
Murray State's Digital Commons Murray State's Digital Commons

Honors College Theses Student Works

Spring 5-2-2023

Programming an Autonomous Robot Programming an Autonomous Robot

Maxwell Brueggeman

Follow this and additional works at: https://digitalcommons.murraystate.edu/honorstheses

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Brueggeman, Maxwell, "Programming an Autonomous Robot" (2023). Honors College Theses. 175.
https://digitalcommons.murraystate.edu/honorstheses/175

This Thesis is brought to you for free and open access by the Student Works at Murray State's Digital Commons. It
has been accepted for inclusion in Honors College Theses by an authorized administrator of Murray State's Digital
Commons. For more information, please contact msu.digitalcommons@murraystate.edu.

http://www.murraystate.edu/
http://www.murraystate.edu/
https://digitalcommons.murraystate.edu/
https://digitalcommons.murraystate.edu/honorstheses
https://digitalcommons.murraystate.edu/allstudent
https://digitalcommons.murraystate.edu/honorstheses?utm_source=digitalcommons.murraystate.edu%2Fhonorstheses%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.murraystate.edu%2Fhonorstheses%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.murraystate.edu/honorstheses/175?utm_source=digitalcommons.murraystate.edu%2Fhonorstheses%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:msu.digitalcommons@murraystate.edu

 Murray State University Honors College

 HONORS THESIS

 Certificate of Approval

 Programming an Autonomous Robot

 Maxwell Brueggeman

 05/2023

Approved to fulfill the _____________________________

requirements of HON 437 Dr. Michael Siebold, Professor and Advisor

 School of Engineering

Approved to fulfill the _____________________________

Honors Thesis requirement Dr. Warren Edminster, Executive Director

of the Murray State Honors Honors College

Diploma

Examination Approval Page

Author: Maxwell Brueggeman

Project Title: Programming an Autonomous Robot

Department: School of Engineering

Date of Defense: May 2, 2023

Approval by Examining Committee:

____________________________ _______________

(Dr. Michael Siebold, Advisor) (Date)

____________________________ _______________

(Dr. Gheorghe Bunget, Committee Member) (Date)

____________________________ _______________

(Dr. Aleck W. Leedy, Committee Member) (Date)

 Programming an Autonomous Robot

 Submitted in partial fulfillment

 of the requirements

 for the Murray State University Honors Diploma

 Maxwell Brueggeman

 05/2023

i

Abstract

Ravaged by hurricanes, Florida needed help restoring its natural beauty and returning its

wildlife to their homes. This was the task for the IEEE SoutheastCon 2023 Hardware Competition.

Florida’s restoration was simulated by returning various ducks and pillars that lay strewn across a

game board to their proper places. Ducks needed to return to their pond, pillars needed to be

stacked to create statues, and food needed to be placed in the manatee and alligator aquariums.

Competing teams were challenged to create an autonomous robot capable of performing these

tasks. During the first semester, sensor selection was tackled. Research was done on the

appropriate sensors for each application, comparing their costs, abilities, and online resources.

Eventually, four different sensors were selected. These were the Vl6180X time of flight sensor,

two TCS34725 color sensors, a VL53L5CX time of flight sensor, and two Pixy2.1 cameras.

Emphasis was then put on implementing those sensors at both the hardware and software levels

within the team’s autonomous robot during the second semester. A Raspberry Pi was used to

program each of the sensors mentioned previously as well as the robot’s servos, motors, and other

electronics. The logic was then created and implemented for each gameplay function. The robot

was built to start automatically, deliver the manatee and alligator food, intake and sort pillars based

on color, and stack those pillars in the correct color order. At the competition, the robot could

reliably auto start and deliver food to both the manatee and alligator aquariums. These processes

were exceptionally consistent through three preliminary rounds, leading to the robot qualifying for

the single elimination tournament. The team eventually placed seventh in the IEEE SoutheastCon

2023 Hardware Competition.

ii

Table of Contents
Abstract.. i

Figures/Equations/Tables ... iv

1 Hardware Selection and Placement ..1

1.1 Sensor Selection ...1

1.1.1 Procedure ...1

1.1.2 Color Sensors ...2

1.1.3 Distance Sensors ..5

1.1.4 Cameras ...9

1.1.5 Additional Purchasing .. 14

1.2 Sensor Visualization and Simulation ... 16

2 Software Development and Implementation .. 20

2.1 Controlling Individual Systems ... 20

2.1.1 Raspberry Pi .. 20

2.1.2 Preliminary Plan .. 23

2.1.3 Sensors .. 23

2.1.4 Servos .. 25

2.1.5 Motors ... 26

2.1.6 Pushbutton ... 27

2.2 Gameplay Sequences .. 28

2.2.1 Revised Code Structure .. 28

iii

2.2.2 Startup Sequence ... 28

2.2.3 Food Delivery Sequence .. 29

2.2.4 Intake Mechanism .. 31

2.2.5 Sorting Mechanism .. 33

2.2.6 Pillar Search Algorithm.. 36

2.2.7 Pond Search Algorithm .. 37

2.2.8 Pillar Stacking Mechanism ... 38

3 Competition... 40

3.1 Final Code Structure ... 40

3.2 Performance and Results... 42

Conclusion ... 43

Works Cited ... 44

Appendix A .. 47

Appendix B .. 48

iv

Figures/Equations/Tables

Figure 1: TCS3200 Color Sensor [3] ..2

Figure 2: ISL29125 Color Sensor [5] ..3

Figure 3: TCS34725 Color Sensor [6] ..3

Table 1: Color Sensor Decision Matrix ...4

Figure 4: VL53L0CX Time of Flight Sensor [9] ...6

Figure 5: VL6180X Time of Flight Sensor [10] ..6

Figure 6: VL53L5CX Time of Flight Sensor [11] ...7

Figure 7: VL53L7CX Time of Flight Sensor [13] ...7

Figure 8: Grove - Ultrasonic Distance Sensor [14]..7

Table 2: Grove vs HC-SR04 [7] ...8

Table 3: Comparison of Distance Sensors for Use in Sorting Mechanism9

Figure 9: Pixy2 Camera [15] .. 10

Figure 10: Pixy2.1 Camera [16].. 11

Figure 11: HuskyLens Camera [17] .. 11

Table 4: Camera Decision Matrix ... 13

Figure 12: TCA9548A 8-Channel Multiplexer [19] .. 14

Figure 13: PCA9685 16-Channel Servo Driver [20] ... 15

Figure 14: MCP3008 Analog to Digital Converter [21] .. 15

Figure 15: Simplified Distance Mapping with Raycasts .. 16

Equation 1: Maximum Offset ... 17

Figure 16: Field-of-View Projection Plane ... 17

Equation 2: Raycast X Position .. 18

Equation 3: Raycast Y Position .. 18

v

Figure 17: Godot Simulation for VL53L5CX ... 19

Figure 18: Godot Simulation for VL53L5CX (Cont.) ... 19

Figure 19: Sandisk A1 32 GB Extreme Pro MicroSD Card [22] ... 21

Figure 20: Initial Gameplay Sequence Flowchart (Simplified) .. 28

Figure 21: Startup Sequence Flowchart .. 29

Figure 22: Food Delivery Flowchart ... 30

Figure 23: Intake Mechanism Flowchart ... 32

Figure 24: Sorting Mechanism Flowchart ... 35

Figure 25: Pillar Search Algorithm Flowchart .. 37

Figure 26: Pond Search Algorithm Flowchart ... 38

Figure 27: Pillar Stacking Mechanism Flowchart ... 39

Figure 28: Initial Gameplay Sequence Flowchart ... 47

1

1 Hardware Selection and Placement

1.1 Sensor Selection

The robot built for the IEEE Hardware Competition was fully autonomous. For a robot to

perform such a complicated task with no external intervention, a wide variety of sensors was

required. From vision to sorting to object avoidance, sensors gave the robot the information it

needed to make the best choices.

Programming any autonomous robot is a complex and time-intensive task. This complexity

made the sensor and camera selection process essential to the success of the final robot. Properly

selected sensors also simplify the programming, so being able to select the sensors before

programming them enabled ideas to formulate for how certain processes might be coded later on.

Various constraints required the IEEE robot’s sensors to be cost-effective, small, consistent,

and versatile. The robot’s physical size was limited to one cubic foot, so any unnecessary

electronics would consume valuable space while increasing the robot’s cost. Several

environmental factors, e.g. differences in ambient light and humidity levels, also impacted the

robot’s performance, so accurate and robust electronics were necessary. Most importantly, a

rigorous sensor selection process would ensure that integration with the robot’s hardware was

relatively simple and predictable.

1.1.1 Procedure

The robot required color sensors, distance sensors, and cameras. The costs, abilities,

resources, and limitations for each candidate were compared to find the optimal sensor for each

application. In addition, increased emphasis was put on desirable characteristics that changed

2

based on the unique requirements for each robot subsystem. The following sections will show this

review process for each sensor type, introduce the sensor requirements for each application, and

detail the best sensor for each application.

1.1.2 Color Sensors

The sorting system needed color sensing to know what color pillar the robot had just

consumed. Robots earned more points if they stacked pillars with white on bottom, green in the

middle, and red on top [1]. To achieve this, a color sensor needed to face the sorting mechanism

entrance and identify the red, green, and white pillars. This sensor needed to be consistent and

accurate to avoid assigning the wrong color to a pillar.

The game startup mechanism also needed color sensing. According to the IEEE hardware

competition rules, robots earn extra points by automatically starting when a red LED on the game

board is illuminated [1]. A color sensor placed on the outside of the robot should detect this LED

amidst varying ambient lighting conditions.

The TCS3200 is shown in Figure 1. This color sensor cost $7.90. It had several online

tutorials and resources, but it lacked an IR filter on the camera and needed to be calibrated to sense

color [2].

Figure 1: TCS3200 Color Sensor [3]

3

The ISL29125 is shown in Figure 2. This color sensor cost $8.50. It measured RGB

intensity, not pulse-width like the TCS3200. A built-in IR blocker also provided more accurate

color sensing results in varied lighting conditions. Lastly, it functioned over I2C connection, one

of the most reliable sensor communication methods. The only drawback was that it needed an

additional 2-channel logic converter to work [4].

Figure 2: ISL29125 Color Sensor [5]

The TCS34725 is shown in Figure 3. This color sensor cost $7.95. It could sense RGB

values without calibration, had a built-in IR filter, used I2C connection, and had several helpful

libraries and tutorials online. Additionally, individuals online chose this sensor over the ISL29125

for its high accuracy [6].

Figure 3: TCS34725 Color Sensor [6]

4

The results were tabulated in a decision matrix shown in Table 1. Each sensor’s accuracy,

programmability (online resources), and cost was ranked on a scale from zero to five, five being

the best possible score. The total of these values was then normalized based on a perfect score of

30. Looking at the results, the TCS34725 was the cheapest by a small margin, but this difference

was not enough to factor into the decision. The worst performing of all three was the TCS3200

which needed calibration to sense color, had the least accurate results of the three sensors, and did

not have libraries for easy coding. The ISL29125 was not much better, needing an additional logic

converter and getting less accurate results than the TCS34725.

The TCS34725 had the most functionality with the ability to get color values without

calibration, and it was the most accurate when compared to all three sensors. The built-in IR filter

and LED would also be very helpful in getting consistent measurements. Overall, the TCS34725

was better in every way and was the clear choice for both the sorting mechanism and the starting

mechanism.

Table 1: Color Sensor Decision Matrix

Weights: x1 x3 x2 Normalized

Total Cost Accuracy Programmability

TCS3200 5 2 1 = 𝟏𝟐 → 𝟎. 𝟒

ISL29125 5 3 3 = 𝟐𝟎 → 𝟎. 𝟔𝟕

TCS34725 5 4 4 = 𝟐𝟓 → 𝟎. 𝟖𝟑

5

1.1.3 Distance Sensors

Two of the robot’s systems required distance sensors. Sensing a pillar’s entry into the

sorting mechanism was the first. Upon sensing this entry, the robot needed to rotate the circular

sorting mechanism to an open position so that it was ready to receive another pillar. A distance

sensor for this application needed to work well at close range and have a resolution small enough

to distinguish a change in distance of approximately 50 mm (the diameter of a pillar) [1]. These

parameters, therefore, were weighted more heavily when choosing this sensor.

Sensing obstacles, such as walls and stacked pillars, also motivated the distance sensor

selection. Without a sensor to detect and avoid the pillar stacks, the robot would run into them and

ruin its progress. Recognizing walls would enable the robot to avoid them during gameplay and

seek them when searching for and actuating the firework switch at the end of the run, a task to earn

extra points. This sensor needed to have an 8 ft range to see across the entire gameboard and the

capability of modeling a 3D space.

When looking into the different types of distance sensors, four main types were found that

could work: time of flight (ToF) distance sensors, ultrasonic distance sensors, LIDAR, and IR

sensors. Eventually, this was narrowed down to time of flight sensors and ultrasonic sensors, as

IR sensors were too dependent on material shape and LIDAR was far too expensive and over-

engineered for the given applications [7-8].

The VL53L0CX is shown in Figure 4. This time of flight sensor cost $7.25. It used I2C

communication and had a range of 3 cm – 100 cm with a resolution of 1 mm in optimal conditions.

Several online resources existed for this sensor as well, making it easy to program [9].

6

Figure 4: VL53L0CX Time of Flight Sensor [9]

The VL6180X is shown in Figure 5. This time of flight sensor cost $13.95. It was an I2C

sensor with a 5 mm – 200 mm range and a 1 mm resolution in most conditions. It also had a

multitude of online resources and libraries for easy programming [10].

Figure 5: VL6180X Time of Flight Sensor [10]

The VL53L5CX is shown in Figure 6. This time of flight sensor cost $24.95. It was an I2C

sensor that could create a 4x4 or 8x8 grid of distance readings for the viewing area. The grid would

function like a distance heat map of the surrounding area, returning 16 or 64 distances at a rate of

60 Hz (i.e., 60 4x4 or 8x8 grids every second). Lastly, it boasted a maximum range of 4 m range

and a 63° diagonal square field-of-view (45° x 45°) [11].

7

Figure 6: VL53L5CX Time of Flight Sensor [11]

The VL53L7CX is shown in Figure 7. This time of flight sensor cost $28.64. It was an I2C

sensor, and it functioned exactly like the previous VL53L5CX time of flight sensor but had a 90°

diagonal square field-of-view (63.6° x 63.6°) [12].

Figure 7: VL53L7CX Time of Flight Sensor [13]

The Grove Ultrasonic Distance Sensor is shown in Figure 8. This sensor cost $3.95. It had

a 3 cm – 350 cm range with a resolution of 1 cm. It also had several online resources and libraries

for simple programming [14].

Figure 8: Grove - Ultrasonic Distance Sensor [14]

8

The widely used HC-SR04 ultrasonic distance sensor was not included in this report

because the Grove ultrasonic distance sensor was better in nearly every capacity when compared

to the HC-SR04. This comparison can be seen in Table 2 where the Grove’s broader voltage

compatibility, reduced pin connections, and plug-and-play connection pushed it past the HC-

CR04. The HC-SR04 boasted a slightly broader measurement range and smaller resolution of 0.3

cm (not included in the Table 2), but these were not enough to warrant choosing it over the Grove

sensor [7].

Table 2: Grove vs HC-SR04 [7]

Short-ranged, consistently accurate readings were most important for the sorting

mechanism’s distance sensor. Table 3 compares these features and shows that the VL6180X

performed best in both. Neither the VL53L0X nor the Grove ultrasonic sensor had a smaller

resolution than the VL6180X, and they both had minimum ranges too low for reliable sensing.

9

Pillars entering the system would be closer than 30 mm to the sensor and could cause unpredictable

readings from the two longer ranged distance sensors.

Table 3: Comparison of Distance Sensors for Use in Sorting Mechanism

Sensor VL53L0X ToF Sensor VL6180X ToF Sensor

Ultrasonic Distance

Sensor (Grove)

Range (mm) 30 - 2000 5 - 100 (200) 30 - 3500

Resolution (mm) 1 (in optimal conditions) 1 (consistent) 10

The VL53L5CX and VL53L7CX were the optimal candidates for obstacle detection. Both

were inexpensive for their functionality, had long distance ranges, and were able to model their

field-of-view in a 4x4 or 8x8 grid of distance readings. Their 3-D modeling capabilities would

give the robot vital information on which direction was safe to travel. Additional programming

could then distinguish between stacked pillars, nearby walls, and far walls. The deciding factor,

therefore, was the field-of-view (FoV). Because the output from either sensor was an 8x8 grid, the

VL53L7CX’s increased FoV resulted in objects farther away becoming less detailed. The

VL53L5CX time of flight sensor, with its lower FoV, was the best option for obstacle detection.

1.1.4 Cameras

Two systems in the robot required cameras. Tracking game pieces was the first. By being

able to sense unique game pieces on the board, such as differently colored pillars and ducks, the

robot could travel toward the pieces it needed to intake. Cameras for this application needed to be

10

able to distinguish between identically shaped pieces based on color and recognize each type of

game piece.

Identifying different zones on the game board required a second camera. Placing food in

the appropriate aquariums, stacking pillars inside designated areas, and moving ducks into the

recycling areas all required accurate identification of zones on the game board. This zone

identification was most easily achieved via a second camera system. Candidate camera models for

this system needed to recognize each of the various colored areas on the gameboard.

The Pixy2 is shown in Figure 9. This camera cost $65.95. It was a 60 Hz camera that

contained several unique features, the most promising being its color-connected components

algorithm, which enabled the Pixy2 to learn the color of an object and identify it later. It could

store up to seven different color signatures and match those signatures to objects in its view. In

each frame, the camera could track up to one hundred objects matching those seven color

signatures. It also had an onboard image processor to handle all the visual calculations for tracking

objects and assigning color signatures [15].

Figure 9: Pixy2 Camera [15]

11

The Pixy2.1 is shown in Figure 10. This camera also cost $65.95. It was a direct upgrade

to the Pixy2 camera with less distortion and noise, and it boasted a wider field-of-view at 80°

compared to the Pixy2’s 60° horizontal and 40° vertical field-of-view [16].

Figure 10: Pixy2.1 Camera [16]

The HuskyLens is shown in Figure 11. This camera cost $54.90. It could learn one unique

object and track that object no matter the color. Additionally, it could learn one unique color and

track that color as well. It used I2C communication and came with a small user-interface screen to

make programming the camera easier [17].

Figure 11: HuskyLens Camera [17]

12

Several other cameras used by hobbyists like the ESP32 and NVIDIA Jetson Nano were

researched, but they either did not have the object recognition capabilities necessary or were too

complicated for this project. The only cameras that were both affordable and made object detection

simple were the Pixy2, Pixy2.1, and HuskyLens cameras.

Comparing the Pixy2 and Pixy2.1, the Pixy2.1 was a direct upgrade to the Pixy2. It gained

several quality-of-life improvements without sacrificing any key features. Pixy2, therefore, was

not considered in the sensor selection.

Identifying identically shaped objects by their colors was the first game piece detection

requirement. Looking at videos of the Pixy2.1, it excelled at detecting and discriminating between

different colored objects, being able to track dozens of colored balls falling through the air [15].

HuskyLens could also track different colored objects but at a much lower level, admitting that

“color recognition is greatly affected by ambient light” and that it “may misidentify similar colors”

[18]. The Pixy2.1’s color-connected components algorithm gave it the capability to detect multiple

objects of several different colors at the same time. In fact, it could recognize an object by color,

categorize it, and then assign it a unique tracking index so the robot could focus only on that one

object during its tracking.

Identifying the type of individual game pieces was the second requirement informing the

camera selection. Pixy2.1 fulfilled this requirement through its color-connected components

algorithm, as it could remember seven different color signatures and track all instances of them in

every frame. The IEEE hardware competition featured exactly seven different colored game

pieces. HuskyLens, however, could only track one type of object at a single time. It might have

been able to see every pillar on the gameboard, but it would not be able to find the pond, aquariums,

13

statue areas, ducks, or recycling areas. Additionally, HuskyLens could not be operated in both

color detection and object detection mode simultaneously.

The decision matrix for the three camera options can be seen in Table 4 where each

category is ranked on a scale from zero to five, five being the best possible score. Weighted highest

is the sensor’s ability to identify game pieces followed by its overall consistency, programming

simplicity, and cost. The total of these values is then normalized based on a perfect score of 50.

The result shows that the Pixy2.1 was the best option for game piece detection.

Table 4: Camera Decision Matrix

Weights: x4 x3 x2 x1 Normalized

Total Ability Consistency Programmability Cost

Pixy2.1 5 4 3 3 = 𝟒𝟏 → 𝟎. 𝟖𝟐

HuskyLens (Object

Recognition Mode)

1 4 3 4 = 𝟐𝟔 → 𝟎. 𝟓𝟐

HuskyLens (Color

Recognition Mode)

4 2 3 4 = 𝟑𝟐 → 𝟎. 𝟔𝟒

The second camera identified different colored sections of the game board. Shown in Table

4, the Pixy2.1 outperformed the HuskyLens color recognition mode. Because the gameboard had

less than seven different colored areas, an additional Pixy2.1 was the best choice for this

application.

14

1.1.5 Additional Purchasing

Three additional electronic components were purchased for the robot. These were

necessary for robot functionality and programming, and they interfaced well with the chosen

sensors.

The TCA9548A is shown in Figure 12. This eight-channel I2C multiplexer cost $6.95 [19].

Each channel was its own I2C bus, so it enabled the use of multiple sensors with the same I2C

address. No two sensors can have the same I2C address on the same I2C bus. The VL6180X time

of flight sensor and both TCS34725 color sensors had I2C addresses of 0x29, so the multiplexer

was necessary. It was also produced by Adafruit, so it interfaced well with other Adafruit sensors

such as the VL6180X and TCS34725. Programming the TCA9548A required setting its I2C

connection to the main I2C bus and then initializing all other sensors with an I2C connection

corresponding to their specific TCA channel.

Figure 12: TCA9548A 8-Channel Multiplexer [19]

The PCA9685 is shown in Figure 13. This sixteen-channel servo driver cost $14.95 [20].

It connected to each of the eight robot servos and supplied them with PWM voltage. This was

essential for proper servo functionality. It was also an Adafruit electronic, so the programming

15

was intuitive. After loading in the Adafruit Servokit library and initializing the servo driver, all

servos could be initialized with the PWM connection of their respective PCA9685 channels.

Figure 13: PCA9685 16-Channel Servo Driver [20]

The MCP3008 is shown in Figure 14. This analog-to-digital converter cost $4.50. It took

analog signals from the sorting cylinder encoder and converted them to digital signals able to be

read by the Raspberry Pi. It was also an Adafruit electronic, so it had a multitude of online

resources [21].

Figure 14: MCP3008 Analog to Digital Converter [21]

16

1.2 Sensor Visualization and Simulation

After selecting the robot’s sensors, simulating their placement on the robot enabled the

team to determine which sensor configurations yielded the best performance. This visualization

was difficult to perform without the sensors in hand, so an accurate simulation was vital to the

success of the robot. The following section will dive into the mathematics and coding used to

create a simulation for the VL53L5CX time of flight distance sensor.

Using Godot, an open-source 3D game engine, the game board and game pieces were

modeled, and a robot was created which the player could control. Attached to this robot was a

camera and raycast which would change its position to 64 evenly spaced locations within the

VL53L5CX’s 63.6° diagonal square field-of-view (FoV). The raycast was an invisible line that

extended outward from the player and provided information about any object it contacted. When

this raycast collided with a surface, it would output the collision location which could then be

converted into a distance traveled. These distances were then plotted on an 8x8 grid to show what

a VL53L5CX would display in real life. A simplified version of this interaction is shown in

Figure 15.

Figure 15: Simplified Distance Mapping with Raycasts

17

The first step in this process was creating a variable for a maximum ray distance equal to

the VL53L5CX’s maximum range (13.1234 ft or 4 m) and creating another variable for the

horizontal/vertical FoV of 45°. The following equation was used to find the maximum offset:

𝑜𝑓𝑓𝑠𝑒𝑡𝑚𝑎𝑥 = 𝑟𝑎𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥 ∙ tan (
𝐹𝑜𝑉

2
∙

180

𝜋
) . (1)

Equation 1: Maximum Offset

The maximum offset was the distance from the center of a plane to its closest edge.

Perpendicular to the ground and positioned at a distance equal to the maximum ray distance, the

plane in question represented the maximum reach of the VL53L5CX’s rectangular FoV as seen in

Figure 16 and would be used as a location for sending raycasts. Its center would also be the x and

y origin relative to the camera’s center.

Figure 16: Field-of-View Projection Plane

To create eight rows and eight columns of evenly spaced points over this plane, the plane

would have to be divided into eight sections. The x and y positions can be found for any point in

the ith row and jth column by plugging the previously calculated maximum offset into the following

equations:

18

𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (−1 + (𝑗 − 1) ∙
2

7
) ∙ 𝑜𝑓𝑓𝑠𝑒𝑡𝑚𝑎𝑥 , and (2)

𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (1 − (𝑖 − 1) ∙
2

7
) ∙ 𝑜𝑓𝑓𝑠𝑒𝑡𝑚𝑎𝑥 . (3)

Equation 2: Raycast X Position

Equation 3: Raycast Y Position

The raycast location could then be set to a vector where the x coordinate and y coordinates

matched the x and y positions solved for previously and the z coordinate matched the maximum

ray distance. Then by looping over eight rows and eight columns, checking for the collision point

of each raycast, and storing these in a list, it was possible to display an 8x8 grid of distances like

the VL53L5CX would in real life.

The final simulation can be seen in Figure 17 and Figure 18 where the red dots represent

the collisions of each raycast and the numbers in the bottom right represent the distances in feet

associated with these collisions. Being able to simulate possible gameplay experiences and use

that information to modify the VL53L5CX’s location was an invaluable tool. The game board and

game pieces being to scale would also allow for a smoother migration to hardware.

19

Figure 17: Godot Simulation for VL53L5CX

Figure 18: Godot Simulation for VL53L5CX (Cont.)

20

2 Software Development and Implementation

2.1 Controlling Individual Systems

Mentioned previously, programming any autonomous robot is a complex and time-

intensive task. This process started with learning to interface with each of the individual

electronics. Among these were the Raspberry Pi, the chosen sensors from Section 1, motors,

servos, and other electronics. The Raspberry Pi was the most important of these, as it facilitated

the addition of autonomy to the robot.

2.1.1 Raspberry Pi

The idea to use a Raspberry Pi as the microcontroller was teammate Nolan Hays’.

Inexperienced with microcontroller selection, the team defaulted to his positive experiences with

the Pi in the previous year’s IEEE SoutheastCon competition. Four additional items were also

purchased for use with the Raspberry Pi. These were an ethernet cable, microSD card, approved

power bank, and heat sinks.

Ethernet Cable: This connected the Raspberry Pi to a laptop or computer. It allowed the

user to send scripts, access the terminal, and communicate with the Pi at any location. It also

enabled the Pi to access the internet through the computer’s Wi-Fi connection so it could update

and download necessary libraries.

The Sandisk A1 32GB Extreme Pro is shown in Figure 19. This microSD card enabled the

Raspberry Pi to read and write information. It was rated as one of the best microSD cards for

Raspberry Pi’s, boasting 100MB per second read and 90MB per second write speeds [22].

21

Figure 19: Sandisk A1 32 GB Extreme Pro MicroSD Card [22]

Approved Power Bank: This powered the Raspberry Pi with 5V 3A. It eliminated the

possibility for over voltage and low voltage issues.

Heat Sinks: These cooled the Raspberry Pi. The Pi did not come with an internal cooling

mechanism, so these heat sinks were necessary for its safety. Overheated Raspberry Pi’s could

become damaged or corrupted.

Two communication methods existed for the Raspberry Pi. The first was Secure Shell

Communication (SSH), and the second was Virtual Network Computing (VNC). Both were

exceptionally useful.

SSH was the preferred method for connecting remotely to a Raspberry Pi. It allowed the

user to access the Pi’s terminal from a personal computer and made headless implementation, or

running the machine without a monitor, possible. PuTTY was used to establish SSH connection

with the Raspberry Pi because it stored the connection address as a saved session for future logins.

VNC was also used to connect remotely to the Raspberry Pi. Unlike SSH connection, VNC

connection gave access to the Pi’s graphics user interface (GUI). This was extremely helpful when

searching for file locations on the Pi and troubleshooting network connection issues. To establish

VNC connection, VNC Viewer was used which also saved previous connections and made it

simple to immediately connect to the Pi’s GUI.

22

Writing and executing code with the Raspberry Pi required safety procedures. This was the

advice from author Danny Staple in his book Learn Robotics Programming: Second Edition where

he warned against writing programs on the Raspberry Pi [23]. If the Raspberry Pi ever lost power

unexpectedly or if the microSD card became damaged, the microSD card and all code on it could

become corrupted. He advised having a separate location where the code could be stored and

modified before sending it to the Pi.

The solution to this problem was the Secure File Transfer Protocol (SFTP) [23]. It was

possible to create and modify all Python programs on a laptop and then use FileZilla, an SFTP

tool, to send those scripts to the Raspberry Pi via SSH connection. This way, if the Pi crashed or

became corrupted, the code would be backed up. The only downside to SFTP was that it added

upwards of ten seconds to every debug process.

Three proper operating procedures were also employed when using the Raspberry Pi.

Proper shutdown procedure was the first. Before unplugging the Pi, the command ‘sudo poweroff’

needed to be executed to safely shut it down. During this process, the Pi wrote all necessary

information to the microSD card and prepared it for power loss. This process was signified by a

flashing green LED at the base of the Raspberry Pi. If the Pi became unplugged while this green

light was flashing, the microSD could become corrupted.

Employing the shutdown procedure before connecting or disconnecting any wires was the

second proper operating procedure. Working with live wires increased risk for GPIO pin shorting

and overvoltage.

23

Preventing overvoltage was the last proper operating procedure. The Raspberry Pi GPIO

pins were only rated for 3.3V, so 5V logic damaged these pins. Double and triple checking all wire

connections before powering the Raspberry Pi ensured this would not be an issue.

2.1.2 Preliminary Plan

The preliminary plan began with interfacing with each of the sensors individually and

writing basic scripts to show their functionality. Programs controlling all sensors simultaneously

could then be written. This process would be repeated for the servos, motors, and other electronic

components. A visual gameplay flowchart for the robot’s performance was also essential,

providing the basic logic for each gameplay function. Once these two things were completed,

scripts could be written for each of the robot’s major functions: Startup, Emergency Stop, Food

Delivery, Pillar Tracking, Intake, Sorting, Stacking, Statue Area Tracking, Pond Tracking, and

Firework Light Switch Tracking. These scripts could then be combined into a final coding

framework for the robot. In addition, multi-threading could be used to send information between

simultaneously running scripts which would inform gameplay decisions.

2.1.3 Sensors

Testing and programming each sensor individually was the first step. The VL6180X time

of flight sensor and TCS34725 color sensors were the easiest to program because they were

ordered from Adafruit. Not only did Adafruit electronics have the most online resources and

libraries of any sensors on the market, but they all had dedicated CircuitPython libraries.

CircuitPython was a user-friendly programming language employed in several commercial

microcontrollers, and Adafruit had a special library called Adafruit-Blinka to allow their

24

CircuitPython libraries to work with basic Python. Since the Raspberry Pi uses Python, this

Adafruit-Blinka library made interacting with Adafruit sensors much simpler.

Programming the VL6180X time of flight sensor was simple, and its output was accurate.

After connecting the sensor to an I2C bus, the output range could be called from a single function.

Measuring the true distance with a ruler and comparing it to the output range, the two were nearly

identical for all ranges less than 70 mm. No testing was done at farther ranges because it would

never need to sense anything that far away when installed in the robot.

The TCS34725 color sensors were equally simple to code. A single function gave the color

output as a list where the red, green, and blue values were items in the list. This sensor also gave

accurate color readings for objects during testing. When putting the red side of a Rubik’s cube in

front of the sensor, the red output would spike while the green and blue values would fall. Faced

with a white object, all values would even out.

Unfortunately, the VL53L5CX time of flight sensor was exceptionally difficult to program.

It was not an Adafruit sensor, so it used a different library called the VL53L5CX CTypes Python

Wrapper. This library used the smbus2 library to connect via I2C, and it refused to coexist with

the Adafruit-Blinka library which used a different base library for I2C connection. The solution

was an initialization parameter called i2c_dev in the VL53L5CX CTypes Python Wrapper library.

By default, this parameter was set to I2C BUS1 (smbus2.SMBus(1)), but it could be changed to

I2C BUS0 (smbus2.SMBus(0)) when initializing the VL53L5CX object. By changing this value

from BUS1 to BUS0 and physically connecting the sensor to I2C BUS0 on the Raspberry Pi, the

VL53L5CX could function without fault on its own, separate I2C bus. Using I2C BUS0 for sensor

connection is usually frowned upon since the pull-up resistors on this bus are disabled. This,

however, was not an issue because the internal pull-up resistors on the VL53L5CX board were

25

enough to promote safe function. After some modifications to the VL53L5CX library’s example

code, the sensor’s 8x8 distance grid was set to the correct orientation, and the distances were found

to be accurate to within a few millimeters.

The Pixy2.1 cameras worked very well in the example code. Using PixyMon, a program

that showed what the Pixy2.1 was seeing in real time, the Pixy2.1 was able to be taught the green,

blue, and red colors from a Rubik’s cube. It could then detect and track those colors in the Pixy2.1

library’s example code.

During attempts to create custom Python code for the Pixy2.1 cameras, however, the

library’s functions were unreachable. The solution was to delete the main Pixy2.1 library and

download a different Pixy2.1 library with Simplified Wrapper and Interface Generator (SWIG)

compatibility. The SWIG library was used for interfacing with libraries created in C or C++, both

of which the main Pixy2.1 library was written in. After making this switch and then copying the

new library’s two important initialization scripts to the same directory as the custom Python

program, the pixy was able to be controlled from a custom script. Coding for the pixy was unique

and simple. A single line of code would refresh the Pixy2.1 whenever written, and all information

for each of the blocks sensed could be found within the Pixy2.1’s list of sensed blocks.

2.1.4 Servos

The team purchased eight servos for various robot functions: three HSR-2645CRH

continuous rotation servos, three HS-485HB standard servos, and two M0090 micro servos. The

continuous rotation servos rotated the left and right intake cylinders as well as the sorting cylinder.

Then the standard servos pushed pillars into the stacking mechanism, opened the stacking

26

mechanism, and deployed the light switch arm. Lastly, the two micro servos dropped the red and

green food pellets into their respective aquariums.

The Adafruit-Blinka Servokit library was used to control the servos instead of the standard

GPIO library, RPi.GPIO, which caused severe servo jittering. Programming with the Servokit

library, the continuous rotation servos were driven with a ‘throttle’ parameter ranging from -1 to

1. Likewise, an ‘angle’ parameter could be set from 0 to 180 for the standard servos. These angles

and throttles did not reflect the actual angle or throttle measurements but rather the maximum and

minimum values for each servo. To find the real maximum angles, a simple script was written to

move each standard servo from 0 to 180, and the actual angle difference was measured with a

protractor. These values varied widely from 115° to 150°. No servo needed a full 180°, so this

discrepancy did not affect the final robot performance. Tests were also done on each of the

continuous rotation servos to see what throttle value would put the servo at rest. A throttle of 0.1,

not 0, worked to stop each servo.

2.1.5 Motors

The team purchased two EMG-30 motors for the robot drivetrain. To control these motors,

the TB6612FNG Dual H-Bridge motor driver was purchased. This driver could control both

motors simultaneously and had several online resources. Unfortunately, the MD25 motor driver, a

board specifically designed for use with the EMG-30 motors, was overlooked. This motor driver

had quick-connect ports designed for the EMG-30, and it offered much more functionality

immediately out of the box, namely a simple method for interacting with the EMG-30’s onboard

encoders. The TB6612FNG library, however, still provided useful functions for driving, braking,

and reversing.

27

Eight functions were programmed for the robot’s drivetrain movement. The robot had two

driving wheels in the front and caster balls in the back, so drivetrain functions were modeled with

those movement possibilities in mind. For example, the function for rotating to the right while

pivoting forward was to drive with the left motor and brake with the right motor. These eight

functions for rotating and turning enabled the robot to complete several complicated movement

patterns.

2.1.6 Pushbutton

The last, most important, electronic component was the pushbutton. It was a latching

pushbutton, meaning it was toggleable, and it had an internal red LED. This button was both the

start and stop button. An emergency stop button was a requirement for the competition, so this

button needed to stop all robot functions no matter where it was in the code.

This was accomplished through an event detect function. After initializing the button as a

GPIO object using the RPi.GPIO library, an event detect function was created that triggered when

the voltage fell across the pushbutton (when it was toggled from on to off) and a callback function

was created which the program would run immediately afterwards. This callback function

executed an ‘os.kill’ function which raised a keyboard interrupt exception and safely stopped the

program wherever it was at that point in time. Lastly, a ‘finally’ block at the end of the program

set all electronics to default conditions and reset all Raspberry Pi pins.

28

2.2 Gameplay Sequences

2.2.1 Revised Code Structure

The revised code structure was one large script. Seen in Figure 20 below and Figure 28 in

Appendix A was the original code structure plan. Each colored section was a unique gameplay

sequence that would be programmed as separate scripts. Each script would call another script as it

ended, and scripts that needed to send information between one another would do so through multi-

threading. This did not go as planned because multi-threading was exceptionally difficult to learn

and implement, so every process was combined into one large script.

Figure 20: Initial Gameplay Sequence Flowchart (Simplified)

The next sections will describe the programming involved in each gameplay function and

any changes that needed to be made when combining these scripts into one large game loop.

Increased emphasis is placed on the startup and food delivery sequences because they were the

only gameplay functions used at the competition.

2.2.2 Startup Sequence

Reference the flowchart shown in Figure 21 for a visual aid of the startup sequence. Once

the start button was pressed, the program began taking input from the TCS34725 color sensor on

the outside of the robot. This color sensor was positioned to face a red LED because the robot

29

earned more points if it auto started when this LED was turned on. During testing, it was found

that the LED’s green and blue values would sit around 80 or 90 when the LED was off but would

plummet to 0 when the LED was on. The program would wait for the green value to dip below 20

(to be safe), before enabling the food delivery sequence.

Figure 21: Startup Sequence Flowchart

2.2.3 Food Delivery Sequence

Reference the flowchart shown in Figure 22 for a visual aid of the food delivery sequence.

The competition rules stated that the manatee (green) and alligator (red) aquariums would swap

positions on different boards at the event. To combat this, the delivery system was programmed to

be robust. The Pixy2.1 camera mounted on the front of the robot would find and track each

aquarium. Functions were created for finding the closest aquarium based on horizontal distance

from the center of the robot, centering the robot on the aquarium, and moving towards the aquarium

while also tracking it and maintaining a constant heading.

30

Figure 22: Food Delivery Flowchart

31

2.2.4 Intake Mechanism

Reference the flowchart shown in Figure 23 for a visual aid of the intake mechanism

programming. The intake mechanism started by spinning the intake rollers. It then waited until the

VL6180X time of flight sensor positioned in front of the sorting mechanism sensed an object by

reading a range less than the calibrated limit. Meanwhile, the other TCS34725 color sensor, which

was sitting opposite the time of flight sensor and pointed towards the same area was constantly

storing color values. Once the VL6180X had sensed an object, the color sensor would sense the

color of this object and then compare its red and green values to those it had stored previously. A

calculation then ran that looked to see if the red or green values had increased by a certain

percentage. If the red spiked and the green did not, then it was a red pillar. If the green spiked and

the red did not, then it was a green pillar. If both spiked, it was a white pillar. This information

would then be passed to the sorting cylinder and pillar search process.

32

Figure 23: Intake Mechanism Flowchart

33

2.2.5 Sorting Mechanism

Reference the flowchart shown in Figure 24 for a visual aid of the sorting mechanism

programming. The sorting cylinder functioned like a revolver with five equidistant holes that could

be chambered at the intake, rotated to the top, and ejected into the stacking cylinder. To program

this, each of the five holes was initialized as an object of the Hole class. This class had parameters

for the top and bottom positions of the hole, if it was filled, what color pillar it had consumed, and

if it was ready for intake. The top and bottom positions were hard coded values that could be

passed to the hole object on initialization, and they represented the encoder position when the hole

was aligned with the top exit hole or with the bottom entrance hole. By default, each hole was set

to be empty and have a color of ‘none’.

Several functions were also created for basic movement and logic in the sorting cylinder.

Among these were functions for aligning a hole to its top and bottom positions, assigning a hole a

new color, checking for empty holes, checking for holes ready for intake, and checking the sorting

state to see if it was time to start stacking. Additionally, this process was compressed into a single

function that could be called after each successful pillar intake.

After initializing the hole objects, Hole 1 was programmed to rotate to its bottom position

and flag itself as ‘ready for intake.’ This ensured that the first pillar consumed would have a spot

in the sorting mechanism. After a pillar was consumed, that pillar’s color would be assigned to the

hole with the ‘ready for intake’ flag. A check for empty holes would then commence, and an empty

hole would rotate to its bottom position to be ready to intake another pillar.

Initially, the sorting cylinder checked if it could make a successful stack after every

successful pillar intake, and it prioritized being able to make a three-pillar statue: white on bottom,

34

green in the middle, and red on top. It would continue searching for these pieces until it either

found them or filled all five holes without consuming a red pillar in which case it would settle for

a two-pillar stack. This became unnecessary when the sorting cylinder mechanism script was

combined with all other gameplay function scripts because the robot could track the red, green,

and white pillars and then immediately start the sorting procedure without needing to use this code

to check.

The stacking process checked for holes filled with white pillars. It then aligned one of those

holes with the top position and activated a servo at the top of the sorting cylinder to push the pillar

out of the mechanism, down a ramp, and into the stacking cylinder. It repeated this process for a

green pillar and then once again for a red pillar if it was making a three-pillar stack.

35

Figure 24: Sorting Mechanism Flowchart

36

2.2.6 Pillar Search Algorithm

Reference the flowchart shown in Figure 25 for a visual aid of the pillar search algorithm.

This process relied entirely on the Pixy2.1 camera. To simplify the code, several functions were

created for basic Pixy2.1 processes, such as checking for instances of a block color or checking to

see if the Pixy2.1 was still tracking the object. Larger, more complicated logic and movement

functions were also created for intractability later. These included calculating a block’s horizontal

distance from the Pixy2.1’s center, finding the closest block to the Pixy2.1’s center, tracking the

farthest away object, centering the robot on a block, and tracking and moving towards a desired

block. Each of these functions were common during the aquarium, pillar, and pond search

processes.

For the pillar search process specifically, the robot would start by rotating until it saw a red

pillar. It would then center itself on that pillar and begin moving towards it. The robot was

programmed to maintain heading with the pillar during this process, adjusting itself whenever

necessary. It would do this until it lost sight of the pillar or until the VL6180X time of flight sensor

in the intake sensed the pillar entering the system. After sorting the red pillar, the robot would

execute same tracking procedure for the remaining green and white pillars.

37

Figure 25: Pillar Search Algorithm Flowchart

2.2.7 Pond Search Algorithm

Reference the flowchart shown in Figure 26 for a visual aid of the pond search algorithm.

This process was nearly identical to the pillar search process. The Pixy2.1 camera positioned at

38

the front of the robot would search for the blue pond while the robot rotated. Then the robot would

center itself on the pond and drive towards it, maintaining constant heading. Once the robot lost

sight of the blue pond, it would stop and initiate the stacking mechanism.

The original plan had a different stop condition for a more accurate stack placement. Once

the Pixy2.1 camera positioned near the stacking mechanism at the back of the robot saw two blue

objects, the robot would stop moving and initiate the stacking procedure. These two blue objects

would be two edges of the pond on either side of the statue area, and it meant the stacking

mechanism was positioned directly over the statue area in the middle of the pond. Difficulties with

operating two Pixy2.1 cameras at the same time resulted in this process not being programmed.

The Pixy2.1 was also unable to recognize the firework switch and the regular statue areas,

so these processes were not programmed. Instead, the team decided it was best to make a three-

pillar stack and travel to the pond to deliver that stack.

Figure 26: Pond Search Algorithm Flowchart

2.2.8 Pillar Stacking Mechanism

Reference the flowchart shown in Figure 27 for a visual aid of the pillar stacking

mechanism. This mechanism would actuate a servo to open the stacking cylinder like a door, drive

forward, and then close the stacking cylinder. All pillars would have already been loaded into the

stacking mechanism by the sorting mechanism, and the stack would be left in place when the robot

drove away.

39

Figure 27: Pillar Stacking Mechanism Flowchart

40

3 Competition

3.1 Final Code Structure

The team encountered several issues in Florida. Because the robot was not assembled until

three days before the competition, mechanical and electrical issues plagued it. The caster wheels

interfered with the drivetrain, the intake mechanism was set too low to intake pillars, the

improvised ramp from the intake to the sorting cylinder rubbed against the floor and further

interfered with the drivetrain, the sorting cylinder was improperly fastened and too difficult to

spin, the first servo driver was destroyed, and the encoder was returning unrealistic values

dissimilar to those on the Arduino in prior testing. The team eventually decided to pour all its

efforts into food delivery.

Immediately, simplifications were made to the food delivery system. Several teammates

remembered that teams could pre-load food chips into their robots while setting up for runs. This

meant the robot could be programmed to open a certain servo for each aquarium, and the user

could load that servo with the correct food corresponding to the aquarium positions. It also meant

it was possible to program a set path to each aquarium instead of relying on the Pixy2.1 camera

for directions. At this point, the team was experiencing multiple difficulties with the Pixy2.1. It

was inconsistent at detecting red objects, such as the alligator aquarium and red pillars, and it often

lost track of objects when the robot cast a shadow over them. A solution to this issue would have

been to add a large light on the front of the robot to give consistent readings for any room lighting.

Already at the competition, the decision was made to refrain from using the Pixy2.1. Future teams

using the Pixy2.1 camera should account for this lighting issue in the design.

41

Programming a set path for food delivery was simple with the drivetrain movement

functions that were already programmed. Correct directions and timings were found from trial and

error on the gameboard. One day before the competition, however, the robot began turning left

instead of going straight. The omnidirectional steel ball transfers used for the caster wheels were

not functioning as intended. When moved in certain directions, the casters locked up and provided

considerable resistance to the drivetrain. Its effects were consistent for a short time, but they grew

more inconsistent as testing continued throughout the day.

As a temporary fix for this issue, the code was modified to include a new drive function

that would keep the robot moving straight. This function took a new parameter for a decreased

right motor speed that could be changed in the setup based on how far the robot veered to the left

in testing.

Once the food delivery sequence was working reliably, the robot was programmed to drive

across the gameboard towards the recycling area. If it managed to push any game pieces into the

recycling area, it would earn more points than other teams who focused solely on delivering food.

The team refrained from additional testing to avoid creating further variation in the caster wheels’

performance. Lastly, the Raspberry Pi was programmed to run the gameplay loop on boot, which

was a competition requirement.

The final gameplay script can be found in Appendix B. This code includes functions for all

gameplay sequences, but it only executes the startup sequence, food delivery sequence, and path

to the recycling area, as the robot performed only those three in competition. Code and functions

for untested gameplay sequences could contain syntax errors or redundancies.

42

3.2 Performance and Results

On competition day, only the startup sequence, food delivery sequence, and recycling

sequence described previously were utilized. The competition consisted of three preliminary

rounds followed by a single elimination tournament. Scores for each round were totaled, and the

top eight teams advanced to the tournament.

The robot scored 52 points in the first preliminary round. It successfully auto started,

delivered all six food pellets, and got stuck on a duck on its way to the recycling area. In the second

preliminary round, it received 51 points. It successfully auto started, delivered five food pellets,

and pushed three game pieces into the recycling area. In the third preliminary round, it received

45 points. It successfully auto started, delivered five food pellets, and got stuck on a duck on its

way to the recycling area.

The team qualified for the single elimination tournament as the seventh seed with a total

of 148 points after the first three qualifying rounds. Eventually, the team placed seventh at the

competition after losing to the second seed robot from University of Kentucky in the first round

of the tournament.

43

Conclusion

The team was successful in designing, assembling, and programming a fully autonomous

robot. Although far from perfect, the robot’s consistency enabled it to receive seventh place at the

IEEE SoutheastCon 2023 Hardware Competition.

This success required an in-depth understanding of each system and how they all needed

to work together for the final product. From researching and selecting the best sensors for each

application to programming each robot function, it required involvement in every step of the

process. It came from learning useful career skills, such as programming a Raspberry Pi,

interfacing with foreign electronics, and experiencing the unforgiving yet rewarding final

integration process. Any individuals or teams interested in this project should compete in a local

robotics competition. The skills learned from creating a robot are invaluable and best experienced

firsthand.

44

Works Cited

[1] Hopkins, Stephen, IEEE SoutheastCon 2023 Hardware Competition: Hurricane Alley,

IEEE, 2023.

https://drive.google.com/file/d/1bEue_yfS0Bxg47CCK_rJmApdyFGn3quW/view?usp=s

hare_link.

[2] TCS3200, TCS3210 PROGRAMMABLE COLOR LIGHT-TO-FREQUENCY

CONVERTER, Texas Advanced Optoelectronic Solutions Inc., 2009.

https://www.mouser.com/catalog/specsheets/tcs3200-e11.pdf.

[3] “DFRobot Color Sensor TCS3200,” RobotShop, 2022.

https://www.robotshop.com/products/dfrobot-color-sensor-tcs3200.

[4] Digital Red, Green and Blue Color Light Sensor with IR Blocking Filter: ISL29125,

Intersil, 2014. https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/isl29125.pdf.

[5] “SparkFun RGB Light Sensor - ISL29125,” SparkFun, 2022.

https://www.sparkfun.com/products/12829.

[6] “RGB Color Sensor with IR filter and White LED - TCS34725,” Adafruit, 2022.

https://www.adafruit.com/product/1334.

[7] Shawn, “Types of Distance Sensors and How to Select One?,” SeeedStudio, 2019.

https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-

guide/.

[8] Shawn, “All about Proximity Sensors: Which type to use?,” SeeedStudio, 2019.

https://www.seeedstudio.com/blog/2019/12/19/all-about-proximity-sensors-which-type-

to-use/.

https://drive.google.com/file/d/1bEue_yfS0Bxg47CCK_rJmApdyFGn3quW/view?usp=share_link
https://drive.google.com/file/d/1bEue_yfS0Bxg47CCK_rJmApdyFGn3quW/view?usp=share_link
https://www.mouser.com/catalog/specsheets/tcs3200-e11.pdf
https://www.robotshop.com/products/dfrobot-color-sensor-tcs3200
https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/isl29125.pdf
https://www.sparkfun.com/products/12829
https://www.adafruit.com/product/1334
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-guide/
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-guide/
https://www.seeedstudio.com/blog/2019/12/19/all-about-proximity-sensors-which-type-to-use/
https://www.seeedstudio.com/blog/2019/12/19/all-about-proximity-sensors-which-type-to-use/

45

[9] “Grove - Time of Flight Distance Sensor(VL53L0X),” SeeedStudio, 2022.

https://www.seeedstudio.com/Grove-Time-of-Flight-Distance-Sensor-VL53L0X.html.

[10] “Adafruit VL6180X Time of Flight Distance Ranging Sensor (VL6180) -

STEMMA QT,” Adafruit, 2022. https://www.adafruit.com/product/3316.

[11] “SparkFun Qwiic ToF Imager - VL53L5CX,” SparkFun, 2022.

https://www.sparkfun.com/products/18642.

[12] “VL53L7CX: Time-of-Flight 8x8 multizone ranging sensor with 90 degrees

FoV,” STMicroelectronics, 2022. https://www.st.com/en/imaging-and-photonics-

solutions/vl53l7cx.html.

[13] “SATEL-VL53L7CX,” Mouser, 2022.

https://www.mouser.com/ProductDetail/STMicroelectronics/SATEL-

VL53L7CX?qs=sGAEpiMZZMu3sxpa5v1qrg00HnlQ5dqx9%2FGW28WAHjA%3D.

[14] “Grove - Ultrasonic Distance Sensor,” SeeedStudio, 2022.

https://www.seeedstudio.com/Grove-Ultrasonic-Distance-

Sensor.html?utm_source=blog&utm_medium=blog.

[15] “Pixy2 Overview,” PixyCam, 2018.

https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:overview.

[16] LeGrand, Rich, “Introducing Pixy 2.1,” Charmed Labs, 2021.

https://charmedlabs.com/default/introducing-pixy-2-1/.

[17] “Gravity: Huskylens - An Easy-to-use AI Camera | Vision Sensor,” DFRobot,

2022. https://www.dfrobot.com/product-1922.html.

[18] “SEN0305 HUSKYLENS AI Machine Vision Sensor,” DFRobot,

https://wiki.dfrobot.com/HUSKYLENS_V1.0_SKU_SEN0305_SEN0336#target_42.

https://www.seeedstudio.com/Grove-Time-of-Flight-Distance-Sensor-VL53L0X.html
https://www.adafruit.com/product/3316
https://www.sparkfun.com/products/18642
https://www.st.com/en/imaging-and-photonics-solutions/vl53l7cx.html
https://www.st.com/en/imaging-and-photonics-solutions/vl53l7cx.html
https://www.mouser.com/ProductDetail/STMicroelectronics/SATEL-VL53L7CX?qs=sGAEpiMZZMu3sxpa5v1qrg00HnlQ5dqx9%2FGW28WAHjA%3D
https://www.mouser.com/ProductDetail/STMicroelectronics/SATEL-VL53L7CX?qs=sGAEpiMZZMu3sxpa5v1qrg00HnlQ5dqx9%2FGW28WAHjA%3D
https://www.seeedstudio.com/Grove-Ultrasonic-Distance-Sensor.html?utm_source=blog&utm_medium=blog
https://www.seeedstudio.com/Grove-Ultrasonic-Distance-Sensor.html?utm_source=blog&utm_medium=blog
https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:overview
https://charmedlabs.com/default/introducing-pixy-2-1/
https://www.dfrobot.com/product-1922.html
https://wiki.dfrobot.com/HUSKYLENS_V1.0_SKU_SEN0305_SEN0336#target_42

46

[19] “Adafruit TCA9548A 1-to-8 I2C Multiplexer Breakout,” Adafruit, 2015.

https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout/overview.

[20] “Adafruit PCA9685 16-Channel Servo Driver,” Adafruit, 2012.

https://learn.adafruit.com/16-channel-pwm-servo-driver.

[21] “Analog Inputs for Raspberry Pi Using the MCP3008,” Adafruit, 2012.

https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-

raspberry-pi.

[22] “Best microSD Cards for Raspberry Pi 2023,” Tom’s Hardware, 2023.

https://www.tomshardware.com/best-picks/raspberry-pi-microsd-cards.

[23] Staple, Danny. Learn Robotics Programming: Second Edition. Birmingham,

Packt, 2021.

https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout/overview
https://learn.adafruit.com/16-channel-pwm-servo-driver
https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi
https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi
https://www.tomshardware.com/best-picks/raspberry-pi-microsd-cards

47

Appendix A

Figure 28: Initial Gameplay Sequence Flowchart

48

Appendix B

Shown below is the final gameplay script. This code includes functions for all gameplay

sequences, but it only executes the startup sequence, food delivery sequence, and path to the

recycling area, as the robot performed only those three in competition. Code and functions for

untested gameplay sequences could contain syntax errors or redundancies.

Final Code Used for Competition

Just Startup, Food Delivery, and Hail Mary to Recycling Area

#---Importing---#

import time

import board

import adafruit_tcs34725

import adafruit_tca9548a

import RPi.GPIO as GPIO

from digitalio import DigitalInOut, Direction, Pull

import os

#import threading

import signal

import adafruit_pca9685

import adafruit_servokit

import pixy

import ctypes

import adafruit_vl6180x

import adafruit_mcp3xxx.mcp3008 as MCP

from adafruit_mcp3xxx.analog_in import AnalogIn

import busio

define a callback function for when the button press event happens

def button_callback(channel):

 print('Button pressed!')

 # Terminate the threads gracefully

 os.kill(os.getpid(), signal.SIGINT) # Sends SIGINT signal to the main

process

#---Classes---#

Define Motor class

class Motor:

 in1 = ""

 in2 = ""

 pwm = ""

 standbyPin = ""

 #Defaults

 #hertz = 1000

49

 hertz = 20000 # This is the average that was recommended online for most

motors. The TB6612FNG has an upper limit of 100kHz

 reverse = False #Reverse flips the direction of the motor

 #Constructor

 def __init__(self, in1, in2, pwm, standbyPin, reverse):

 self.in1 = in1

 self.in2 = in2

 self.pwm = pwm

 self.standbyPin = standbyPin

 self.reverse = reverse

 GPIO.setup(in1,GPIO.OUT)

 GPIO.setup(in2,GPIO.OUT)

 GPIO.setup(pwm,GPIO.OUT)

 GPIO.setup(standbyPin,GPIO.OUT)

 GPIO.output(standbyPin,GPIO.HIGH) # Setting standby to high so the

motors will work

 self.p = GPIO.PWM(pwm, self.hertz)

 self.p.start(0)

 #Speed from -100 to 100

 def drive(self, speed):

 #Negative speed for reverse, positive for forward

 #If necessary use reverse parameter in constructor

 dutyCycle = speed

 if(speed < 0):

 dutyCycle = dutyCycle * -1

 if(self.reverse):

 speed = speed * -1

 if(speed > 0):

 GPIO.output(self.in1,GPIO.HIGH)

 GPIO.output(self.in2,GPIO.LOW)

 else:

 GPIO.output(self.in1,GPIO.LOW)

 GPIO.output(self.in2,GPIO.HIGH)

 self.p.ChangeDutyCycle(dutyCycle)

 def brake(self):

 self.p.ChangeDutyCycle(0)

 GPIO.output(self.in1,GPIO.HIGH)

 GPIO.output(self.in2,GPIO.HIGH)

 def standby(self, value):

 self.p.ChangeDutyCycle(0)

 GPIO.output(self.standbyPin,value)

 def __del__(self):

 GPIO.cleanup()

class Blocks (ctypes.Structure):

50

 fields = [("m_signature", ctypes.c_uint),

 ("m_x", ctypes.c_uint),

 ("m_y", ctypes.c_uint),

 ("m_width", ctypes.c_uint),

 ("m_height", ctypes.c_uint),

 ("m_angle", ctypes.c_uint),

 ("m_index", ctypes.c_uint),

 ("m_age", ctypes.c_uint)]

class Hole():

 def __init__(self, top, bottom, filled = False, color = 'none'):

 self.__top = top #This is the encoder value when this hole is

centered at the top

 self.__bottom = bottom #This is the encoder value when this hole is

centered at the bottom

 self.__filled = filled

 self.__color = color

 self.__ready_for_intake = False

 def get_state(self):

 return self.__filled

 def get_color(self):

 return self.__color

 def get_top(self):

 return self.__top

 def get_bottom(self):

 return self.__bottom

 def get_ready_for_intake(self):

 return self.__ready_for_intake

 def add_pillar(self, new_color):

 self.__filled = True

 self.__color = new_color

 self.__ready_for_intake = False

 def remove_pillar(self):

 self.__filled = False

 self.__color = 'none'

 def set_ready_for_intake(self, new_state):

 # Either True or False

 self.__ready_for_intake = new_state

 def set_color(self, new_color):

 self.__color = new_color

 def set_state(self, new_state):

 self.__state = new_state

#---Basic Functions for Pixy---#

def check_for_instances(blocks, desired_color_signature):

 # Gets all the instances of a certain color that the robot currently

sees.

 block_instances = []

 for block in blocks:

 if block.m_signature == desired_color_signature:

51

 # Adding all similar colored blocks to an instance list for later

use

 block_instances.append(block)

 return block_instances

def tracking_check(blocks, block_index):

 # Outputs True if the pixy still sees the block we're tracking. Outputs

False if it lost track of it

 for block in blocks:

 if block.m_index == block_index:

 return True

 return False

def calc_distance_from_center(blocks, block_index):

 # Return block's x_distance from the center of the pixy2 vision

 for block in blocks:

 if block.m_index == block_index:

 distance_from_center = 157 - block.m_x

 return distance_from_center

def closest_to_center(block_list):

 # Outputs the block index of the block closest to the center of the

screen.

 # Useful for future centering on an aquarium vs a random pillar that we

don't care about.

 # METHOD 1

 '''

 distances_from_center = []

 for block in block_list:

 # Getting the distances from center for each block and saving them

 distance_from_center = abs(157-block.m_x) # The x range of the Pixy2

grid is x=0 to x=315

 distances_from_center.append(distance_from_center)

 # Getting the distance value for the closest to the center

 closest_distance = min(distances_from_center)

 # Getting the list index of that distance. This will be the same list

index of that block in the block_list

 index_of_list = distances_from_center.index(closest_distance)

 # Getting the Pixy2 index of the block with the closest distance to the

center

 block_index = block_list[index_of_list].m_index

 actual_distance = 157-block_list[index_of_list].m_x

 '''

 # METHOD 2

 #'''

 closest_block_to_center = block_list[0]

 closest_distance = abs(157-block_list[0].m_x) # setting limit at the

first block's distance from center

 if len(block_list) > 1: # if we found more than one green

 for block in block_list[1:]: # Only looking at the blocks that aren't

the first block (cuz i already did the stuff for that)

 distance_from_center = abs(157-block.m_x) # computing the

distance from the center of the block to the center of the FOV

52

 if distance_from_center <= closest_distance: # if the center to

center distance is smaller than the previous smallest

 closest_distance = distance_from_center # set new smallest

center-to-center distance

 closest_block_to_center = block # save the block info cuz we

want to go towards this block

 block_index = closest_block_to_center.m_index # save index of the block,

because that's how we'll identify it in future frames

 actual_distance = 157 - closest_block_to_center.m_x

 #'''

 # Outputs the Pixy2 index of the closest block to the center and the

distance from the center

 return block_index, actual_distance

def track_farthest(blocks, block_instances, rmotor, lmotor, rotation_speed,

turn_speed, acceptable_offset, optimal_offset, vl6, vl6_detection_limit):

 # Find out what block is farthest away

 farthest_index = block_instances[0].m_index

 farthest_distance = block_instances[0].m_y

 for block in block_instances:

 if block.m_y > farthest_distance:

 farthest_distance = block.m_y

 farthest_index = block.m_index

 return farthest_index

#---Driving Functions---#

def keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed):

 # For robots that turn left when going straight

 # keep_forward_speed will be less than forward_speed

 rmotor.drive(keep_forward_speed)

 lmotor.drive(forward_speed)

def turn_left_forward(rmotor, lmotor, forward_speed, turn_speed):

 # Turning left while moving forward. Turn speed will be slightly lower

than forward speed

 rmotor.drive(forward_speed)

 lmotor.drive(turn_speed)

def turn_right_forward(rmotor, lmotor, forward_speed, turn_speed):

 # Turning left while moving forward. Turn speed will be slightly lower

than forward speed

 rmotor.drive(turn_speed)

 lmotor.drive(forward_speed)

def rotate_left_forward(rmotor, lmotor, rotation_speed):

 # This is for turning left by running the right motor forward and doing

nothing with the left motor.

 # (i.e. we turn left by going forward)

 rmotor.drive(rotation_speed)

 lmotor.brake()

def rotate_left_backward(rmotor, lmotor, rotation_speed):

53

 # This is for turning left by running the left motor in reverse and doing

nothing with the right motor.

 # (i.e. we turn left by going backwards)

 rmotor.brake()

 lmotor.drive(-rotation_speed)

def rotate_left_even(rmotor, lmotor, rotation_speed):

 # This is for turning left by running the left motor in reverse and

running the right motor forward.

 # (i.e. we turn left by running each motor evenly but opposite. Hopefully

stay in the same spot)

 # I think it's best to run each at half of the speed, but we'll stick

with this for now.

 rmotor.drive(rotation_speed)

 lmotor.drive(-rotation_speed)

def rotate_right_forward(rmotor, lmotor, rotation_speed):

 # This is for turning right by running the left motor forwards and doing

nothing with the right motor.

 # (i.e. we turn right by going forwards)

 rmotor.brake()

 lmotor.drive(rotation_speed)

def rotate_right_backward(rmotor, lmotor, rotation_speed):

 # This is for turning right by running the right motor in reverse and

doing nothing with the left motor.

 # (i.e. we turn right by going backwards)

 rmotor.drive(-rotation_speed)

 lmotor.brake()

def rotate_right_even(rmotor, lmotor, rotation_speed):

 # This is for turning right by running the left motor forward and running

the right motor in reverse.

 # (i.e. we turn right by running each motor evenly but opposite.

Hopefully stay in the same spot)

 rmotor.drive(-rotation_speed)

 lmotor.drive(rotation_speed)

#---Robot Tracking Features---#

def forward_tracking(blocks, block_index, rmotor, lmotor, forward_speed,

turn_speed, acceptable_offset, optimal_offset, keep_forward_speed):

 # Track block index and head straight towards it.

 # Stops when pixy can no longer see the block with the block_index you're

looking for

 keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed)

 #rmotor.drive(forward_speed)

 #lmotor.drive(forward_speed)

 distance_from_center = calc_distance_from_center(blocks, block_index)

 #while we haven't reached our goal

 approaching = True

 while approaching:

 # Check to see if the robot is too far offset from the center

54

 if abs(distance_from_center) > acceptable_offset: # if we're too far

off-center

 while abs(distance_from_center) > optimal_offset: # We want to

reset to a closer, more optimal offset

 if distance_from_center < 0: # if we need to turn left

 turn_left_forward(rmotor, lmotor, speed, turn_speed)

 else: # if we need to turn right

 turn_right_forward(rmotor, lmotor, speed, turn_speed)

 # Update the Pixy2 vision

 count = pixy.ccc_get_blocks (100, blocks)

 # Update the distance_from_center

 for block in blocks:

 if block.m_index == block_index:

 distance_from_center = 157 - block.m_x

 # Check to see if we lost track of the object

 if not tracking_check(blocks, block_index): # If pixy lost

track of it

 # Stop moving when we lose track of the block. We might

be right over it

 rmotor.brake()

 lmotor.brake()

 approaching = False

 break

 # Check to see if we lost track of the object

 if not tracking_check(blocks, block_index): # If pixy lost track of

it

 # Stop moving when we lose track of the block. We might be right

over it

 rmotor.brake()

 lmotor.brake()

 approaching = False

 else:

 # Start driving forward once we are on track

 keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed)

 #rmotor.drive(forward_speed)

 #lmotor.drive(forward_speed)

 # Update the Pixy2 vision

 count = pixy.ccc_get_blocks (100, blocks)

 # Update the distance_from_center

 for block in blocks:

 if block.m_index == block_index:

 distance_from_center = 157 - block.m_x

def forward_tracking_pillar_searching(blocks, block_index, rmotor, lmotor,

forward_speed, turn_speed, acceptable_offset, optimal_offset, vl6,

vl6_detection_limit, keep_forward_speed):

 # Like forward tracking but for pillars

 # Track block index and head straight towards it.

55

 # Stops when pixy can no longer see the block or when the vl6180x senses

it has entered the sorting system

 keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed)

 #rmotor.drive(forward_speed)

 #lmotor.drive(forward_speed)

 distance_from_center = calc_distance_from_center(blocks, block_index)

 #while we haven't reached our goal

 approaching = True

 while approaching:

 # Check to see if the robot is too far offset from the center

 if abs(distance_from_center) > acceptable_offset: # if we're too far

off-center

 while abs(distance_from_center) > optimal_offset: # We want to

reset to a closer, more optimal offset

 if distance_from_center < 0: # if we need to turn left

 turn_left_forward(rmotor, lmotor, speed, turn_speed)

 else: # if we need to turn right

 turn_right_forward(rmotor, lmotor, speed, turn_speed)

 # Update the Pixy2 vision

 count = pixy.ccc_get_blocks (100, blocks)

 # Update the distance_from_center

 for block in blocks:

 if block.m_index == block_index:

 distance_from_center = 157 - block.m_x

 # Check to see if we lost track of the object

 if (not tracking_check(blocks, block_index)) or (vl6.range <

vl6_detection_limit): # If pixy lost track of it or the block has been

consumed

 # Stop moving when we lose track of the block. We might

be right over it

 rmotor.brake()

 lmotor.brake()

 approaching = False

 break

 # Check to see if we lost track of the object

 if (not tracking_check(blocks, block_index)) or (vl6.range <

vl6_detection_limit): # If pixy lost track of it or the block has been

consumed

 # Stop moving when we lose track of the block. We might be right

over it

 rmotor.brake()

 lmotor.brake()

 approaching = False

 else:

 # Start driving forward once we are on track

 keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed)

 #rmotor.drive(forward_speed)

 #lmotor.drive(forward_speed)

 # Update the Pixy2 vision

 count = pixy.ccc_get_blocks (100, blocks)

56

 # Update the distance_from_center

 for block in blocks:

 if block.m_index == block_index:

 distance_from_center = 157 - block.m_x

def center_robot(blocks, block_index, rmotor, lmotor, rotation_speed):

 centering = True

 while centering:

 # Get distance from center for the desired block

 distance_from_center = calc_distance_from_center(blocks, block_index)

 # Remember the pixy is upside down, so if distance from center is

negative, then the object is to the left of the center of the pixy

 if distance_from_center < 0: # need to turn left

 rotate_left_even(rmotor, lmotor, rotation_speed)

 elif distance_from_center > 0: # need to turn right

 rotate_right_even(rmotor, lmotor, rotation_speed)

 else:

 rmotor.brake()

 lmotor.brake()

 centering = False

 # Update the Pixy

 count = pixy.ccc_get_blocks (100, blocks)

 if count == 0:

 centering = False

 print('Error. Block Lost. Function aborted')

#---Functions for Food Mechanism---#

def second_aquarium_tracking(blocks, desired_color_signature, rmotor, lmotor,

rotation_speed, forward_speed, turn_speed, acceptable_offset, optimal_offset,

keep_forward_speed):

 ###### INPUT THE APPROPRIATE VALUE FOR THE SLEEP TIMER #########

 sleep_time = 1

 # Rotate right by putting the right motor in reverse

 rotate_right_backward(rmotor, lmotor, rotation_speed)

 time.sleep(sleep_time)

 # Start rotating in place. Eventually, we'll be searching for the

aquarium while still rotating

 rotate_right_even(rmotor, lmotor, rotation_speed)

 # Looking for the desired aquarium

 looking = True

 while looking:

 # Update the Pixy2 vision

 count = pixy.ccc_get_blocks (100, blocks)

 # Store all sighted blocks matching the desired color_signature

 block_instances = check_for_instances(blocks,

desired_color_signature)

 # If we see the color we're looking for

57

 if len(block_instances) > 0:

 # Get the block with the closest distance to center

 block_index, distance_from_center =

closest_to_center(block_instances)

 looking = False

 # Center on the aquarium once we've found it

 center_robot(blocks, block_index, rmotor, lmotor, rotation_speed)

 # Start moving towards the aquarium and keeping on track

 forward_tracking(blocks, block_index, rmotor, lmotor, forward_speed,

turn_speed, acceptable_offset, optimal_offset, keep_forward_speed)

 # We are at the aquarium by this point

#---Sorting Cylinder Functions---#

def align_bottom(encoder, hole, cylinder_servo, appropriate_throttle,

zero_throttle):

 # Align specified hole with the bottom position

 hole_bottom = hole.get_bottom()

 while int(encoder.value/100) != hole.get_bottom():

 #keeping it simple by only rotating in one direction for now

 cylinder_servo.throttle = appropriate_throttle

 #stop servo movement

 cylinder_servo.throttle = zero_throttle

 hole.set_ready_for_intake(True)

def rotate_to_empty_hole(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle):

 # Rotate the sorting cylinder to a new, empty hole on bottom

 looking_for_empty_hole = True

 for hole in holes:

 #once we find the hole and align it, we don’t want to keep aligning

others.

 if looking_for_empty_hole == True:

 #if hole is empty

 if hole.get_state() == False:

 #initiate hole movement towards bottom alignment.

 align_bottom(encoder, hole, cylinder_servo,

appropriate_throttle, zero_throttle)

 looking_for_empty_hole = False

def align_top(encoder, hole, cylinder_servo, appropriate_throttle,

zero_throttle):

 # Align specified hole with the top position

 hole_top = hole.get_top()

 while int(encoder.value/100) != hole.get_top():

 #keeping it simple by only rotating in one direction for now

 cylinder_servo.throttle = appropriate_throttle

 #stop servo movement

 cylinder_servo.throttle = zero_throttle

58

def rotate_to_top_hole(holes, desired_color, encoder, cylinder_servo,

appropriate_throttle, zero_throttle):

 # Rotate hole with desired color to the top

 checking_holes = True

 for hole in holes:

 if checking_holes: # If you're still looking for the hole with the

desired color

 if hole.get_color() == desired_color:

 # once you find the hole with the desired color, align it

with the top hole.

 align_top(encoder, hole, cylinder_servo,

appropriate_throttle, zero_throttle)

 # Calling this makes 'none' color and 'False' state. This is

in preparation for the next step which is pushing the cylinder out into the

stacking mechanism

 hole.remove_pillar()

 checking_holes = False

def assign_intake_color(holes, new_color):

 # Assign color to hole that just got filled with a pillar

 for hole in holes:

 # If hole is aligned with the bottom

 if hole.get_ready_for_intake() == True:

 # Assigning that hole the color. Also marking it as filled and

not ready for intake.

 hole.add_pillar(new_color)

def empty_holes_check(holes):

 # True if empty holes exist. False if every hole is filled.

 for hole in holes:

 # If a hole has a false state (not filled)

 if not hole.get_state():

 #break here if we found a hole that was empty

 return True

 # returns false if all holes are filled

 return False

def ready_for_intake_check(holes):

 # Checks all holes to see if any hole has the ready for intake flag. True

if so. False if not.

 for hole in holes:

 # if a hole is already set to be ready for intake

 if hole.get_ready_for_intake():

 return True

 return False

def sort_pillar(holes, pillars, stacked, encoder, cylinder_servo,

appropriate_throttle, zero_throttle):

 # Sorts new pillar. Should be called after a pillar has entered the

system.

 #---START OF SORTING CYLINDER STUFF---#

 #---Checking for (and Tracking) Consumed Pillars---#

59

 # Go through the normal loop of taking in pillars and tracking their

position.

 # Making sure that a hole is setup in the bottom position (in the case

where 5 were filled and none were moved into place before the sorting

sequence took place.

 if not ready_for_intake_check(holes): # If no hole is ready for intake

 rotate_to_empty_hole(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle) # rotate to an empty hole

 # Once a pillar has been consumed

 # Assigning the pillar to the cylinder aligned with the bottom hole.

 assign_intake_color(holes, pillars[-1])

 #---Rotate to Empty Hole---#

 #finished taking in the pillar and now needs to rotate to next available

open space (if there is an empty hole)

 if empty_holes_check(holes):

 # If there is an empty hole, rotate to an empty hole

 rotate_to_empty_hole(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle)

def check_sorting_state(holes, stacked):

 # Runs all of the logic to see if it's time to start stacking

 # Initially, the sorting cylinder will not be in stacking mode.

 two_pillar_stacking_mode = False

 three_pillar_stacking_mode = False

 #---Check to see if we need to start stacking---#

 # Creating a list of the current consumed colors for logic calculations.

 current_colors = []

 for hole in holes:

 current_colors.append(hole.get_color())

 # Checking to see if we have consumed a green and white pillar.

 if all(x in current_colors for x in ['green','white']): #if we have

consumed one green and one white

 # Run through other logic

 if stacked in [3,5]: # If we have stacked 3 or 5 pillars already

 two_pillar_stacking_mode = True

 else:

 if 'red' in current_colors: # if we have consumed a red pillar

 # white, green, and red means we're ready to make a 3 stack

 three_pillar_stacking_mode = True

 else:

 if not empty_holes_check(holes): # If all holes are filled

(i.e. if there are five pillars in the sorting cylinder)

 # We don't have time to wait for a red. We're full, and

we need to make a 2 stack.

 two_pillar_stacking_mode = True

 return two_pillar_stacking_mode, three_pillar_stacking_mode

def check_sorting_state_simple(holes):

 # Function for sorting cylinder demo

60

 # Checks to see if it's time to stack SIMPLE

 # SIMPLE: If white, green, and red then three stack. If all five are

filled and no red then two stack.

 two_pillar_stacking_mode = False

 three_pillar_stacking_mode = False

 #---Check to see if we need to start stacking---#

 # Creating a list of the current consumed colors for logic calculations.

 current_colors = []

 for hole in holes:

 current_colors.append(hole.get_color())

 # Checking to see if we have consumed a green and white pillar.

 if all(x in current_colors for x in ['green','white']): #if we have

consumed one green and one white

 # Run through other logic

 if 'red' in current_colors: # if we have consumed a red pillar

 three_pillar_stacking_mode = True

 else:

 if not empty_holes_check(holes): # If all holes are filled (i.e.

if there are five pillars in the sorting cylinder)

 # We don't have time to wait for a red. We're full, and we

need to make a 2 stack.

 two_pillar_stacking_mode = True

 return two_pillar_stacking_mode, three_pillar_stacking_mode

def sort_check_stack_pillar(holes, pillars, encoder, cylinder_servo,

appropriate_throttle, zero_throttle, pushing_servo, resting_angle,

pushing_angle, pushing_time):

 # Function for sorting cylinder demo

 # Same as sort_pillar, but we add in check_sorting_state and stacking (if

necessary) before we rotate to empty hole

 #---START OF SORTING CYLINDER STUFF---#

 #---Checking for (and Tracking) Consumed Pillars---#

 # Go through the normal loop of taking in pillars and tracking their

position.

 # Making sure that a hole is setup in the bottom position (in the case

where 5 were filled and none were moved into place before the sorting

sequence took place.

 if not ready_for_intake_check(holes): # If no hole is ready for intake

 rotate_to_empty_hole(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle) # rotate to an empty hole

 # Once a pillar has been consumed

 # Assigning the pillar to the cylinder aligned with the bottom hole.

 assign_intake_color(holes, pillars[-1])

 # Checking to see if we need to make a stack

 two_pillar_stacking_mode, three_pillar_stacking_mode =

check_sorting_state_simple(holes)

 if two_pillar_stacking_mode: # If we need to make a two pillar stack

 print('Making a two pillar stack.')

61

 two_pillar_stacking(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle, pushing_servo, resting_angle,

pushing_angle, pushing_time)

 if three_pillar_stacking_mode: # If we need to make a three pillar stack

 print('Making a three pillar stack.')

 three_pillar_stacking(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle, pushing_servo, resting_angle,

pushing_angle, pushing_time)

 #---Rotate to Empty Hole---#

 #finished taking in the pillar and now needs to rotate to next available

open space (if there is an empty hole)

 if empty_holes_check(holes):

 # If there is an empty hole, rotate to an empty hole

 rotate_to_empty_hole(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle)

 print('Ready for next pillar.')

#---Stacking Mechanism Functions---#

def push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time):

 # Used to push the pillar from the top hole into the stacking mechanism

 pushing_servo.angle = pushing_angle # Push

 time.sleep(pushing_time) # Wait

 pushing_servo.angle = resting_angle # Reset to default position

def two_pillar_stacking(holes, encoder, cylinder_servo, appropriate_throttle,

zero_throttle, pushing_servo, resting_angle, pushing_angle, pushing_time):

 #---Stacking the Consumed Pillars---#

 # Move white pillar to top

 print('Rotating white to top.')

 rotate_to_top_hole(holes, 'white', encoder, cylinder_servo,

appropriate_throttle, zero_throttle)

 # Engage pushing servo to push cylinder into the stacking mechanism

 print('Ejecting white.')

 push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time)

 # Move green pillar to top

 print('Rotating green to top.')

 rotate_to_top_hole(holes, 'green', encoder, cylinder_servo,

appropriate_throttle, zero_throttle)

 # Engage pushing servo to push cylinder into the stacking mechanism

 print('Ejecting green.')

 push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time)

def three_pillar_stacking(holes, encoder, cylinder_servo,

appropriate_throttle, zero_throttle, pushing_servo, resting_angle,

pushing_angle, pushing_time):

 #---Stacking the Consumed Pillars---#

 # Move white pillar to top

 print('Rotating white to top.')

62

 rotate_to_top_hole(holes, 'white', encoder, cylinder_servo,

appropriate_throttle, zero_throttle)

 # Engage pushing servo to push cylinder into the stacking mechanism

 print('Ejecting white.')

 push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time)

 # Move green pillar to top

 print('Rotating green to top.')

 rotate_to_top_hole(holes, 'green', encoder, cylinder_servo,

appropriate_throttle, zero_throttle)

 # Engage pushing servo to push cylinder into the stacking mechanism

 print('Ejecting green.')

 push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time)

 # Move red pillar to top

 print('Rotating red to top.')

 rotate_to_top_hole(holes, 'red', encoder, cylinder_servo,

appropriate_throttle, zero_throttle)

 # Engage pushing servo to push cylinder into the stacking mechanism

 print('Ejecting red.')

 push_pillar(pushing_servo, resting_angle, pushing_angle, pushing_time)

#---Pillar Search Functions---#

def search_for_red(blocks, desired_color_signature, rmotor, lmotor,

rotation_speed, turn_speed, acceptable_offset, optimal_offset, vl6,

vl6_detection_limit, keep_forward_speed):

 searching_for_red = True

 while searching_for_red:

 count = pixy.ccc_get_blocks(100, blocks)

 block_instances = check_for_instances(blocks,

desired_color_signature)

 # We want to wait until we see the first red block on the screen.

 while len(block_instances) == 0:

 count = pixy.ccc_get_blocks(100, blocks)

 block_instances = check_for_instances(blocks,

desired_color_signature)

 # Rotate right backwards

 rotate_right_backward(rmotor, lmotor, rotation_speed)

 # Stop moving

 rmotor.brake()

 lmotor.brake()

 block_index = block_instances[0].m_index

 # Center Robot on the first red block it sees

 center_robot(blocks, block_index, rmotor, lmotor, rotation_speed)

 # Travel towards the farthest block

 forward_tracking_pillar_searching(blocks, block_index, rmotor,

lmotor, forward_speed, turn_speed, acceptable_offset, optimal_offset, vl6,

vl6_detection_limit, keep_forward_speed)

 searching_for_red = False

63

def main():

 #---Channel Values---#

 # Channels for TCA Multiplexer

 pca_channel = 7

 tcs_startup_channel = 2

 vl6_channel = 0

 tcs_channel = 3

 # Channels for PCA Servo Driver

 rservo_channel = 1

 lservo_channel = 2

 cylinder_servo_channel = 0

 pushing_servo_channel = 4

 stacking_servo_channel = 3

 back_food_servo_channel = 6

 front_food_servo_channel = 7

 # Pins for Button

 button_pin = 20 # GPIO 20

 button_pin_digital = board.D20 # GPIO 20

 button_led_pin = 25 # GPIO 25

 button_led_pin_digital = board.D25 # GPIO 25

 # Pin for Startup TCS34725 LED

 tcs_startup_led_pin_digital = board.D22 # GPIO 22

 # Pins for Intake TCS34725 LED

 tcs_led_pin_digital = board.D23 # GPIO 23

 # Channels for MCP3008 Analog to Digital Converter (ADC)

 encoder_channel = MCP.P0 # Channel 0 of the MCP

 cs_pin = board.D17 #GPIO 17

 #---Calibrated Color Signatures---#

 red_signature = 2 # set these based on what CCC signature we did for each

color

 green_signature = 1

 white_signature = 4

 blue_signature = 5

 green_pillar_signature = 3

 #---Initializing---#

 # Initialize I2C for the board

 i2c = board.I2C()

 # Initialize the TCA9548A Multiplexer

 tca = adafruit_tca9548a.TCA9548A(i2c)

64

 # Stuff for MCP3008

 # Create the SPI bus

 spi = busio.SPI(clock = board.SCK, MISO = board.MISO, MOSI = board.MOSI)

 # Create the cs (chip select)

 cs = DigitalInOut(cs_pin)

 # Create the mcp object

 mcp = MCP.MCP3008(spi, cs)

 # Create analog input channel on pin 0

 encoder = AnalogIn(mcp, encoder_channel)

 # Initialize the VL6180X. Connected to a channel on TCA Multiplexer

 vl6 = adafruit_vl6180x.VL6180X(tca[vl6_channel])

 # Initialize the TCS34725 Startup Color Sensor and other TCS34725

 tcs_startup = adafruit_tcs34725.TCS34725(tca[tcs_startup_channel])

 tcs = adafruit_tcs34725.TCS34725(tca[tcs_channel])

 # Initialize the PCA9685. Connected to a channel on TCA Multiplexer

 pca = adafruit_pca9685.PCA9685(tca[pca_channel])

 pca.frequency = 50 # set PWM frequency to 50Hz

 # Set PCA frequency and Initialize ServoKit library. Automatically

connects to PCA. Redirected to TCA channel that PCA is on

 kit = adafruit_servokit.ServoKit(channels = 16, i2c = tca[pca_channel])

 # Initializing servos. Connected to channels on PCA

 rservo = kit.continuous_servo[rservo_channel] # Initializing right and

left continuous rotation servos. Connected to channels on PCA

 lservo = kit.continuous_servo[lservo_channel] # R and L as if you were

playing as the robot

 cylinder_servo = kit.continuous_servo[cylinder_servo_channel] # for

sorting cylinder

 pushing_servo = kit.servo[pushing_servo_channel] # for servo that pushes

pillars into stacking mechanism

 stacking_servo = kit.servo[stacking_servo_channel] # for servo that opens

stacking mechanism

 back_food_servo = kit.servo[back_food_servo_channel] # for red food

 front_food_servo = kit.servo[front_food_servo_channel] # for green food

 # GPIO setup

 GPIO.setmode(GPIO.BCM)

 '''

 # Initializing the Pixy2

 pixy.init()

 pixy.change_prog("color_connected_components")

 '''

 # Startup TCS34725 initialization parameters

 tcs_startup_integration_time = 150

 tcs_startup_gain = 4

 tcs_startup.integration_time = tcs_startup_integration_time

 tcs_startup.gain = tcs_startup_gain

 # Intake TCS34725 initialization parameters

65

 tcs_integration_time = 150 # Optimal for fast sensing

 tcs_gain = 4

 tcs.integration_time = tcs_integration_time

 tcs.gain = tcs_gain

 # Initialize the button for Startup

 button = DigitalInOut(button_pin_digital)

 button.switch_to_input(pull=Pull.DOWN) # Button is set to be False when

not pressed

 # Initializing the led for the button

 button_led = DigitalInOut(button_led_pin_digital)

 button_led.direction = Direction.OUTPUT

 # Turning off the Startup TCS34725 LED because it allows the bright red

LED to be detected better

 tcs_startup_led = DigitalInOut(tcs_startup_led_pin_digital)

 tcs_startup_led.direction = Direction.OUTPUT

 tcs_startup_led.value = False

 # Turning off the Intake TCS34725 LED

 tcs_led = DigitalInOut(tcs_led_pin_digital)

 tcs_led.direction = Direction.OUTPUT

 tcs_led.value = False

 #---Sensor Calibration Limits---#

 # Set minimum distance value for pillar inside the system (mm)

 vl6_detection_limit = 40

 # Set multiple for color to spike (compared to previous) to be of

interest

 red_multiple = 1.5

 green_multiple = 1.5

 #---Servo Limits---#

 # Limits for left and right intake servos

 rservo_ccw_limit = 0.9

 #rservo_cw_limit = -0.9

 rservo_stop_limit = 0.1

 #lservo_ccw_limit = 0.9

 lservo_cw_limit = -0.9

 lservo_stop_limit = 0.1

 # Limits for sorting cylinder servo

 appropriate_throttle = 0.2 #set appropriate value for throttle for

cylinder servo

 zero_throttle = 0.1 # set appropriate value for zero throttle for

cylinder servo

 # Limits for pushing_servo

 resting_angle = 140 # set appropriate value for non-pushing angle

66

 pushing_angle = 180 # set appropriate value for pushing angle

 pushing_time = 2 # set appropriate value for waiting period between push

and return to resting position

 # Limits for stacking dropoff servo

 stacking_servo_closed_angle = 5 # set appropriate value for closed

position

 stacking_servo_open_angle = 90 # set appropriate value for open position

 # Limits for food servos

 back_food_servo_closed_angle = 50 # set appropriate value for initial

angle for red food servo

 back_food_servo_open_angle = 180 # set appropriate value for activated

angle for red food servo

 front_food_servo_closed_angle = 30 # set appropriate value for initial

angle for green food servo

 front_food_servo_open_angle = 180 # set appropriate value for activated

angle for green food servo

 #---Motor Limits---#

 # set appropriate values for motor speeds

 forward_speed = 80

 turn_speed = 60

 rotation_speed = 80

 aquarium_forward_speed = 80

 #keep_forward_speed = 65

 keep_forward_ratio = 0.75

 keep_forward_speed = int(keep_forward_ratio * forward_speed)

 print(keep_forward_speed)

 #---Motor Setup---#

 # Right and left as if you were the robot and seeing as it saw

 # Set pins for motors

 AIN1 = 5

 AIN2 = 6

 PWMA = 12

 STBY = 16

 BIN1 = 19

 BIN2 = 26

 PWMB = 13

 lmotor = Motor(AIN1, AIN2, PWMA, STBY, False) # right motor # WE WILL

NEED TO SET ONE OF THEM TO TRUE (for reverse)

 rmotor = Motor(BIN1, BIN2, PWMB, STBY, True) # left motor

 #---Timing Limits---#

 empty_sorting_entrance_time = 1 # How long to make the sensing pause

after a pillar has entered (sec)

 #pause_time = 0.05 # Sleep time in between each pillar check (sec)

 drive_away_time = 2 # time for driving away from stacked and placed

pillar

67

 '''

 #---Pixy Centering Limits---#

 acceptable_offset = # the amt of x coordinates offset from center before

we need to recenter on the object we're tracking

 optimal_offset = # the amt of x coords offset from center that we want

to recenter to when trying to recenter

 #if we keep recentering to the acceptable_offset, then we might just end

up centering and then going right back out cuz we're already on the edge of

the acceptable limit

 aquarium_offset =

 #---Measured values for the encoder positions---#

 hole1_top_value =

 hole1_bottom_value =

 hole2_top_value =

 hole2_bottom_value =

 hole3_top_value =

 hole3_bottom_value =

 hole4_top_value =

 hole4_bottom_value =

 hole5_top_value =

 hole5_bottom_value =

 #--------END OF MANUAL INPUT-----------#

 #---Creating hole objects---#

 hole1 = Hole(hole1_top_value, hole1_bottom_value)

 hole2 = Hole(hole2_top_value, hole2_bottom_value)

 hole3 = Hole(hole3_top_value, hole3_bottom_value)

 hole4 = Hole(hole4_top_value, hole4_bottom_value)

 hole5 = Hole(hole5_top_value, hole5_bottom_value)

 holes = [hole1,hole2,hole3,hole4,hole5]

 '''

 #---Setting General Variables and Lists for Later Use---#

 # For sorting mechanism logic

 stacked = 0

 # Creating lists for later use (Intake Mechanism)

 #recent_colors = []

 pillars = []

 '''

 # Creating Pixy2 List

 blocks = pixy.BlockArray(100)

 '''

 #---SET DEFAULT CONDITIONS---#

 # Set Motors to be still

 rmotor.brake()

 lmotor.brake()

68

 # Set servos to be at their resting/default positions

 rservo.throttle = rservo_stop_limit

 lservo.throttle = lservo_stop_limit

 cylinder_servo.throttle = zero_throttle

 pushing_servo.angle = resting_angle

 stacking_servo.angle = stacking_servo_closed_angle

 back_food_servo.angle = back_food_servo_closed_angle

 front_food_servo.angle = front_food_servo_closed_angle

 ## Rotate sorting cylinder so that hole1 is aligned with the bottom.

 #align_bottom(encoder, hole1, cylinder_servo, appropriate_throttle,

zero_throttle)

 #---START STARTUP CODE---#

 try:

 # Wait for start button to be pressed

 waiting = True

 while waiting:

 if button.value == True: # When the button is being pressed

 print('Button Pressed')

 waiting = False

 # Set up button as a GPIO button

 GPIO.setup(button_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

 time.sleep(1) # one second was a good sleep time during

testing

 # Add event handler for button press

 GPIO.add_event_detect(button_pin, GPIO.FALLING, callback =

button_callback, bouncetime = 300)

 button_led.value = True

 #---Starting Waiting for LED---#

 #red_list = [] # Making a list for adding color sensor values

 #difference_multiple = 1.5 # Red needs to be x times bigger than the

previous red

 waiting_for_led = True

 while waiting_for_led:

 color1_rgb = tcs_startup.color_rgb_bytes

 if color1_rgb[1] < 20: # if the red led is turned on

 print('LED ON')

 waiting_for_led = False

 #---Start food dropoff hardcoded in---#

 time_to_first_aquarium = 5

 time_to_back_up = 1.5

 time_to_rotate = 1.6

 time_to_second_aquarium = 3

 time_to_back_up2 = 1

 time_to_rotate2 = 1.5

 time_to_recycling = 9

 print('Driving towards aquarium 1')

 keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed)

69

 time.sleep(time_to_first_aquarium)

 print('Braking')

 rmotor.brake()

 lmotor.brake()

 front_food_servo.angle = front_food_servo_open_angle

 print('Backing Up')

 keep_forward(rmotor, lmotor, -forward_speed, -keep_forward_speed)

 time.sleep(time_to_back_up)

 print('Rotating Right Back')

 rotate_right_forward(rmotor, lmotor, rotation_speed)

 time.sleep(time_to_rotate)

 print('Driving straight towards aquarium 2')

 keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed)

 time.sleep(time_to_second_aquarium)

 print('Braking')

 rmotor.brake()

 lmotor.brake()

 back_food_servo.angle = back_food_servo_open_angle

 time.sleep(1)

 print('TA DA!')

 print('Rotating')

 keep_forward(rmotor, lmotor, -forward_speed, -keep_forward_speed)

 time.sleep(time_to_back_up2)

 rotate_right_forward(rmotor, lmotor, rotation_speed)

 time.sleep(time_to_rotate2)

 keep_forward(rmotor, lmotor, forward_speed, keep_forward_speed)

 time.sleep(time_to_recycling)

 rmotor.brake()

 lmotor.brake()

 finally:

 #---RESET TO DEFAULT CONDITIONS---#

 # Set Motors to be still

 rmotor.brake()

 lmotor.brake()

 # Set servos to be at their resting/default positions

 rservo.throttle = rservo_stop_limit

 lservo.throttle = lservo_stop_limit

70

 cylinder_servo.throttle = zero_throttle

 pushing_servo.angle = resting_angle

 stacking_servo.angle = stacking_servo_closed_angle

 back_food_servo.angle = back_food_servo_closed_angle

 front_food_servo.angle = front_food_servo_closed_angle

 GPIO.cleanup()

main()

	Programming an Autonomous Robot
	Recommended Citation

	tmp.1683920322.pdf.LHtZG

