180X, and they both had minimum ranges too low for reliable sensing. 
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Pillars entering the system would be closer than 30 mm to the sensor and could cause unpredictable 

readings from the two longer ranged distance sensors. 

Table 3: Comparison of Distance Sensors for Use in Sorting Mechanism 

Sensor VL53L0X ToF Sensor VL6180X ToF Sensor 

Ultrasonic Distance 

Sensor (Grove) 

Range (mm) 30 - 2000 5 - 100 (200) 30 - 3500 

Resolution (mm) 1 (in optimal conditions) 1 (consistent) 10 

 

The VL53L5CX and VL53L7CX were the optimal candidates for obstacle detection. Both 

were inexpensive for their functionality, had long distance ranges, and were able to model their 

field-of-view in a 4x4 or 8x8 grid of distance readings. Their 3-D modeling capabilities would 

give the robot vital information on which direction was safe to travel. Additional programming 

could then distinguish between stacked pillars, nearby walls, and far walls. The deciding factor, 

therefore, was the field-of-view (FoV). Because the output from either sensor was an 8x8 grid, the 

VL53L7CX’s increased FoV resulted in objects farther away becoming less detailed. The 

VL53L5CX time of flight sensor, with its lower FoV, was the best option for obstacle detection. 

1.1.4   Cameras 

Two systems in the robot required cameras. Tracking game pieces was the first. By being 

able to sense unique game pieces on the board, such as differently colored pillars and ducks, the 

robot could travel toward the pieces it needed to intake. Cameras for this application needed to be 
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able to distinguish between identically shaped pieces based on color and recognize each type of 

game piece. 

Identifying different zones on the game board required a second camera. Placing food in 

the appropriate aquariums, stacking pillars inside designated areas, and moving ducks into the 

recycling areas all required accurate identification of zones on the game board. This zone 

identification was most easily achieved via a second camera system. Candidate camera models for 

this system needed to recognize each of the various colored areas on the gameboard. 

The Pixy2 is shown in Figure 9. This camera cost $65.95. It was a 60 Hz camera that 

contained several unique features, the most promising being its color-connected components 

algorithm, which enabled the Pixy2 to learn the color of an object and identify it later. It could 

store up to seven different color signatures and match those signatures to objects in its view. In 

each frame, the camera could track up to one hundred objects matching those seven color 

signatures. It also had an onboard image processor to handle all the visual calculations for tracking 

objects and assigning color signatures [15]. 

 

Figure 9: Pixy2 Camera [15] 
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The Pixy2.1 is shown in Figure 10. This camera also cost $65.95. It was a direct upgrade 

to the Pixy2 camera with less distortion and noise, and it boasted a wider field-of-view at 80° 

compared to the Pixy2’s 60° horizontal and 40° vertical field-of-view [16]. 

 

Figure 10: Pixy2.1 Camera [16] 

The HuskyLens is shown in Figure 11. This camera cost $54.90. It could learn one unique 

object and track that object no matter the color. Additionally, it could learn one unique color and 

track that color as well. It used I2C communication and came with a small user-interface screen to 

make programming the camera easier [17]. 

 

Figure 11: HuskyLens Camera [17] 
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Several other cameras used by hobbyists like the ESP32 and NVIDIA Jetson Nano were 

researched, but they either did not have the object recognition capabilities necessary or were too 

complicated for this project. The only cameras that were both affordable and made object detection 

simple were the Pixy2, Pixy2.1, and HuskyLens cameras. 

Comparing the Pixy2 and Pixy2.1, the Pixy2.1 was a direct upgrade to the Pixy2. It gained 

several quality-of-life improvements without sacrificing any key features. Pixy2, therefore, was 

not considered in the sensor selection. 

Identifying identically shaped objects by their colors was the first game piece detection 

requirement. Looking at videos of the Pixy2.1, it excelled at detecting and discriminating between 

different colored objects, being able to track dozens of colored balls falling through the air [15]. 

HuskyLens could also track different colored objects but at a much lower level, admitting that 

“color recognition is greatly affected by ambient light” and that it “may misidentify similar colors” 

[18]. The Pixy2.1’s color-connected components algorithm gave it the capability to detect multiple 

objects of several different colors at the same time. In fact, it could recognize an object by color, 

categorize it, and then assign it a unique tracking index so the robot could focus only on that one 

object during its tracking. 

Identifying the type of individual game pieces was the second requirement informing the 

camera selection. Pixy2.1 fulfilled this requirement through its color-connected components 

algorithm, as it could remember seven different color signatures and track all instances of them in 

every frame. The IEEE hardware competition featured exactly seven different colored game 

pieces. HuskyLens, however, could only track one type of object at a single time. It might have 

been able to see every pillar on the gameboard, but it would not be able to find the pond, aquariums, 
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statue areas, ducks, or recycling areas. Additionally, HuskyLens could not be operated in both 

color detection and object detection mode simultaneously. 

The decision matrix for the three camera options can be seen in Table 4 where each 

category is ranked on a scale from zero to five, five being the best possible score. Weighted highest 

is the sensor’s ability to identify game pieces followed by its overall consistency, programming 

simplicity, and cost. The total of these values is then normalized based on a perfect score of 50. 

The result shows that the Pixy2.1 was the best option for game piece detection. 

Table 4: Camera Decision Matrix 

Weights: x4 x3 x2 x1 Normalized 

Total  Ability Consistency Programmability Cost 

Pixy2.1 5 4 3 3 = 𝟒𝟏 → 𝟎. 𝟖𝟐 

HuskyLens (Object 

Recognition Mode) 

1 4 3 4 = 𝟐𝟔 → 𝟎. 𝟓𝟐 

HuskyLens (Color 

Recognition Mode) 

4 2 3 4 = 𝟑𝟐 → 𝟎. 𝟔𝟒 

 

The second camera identified different colored sections of the game board. Shown in Table 

4, the Pixy2.1 outperformed the HuskyLens color recognition mode. Because the gameboard had 

less than seven different colored areas, an additional Pixy2.1 was the best choice for this 

application. 
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1.1.5   Additional Purchasing 

Three additional electronic components were purchased for the robot. These were 

necessary for robot functionality and programming, and they interfaced well with the chosen 

sensors. 

The TCA9548A is shown in Figure 12. This eight-channel I2C multiplexer cost $6.95 [19]. 

Each channel was its own I2C bus, so it enabled the use of multiple sensors with the same I2C 

address. No two sensors can have the same I2C address on the same I2C bus. The VL6180X time 

of flight sensor and both TCS34725 color sensors had I2C addresses of 0x29, so the multiplexer 

was necessary. It was also produced by Adafruit, so it interfaced well with other Adafruit sensors 

such as the VL6180X and TCS34725. Programming the TCA9548A required setting its I2C 

connection to the main I2C bus and then initializing all other sensors with an I2C connection 

corresponding to their specific TCA channel. 

 

Figure 12: TCA9548A 8-Channel Multiplexer [19] 

The PCA9685 is shown in Figure 13. This sixteen-channel servo driver cost $14.95 [20]. 

It connected to each of the eight robot servos and supplied them with PWM voltage. This was 

essential for proper servo functionality. It was also an Adafruit electronic, so the programming 



15 

 

was intuitive. After loading in the Adafruit Servokit library and initializing the servo driver, all 

servos could be initialized with the PWM connection of their respective PCA9685 channels. 

 

Figure 13: PCA9685 16-Channel Servo Driver [20] 

The MCP3008 is shown in Figure 14. This analog-to-digital converter cost $4.50. It took 

analog signals from the sorting cylinder encoder and converted them to digital signals able to be 

read by the Raspberry Pi. It was also an Adafruit electronic, so it had a multitude of online 

resources [21]. 

 

Figure 14: MCP3008 Analog to Digital Converter [21] 
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1.2   Sensor Visualization and Simulation 

After selecting the robot’s sensors, simulating their placement on the robot enabled the 

team to determine which sensor configurations yielded the best performance. This visualization 

was difficult to perform without the sensors in hand, so an accurate simulation was vital to the 

success of the robot. The following section will dive into the mathematics and coding used to 

create a simulation for the VL53L5CX time of flight distance sensor. 

Using Godot, an open-source 3D game engine, the game board and game pieces were 

modeled, and a robot was created which the player could control. Attached to this robot was a 

camera and raycast which would change its position to 64 evenly spaced locations within the 

VL53L5CX’s 63.6° diagonal square field-of-view (FoV). The raycast was an invisible line that 

extended outward from the player and provided information about any object it contacted. When 

this raycast collided with a surface, it would output the collision location which could then be 

converted into a distance traveled. These distances were then plotted on an 8x8 grid to show what 

a VL53L5CX would display in real life. A simplified version of this interaction is shown in  

Figure 15. 

 

Figure 15: Simplified Distance Mapping with Raycasts 
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The first step in this process was creating a variable for a maximum ray distance equal to 

the VL53L5CX’s maximum range (13.1234 ft or 4 m) and creating another variable for the 

horizontal/vertical FoV of 45°. The following equation was used to find the maximum offset: 

𝑜𝑓𝑓𝑠𝑒𝑡𝑚𝑎𝑥 = 𝑟𝑎𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥 ∙ tan (
𝐹𝑜𝑉

2
∙

180

𝜋
)  . (1) 

Equation 1: Maximum Offset 

The maximum offset was the distance from the center of a plane to its closest edge. 

Perpendicular to the ground and positioned at a distance equal to the maximum ray distance, the 

plane in question represented the maximum reach of the VL53L5CX’s rectangular FoV as seen in 

Figure 16 and would be used as a location for sending raycasts. Its center would also be the x and 

y origin relative to the camera’s center. 

 

Figure 16: Field-of-View Projection Plane 

To create eight rows and eight columns of evenly spaced points over this plane, the plane 

would have to be divided into eight sections. The x and y positions can be found for any point in 

the ith row and jth column by plugging the previously calculated maximum offset into the following 

equations: 



18 

 

𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (−1 + ( 𝑗 − 1) ∙
2

7
) ∙ 𝑜𝑓𝑓𝑠𝑒𝑡𝑚𝑎𝑥   , and (2) 

  

𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (1 − (𝑖 − 1) ∙
2

7
) ∙ 𝑜𝑓𝑓𝑠𝑒𝑡𝑚𝑎𝑥  . (3) 

  

Equation 2: Raycast X Position 

Equation 3: Raycast Y Position 

The raycast location could then be set to a vector where the x coordinate and y coordinates 

matched the x and y positions solved for previously and the z coordinate matched the maximum 

ray distance. Then by looping over eight rows and eight columns, checking for the collision point 

of each raycast, and storing these in a list, it was possible to display an 8x8 grid of distances like 

the VL53L5CX would in real life. 

The final simulation can be seen in Figure 17 and Figure 18 where the red dots represent 

the collisions of each raycast and the numbers in the bottom right represent the distances in feet 

associated with these collisions. Being able to simulate possible gameplay experiences and use 

that information to modify the VL53L5CX’s location was an invaluable tool. The game board and 

game pieces being to scale would also allow for a smoother migration to hardware. 



19 

 

 

Figure 17: Godot Simulation for VL53L5CX 

 

Figure 18: Godot Simulation for VL53L5CX (Cont.) 
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2   Software Development and Implementation 

 

2.1   Controlling Individual Systems 

Mentioned previously, programming any autonomous robot is a complex and time-

intensive task. This process started with learning to interface with each of the individual 

electronics. Among these were the Raspberry Pi, the chosen sensors from Section 1, motors, 

servos, and other electronics. The Raspberry Pi was the most important of these, as it facilitated 

the addition of autonomy to the robot. 

2.1.1   Raspberry Pi 

The idea to use a Raspberry Pi as the microcontroller was teammate Nolan Hays’. 

Inexperienced with microcontroller selection, the team defaulted to his positive experiences with 

the Pi in the previous year’s IEEE SoutheastCon competition. Four additional items were also 

purchased for use with the Raspberry Pi. These were an ethernet cable, microSD card, approved 

power bank, and heat sinks. 

Ethernet Cable: This connected the Raspberry Pi to a laptop or computer. It allowed the 

user to send scripts, access the terminal, and communicate with the Pi at any location. It also 

enabled the Pi to access the internet through the computer’s Wi-Fi connection so it could update 

and download necessary libraries. 

The Sandisk A1 32GB Extreme Pro is shown in Figure 19. This microSD card enabled the 

Raspberry Pi to read and write information. It was rated as one of the best microSD cards for 

Raspberry Pi’s, boasting 100MB per second read and 90MB per second write speeds [22]. 
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Figure 19: Sandisk A1 32 GB Extreme Pro MicroSD Card [22] 

Approved Power Bank: This powered the Raspberry Pi with 5V 3A. It eliminated the 

possibility for over voltage and low voltage issues. 

Heat Sinks: These cooled the Raspberry Pi. The Pi did not come with an internal cooling 

mechanism, so these heat sinks were necessary for its safety. Overheated Raspberry Pi’s could 

become damaged or corrupted. 

Two communication methods existed for the Raspberry Pi. The first was Secure Shell 

Communication (SSH), and the second was Virtual Network Computing (VNC). Both were 

exceptionally useful. 

SSH was the preferred method for connecting remotely to a Raspberry Pi. It allowed the 

user to access the Pi’s terminal from a personal computer and made headless implementation, or 

running the machine without a monitor, possible. PuTTY was used to establish SSH connection 

with the Raspberry Pi because it stored the connection address as a saved session for future logins. 

VNC was also used to connect remotely to the Raspberry Pi. Unlike SSH connection, VNC 

connection gave access to the Pi’s graphics user interface (GUI). This was extremely helpful when 

searching for file locations on the Pi and troubleshooting network connection issues. To establish 

VNC connection, VNC Viewer was used which also saved previous connections and made it 

simple to immediately connect to the Pi’s GUI. 
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Writing and executing code with the Raspberry Pi required safety procedures. This was the 

advice from author Danny Staple in his book Learn Robotics Programming: Second Edition where 

he warned against writing programs on the Raspberry Pi [23]. If the Raspberry Pi ever lost power 

unexpectedly or if the microSD card became damaged, the microSD card and all code on it could 

become corrupted. He advised having a separate location where the code could be stored and 

modified before sending it to the Pi. 

The solution to this problem was the Secure File Transfer Protocol (SFTP) [23]. It was 

possible to create and modify all Python programs on a laptop and then use FileZilla, an SFTP 

tool, to send those scripts to the Raspberry Pi via SSH connection. This way, if the Pi crashed or 

became corrupted, the code would be backed up. The only downside to SFTP was that it added 

upwards of ten seconds to every debug process. 

Three proper operating procedures were also employed when using the Raspberry Pi. 

Proper shutdown procedure was the first. Before unplugging the Pi, the command ‘sudo poweroff’ 

needed to be executed to safely shut it down. During this process, the Pi wrote all necessary 

information to the microSD card and prepared it for power loss. This process was signified by a 

flashing green LED at the base of the Raspberry Pi. If the Pi became unplugged while this green 

light was flashing, the microSD could become corrupted. 

Employing the shutdown procedure before connecting or disconnecting any wires was the 

second proper operating procedure. Working with live wires increased risk for GPIO pin shorting 

and overvoltage.  
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Preventing overvoltage was the last proper operating procedure. The Raspberry Pi GPIO 

pins were only rated for 3.3V, so 5V logic damaged these pins. Double and triple checking all wire 

connections before powering the Raspberry Pi ensured this would not be an issue. 

2.1.2   Preliminary Plan 

The preliminary plan began with interfacing with each of the sensors individually and 

writing basic scripts to show their functionality. Programs controlling all sensors simultaneously 

could then be written. This process would be repeated for the servos, motors, and other electronic 

components. A visual gameplay flowchart for the robot’s performance was also essential, 

providing the basic logic for each gameplay function. Once these two things were completed, 

scripts could be written for each of the robot’s major functions: Startup, Emergency Stop, Food 

Delivery, Pillar Tracking, Intake, Sorting, Stacking, Statue Area Tracking, Pond Tracking, and 

Firework Light Switch Tracking. These scripts could then be combined into a final coding 

framework for the robot. In addition, multi-threading could be used to send information between 

simultaneously running scripts which would inform gameplay decisions. 

2.1.3   Sensors 

Testing and programming each sensor individually was the first step. The VL6180X time 

of flight sensor and TCS34725 color sensors were the easiest to program because they were 

ordered from Adafruit. Not only did Adafruit electronics have the most online resources and 

libraries of any sensors on the market, but they all had dedicated CircuitPython libraries. 

CircuitPython was a user-friendly programming language employed in several commercial 

microcontrollers, and Adafruit had a special library called Adafruit-Blinka to allow their 
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CircuitPython libraries to work with basic Python. Since the Raspberry Pi uses Python, this 

Adafruit-Blinka library made interacting with Adafruit sensors much simpler. 

Programming the VL6180X time of flight sensor was simple, and its output was accurate. 

After connecting the sensor to an I2C bus, the output range could be called from a single function. 

Measuring the true distance with a ruler and comparing it to the output range, the two were nearly 

identical for all ranges less than 70 mm. No testing was done at farther ranges because it would 

never need to sense anything that far away when installed in the robot. 

The TCS34725 color sensors were equally simple to code. A single function gave the color 

output as a list where the red, green, and blue values were items in the list. This sensor also gave 

accurate color readings for objects during testing. When putting the red side of a Rubik’s cube in 

front of the sensor, the red output would spike while the green and blue values would fall. Faced 

with a white object, all values would even out. 

Unfortunately, the VL53L5CX time of flight sensor was exceptionally difficult to program. 

It was not an Adafruit sensor, so it used a different library called the VL53L5CX CTypes Python 

Wrapper. This library used the smbus2 library to connect via I2C, and it refused to coexist with 

the Adafruit-Blinka library which used a different base library for I2C connection. The solution 

was an initialization parameter called i2c_dev in the VL53L5CX CTypes Python Wrapper library. 

By default, this parameter was set to I2C BUS1 (smbus2.SMBus(1)), but it could be changed to 

I2C BUS0 (smbus2.SMBus(0)) when initializing the VL53L5CX object. By changing this value 

from BUS1 to BUS0 and physically connecting the sensor to I2C BUS0 on the Raspberry Pi, the 

VL53L5CX could function without fault on its own, separate I2C bus. Using I2C BUS0 for sensor 

connection is usually frowned upon since the pull-up resistors on this bus are disabled. This, 

however, was not an issue because the internal pull-up resistors on the VL53L5CX board were 
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enough to promote safe function. After some modifications to the VL53L5CX library’s example 

code, the sensor’s 8x8 distance grid was set to the correct orientation, and the distances were found 

to be accurate to within a few millimeters. 

The Pixy2.1 cameras worked very well in the example code. Using PixyMon, a program 

that showed what the Pixy2.1 was seeing in real time, the Pixy2.1 was able to be taught the green, 

blue, and red colors from a Rubik’s cube. It could then detect and track those colors in the Pixy2.1 

library’s example code. 

During attempts to create custom Python code for the Pixy2.1 cameras, however, the 

library’s functions were unreachable. The solution was to delete the main Pixy2.1 library and 

download a different Pixy2.1 library with Simplified Wrapper and Interface Generator (SWIG) 

compatibility. The SWIG library was used for interfacing with libraries created in C or C++, both 

of which the main Pixy2.1 library was written in. After making this switch and then copying the 

new library’s two important initialization scripts to the same directory as the custom Python 

program, the pixy was able to be controlled from a custom script. Coding for the pixy was unique 

and simple. A single line of code would refresh the Pixy2.1 whenever written, and all information 

for each of the blocks sensed could be found within the Pixy2.1’s list of sensed blocks. 

2.1.4   Servos 

The team purchased eight servos for various robot functions: three HSR-2645CRH 

continuous rotation servos, three HS-485HB standard servos, and two M0090 micro servos. The 

continuous rotation servos rotated the left and right intake cylinders as well as the sorting cylinder. 

Then the standard servos pushed pillars into the stacking mechanism, opened the stacking 
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mechanism, and deployed the light switch arm. Lastly, the two micro servos dropped the red and 

green food pellets into their respective aquariums. 

The Adafruit-Blinka Servokit library was used to control the servos instead of the standard 

GPIO library, RPi.GPIO, which caused severe servo jittering. Programming with the Servokit 

library, the continuous rotation servos were driven with a ‘throttle’ parameter ranging from -1 to 

1. Likewise, an ‘angle’ parameter could be set from 0 to 180 for the standard servos. These angles 

and throttles did not reflect the actual angle or throttle measurements but rather the maximum and 

minimum values for each servo. To find the real maximum angles, a simple script was written to 

move each standard servo from 0 to 180, and the actual angle difference was measured with a 

protractor. These values varied widely from 115° to 150°. No servo needed a full 180°, so this 

discrepancy did not affect the final robot performance. Tests were also done on each of the 

continuous rotation servos to see what throttle value would put the servo at rest. A throttle of 0.1, 

not 0, worked to stop each servo. 

2.1.5   Motors 

The team purchased two EMG-30 motors for the robot drivetrain. To control these motors, 

the TB6612FNG Dual H-Bridge motor driver was purchased. This driver could control both 

motors simultaneously and had several online resources. Unfortunately, the MD25 motor driver, a 

board specifically designed for use with the EMG-30 motors, was overlooked. This motor driver 

had quick-connect ports designed for the EMG-30, and it offered much more functionality 

immediately out of the box, namely a simple method for interacting with the EMG-30’s onboard 

encoders. The TB6612FNG library, however, still provided useful functions for driving, braking, 

and reversing. 
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Eight functions were programmed for the robot’s drivetrain movement. The robot had two 

driving wheels in the front and caster balls in the back, so drivetrain functions were modeled with 

those movement possibilities in mind. For example, the function for rotating to the right while 

pivoting forward was to drive with the left motor and brake with the right motor. These eight 

functions for rotating and turning enabled the robot to complete several complicated movement 

patterns. 

2.1.6   Pushbutton 

The last, most important, electronic component was the pushbutton. It was a latching 

pushbutton, meaning it was toggleable, and it had an internal red LED. This button was both the 

start and stop button. An emergency stop button was a requirement for the competition, so this 

button needed to stop all robot functions no matter where it was in the code. 

This was accomplished through an event detect function. After initializing the button as a 

GPIO object using the RPi.GPIO library, an event detect function was created that triggered when 

the voltage fell across the pushbutton (when it was toggled from on to off) and a callback function 

was created which the program would run immediately afterwards. This callback function 

executed an ‘os.kill’ function which raised a keyboard interrupt exception and safely stopped the 

program wherever it was at that point in time. Lastly, a ‘finally’ block at the end of the program 

set all electronics to default conditions and reset all Raspberry Pi pins. 
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2.2   Gameplay Sequences 

2.2.1   Revised Code Structure 

The revised code structure was one large script. Seen in Figure 20 below and Figure 28 in 

Appendix A was the original code structure plan. Each colored section was a unique gameplay 

sequence that would be programmed as separate scripts. Each script would call another script as it 

ended, and scripts that needed to send information between one another would do so through multi-

threading. This did not go as planned because multi-threading was exceptionally difficult to learn 

and implement, so every process was combined into one large script. 

 

Figure 20: Initial Gameplay Sequence Flowchart (Simplified) 

The next sections will describe the programming involved in each gameplay function and 

any changes that needed to be made when combining these scripts into one large game loop. 

Increased emphasis is placed on the startup and food delivery sequences because they were the 

only gameplay functions used at the competition. 

2.2.2   Startup Sequence 

Reference the flowchart shown in Figure 21 for a visual aid of the startup sequence. Once 

the start button was pressed, the program began taking input from the TCS34725 color sensor on 

the outside of the robot. This color sensor was positioned to face a red LED because the robot 
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earned more points if it auto started when this LED was turned on. During testing, it was found 

that the LED’s green and blue values would sit around 80 or 90 when the LED was off but would 

plummet to 0 when the LED was on. The program would wait for the green value to dip below 20 

(to be safe), before enabling the food delivery sequence. 

 

Figure 21: Startup Sequence Flowchart 

2.2.3   Food Delivery Sequence 

Reference the flowchart shown in Figure 22 for a visual aid of the food delivery sequence. 

The competition rules stated that the manatee (green) and alligator (red) aquariums would swap 

positions on different boards at the event. To combat this, the delivery system was programmed to 

be robust. The Pixy2.1 camera mounted on the front of the robot would find and track each 

aquarium. Functions were created for finding the closest aquarium based on horizontal distance 

from the center of the robot, centering the robot on the aquarium, and moving towards the aquarium 

while also tracking it and maintaining a constant heading. 
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Figure 22: Food Delivery Flowchart 
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2.2.4   Intake Mechanism 

Reference the flowchart shown in Figure 23 for a visual aid of the intake mechanism 

programming. The intake mechanism started by spinning the intake rollers. It then waited until the 

VL6180X time of flight sensor positioned in front of the sorting mechanism sensed an object by 

reading a range less than the calibrated limit. Meanwhile, the other TCS34725 color sensor, which 

was sitting opposite the time of flight sensor and pointed towards the same area was constantly 

storing color values. Once the VL6180X had sensed an object, the color sensor would sense the 

color of this object and then compare its red and green values to those it had stored previously. A 

calculation then ran that looked to see if the red or green values had increased by a certain 

percentage. If the red spiked and the green did not, then it was a red pillar. If the green spiked and 

the red did not, then it was a green pillar. If both spiked, it was a white pillar. This information 

would then be passed to the sorting cylinder and pillar search process. 
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Figure 23: Intake Mechanism Flowchart 
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2.2.5   Sorting Mechanism 

Reference the flowchart shown in Figure 24 for a visual aid of the sorting mechanism 

programming. The sorting cylinder functioned like a revolver with five equidistant holes that could 

be chambered at the intake, rotated to the top, and ejected into the stacking cylinder. To program 

this, each of the five holes was initialized as an object of the Hole class. This class had parameters 

for the top and bottom positions of the hole, if it was filled, what color pillar it had consumed, and 

if it was ready for intake. The top and bottom positions were hard coded values that could be 

passed to the hole object on initialization, and they represented the encoder position when the hole 

was aligned with the top exit hole or with the bottom entrance hole. By default, each hole was set 

to be empty and have a color of ‘none’. 

Several functions were also created for basic movement and logic in the sorting cylinder. 

Among these were functions for aligning a hole to its top and bottom positions, assigning a hole a 

new color, checking for empty holes, checking for holes ready for intake, and checking the sorting 

state to see if it was time to start stacking. Additionally, this process was compressed into a single 

function that could be called after each successful pillar intake. 

After initializing the hole objects, Hole 1 was programmed to rotate to its bottom position 

and flag itself as ‘ready for intake.’ This ensured that the first pillar consumed would have a spot 

in the sorting mechanism. After a pillar was consumed, that pillar’s color would be assigned to the 

hole with the ‘ready for intake’ flag. A check for empty holes would then commence, and an empty 

hole would rotate to its bottom position to be ready to intake another pillar. 

Initially, the sorting cylinder checked if it could make a successful stack after every 

successful pillar intake, and it prioritized being able to make a three-pillar statue: white on bottom, 
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green in the middle, and red on top. It would continue searching for these pieces until it either 

found them or filled all five holes without consuming a red pillar in which case it would settle for 

a two-pillar stack. This became unnecessary when the sorting cylinder mechanism script was 

combined with all other gameplay function scripts because the robot could track the red, green, 

and white pillars and then immediately start the sorting procedure without needing to use this code 

to check. 

The stacking process checked for holes filled with white pillars. It then aligned one of those 

holes with the top position and activated a servo at the top of the sorting cylinder to push the pillar 

out of the mechanism, down a ramp, and into the stacking cylinder. It repeated this process for a 

green pillar and then once again for a red pillar if it was making a three-pillar stack. 
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Figure 24: Sorting Mechanism Flowchart 
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2.2.6   Pillar Search Algorithm 

Reference the flowchart shown in Figure 25 for a visual aid of the pillar search algorithm. 

This process relied entirely on the Pixy2.1 camera. To simplify the code, several functions were 

created for basic Pixy2.1 processes, such as checking for instances of a block color or checking to 

see if the Pixy2.1 was still tracking the object. Larger, more complicated logic and movement 

functions were also created for intractability later. These included calculating a block’s horizontal 

distance from the Pixy2.1’s center, finding the closest block to the Pixy2.1’s center, tracking the 

farthest away object, centering the robot on a block, and tracking and moving towards a desired 

block. Each of these functions were common during the aquarium, pillar, and pond search 

processes. 

For the pillar search process specifically, the robot would start by rotating until it saw a red 

pillar. It would then center itself on that pillar and begin moving towards it. The robot was 

programmed to maintain heading with the pillar during this process, adjusting itself whenever 

necessary. It would do this until it lost sight of the pillar or until the VL6180X time of flight sensor 

in the intake sensed the pillar entering the system. After sorting the red pillar, the robot would 

execute same tracking procedure for the remaining green and white pillars. 
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Figure 25: Pillar Search Algorithm Flowchart 

2.2.7   Pond Search Algorithm 

Reference the flowchart shown in Figure 26 for a visual aid of the pond search algorithm. 

This process was nearly identical to the pillar search process. The Pixy2.1 camera positioned at 
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the front of the robot would search for the blue pond while the robot rotated. Then the robot would 

center itself on the pond and drive towards it, maintaining constant heading. Once the robot lost 

sight of the blue pond, it would stop and initiate the stacking mechanism. 

The original plan had a different stop condition for a more accurate stack placement. Once 

the Pixy2.1 camera positioned near the stacking mechanism at the back of the robot saw two blue 

objects, the robot would stop moving and initiate the stacking procedure. These two blue objects 

would be two edges of the pond on either side of the statue area, and it meant the stacking 

mechanism was positioned directly over the statue area in the middle of the pond. Difficulties with 

operating two Pixy2.1 cameras at the same time resulted in this process not being programmed. 

The Pixy2.1 was also unable to recognize the firework switch and the regular statue areas, 

so these processes were not programmed. Instead, the team decided it was best to make a three-

pillar stack and travel to the pond to deliver that stack. 

 

Figure 26: Pond Search Algorithm Flowchart 

2.2.8   Pillar Stacking Mechanism 

Reference the flowchart shown in Figure 27 for a visual aid of the pillar stacking 

mechanism. This mechanism would actuate a servo to open the stacking cylinder like a door, drive 

forward, and then close the stacking cylinder. All pillars would have already been loaded into the 

stacking mechanism by the sorting mechanism, and the stack would be left in place when the robot 

drove away. 
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Figure 27: Pillar Stacking Mechanism Flowchart 
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3   Competition 

 

3.1   Final Code Structure 

The team encountered several issues in Florida. Because the robot was not assembled until 

three days before the competition, mechanical and electrical issues plagued it. The caster wheels 

interfered with the drivetrain, the intake mechanism was set too low to intake pillars, the 

improvised ramp from the intake to the sorting cylinder rubbed against the floor and further 

interfered with the drivetrain, the sorting cylinder was improperly fastened and too difficult to 

spin, the first servo driver was destroyed, and the encoder was returning unrealistic values 

dissimilar to those on the Arduino in prior testing. The team eventually decided to pour all its 

efforts into food delivery. 

Immediately, simplifications were made to the food delivery system. Several teammates 

remembered that teams could pre-load food chips into their robots while setting up for runs. This 

meant the robot could be programmed to open a certain servo for each aquarium, and the user 

could load that servo with the correct food corresponding to the aquarium positions. It also meant 

it was possible to program a set path to each aquarium instead of relying on the Pixy2.1 camera 

for directions. At this point, the team was experiencing multiple difficulties with the Pixy2.1. It 

was inconsistent at detecting red objects, such as the alligator aquarium and red pillars, and it often 

lost track of objects when the robot cast a shadow over them. A solution to this issue would have 

been to add a large light on the front of the robot to give consistent readings for any room lighting. 

Already at the competition, the decision was made to refrain from using the Pixy2.1. Future teams 

using the Pixy2.1 camera should account for this lighting issue in the design.  
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Programming a set path for food delivery was simple with the drivetrain movement 

functions that were already programmed. Correct directions and timings were found from trial and 

error on the gameboard. One day before the competition, however, the robot began turning left 

instead of going straight. The omnidirectional steel ball transfers used for the caster wheels were 

not functioning as intended. When moved in certain directions, the casters locked up and provided 

considerable resistance to the drivetrain. Its effects were consistent for a short time, but they grew 

more inconsistent as testing continued throughout the day. 

As a temporary fix for this issue, the code was modified to include a new drive function 

that would keep the robot moving straight. This function took a new parameter for a decreased 

right motor speed that could be changed in the setup based on how far the robot veered to the left 

in testing. 

Once the food delivery sequence was working reliably, the robot was programmed to drive 

across the gameboard towards the recycling area. If it managed to push any game pieces into the 

recycling area, it would earn more points than other teams who focused solely on delivering food. 

The team refrained from additional testing to avoid creating further variation in the caster wheels’ 

performance. Lastly, the Raspberry Pi was programmed to run the gameplay loop on boot, which 

was a competition requirement. 

The final gameplay script can be found in Appendix B. This code includes functions for all 

gameplay sequences, but it only executes the startup sequence, food delivery sequence, and path 

to the recycling area, as the robot performed only those three in competition. Code and functions 

for untested gameplay sequences could contain syntax errors or redundancies.  
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3.2   Performance and Results 

On competition day, only the startup sequence, food delivery sequence, and recycling 

sequence described previously were utilized. The competition consisted of three preliminary 

rounds followed by a single elimination tournament. Scores for each round were totaled, and the 

top eight teams advanced to the tournament. 

The robot scored 52 points in the first preliminary round. It successfully auto started, 

delivered all six food pellets, and got stuck on a duck on its way to the recycling area. In the second 

preliminary round, it received 51 points. It successfully auto started, delivered five food pellets, 

and pushed three game pieces into the recycling area. In the third preliminary round, it received 

45 points. It successfully auto started, delivered five food pellets, and got stuck on a duck on its 

way to the recycling area. 

The team qualified for the single elimination tournament as the seventh seed with a total 

of 148 points after the first three qualifying rounds. Eventually, the team placed seventh at the 

competition after losing to the second seed robot from University of Kentucky in the first round 

of the tournament. 
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Conclusion 

The team was successful in designing, assembling, and programming a fully autonomous 

robot. Although far from perfect, the robot’s consistency enabled it to receive seventh place at the 

IEEE SoutheastCon 2023 Hardware Competition. 

This success required an in-depth understanding of each system and how they all needed 

to work together for the final product. From researching and selecting the best sensors for each 

application to programming each robot function, it required involvement in every step of the 

process. It came from learning useful career skills, such as programming a Raspberry Pi, 

interfacing with foreign electronics, and experiencing the unforgiving yet rewarding final 

integration process. Any individuals or teams interested in this project should compete in a local 

robotics competition. The skills learned from creating a robot are invaluable and best experienced 

firsthand. 
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Appendix A 

 

Figure 28: Initial Gameplay Sequence Flowchart 
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Appendix B 

Shown below is the final gameplay script. This code includes functions for all gameplay 

sequences, but it only executes the startup sequence, food delivery sequence, and path to the 

recycling area, as the robot performed only those three in competition. Code and functions for 

untested gameplay sequences could contain syntax errors or redundancies. 

# Final Code Used for Competition 

# Just Startup, Food Delivery, and Hail Mary to Recycling Area 

 

#---Importing---# 

import time 

import board 

import adafruit_tcs34725 

import adafruit_tca9548a 

import RPi.GPIO as GPIO 

from digitalio import DigitalInOut, Direction, Pull 

import os 

#import threading 

import signal 

import adafruit_pca9685 

import adafruit_servokit 

import pixy 

import ctypes 

import adafruit_vl6180x 

import adafruit_mcp3xxx.mcp3008 as MCP 

from adafruit_mcp3xxx.analog_in import AnalogIn 

import busio 

 

# define a callback function for when the button press event happens 

def button_callback(channel): 

    print('Button pressed!') 

    # Terminate the threads gracefully 

    os.kill(os.getpid(), signal.SIGINT) # Sends SIGINT signal to the main 

process 

 

 

#---Classes---# 

# Define Motor class 

class Motor: 

    in1 = "" 

    in2 = "" 

    pwm = "" 

    standbyPin = "" 

 

    #Defaults 

    #hertz = 1000 



49 

 

    hertz = 20000 # This is the average that was recommended online for most 

motors. The TB6612FNG has an upper limit of 100kHz 

    reverse = False #Reverse flips the direction of the motor 

 

    #Constructor 

    def __init__(self, in1, in2, pwm, standbyPin, reverse): 

        self.in1 = in1 

        self.in2 = in2 

        self.pwm = pwm 

        self.standbyPin = standbyPin 

        self.reverse = reverse 

 

        GPIO.setup(in1,GPIO.OUT) 

        GPIO.setup(in2,GPIO.OUT) 

        GPIO.setup(pwm,GPIO.OUT) 

        GPIO.setup(standbyPin,GPIO.OUT) 

        GPIO.output(standbyPin,GPIO.HIGH) # Setting standby to high so the 

motors will work 

        self.p = GPIO.PWM(pwm, self.hertz) 

        self.p.start(0) 

 

    #Speed from -100 to 100 

    def drive(self, speed): 

        #Negative speed for reverse, positive for forward 

        #If necessary use reverse parameter in constructor 

        dutyCycle = speed 

        if(speed < 0): 

            dutyCycle = dutyCycle * -1 

 

        if(self.reverse): 

            speed = speed * -1 

 

        if(speed > 0): 

            GPIO.output(self.in1,GPIO.HIGH) 

            GPIO.output(self.in2,GPIO.LOW) 

        else: 

            GPIO.output(self.in1,GPIO.LOW) 

            GPIO.output(self.in2,GPIO.HIGH) 

        self.p.ChangeDutyCycle(dutyCycle) 

 

    def brake(self): 

        self.p.ChangeDutyCycle(0) 

        GPIO.output(self.in1,GPIO.HIGH) 

        GPIO.output(self.in2,GPIO.HIGH) 

 

    def standby(self, value): 

        self.p.ChangeDutyCycle(0) 

        GPIO.output(self.standbyPin,value) 

 

    def __del__(self): 

        GPIO.cleanup() 

 

class Blocks (ctypes.Structure): 
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    _fields_ = [ ("m_signature", ctypes.c_uint), 

    ("m_x", ctypes.c_uint), 

    ("m_y", ctypes.c_uint), 

    ("m_width", ctypes.c_uint), 

    ("m_height", ctypes.c_uint), 

    ("m_angle", ctypes.c_uint), 

    ("m_index", ctypes.c_uint), 

    ("m_age", ctypes.c_uint) ] 

 

class Hole(): 

    def __init__(self, top, bottom, filled = False, color = 'none'): 

        self.__top = top #This is the encoder value when this hole is 

centered at the top 

        self.__bottom = bottom #This is the encoder value when this hole is 

centered at the bottom 

        self.__filled = filled 

        self.__color = color 

        self.__ready_for_intake = False 

 

    def get_state(self): 

        return self.__filled 

    def get_color(self): 

        return self.__color 

    def get_top(self): 

        return self.__top 

    def get_bottom(self): 

        return self.__bottom 

    def get_ready_for_intake(self): 

        return self.__ready_for_intake 

    def add_pillar(self, new_color): 

        self.__filled = True 

        self.__color = new_color 

        self.__ready_for_intake = False 

    def remove_pillar(self): 

        self.__filled = False 

        self.__color = 'none' 

    def set_ready_for_intake(self, new_state): 

        # Either True or False 

        self.__ready_for_intake = new_state 

    def set_color(self, new_color): 

        self.__color = new_color 

    def set_state(self, new_state): 

        self.__state = new_state 

 

         

#---Basic Functions for Pixy---# 

def check_for_instances(blocks, desired_color_signature): 

    # Gets all the instances of a certain color that the robot currently 

sees. 

    block_instances = [] 

    for block in blocks: 

        if block.m_signature == desired_color_signature: 



51 

 

            # Adding all similar colored blocks to an instance list for later 

use 

            block_instances.append(block) 

    return block_instances 

 

def tracking_check(blocks, block_index): 

    # Outputs True if the pixy still sees the block we're tracking. Outputs 

False if it lost track of it 

    for block in blocks: 

        if block.m_index == block_index: 

            return True 

    return False 

 

def calc_distance_from_center(blocks, block_index): 

    # Return block's x_distance from the center of the pixy2 vision 

    for block in blocks: 

        if block.m_index == block_index: 

            distance_from_center = 157 - block.m_x 

            return distance_from_center 

 

def closest_to_center(block_list): 

    # Outputs the block index of the block closest to the center of the 

screen. 

    # Useful for future centering on an aquarium vs a random pillar that we 

don't care about. 

    # METHOD 1 

    ''' 

    distances_from_center = [] 

    for block in block_list: 

        # Getting the distances from center for each block and saving them 

        distance_from_center = abs(157-block.m_x) # The x range of the Pixy2 

grid is x=0 to x=315 

        distances_from_center.append(distance_from_center) 

    # Getting the distance value for the closest to the center 

    closest_distance = min(distances_from_center) 

    # Getting the list index of that distance. This will be the same list 

index of that block in the block_list 

    index_of_list = distances_from_center.index(closest_distance) 

    # Getting the Pixy2 index of the block with the closest distance to the 

center 

    block_index = block_list[index_of_list].m_index 

    actual_distance = 157-block_list[index_of_list].m_x 

    ''' 

    # METHOD 2 

    #''' 

    closest_block_to_center = block_list[0] 

    closest_distance = abs(157-block_list[0].m_x) # setting limit at the 

first block's distance from center 

    if len(block_list) > 1: # if we found more than one green 

        for block in block_list[1:]: # Only looking at the blocks that aren't 

the first block (cuz i already did the stuff for that) 

            distance_from_center = abs(157-block.m_x) # computing the 

distance from the center of the block to the center of the FOV 
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            if distance_from_center <= closest_distance: # if the center to 

center distance is smaller than the previous smallest 

                closest_distance = distance_from_center # set new smallest 

center-to-center distance 

                closest_block_to_center = block # save the block info cuz we 

want to go towards this block 

    block_index = closest_block_to_center.m_index # save index of the block, 

because that's how we'll identify it in future frames 

    actual_distance = 157 - closest_block_to_center.m_x 

    #''' 

    # Outputs the Pixy2 index of the closest block to the center and the 

distance from the center 

    return block_index, actual_distance 

 

def track_farthest(blocks, block_instances, rmotor, lmotor, rotation_speed, 

turn_speed, acceptable_offset, optimal_offset, vl6, vl6_detection_limit): 

    # Find out what block is farthest away 

    farthest_index = block_instances[0].m_index 

    farthest_distance = block_instances[0].m_y 

    for block in block_instances: 

        if block.m_y > farthest_distance: 

            farthest_distance = block.m_y 

            farthest_index = block.m_index 

    return farthest_index 

 

 

#---Driving Functions---# 

def keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed): 

    # For robots that turn left when going straight 

    # keep_forward_speed will be less than forward_speed 

    rmotor.drive(keep_forward_speed) 

    lmotor.drive(forward_speed) 

 

def turn_left_forward(rmotor, lmotor, forward_speed, turn_speed): 

    # Turning left while moving forward. Turn speed will be slightly lower 

than forward speed 

    rmotor.drive(forward_speed) 

    lmotor.drive(turn_speed) 

 

def turn_right_forward(rmotor, lmotor, forward_speed, turn_speed): 

    # Turning left while moving forward. Turn speed will be slightly lower 

than forward speed 

    rmotor.drive(turn_speed) 

    lmotor.drive(forward_speed) 

 

def rotate_left_forward(rmotor, lmotor, rotation_speed): 

    # This is for turning left by running the right motor forward and doing 

nothing with the left motor. 

    # (i.e. we turn left by going forward) 

    rmotor.drive(rotation_speed) 

    lmotor.brake() 

 

def rotate_left_backward(rmotor, lmotor, rotation_speed): 
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    # This is for turning left by running the left motor in reverse and doing 

nothing with the right motor. 

    # (i.e. we turn left by going backwards) 

    rmotor.brake() 

    lmotor.drive(-rotation_speed) 

 

def rotate_left_even(rmotor, lmotor, rotation_speed): 

    # This is for turning left by running the left motor in reverse and 

running the right motor forward. 

    # (i.e. we turn left by running each motor evenly but opposite. Hopefully 

stay in the same spot) 

    # I think it's best to run each at half of the speed, but we'll stick 

with this for now. 

    rmotor.drive(rotation_speed) 

    lmotor.drive(-rotation_speed) 

 

def rotate_right_forward(rmotor, lmotor, rotation_speed): 

    # This is for turning right by running the left motor forwards and doing 

nothing with the right motor. 

    # (i.e. we turn right by going forwards) 

    rmotor.brake() 

    lmotor.drive(rotation_speed) 

 

def rotate_right_backward(rmotor, lmotor, rotation_speed): 

    # This is for turning right by running the right motor in reverse and 

doing nothing with the left motor. 

    # (i.e. we turn right by going backwards) 

    rmotor.drive(-rotation_speed) 

    lmotor.brake() 

 

def rotate_right_even(rmotor, lmotor, rotation_speed): 

    # This is for turning right by running the left motor forward and running 

the right motor in reverse. 

    # (i.e. we turn right by running each motor evenly but opposite. 

Hopefully stay in the same spot) 

    rmotor.drive(-rotation_speed) 

    lmotor.drive(rotation_speed) 

 

 

#---Robot Tracking Features---# 

def forward_tracking(blocks, block_index, rmotor, lmotor, forward_speed, 

turn_speed, acceptable_offset, optimal_offset, keep_forward_speed): 

    # Track block index and head straight towards it. 

    # Stops when pixy can no longer see the block with the block_index you're 

looking for 

    keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed) 

    #rmotor.drive(forward_speed) 

    #lmotor.drive(forward_speed) 

    distance_from_center = calc_distance_from_center(blocks, block_index) 

    #while we haven't reached our goal 

    approaching = True 

    while approaching: 

        # Check to see if the robot is too far offset from the center 
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        if abs(distance_from_center) > acceptable_offset: # if we're too far 

off-center 

            while abs(distance_from_center) > optimal_offset: # We want to 

reset to a closer, more optimal offset 

                if distance_from_center < 0: # if we need to turn left 

                    turn_left_forward(rmotor, lmotor, speed, turn_speed) 

                else: # if we need to turn right 

                    turn_right_forward(rmotor, lmotor, speed, turn_speed) 

                # Update the Pixy2 vision 

                count = pixy.ccc_get_blocks (100, blocks) 

                # Update the distance_from_center 

                for block in blocks: 

                    if block.m_index == block_index: 

                        distance_from_center = 157 - block.m_x 

                # Check to see if we lost track of the object 

                if not tracking_check(blocks, block_index): # If pixy lost 

track of it 

                    # Stop moving when we lose track of the block. We might 

be right over it 

                    rmotor.brake() 

                    lmotor.brake() 

                    approaching = False 

                    break 

        

        # Check to see if we lost track of the object 

        if not tracking_check(blocks, block_index): # If pixy lost track of 

it 

            # Stop moving when we lose track of the block. We might be right 

over it 

            rmotor.brake() 

            lmotor.brake() 

            approaching = False 

 

        else:   

            # Start driving forward once we are on track 

            keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed) 

            #rmotor.drive(forward_speed) 

            #lmotor.drive(forward_speed)  

 

            # Update the Pixy2 vision 

            count = pixy.ccc_get_blocks (100, blocks) 

             

            # Update the distance_from_center 

            for block in blocks: 

                if block.m_index == block_index: 

                    distance_from_center = 157 - block.m_x 

 

def forward_tracking_pillar_searching(blocks, block_index, rmotor, lmotor, 

forward_speed, turn_speed, acceptable_offset, optimal_offset, vl6, 

vl6_detection_limit, keep_forward_speed): 

    # Like forward tracking but for pillars 

    # Track block index and head straight towards it. 
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    # Stops when pixy can no longer see the block or when the vl6180x senses 

it has entered the sorting system 

    keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed) 

    #rmotor.drive(forward_speed) 

    #lmotor.drive(forward_speed) 

    distance_from_center = calc_distance_from_center(blocks, block_index) 

    #while we haven't reached our goal 

    approaching = True 

    while approaching: 

        # Check to see if the robot is too far offset from the center 

        if abs(distance_from_center) > acceptable_offset: # if we're too far 

off-center 

            while abs(distance_from_center) > optimal_offset: # We want to 

reset to a closer, more optimal offset 

                if distance_from_center < 0: # if we need to turn left 

                    turn_left_forward(rmotor, lmotor, speed, turn_speed) 

                else: # if we need to turn right 

                    turn_right_forward(rmotor, lmotor, speed, turn_speed) 

                # Update the Pixy2 vision 

                count = pixy.ccc_get_blocks (100, blocks) 

                # Update the distance_from_center 

                for block in blocks: 

                    if block.m_index == block_index: 

                        distance_from_center = 157 - block.m_x 

                # Check to see if we lost track of the object 

                if (not tracking_check(blocks, block_index)) or (vl6.range < 

vl6_detection_limit): # If pixy lost track of it or the block has been 

consumed 

                    # Stop moving when we lose track of the block. We might 

be right over it 

                    rmotor.brake() 

                    lmotor.brake() 

                    approaching = False 

                    break 

 

        # Check to see if we lost track of the object 

        if (not tracking_check(blocks, block_index)) or (vl6.range < 

vl6_detection_limit): # If pixy lost track of it or the block has been 

consumed 

            # Stop moving when we lose track of the block. We might be right 

over it 

            rmotor.brake() 

            lmotor.brake() 

            approaching = False 

        else: 

            # Start driving forward once we are on track 

            keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed) 

            #rmotor.drive(forward_speed) 

            #lmotor.drive(forward_speed)  

 

            # Update the Pixy2 vision 

            count = pixy.ccc_get_blocks (100, blocks) 
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            # Update the distance_from_center 

            for block in blocks: 

                if block.m_index == block_index: 

                    distance_from_center = 157 - block.m_x 

 

def center_robot(blocks, block_index, rmotor, lmotor, rotation_speed): 

    centering = True 

    while centering: 

        # Get distance from center for the desired block 

        distance_from_center = calc_distance_from_center(blocks, block_index) 

        # Remember the pixy is upside down, so if distance from center is 

negative, then the object is to the left of the center of the pixy 

        if distance_from_center < 0: # need to turn left 

            rotate_left_even(rmotor, lmotor, rotation_speed) 

        elif distance_from_center > 0: # need to turn right 

            rotate_right_even(rmotor, lmotor, rotation_speed) 

        else: 

            rmotor.brake() 

            lmotor.brake() 

            centering = False 

         

        # Update the Pixy 

        count = pixy.ccc_get_blocks (100, blocks) 

        if count == 0: 

            centering = False 

            print('Error. Block Lost. Function aborted') 

 

 

#---Functions for Food Mechanism---# 

def second_aquarium_tracking(blocks, desired_color_signature, rmotor, lmotor, 

rotation_speed, forward_speed, turn_speed, acceptable_offset, optimal_offset, 

keep_forward_speed): 

     

    ###### INPUT THE APPROPRIATE VALUE FOR THE SLEEP TIMER ######### 

    sleep_time = 1 

     

    # Rotate right by putting the right motor in reverse 

    rotate_right_backward(rmotor, lmotor, rotation_speed) 

    time.sleep(sleep_time) 

    # Start rotating in place. Eventually, we'll be searching for the 

aquarium while still rotating 

    rotate_right_even(rmotor, lmotor, rotation_speed) 

    # Looking for the desired aquarium 

    looking = True 

    while looking: 

        # Update the Pixy2 vision 

        count = pixy.ccc_get_blocks (100, blocks) 

         

        # Store all sighted blocks matching the desired color_signature 

        block_instances = check_for_instances(blocks, 

desired_color_signature) 

 

        # If we see the color we're looking for 
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        if len(block_instances) > 0: 

            # Get the block with the closest distance to center 

            block_index, distance_from_center = 

closest_to_center(block_instances) 

            looking = False 

 

    # Center on the aquarium once we've found it 

    center_robot(blocks, block_index, rmotor, lmotor, rotation_speed) 

     

    # Start moving towards the aquarium and keeping on track 

    forward_tracking(blocks, block_index, rmotor, lmotor, forward_speed, 

turn_speed, acceptable_offset, optimal_offset, keep_forward_speed) 

    # We are at the aquarium by this point 

 

 

#---Sorting Cylinder Functions---# 

def align_bottom(encoder, hole, cylinder_servo, appropriate_throttle, 

zero_throttle): 

    # Align specified hole with the bottom position 

    hole_bottom = hole.get_bottom() 

    while int(encoder.value/100) != hole.get_bottom(): 

        #keeping it simple by only rotating in one direction for now 

        cylinder_servo.throttle = appropriate_throttle 

    #stop servo movement 

    cylinder_servo.throttle = zero_throttle 

    hole.set_ready_for_intake(True) 

 

def rotate_to_empty_hole(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle): 

    # Rotate the sorting cylinder to a new, empty hole on bottom 

    looking_for_empty_hole = True 

    for hole in holes: 

        #once we find the hole and align it, we don’t want to keep aligning 

others. 

        if looking_for_empty_hole == True: 

            #if hole is empty 

            if hole.get_state() == False: 

                #initiate hole movement towards bottom alignment. 

                align_bottom(encoder, hole, cylinder_servo, 

appropriate_throttle, zero_throttle) 

                looking_for_empty_hole = False 

 

def align_top(encoder, hole, cylinder_servo, appropriate_throttle, 

zero_throttle): 

    # Align specified hole with the top position 

    hole_top = hole.get_top() 

    while int(encoder.value/100) != hole.get_top(): 

        #keeping it simple by only rotating in one direction for now 

        cylinder_servo.throttle = appropriate_throttle 

    #stop servo movement 

    cylinder_servo.throttle = zero_throttle 
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def rotate_to_top_hole(holes, desired_color, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle): 

    # Rotate hole with desired color to the top 

    checking_holes = True 

    for hole in holes: 

        if checking_holes: # If you're still looking for the hole with the 

desired color 

            if hole.get_color() == desired_color: 

                # once you find the hole with the desired color, align it 

with the top hole. 

                align_top(encoder, hole, cylinder_servo, 

appropriate_throttle, zero_throttle) 

                # Calling this makes 'none' color and 'False' state. This is 

in preparation for the next step which is pushing the cylinder out into the 

stacking mechanism 

                hole.remove_pillar() 

                checking_holes = False 

 

def assign_intake_color(holes, new_color): 

    # Assign color to hole that just got filled with a pillar 

    for hole in holes: 

        # If hole is aligned with the bottom 

        if hole.get_ready_for_intake() == True: 

            # Assigning that hole the color. Also marking it as filled and 

not ready for intake. 

            hole.add_pillar(new_color) 

 

def empty_holes_check(holes): 

    # True if empty holes exist. False if every hole is filled. 

    for hole in holes: 

        # If a hole has a false state (not filled) 

        if not hole.get_state(): 

            #break here if we found a hole that was empty 

            return True 

    # returns false if all holes are filled 

    return False 

 

def ready_for_intake_check(holes): 

    # Checks all holes to see if any hole has the ready for intake flag. True 

if so. False if not. 

    for hole in holes: 

        # if a hole is already set to be ready for intake 

        if hole.get_ready_for_intake(): 

            return True 

    return False 

 

def sort_pillar(holes, pillars, stacked, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle): 

    # Sorts new pillar. Should be called after a pillar has entered the 

system. 

    #---START OF SORTING CYLINDER STUFF---# 

    #---Checking for (and Tracking) Consumed Pillars---# 
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    # Go through the normal loop of taking in pillars and tracking their 

position. 

 

    # Making sure that a hole is setup in the bottom position (in the case 

where 5 were filled and none were moved into place before the sorting 

sequence took place. 

    if not ready_for_intake_check(holes): # If no hole is ready for intake 

        rotate_to_empty_hole(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) # rotate to an empty hole 

 

    # Once a pillar has been consumed 

    # Assigning the pillar to the cylinder aligned with the bottom hole. 

    assign_intake_color(holes, pillars[-1]) 

 

    #---Rotate to Empty Hole---# 

    #finished taking in the pillar and now needs to rotate to next available 

open space (if there is an empty hole) 

    if empty_holes_check(holes): 

        # If there is an empty hole, rotate to an empty hole 

        rotate_to_empty_hole(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) 

 

def check_sorting_state(holes, stacked): 

    # Runs all of the logic to see if it's time to start stacking 

    # Initially, the sorting cylinder will not be in stacking mode. 

    two_pillar_stacking_mode = False 

    three_pillar_stacking_mode = False 

    #---Check to see if we need to start stacking---# 

    # Creating a list of the current consumed colors for logic calculations. 

    current_colors = [] 

    for hole in holes: 

        current_colors.append(hole.get_color()) 

 

    # Checking to see if we have consumed a green and white pillar. 

    if all(x in current_colors for x in ['green','white']): #if we have 

consumed one green and one white 

        # Run through other logic 

        if stacked in [3,5]: # If we have stacked 3 or 5 pillars already 

            two_pillar_stacking_mode = True 

        else: 

            if 'red' in current_colors: # if we have consumed a red pillar 

                # white, green, and red means we're ready to make a 3 stack 

                three_pillar_stacking_mode = True 

            else: 

                if not empty_holes_check(holes): # If all holes are filled 

(i.e. if there are five pillars in the sorting cylinder) 

                    # We don't have time to wait for a red. We're full, and 

we need to make a 2 stack. 

                    two_pillar_stacking_mode = True 

    return two_pillar_stacking_mode, three_pillar_stacking_mode 

 

def check_sorting_state_simple(holes): 

    # Function for sorting cylinder demo 
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    # Checks to see if it's time to stack SIMPLE 

    # SIMPLE: If white, green, and red then three stack. If all five are 

filled and no red then two stack. 

    two_pillar_stacking_mode = False 

    three_pillar_stacking_mode = False 

    #---Check to see if we need to start stacking---# 

    # Creating a list of the current consumed colors for logic calculations. 

    current_colors = [] 

    for hole in holes: 

        current_colors.append(hole.get_color()) 

 

    # Checking to see if we have consumed a green and white pillar. 

    if all(x in current_colors for x in ['green','white']): #if we have 

consumed one green and one white 

        # Run through other logic 

        if 'red' in current_colors: # if we have consumed a red pillar 

            three_pillar_stacking_mode = True 

        else: 

            if not empty_holes_check(holes): # If all holes are filled (i.e. 

if there are five pillars in the sorting cylinder) 

                # We don't have time to wait for a red. We're full, and we 

need to make a 2 stack. 

                two_pillar_stacking_mode = True 

 

    return two_pillar_stacking_mode, three_pillar_stacking_mode 

 

def sort_check_stack_pillar(holes, pillars, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle, pushing_servo, resting_angle, 

pushing_angle, pushing_time): 

    # Function for sorting cylinder demo 

    # Same as sort_pillar, but we add in check_sorting_state and stacking (if 

necessary) before we rotate to empty hole 

    #---START OF SORTING CYLINDER STUFF---# 

    #---Checking for (and Tracking) Consumed Pillars---# 

    # Go through the normal loop of taking in pillars and tracking their 

position. 

 

    # Making sure that a hole is setup in the bottom position (in the case 

where 5 were filled and none were moved into place before the sorting 

sequence took place. 

    if not ready_for_intake_check(holes): # If no hole is ready for intake 

        rotate_to_empty_hole(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) # rotate to an empty hole 

 

    # Once a pillar has been consumed 

    # Assigning the pillar to the cylinder aligned with the bottom hole. 

    assign_intake_color(holes, pillars[-1]) 

 

    # Checking to see if we need to make a stack 

    two_pillar_stacking_mode, three_pillar_stacking_mode = 

check_sorting_state_simple(holes) 

    if two_pillar_stacking_mode: # If we need to make a two pillar stack 

        print('Making a two pillar stack.') 
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        two_pillar_stacking(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle, pushing_servo, resting_angle, 

pushing_angle, pushing_time) 

    if three_pillar_stacking_mode: # If we need to make a three pillar stack 

        print('Making a three pillar stack.') 

        three_pillar_stacking(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle, pushing_servo, resting_angle, 

pushing_angle, pushing_time) 

 

    #---Rotate to Empty Hole---# 

    #finished taking in the pillar and now needs to rotate to next available 

open space (if there is an empty hole) 

    if empty_holes_check(holes): 

        # If there is an empty hole, rotate to an empty hole 

        rotate_to_empty_hole(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) 

    print('Ready for next pillar.') 

 

#---Stacking Mechanism Functions---# 

def push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time): 

    # Used to push the pillar from the top hole into the stacking mechanism 

    pushing_servo.angle = pushing_angle # Push 

    time.sleep(pushing_time) # Wait 

    pushing_servo.angle = resting_angle # Reset to default position 

 

def two_pillar_stacking(holes, encoder, cylinder_servo, appropriate_throttle, 

zero_throttle, pushing_servo, resting_angle, pushing_angle, pushing_time): 

    #---Stacking the Consumed Pillars---# 

    # Move white pillar to top 

    print('Rotating white to top.') 

    rotate_to_top_hole(holes, 'white', encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) 

 

    # Engage pushing servo to push cylinder into the stacking mechanism 

    print('Ejecting white.') 

    push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time) 

 

    # Move green pillar to top 

    print('Rotating green to top.') 

    rotate_to_top_hole(holes, 'green', encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) 

 

    # Engage pushing servo to push cylinder into the stacking mechanism 

    print('Ejecting green.') 

    push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time) 

 

def three_pillar_stacking(holes, encoder, cylinder_servo, 

appropriate_throttle, zero_throttle, pushing_servo, resting_angle, 

pushing_angle, pushing_time): 

    #---Stacking the Consumed Pillars---# 

    # Move white pillar to top 

    print('Rotating white to top.') 
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    rotate_to_top_hole(holes, 'white', encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) 

 

    # Engage pushing servo to push cylinder into the stacking mechanism 

    print('Ejecting white.') 

    push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time) 

 

    # Move green pillar to top 

    print('Rotating green to top.') 

    rotate_to_top_hole(holes, 'green', encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) 

 

    # Engage pushing servo to push cylinder into the stacking mechanism 

    print('Ejecting green.') 

    push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time) 

 

    # Move red pillar to top 

    print('Rotating red to top.') 

    rotate_to_top_hole(holes, 'red', encoder, cylinder_servo, 

appropriate_throttle, zero_throttle) 

 

    # Engage pushing servo to push cylinder into the stacking mechanism 

    print('Ejecting red.') 

    push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time) 

     

 

#---Pillar Search Functions---# 

def search_for_red(blocks, desired_color_signature, rmotor, lmotor, 

rotation_speed, turn_speed, acceptable_offset, optimal_offset, vl6, 

vl6_detection_limit, keep_forward_speed): 

    searching_for_red = True 

    while searching_for_red: 

        count = pixy.ccc_get_blocks(100, blocks) 

        block_instances = check_for_instances(blocks, 

desired_color_signature) 

        # We want to wait until we see the first red block on the screen. 

        while len(block_instances) == 0: 

            count = pixy.ccc_get_blocks(100, blocks) 

            block_instances = check_for_instances(blocks, 

desired_color_signature) 

            # Rotate right backwards 

            rotate_right_backward(rmotor, lmotor, rotation_speed) 

        # Stop moving 

        rmotor.brake() 

        lmotor.brake() 

        block_index = block_instances[0].m_index 

        # Center Robot on the first red block it sees 

        center_robot(blocks, block_index, rmotor, lmotor, rotation_speed) 

        # Travel towards the farthest block 

        forward_tracking_pillar_searching(blocks, block_index, rmotor, 

lmotor, forward_speed, turn_speed, acceptable_offset, optimal_offset, vl6, 

vl6_detection_limit, keep_forward_speed) 

        searching_for_red = False 
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def main(): 

    #---Channel Values---# 

    # Channels for TCA Multiplexer 

    pca_channel = 7 

    tcs_startup_channel = 2 

    vl6_channel = 0 

    tcs_channel = 3 

     

    # Channels for PCA Servo Driver 

    rservo_channel = 1 

    lservo_channel = 2 

    cylinder_servo_channel = 0 

    pushing_servo_channel = 4 

    stacking_servo_channel = 3 

    back_food_servo_channel = 6 

    front_food_servo_channel = 7 

 

    # Pins for Button 

    button_pin = 20 # GPIO 20 

    button_pin_digital = board.D20 # GPIO 20 

    button_led_pin = 25 # GPIO 25 

    button_led_pin_digital = board.D25 # GPIO 25 

 

    # Pin for Startup TCS34725 LED 

    tcs_startup_led_pin_digital = board.D22 # GPIO 22 

 

    # Pins for Intake TCS34725 LED 

    tcs_led_pin_digital = board.D23 # GPIO 23 

 

    # Channels for MCP3008 Analog to Digital Converter (ADC) 

    encoder_channel = MCP.P0 # Channel 0 of the MCP 

    cs_pin = board.D17 #GPIO 17 

 

     

    #---Calibrated Color Signatures---# 

    red_signature = 2 # set these based on what CCC signature we did for each 

color 

    green_signature = 1 

    white_signature = 4 

    blue_signature = 5 

    green_pillar_signature = 3 

     

 

     

    #---Initializing---# 

    # Initialize I2C for the board 

    i2c = board.I2C() 

 

    # Initialize the TCA9548A Multiplexer 

    tca = adafruit_tca9548a.TCA9548A(i2c) 
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    # Stuff for MCP3008 

    # Create the SPI bus 

    spi = busio.SPI(clock = board.SCK, MISO = board.MISO, MOSI = board.MOSI) 

    # Create the cs (chip select) 

    cs = DigitalInOut(cs_pin) 

    # Create the mcp object 

    mcp = MCP.MCP3008(spi, cs) 

    # Create analog input channel on pin 0 

    encoder = AnalogIn(mcp, encoder_channel) 

 

    # Initialize the VL6180X. Connected to a channel on TCA Multiplexer 

    vl6 = adafruit_vl6180x.VL6180X(tca[vl6_channel]) 

 

    # Initialize the TCS34725 Startup Color Sensor and other TCS34725 

    tcs_startup = adafruit_tcs34725.TCS34725(tca[tcs_startup_channel]) 

    tcs = adafruit_tcs34725.TCS34725(tca[tcs_channel]) 

 

    # Initialize the PCA9685. Connected to a channel on TCA Multiplexer 

    pca = adafruit_pca9685.PCA9685(tca[pca_channel]) 

    pca.frequency = 50 # set PWM frequency to 50Hz 

 

    # Set PCA frequency and Initialize ServoKit library. Automatically 

connects to PCA. Redirected to TCA channel that PCA is on 

    kit = adafruit_servokit.ServoKit(channels = 16, i2c = tca[pca_channel]) 

 

    # Initializing servos. Connected to channels on PCA 

    rservo = kit.continuous_servo[rservo_channel] # Initializing right and 

left continuous rotation servos. Connected to channels on PCA 

    lservo = kit.continuous_servo[lservo_channel] # R and L as if you were 

playing as the robot 

    cylinder_servo = kit.continuous_servo[cylinder_servo_channel] # for 

sorting cylinder 

    pushing_servo = kit.servo[pushing_servo_channel] # for servo that pushes 

pillars into stacking mechanism 

    stacking_servo = kit.servo[stacking_servo_channel] # for servo that opens 

stacking mechanism 

    back_food_servo = kit.servo[back_food_servo_channel] # for red food 

    front_food_servo = kit.servo[front_food_servo_channel] # for green food 

 

    # GPIO setup 

    GPIO.setmode(GPIO.BCM) 

    ''' 

    # Initializing the Pixy2 

    pixy.init() 

    pixy.change_prog("color_connected_components") 

    ''' 

    # Startup TCS34725 initialization parameters 

    tcs_startup_integration_time = 150 

    tcs_startup_gain = 4 

    tcs_startup.integration_time = tcs_startup_integration_time 

    tcs_startup.gain = tcs_startup_gain 

     

    # Intake TCS34725 initialization parameters 
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    tcs_integration_time = 150 # Optimal for fast sensing 

    tcs_gain = 4 

    tcs.integration_time = tcs_integration_time 

    tcs.gain = tcs_gain 

     

    # Initialize the button for Startup 

    button = DigitalInOut(button_pin_digital) 

    button.switch_to_input(pull=Pull.DOWN) # Button is set to be False when 

not pressed 

 

    # Initializing the led for the button 

    button_led = DigitalInOut(button_led_pin_digital) 

    button_led.direction = Direction.OUTPUT 

     

    # Turning off the Startup TCS34725 LED because it allows the bright red 

LED to be detected better 

    tcs_startup_led = DigitalInOut(tcs_startup_led_pin_digital) 

    tcs_startup_led.direction = Direction.OUTPUT 

    tcs_startup_led.value = False 

 

    # Turning off the Intake TCS34725 LED 

    tcs_led = DigitalInOut(tcs_led_pin_digital) 

    tcs_led.direction = Direction.OUTPUT 

    tcs_led.value = False 

 

 

    #---Sensor Calibration Limits---# 

    # Set minimum distance value for pillar inside the system (mm) 

    vl6_detection_limit = 40 

 

    # Set multiple for color to spike (compared to previous) to be of 

interest 

    red_multiple = 1.5 

    green_multiple = 1.5 

 

 

    #---Servo Limits---# 

    # Limits for left and right intake servos 

    rservo_ccw_limit = 0.9 

    #rservo_cw_limit = -0.9 

    rservo_stop_limit = 0.1 

    #lservo_ccw_limit = 0.9 

    lservo_cw_limit = -0.9 

    lservo_stop_limit = 0.1 

 

    # Limits for sorting cylinder servo 

    appropriate_throttle = 0.2 #set appropriate value for throttle for 

cylinder servo 

    zero_throttle = 0.1 # set appropriate value for zero throttle for 

cylinder servo 

 

    # Limits for pushing_servo 

    resting_angle = 140 # set appropriate value for non-pushing angle 
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    pushing_angle = 180 # set appropriate value for pushing angle 

    pushing_time = 2 # set appropriate value for waiting period between push 

and return to resting position 

 

    # Limits for stacking dropoff servo 

    stacking_servo_closed_angle = 5 # set appropriate value for closed 

position 

    stacking_servo_open_angle = 90 # set appropriate value for open position 

 

    # Limits for food servos 

    back_food_servo_closed_angle = 50 # set appropriate value for initial 

angle for red food servo 

    back_food_servo_open_angle = 180 # set appropriate value for activated 

angle for red food servo 

    front_food_servo_closed_angle = 30 # set appropriate value for initial 

angle for green food servo 

    front_food_servo_open_angle = 180 # set appropriate value for activated 

angle for green food servo 

 

     

    #---Motor Limits---# 

    # set appropriate values for motor speeds 

    forward_speed = 80 

    turn_speed = 60 

    rotation_speed = 80 

    aquarium_forward_speed = 80 

    #keep_forward_speed = 65 

    keep_forward_ratio = 0.75 

    keep_forward_speed = int(keep_forward_ratio * forward_speed) 

    print(keep_forward_speed) 

     

 

    #---Motor Setup---# 

    # Right and left as if you were the robot and seeing as it saw 

    # Set pins for motors 

    AIN1 = 5 

    AIN2 = 6 

    PWMA = 12 

    STBY = 16 

    BIN1 = 19 

    BIN2 = 26 

    PWMB = 13 

    lmotor = Motor(AIN1, AIN2, PWMA, STBY, False) # right motor # WE WILL 

NEED TO SET ONE OF THEM TO TRUE (for reverse) 

    rmotor = Motor(BIN1, BIN2, PWMB, STBY, True) # left motor 

 

 

    #---Timing Limits---# 

    empty_sorting_entrance_time = 1 # How long to make the sensing pause 

after a pillar has entered (sec) 

    #pause_time = 0.05 # Sleep time in between each pillar check (sec) 

    drive_away_time = 2 # time for driving away from stacked and placed 

pillar 
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    ''' 

    #---Pixy Centering Limits---# 

    acceptable_offset =  # the amt of x coordinates offset from center before 

we need to recenter on the object we're tracking 

    optimal_offset =  # the amt of x coords offset from center that we want 

to recenter to when trying to recenter 

    #if we keep recentering to the acceptable_offset, then we might just end 

up centering and then going right back out cuz we're already on the edge of 

the acceptable limit 

    aquarium_offset =  

 

     

    #---Measured values for the encoder positions---# 

    hole1_top_value = 

    hole1_bottom_value = 

    hole2_top_value =  

    hole2_bottom_value =  

    hole3_top_value =  

    hole3_bottom_value =  

    hole4_top_value =  

    hole4_bottom_value =  

    hole5_top_value =  

    hole5_bottom_value =  

 

    #--------END OF MANUAL INPUT-----------# 

 

    #---Creating hole objects---# 

    hole1 = Hole(hole1_top_value, hole1_bottom_value) 

    hole2 = Hole(hole2_top_value, hole2_bottom_value) 

    hole3 = Hole(hole3_top_value, hole3_bottom_value) 

    hole4 = Hole(hole4_top_value, hole4_bottom_value) 

    hole5 = Hole(hole5_top_value, hole5_bottom_value) 

    holes = [hole1,hole2,hole3,hole4,hole5] 

    ''' 

 

    #---Setting General Variables and Lists for Later Use---# 

    # For sorting mechanism logic 

    stacked = 0 

     

    # Creating lists for later use (Intake Mechanism) 

    #recent_colors = [] 

    pillars = [] 

    ''' 

    # Creating Pixy2 List 

    blocks = pixy.BlockArray(100) 

    ''' 

 

    #---SET DEFAULT CONDITIONS---# 

    # Set Motors to be still 

    rmotor.brake() 

    lmotor.brake() 
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    # Set servos to be at their resting/default positions 

    rservo.throttle = rservo_stop_limit 

    lservo.throttle = lservo_stop_limit 

    cylinder_servo.throttle = zero_throttle 

    pushing_servo.angle = resting_angle 

    stacking_servo.angle = stacking_servo_closed_angle 

    back_food_servo.angle = back_food_servo_closed_angle 

    front_food_servo.angle = front_food_servo_closed_angle 

 

    ## Rotate sorting cylinder so that hole1 is aligned with the bottom. 

    #align_bottom(encoder, hole1, cylinder_servo, appropriate_throttle, 

zero_throttle) 

 

     

    #---START STARTUP CODE---# 

    try: 

        # Wait for start button to be pressed 

        waiting = True 

        while waiting: 

            if button.value == True: # When the button is being pressed 

                print('Button Pressed') 

                waiting = False 

                # Set up button as a GPIO button 

                GPIO.setup(button_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) 

                time.sleep(1) # one second was a good sleep time during 

testing 

                # Add event handler for button press 

                GPIO.add_event_detect(button_pin, GPIO.FALLING, callback = 

button_callback, bouncetime = 300) 

                button_led.value = True 

 

        #---Starting Waiting for LED---# 

        #red_list = [] # Making a list for adding color sensor values 

        #difference_multiple = 1.5 # Red needs to be x times bigger than the 

previous red 

        waiting_for_led = True 

        while waiting_for_led: 

            color1_rgb = tcs_startup.color_rgb_bytes 

            if color1_rgb[1] < 20: # if the red led is turned on 

                print('LED ON') 

                waiting_for_led = False 

     

        #---Start food dropoff hardcoded in---# 

        time_to_first_aquarium = 5 

        time_to_back_up = 1.5 

        time_to_rotate = 1.6 

        time_to_second_aquarium = 3 

        time_to_back_up2 = 1 

        time_to_rotate2 = 1.5 

        time_to_recycling = 9 

         

        print('Driving towards aquarium 1') 

        keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed) 
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        time.sleep(time_to_first_aquarium) 

  

        print('Braking') 

        rmotor.brake() 

        lmotor.brake() 

 

        front_food_servo.angle = front_food_servo_open_angle 

 

        print('Backing Up') 

        keep_forward(rmotor, lmotor, -forward_speed, -keep_forward_speed) 

        time.sleep(time_to_back_up) 

 

        print('Rotating Right Back') 

        rotate_right_forward(rmotor, lmotor, rotation_speed) 

        time.sleep(time_to_rotate) 

 

        print('Driving straight towards aquarium 2') 

        keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed) 

         

        time.sleep(time_to_second_aquarium) 

 

        print('Braking') 

        rmotor.brake() 

        lmotor.brake() 

 

        back_food_servo.angle = back_food_servo_open_angle 

        time.sleep(1) 

        print('TA DA!') 

 

        print('Rotating') 

        keep_forward(rmotor, lmotor, -forward_speed, -keep_forward_speed) 

        time.sleep(time_to_back_up2) 

 

        rotate_right_forward(rmotor, lmotor, rotation_speed) 

        time.sleep(time_to_rotate2) 

 

        keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed) 

        time.sleep(time_to_recycling) 

 

        rmotor.brake() 

        lmotor.brake() 

         

 

    finally: 

        #---RESET TO DEFAULT CONDITIONS---# 

        # Set Motors to be still 

        rmotor.brake() 

        lmotor.brake() 

 

        # Set servos to be at their resting/default positions 

        rservo.throttle = rservo_stop_limit 

        lservo.throttle = lservo_stop_limit 
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        cylinder_servo.throttle = zero_throttle 

        pushing_servo.angle = resting_angle 

        stacking_servo.angle = stacking_servo_closed_angle 

        back_food_servo.angle = back_food_servo_closed_angle 

        front_food_servo.angle = front_food_servo_closed_angle 

 

        GPIO.cleanup() 

 

main() 
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