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Abstract 

Dessins d'enfants are bipartite graphs with a cyclic ordering given to the set of edges that 
meet at each vertex. Merling and Perlis presented a method by which to construct pairs 
of dessins d'enfants using the permutations induced by the action of a finite group on the 
cosets of two locally conjugate subgroups of that group. They called these pairs of dessins 
Gassmann equivalent and investigated some of their properties. First, we discuss several 
properties of pairs of dessins that imply Gassmann equivalence. Then, using elementwise 
conjugate subgroups, we introduce and investigate a weaker type of equivalence of dessins, 
which we refer to as Kronecker equivalence. 



0.1 Introduction 

The mathematical objects called dessins d'enfants, or dessins, are a relatively new concept 
related to several areas of mathematics, including algebra, graph theory, topology, and com­
binatorics. A dessin is a vertex-edge graph such that the edges of any given vertex have a 
specific order in their arrangement around the vertex, called a cyclic ordering. In addition, 
every vertex of the graph is given one of two colors (white or black), and any vertex sharing 
an edge with it must have the other color [1]. 

Alexandre Grothendieck gave the objects their name, which means "child's drawing," 
because of their visual simplicity in that a child's drawing could be taken as a specific example 
of a dessin. His work with them, beginning around 1984, involved complex geometry [l]. 
Another way to state the definition of dessin, as it relates to Grothendieck's work, is that it 
is "a bipartite graph that is embedded in a compact, oriented Riemann surface" [2] (pg 1). 

Especially because of their connections with various fields of study in mathematics, it is 
useful to explore and expand the knowledge on the properties of dessins. Some of the research 
that has been conducted in the last decade concerning dessins has involved studying pairs of 
dessins that are similar from a certain point of view. 

The strongest type of similarity of two dessins is called isomorphism, which means that 
the two dessins are essentially the same. An important question regarding isomorphic dessins 
is to find a set of invariants (for instance, number of white vertices, number of black vertices, 
number of edges, number of connected components) such that if two dessins have the same 
set of invariants, they are necessarily isomorphic. It is not clear if such a list of invariants 
exists, but it would be a huge accomplishment to identify one. 

Another type of similarity of dessins, called Gassmann equivalence, was introduced by 
Merling and Perlis [3]. Weaker than isomorphim, Gassmann equivalence of dessins is still 
strong enough to warrant a thorough investigation. Merling and Perlis associated to any 
finite group G, subgroup H in G, and elements 90 and 91 in G, a dessin, by letting 90 and 
91 act on the left cosets of H in G. These actions induce permutations on the cosets of H in 
G that are used to construct the dessin [3]. The idea used to define this type of similarity of 
dessins is not new in mathematics. Number theorists and topologists have known for nearly 
half a century that making certain constructions based on a Gassmann triple ( G, H, H'), 
where H and H' are locally conjugate subgroups in G, produces two objects (e.g. number 
fields, compact manifolds) that are similar from a certain point of view (are alike) but are 
not necessarily isomorphic. In this way, numbers theorists were able to construct pairs of 
number fields that have similar arithmetical properties but arc not conjugate [2]. It was 
therefore natural to consider and investigate pairs of Gassmann equivalent dessins, that is, 
dessins constructed from a Gassmann triple using two fixed elements 90 , 91 E G, and to expect 
that they arc similar. The first part of my research was aimed at expanding the knowledge 
of Gassmann equivalent dessins, especially by examining the converse statements of known 
theorems regarding this kind of equivalence in dessins. 

Ga..ssmann equivalence is not the only type of equivalence that is of interest in number 
theory or topology. Triples ( G, H, H') that satisfy the weaker condition that H and H' are 
elementwise conjugate have been studied by number theorists in the last 50 years. Number 
theorists call the type of similarity based on such a triple Kronecker equivalence [4]. It appears 
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reasonable to consider pairs of dessins constructed using the Merling and Perlis method but 
based on triples ( G, H, H') where H and H' are elementwise conjugate. There is no reference in 
the literature to such a type of similarity of dessins, which we will call Kronecker equivalence. 
In addition to studying Gassmann equivalence, the second goal of my research was to introduce 
and investigate Kronecker equivalence in the context of dessins and compare it to Gassmann 
equivalence in terms of the implications of invariants. Our investigation of the properties of 
Kronecker equivalent dessins leads to a number of results that mirror to some extent certain 
results from number theory (many of which are presented in [4]). 

At this point, it is helpful to review the concept of dessin, to understand how one is drawn. 

Definition 1. A dessin is a triple of permutations, ( To ,T1, T2), of a finite set S = { 1, 2, ... , 2n}, 
such that: 
i} T1 (T1 (s)) = s and T1(s) =I- s for any s ES; 
ii} To(T1(T2(s)))) = s, for any s ES. 

The elements of S are called half-edges. The orbits of To form the vertex set, the orbits of 
T1 the edge set, and the orbits of T2 the face set of the dessin. [5] 

Given a finite group G, a subgroup H in G, and elements 90 , 91 E G, one can construct a 
dessin as follows ([6]): let H, a1 H, ... , arH be the left cosets of H in G. The element g0 acts 
on these cosets and the action induces a permutation cr0 , where cr0(i) = j if 9oaJI = ajH­
Similarly, the action of 91 on the same cosets induces a permuation cr1, where cr1(i) = j if 
91 ai H = a J H. The resulting dessin is denoted as D( G / H, 9o, 91). 

The graph associated to this dessin is obtained as follows: draw a white vertex for every 
cycle in cr0 and a black vertex for every cycle in cr1 , along with half-edges around each vertex, 
one for each number in the cycle, labeled counterclockwise with those numbers. These half­
edges are then joined according to their labels to form a bipartite graph [3]. 

Example 1. Consider the alternating group A 4 and one of its subgroups 

II= { c, (12)(34), (13)(24), (14)(23)}. 

The left cosets of H in A 4 are 

1. { e, (12)(34), (13)(24), (14)(23)} 

2. {(123), (134), (243), (142)} 

3. { (124), (143), (132), (234)} 

Let 90 = (123) and 91 = (124). The left action of these elements of A4 on A4/ H produces 
permutations cr0 = (123) and cr1 = (132), respectively. The dessin then is drawn as follows, 
with one while vertex for the one 3-cycle of cr0 and one black vertex for the one 3-cycle of cr1: 
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0.2 Gassmann Equivalence 

Gassmann equivalence of dessins is a concept introduced by Merling and Perlis in [3]. 

Definition 2. Two dessins D(G/H,g0 ,g1 ) and D(G/H',g0 ,g1 ) are said to be Gassmann 
equivalent if ( G, 11. JI') is a Gassmann triple. 

Recall that in a Gassmann triple, G is a group and H and H' are subgroups of G that are 
locally conjugate in G. This means that there is a bijection 'lj.; : H--+ H' such that hand 'lj.;(h) 
are conjugate in G, for any h E H [6]. This condition guarantees H and H' have the same 
index (number of left cosets) in G, as well as the same number of elements in each coset. 

In their paper, Merling and Perlis explore various invariants of Gassmann equivalent dessins 
that are the same. The first such set of invariants is what is known as the branching data of 
the corresponding dessins, D(G/H,g0 ,g1 ) and D(G/H',go,g1 ) (see definition 5). Branching 
data relates to the number of cycles of each length in a given dessin's associated permutations. 
Other equal invariants of Gassmann equivalent dessins identified by Merling and Perlis are 
the number of components, or connected parts, and the sum of the genera of the components 
of each dessin. In essence, the genus of a dessin (plural genera) is the maximum number 
of times any one edge must cross over other edges in the graph to preserve the cycles. In 
addition, Merling and Parlis showed that the dessins' monodromy groups are isomorphic. A 
dessin's monodromy group is the subgroup of Sr generated by the permuations O"o and 0"1 

(which consists of all combinations of powers of O"o and 0"1), where r denotes the number of 
cosets of H and H' in G. 

The following is an example of a monodromy group. 

Example 2. Consider the group G = Z2 x Z2 x Z2 and the 8ubgroup of G, H = ((1, 0, 0)) = 

{(0,0,0). (1.0.0)}. The left co.,et8 are 

1. Jf1 = H = {(0,0,0), (1,0,0)} 

2. 112 =JI+ (0, 0, 1) = {(0, 0, 1), (1, 0, 1)} 

3. H3 = H + (0, 1, 0) = {(0, 1, 0), (1, 1, 0)} 

4. H 4 = H + (0, 1, 1) = {(0, 1, 1), (1, 1, 1)} 

The action of element g0 = (0, 0, 1) E G permute., H1 to H1 + (0, 0, 1) = H2, H2 to H2 + 
(0, 0, 1) = H + (0, 0, 0) = H1 , H3 to H4 , and H4 to H3. Thi., i8 expre88ed as permutation 
O"o = (12)(34). The action of g1 = (0, 1, 0) E G in a 8imilar manner produces the permutation 
0"1 = (13)(24). In S4 , the monodromy group i., M = (O"o, 0"1) = ((12)(34), (13)(24)), the 
.,ubgroup generated by the two permutation8. Since 

(12)(34)(13)(24) = (14)(32) = 0"00"1 and (13)(24)(12)(34) = (14)(32) = 0"10"0 

we have that 0"00"1 = O"ICJ'o. Al8o 0"6 = e and O"i = e. Thu.,, M = {e,0"0 ,0"1 ,0"o0"1} 8ince any 
other combination., of the two perrnutation8 could be .,implified to the8e four permutations. 
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This example raises a point about both Gassmann and Kronecker equivalence: the only 
interesting (non-trivial) cases of equivalence occur when the group used is not abelian. This 
is because any two elements of an abelian group commute. If an element h in subgroup H 
has a conjugate h' in subgroup H', we have gh'g- 1 = h for some g E G. By commutativity, 
gh' g- 1 = g- 1 gh' = h', so h' = h. This means H and H' have the same elements, and the 
dessins produced by the action on their cosets are trivially isomorphic. 

It is helpful to recall the definition of a permutation character: 

Definition 3. Given a group G and finite set S, the permutation character of an action of G 
on Sis xs: G--+ {O, 1, 2, ... } such that xs(g) = l{x ES: gx = x}I-

Another definition worth noting is the alternate definition of Gassmann triples given by 
Merling and Perlis [3]. 

Definition 4. (G, H, H'), where H and H' are subgroups of a finite group G, is a Gassmann 
triple if Xc;H(g) = XG/H'(g) for all g EC. 

In Definition 4, Xc;H(g) = l{aH: gaH = aH}I-
We will focus first on the branching data of a dessin, which is defined as follows: 

Definition 5. Let D = (G/H,g0 ,g1 ) be a dessin with a pair of permutations, (cr0 ,cr1) from 
the action of go, .91 E G. Let cr00 be defined by the relation cr0cricr00 = I. The branching data of 
D are the tuples (a1, ... , a.s), (b1, ... , bt), and (c1, ... , er), where ai is the number of i-cycles 
in cr0 , b; is the number of i-cycle.s in cr1 , and c; is the number of i-cycles in er 00. 

Merling and Perlis proved the following theorem: 

Theorem 1. If ( G, H, H') is a Gassmann triple, then the branching data for D( G / H, g0 , g1) 

and D ( G / H', go, 91 ) coincide. 

We begin our investigation of Gassmann equivalent dessins by proving a converse of their 
result: 

Theorem 2. If the branching data for D(G/H,90 ,g1 ) and D(G/H',g0 ,91 ) coincide for all 
9o, 91 E G, then (G, H, H') i.s a Gassmann triple. 

Proof. Suppose all pairs of dessins D and D', constructed from the permutations (cr0 , cr1 ) and 
(crb, er~) aquired from the action a group G and on the left cosets of subgroups H and H' of 
G, respectively, have the same branching data (a1, ... , a.s) and (b1, ... , bt), where a; is the 
number of i-cycles in cr0 ( and in crb) and bi is the number of i-cycles in cr1 ( and in crD . a1 is 
then the number of 1-cycles in cr0 and in crb. Thus, the permutation character for all g E G is 
the same. By Definition 4, (G, H, H') form a Gassmann triple. 

□ 

Note that the sum a 1 + · · · + a8 is the total number of cycles in cr0 , which is the same as 
the number of white vertices in D, and b1 + · · · + bt is the total number of cycles in cr1 , which 
translates to the number of black vertices in D, so we could just as well have said that if two 
dessins lJ ( C / 11, g0 , 91 ) and lJ ( C / I1', g0 , 91 ) have the same number of white and black vertices 
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of each degree, (G, H, H') forms a Gassmann triple. We go on to prove the converse of a 
weaker version of Theorem 1: that only the number of white (or black) vertices of two dessins 
for all g0 , g1 E G must be the same in order for those dessins to be Gassmann equivalent. We 
begin with a helpful lemma. 

Lemma 1. The number of disjoint cycles in 0'
8 is L gcd(m, s)am, where O' is some permu­

m>O 

tation and am is the number of disjoint m-cycles in O'. 

Proof. Let (x0 , :r1, :r2 , ... , .Em_i) be an m-cycle of O'. When raised to the s power, we have 

Because it is a cycle, Xk.s = Xk.s (mod m) · Let ks be the first multiple of s to be O mod m, that is, 
ks = O(mod m) such that k ~ 1 is minimal. Then Xks = x 0 completes the cycle and we have, 
in part, (.1:0 , X 8 , X2s, ... , X(k-l)s), a k-length cycle. Thus, we have m/k total k-length cycles 
from the original cycle: 

Claim: k = d( ) . We must show gc m,s 

m 
( ) s = 0( mod m) 

gcd m, s 

and that gcd~,s) is the least such integer. We have 

m 
( ) s = lcm(m, s) 

gcd m, s 

and mllcm(m, s), so 
m 
( ) s = 0 ( mod rn). 

gcd m. s 

Suppose 1 ::; t < gcd~,.s) and rnlts. Since mlts and sits, 

rris m 
lcrn( m, s) = d( ) its and thus d( ) It, 

gc m, s gc rn,s 

a contradiction. Thus, the number of disjoint cycles made by raising an m-cycle to the s 
power 1s 

rn 

k 

rn 
-m- = gcd(m,s). 
gcd(m,s) 

If there are am m-cycles, they become gcd( rn, s )am disjoint cycles. The total number of cycles 
of O', then, is 

L gcd(m, s)am. 
m>O 

□ 
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This lemma is useful in proving our next theorem. 

Theorem 3. Let Hand H' be subgroups in G. If D(G/H,g0 ,g1 ) and D(G/H',g0 ,g1 ) have 
the same number of white (or black) vertices for all g0 , g1 E G, then (G, H, H') is a Gassmann 
triple. 

Proof. Since the number of white vertices correspond with the number of disjoint cycles of 
cr1 and er~, the permutations induced by the action of G on the cosets G/ H and G/ H', 
respectively, let 

where Om denotes the number of m-length disjoint cycles of cr1 , and similarly define 

a'= La~. 
m>O 

Note that G is a finite group, so these summations are finite. Fix g0 . D( G / H, g0 , g1 ) and 
D( G / H', go, .91) have the same number of white vertices for all s E Z. Equivalently, crf has 
the same number of disjoint cycles as (crDs for alls. Thus from the above lemma, we have 

Lgcd(rn, s)am = Lgcd(m, s)a:n for alls. 
m>O m>O 

From this, we have a system of linear equations: 

L gcd(m, l)(am - a~)= 0 
m>O 

L gcd(m, l)(am - a~) = 0 
m>O 

L gcd(m, l)(am - a~)= 0 
m>O 

Written in matrix form, where each Xm = Om - a~ and n is an integer such that ak = a~ = 0 
for all k > n, k E Z, we have an n x n gcd matrix, A, multiplied by vector x = (x1 , x2, ... , Xn), 
Ax = 0. From [7], 

det(A) = ¢(1) · ¢(2) ... cb(n), 

where 1> is Euler's phi (totient) function. Thus, det(A) -/- 0, so there is only the trivial solution, 
meaning am= a~ for all m. Then a 1 = a~ for all g0 , so xc;H(g) = Xc/H'(g) for all g E G, and 
( G, H, H') is a Gassmann triple. □ 

Another result from Merling and Perlis was that Gassmann equivalence implies that two 
dessins will have the same number of components. Here we prove the converse. 

Theorem 4. Let D = D(G/H,g0 ,g1 ) and D' = D(G/H',g0 ,g1 ) be des.sins such that D and 
D' have the .same number of components for all g0 , g1 E G. Then (G, H, H') is a Gassmann 
triple. 
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Proof. Let g0 E G be arbitrary and let g1 = e. Then every coset is fixed by the action of g1, 

so all of the black vertices of D and D' are danglers. Thus for both dessins, the number of 
components is entirely determined by the action of g0 , namely, the number of components of 
each is equal to the number of white vertices it has. D and D' then have the same number of 
white vertices for all g0 E G. Therefore, (G. H, H') is a Gassmann triple. Similarly, (G, H, JI') 
can be proven to be a Gassmann triple given the dessins have the same number of black 
vertices. □ 

We conclude this section with the following example of Gassmann equivalent dessins which 
illustrates some of their properties: 

Let C = G £ 3 (F 2 ), the set of all 3 x 3 invertible matrices over F 2 . G is a group of order 
168. The following are subgroups of G: 

H has the form 
[ (~l *: *:) l and H' has the form 

[ (:
1 o: o:) l 

where * indicates any choice of O or 1, so that all matrices in H have the same first column 
and those in //' have the same first row. Note that /1 and /1 1 both consist of 24 matrices. 
Let g E G. Then gH consists of 24 matrices where the first column is the same as the first 
column of g. Since [G : H] = [G : II'] = 168/24 = 7, H and H' have 7 left cosets in G. All 
elements in a coset gll have the same first column, so to keep track of them, we denote them 
as g1H, g2H, g3 H, g4H, g5H, g6 H, g7 H, where the first column of matrix gj is j in binary. 

The first column of g, is, for instance, G), while g4H = II. When an abrit.rnry element 

g E G acts on the above cosets, it permutes them: (gg1)H, (gg2)H, (gg3)H, (gg4)H, (gg5)H, 
(gg6 )H, (gg7 )H. When a fixed g permutes the left cosets of Hin G, the first column of ggj 

(0
11 0~ 011) only depends on the first column of 9j· For example, if g = then 

so 9L:a:~•(I~ Yf)· and y = (~ ~ ~) . 
1 0 0 0 1 1 

Now we find the permutations induced by the action of these elements on the left cosets 
of JI in C. 
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so x91H = 94 H. Continuing in this manner, we find the permutation cr0 induced by the action 
of x to be (1436)(2)(57) and the permutation induced by the action of y, er= (132)(4)(576) 
Next, we would like to find the permutations arising from the action of .1: and yon G / II'. Note 
that the inverse of any matrix in H is a matrix in H ( as H is a subgroup) so the transpose of 
any such inverse is in H'. Define a mapping¢: G ~ G, ¢(9) = (9-1)f. 

Claim: ¢ is an isomorphism. 

Proof. One-to-one: Suppose for some 91, 92 E G, ¢(91) = ¢(g2) Then by definition of¢ we 
have (911 )f = (92

1 )f. Thus by taking the transpose of both sides, 911 = 92
1. Since 9 is 

invertible for all 9 E G, we can take the inverse of both sides to arrive at 91 = 92 . 

Onto: Let g E G and let h be such that (h-1)t = g. Then ((h-1)t)f = l, and so 
(h-1 )-1 = (l)-1. Since 9 is invertible, l is invertible, and (l)-1 E G. Thus, h E G. 

Homorphisrn: Let 91,92 E G. ¢(9192) = ((9192)-1)t = (92
1911)t = (g11)t(92

1)l 
d>(g1)¢(g2). 

Therefore, cp is indeed an isomorphism. □ 

A second claim: ¢(H) = H'. 

Proof. ¢(/ I) <:,;; Jl': L(e~/ /: E *:¢)(/I). 
Then h = ( k-1 y for some k E JI. Then k is an invertible 

matrix of the form * and 

* 

:) G : :) 
as dct(k) = 1 since k is invertible. (k-1)f has the form (! ~ ~). Thus, (k- 1)t = h EH'. 

* * * 

:) . Let. h ~ (k-1
)' for some matrix 

(

1 0 

H' <:,;; ¢(H): Leth E H'. Then h has the form * * 
* * 

k. Taking the transpose of both sides, we have k· 1 ~ h', which ha.s the form ( ~ : : ) . 

Since h is invertible, so is ht. Taking the inverse of both sides gives us 

( t)-1 l 
k = h = det(ht) 
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(~
1 *: *:) Then k has the form since ht is invertible, causing det(h1

) = l. Thus k E H and 

□ 

With these claims proven, we have ¢(gjII) = [(gjllt1f = (II'g-;1) 1 = (g-;1)lII', so¢ maps 
the seven cosets of H in G to the seven cosets 

of H' in G. 
Therefore, we can use ¢ to check how an arbitrary g E G permutes the cosets of H'. 

Hence the action of g on the cosets of H' in G is given by the action of (g-1 )i on the 

cosets of H in G. Thus we can use (x-1 )i = on G / H (o~ ot 011) and (y-1)t = (~1 o! ot) 
to find the permutations, ab and a~, induced by x and y on G / H', respectively. \Ve find 
that ab= (1634)(2)(57) and a~ = (123)(4)(567). Now, we use the permutations to draw the 
corresponding dessins. Note that the only difference between these two dessins is the labeling 
on the edges. 

~
1

➔HX~:9 
D=D(G/H,x,y) 3 

~3~ 
~ ~6--cx~=-

D' = D(G/ H', x, y) 1 

0.3 Kronecker Equivalence 

As stated above, Kronecker equivalence is a type of similarity of dessins that has not yet been 
studied. Triples ( G, H, H') that are Kronecker equivalent have the property that subgroups 
II and II' of C are elementwise conjugate, that is, every element in II is conjugate to some 
element in H' and vice versa. The conjugate of the element h of H with respect to some element 
gin G is g- 1 hg [4]. Klingen [4] provides a survey of properties of Kronecker equivalent number 
fields. Some of t hcsc properties can be formulated in terms of the action of a certain group 
C on the (left) cosets of two fixed subgroups JI and H' that are elementwise conjugate. This 
action induces pairs of permutations. As shown in Klingen's book, Kronecker equivalence of 
number fields forces these permutations to have similar (but not necessarily identical) cycle 
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decomposition types [4]. In particular, it is known that these permutations can be decomposed 
into disjoint cycles in such a way that the cycle lengths that are minimal with respect to 
divisibility are the same. It is this analogy between Kronecker equivalence of number fields 
and of dessins that we explore in this paper. 

We define Kronecker equivalence between two dessins, D and D', as follows. Note that we 
refer to a leaf, that is, a vertex with exactly one edge coming from it, of a vertex-edge graph 
of a dessin as a dangler. 

Definition 6. D and D' are said to be Kronecker equivalent if D has danglers of a certain 
color if and only if D' has danglers of the same color. 

Kronecker equivalence of dessins is related to elementwise conjugate subgroups in this way: 

Theorem 5. Hand H' are elementwise conjugate in G if and only if D(G/H,g0 ,g1 ) and 
D(G/H',go,91) are Kronecker equivalent, for all choices of g0 ,g1 E G. 

Proof. Let D and D' be dessins defined by the action of elements of group G on the left cosets 
of subgroups H and H' in G, respectively. Note that D has a white dangler{::} the action of 
g0 on the cosets of II fixes some coset 119i {::} gJJ = g0g;II {::} g;g0 g; 1 = h for some h E II. 

Elementwise conjugacy ⇒ Kronecker equivalence. 
Suppose H and H' are elementwise conjugate. Then for all h E H, h = g- 1h'g for some 

h' E II' and g E C. Suppose D has a white dangler. Then there is h E 11 and g; E G such 
that g;,9o9;- 1 = h = g- 1h'g, so by letting g act on the left and g-1 act on the right, we find 
(gg;)g0 (gg;t 1 = h' in H'. Thus, g0 fixes the coset (gg;)H'. Then D' has a white dangler. If 
we start with D' having a white dangler, we can show in a similar manner that this implies JJ 
has a white dangler, since for all h' E H, h' = g- 1hg for some h E H. So either both D and 
D' have white danglers, or neither do. The same can be shown for black danglers, working 
instead with 91. 

Kronecker equivalence ⇒ elementwise conjugacy. 
Suppose D and D' are Kronecker equivalent. Leth EH. Pick g0 = h. Then D has a white 

dangler, since g0 then fixes the coset H. Thus, D' must also have a white dangler, so there is 
an element g; E G such that g;g0g;~ 1 E H'. Then by substitution, the conjugate gihg-; 1 of h is 
an element of H'. 

□ 

Here, we note various necessary and sufficient conditions for Kronecker equivalence. 

Theorem 6. Let H and H' be subgroups of G. For go, 91 E G, consider the dessins D = 
D(G/H, g0 , g1) and D' = D(G/H', go, g1). Let 

be the degrees of the white and black vertices, respectively, of D and 

be the degrees of the white and black vertices, respectively, of D'. Then the following are 
equivalent conditions: 
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1. D and D' are Kronecker equivalent for any g0 , g1 E G. 

2. d1 = cl~ and 51 = 5i, for any go, 91 E G. 

3. Ncl1 + Ncl2 + · · · + Ndm = Nd~ + Nd; + · · · + Nd~, and N51 + N82 + · · · + Non 
N5i +NJ;+···+ NJ~,, for any go, 91 EC. 

4- The degrees of the white vertices of D that are minimal with respect to divisibility are 
the same as the degrees of the white vertices of D' that are minimal with respect to 
divisibility, for any g0 , g1 E G. The same applies to the black vertices. 

5. Every white vertex degree cl; in D is divisible by a white vertex degree clJ in D' and 
vice-versa, for any go, 91 E G. 

Proof. We will show these conditions to be equivalent by proving 6 ⇒ 5 ⇒ 4 ⇒ 3 ⇒ 2 ⇒ 1 
⇒ 6. 

6 ⇒ 5. Let cl1 be an arbitrary white vertex degree in D. Then cl1 2: 1 and 

L cl; 2: dj > 0. 
d,ldj 

Thus, L cl'. > 0. So there exists at least one vertex degree, cl~, in D' such that cl~ldj. 
d;ldj 

Similarly, for any d~ E D, there is dn E D such that dnld~. The same can be said concerning 
the black vertices. 

5 ⇒ 4. Let d; be the degree of a vertex in D that is minimal with respect to divisibility. 
Then d1!d; for some dJ E D. Assume dJ is not minimal with respect to divisiblility. Then 
there is d~ E D such that d~ldJ and d~ < d1. By the assumption of (5), there exists dm E D 
such that dmld~. By transitivity, dmld;. Since dm ::; d~ < dj ::; d;, we have that dm < d;, 
but d; is minimal. Thus dj must be minimal with respect to divisibility in D. Similarly, the 
degrees of black vertices have the same property. 

4 ⇒ 3. Since any linear combination of degrees that are not minimal with respect to 
divisibility are linear combinations of degrees that are minimal with respect to divisibility, 
and since D and D' have the same minimal degrees, (3) holds. 

3 ⇒ 2. Choose the linear combination 

Then some combination 
Nd~+ Nd;+···+ Nd~,= d1 , 

and similarly, some combination 
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Assume d1 -1- d~. Without loss of generality, asume d1 < d~. Then d1 < d~ for all 1 :S i s m', 
so any linear combination 

Nd~ + Nd; + .. · + Nd~., > d1 . 

Thus d1 = d;, and similarly J1 = J~. 
2 ⇒ 1. From (2), we have d1 = 1 iff d; = 1, and J1 = 1 iff J~ = 1, so D and D' are 

Kronecker equivalent. 

1 ⇒ 6. Let s E N be arbitrarily fixed. Suppose L di > 0. Consider the dessins 
d;js 

D1 = D(G/H,g0,g1) and D~ = D(G/H',g0,g1) with white vertex degrees 

respectively. Then L b1 > 0 and b1 = 1 since the cycles whose lengths are factors of s in 
bjjs 

D are reduced to I-cycles in D 1 . Thus b; = l. For o; to have a one-cycle, D' must have a 
vertex degree d~ such that d~ 1 s. Similarly, 

and 

I: si > o ~ I: s; > o. 
S;js 

□ 

Unlike the case with Gassmann equivalence, Kronecker equivalence does not guarantee two 
dessins have the same number of components or even that two dessins will be both connected 
or both not connected. Consider the dessins lJ( G / H, g0 , e) and lJ( G / H', g0 , e) where G = A5 , 

H = { e, (12)(34), (125), (152), (15)(34), (25)(34)}, and 

H' = {e, (23)(45), (24)(35), (25)(34), (234), (235), (243), (245), (253), (254), (345), (354)} 

with g0 = (12345). As can be verified by computation, H and H' are elementwise conjugate, 
so the dessins are Kronecker equivalent. The left cosets G / H are 

1. { e, (12)(34), (125), (152), (15)(34), (25)(34)} 

2. {(12)(35), (345),(235), (135), (13452),(12345)} 

3. { ( 12) ( 45), (354), (245), ( 145), (14352), ( 12435)} 

4. { ( 13) (24), (14) (23), (14253), (15432), ( 15324), (13254)} 

5. {(13)(25), (15234), (153), (123), (12534), (134)} 

6. { ( 13) ( 45), ( 12354), (12453), (14523), (14) (35), ( 13524)} 
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7. { ( 14) (25) l ( 15243) l (154) l (124) l ( 12543): ( 143)} 

8. { (15)(23), (13425), (132), (253), (234), (15342)} 

9. {(15)(24), (14325), (142), (254), (243), (15432)} 

10. {(23)(45), (13542), (13245), (14532), (14235), (24)(35)} 

The left cosets G / H' are 

1. { e, (23) ( 45) l (24) (35) l (25) (34) l (234) l (235) l (243) l (245) l (253) l (254) l (345) l (354)} 

2. {(12)(34). (12453), (12354), (125), (124), (12435),(123),(12345), (12543), (12534), (12)(45), (12)(35)} 

3. {(13)(24), (13452), (135), (13254), (132), (13542), (134), (13)(45), (13425), (13)(25), (13245), (13524)} 

4. {(14)(23), (145), (14352), (14253), (143), (14)(35), (142), (14532), (14)(25), (14325), (14523), (14235)} 

5. {(15)(23), (154), (15243), (15342), (15)(34), (153), (15)(24),(15324), (152), (15432),(15234), (15423)} 

The action of g0 on G / H produces a permutation of exactly two 5-cycles, (1 2 6 4 9) (3 5 10 7 8) 
while its action on G/ H' produces a permutation of exactly one 5-cycle, (1234 5). Note that 
e fixes all the coscts of Hand H' in G, so all black vertices are danglers. Then D(G/H,g0 ,e) 
has two white vertices, and so two components, while D(G/H',g0 ,e) has one white vertex, 
and so one component. 

This example is depicted below: 

D(G/ H, 9o, e) 

D(G/H',go,e) 

Another interesting example is with group A4 x A4 . Let H = {e, (12)(34)} and H' = 
{e, (12)(34), (13)(24), (14)(23)}, both subgroups of A4 . Then there are 36 left cosets of H x H 
in A4 x A 4 with elements of the form (h1 , h2 ), where h1 is an element of some particular coset 
of H in A4 and h2 is an element of another (not necessarily the same) coset of Hin A4 . In a 
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similar fashion, there are 9 left cosets of H' x H' in A4 x A4 . To find all of these cosets, find 
all ordered choices of two of the left cosets of H (H') in A4 (H1 x H1 , H1 x H2 , ... , H6 x I-h). 
Let Yo = (123) and 91 = (124). Then, consider the action of (g0 , g0 ) and (g1, g1), elements of 
A4 x A4, on A4 x A4/ H x H and G / H x H. The resulting permutations are made up entirely 
of 3-cycles. They are drawn as follows: 

OC?e OC?e OC?e 
D = D(A4 x A4/ H' x H', (go, Yo), (g1, 91)) 

What is interesting to note is that D has four components while D' has three, and D has 
two crossings of edges while D' does not have any (D has a genus of 2, and D' has a genus 
of 0). These examples leave properties of the components of dessins and their genera up to 
further exploration, in addition to the topic of rnonodromy groups. 

In researching Gassmann and Kronecker equivalent dessins, I was able to contribute knowl­
edge in regards to their properties. Namely, my work built on previous research on invariants 
( components, number of vertices of a certain color, and branching data) that imply or are 
implied by these types of equivalences. What I found was that the converses of theorems 
proven hy Merling and Perlis about Gassmann triples often held, and surprisingly that the 
weaker condition of always having the same number of vertices of one color led to Gassrnann 
equivalence. 

Regarding Kronecker equivalence of clessins, I was able to provide several different charac­
terizations of Kronecker equivalence. Since any Gassmann triple involves elementwise conju­
gate subgroups Hand H' in G, it is clear that any Gassmann equivalent dessins are Kronecker 
equivalent ( the converse does not hold). Therefore, all properties of Gassmann equivalent 
dessins apply to Kronecker equivalent dessins. I showed with an example, however, that the 
properties of connectedness and number of components, as well as branching data, do not hold 
the same implications for Kronecker equivalence, as it is a weaker condition than Gassmann 
equivalence. 

Future research could be conducted concerning how the properties Merling and Perlis 
studied in Gassrnann triples apply, in modified form, to Kronecker equivalent dessins. The 
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implications of the additional properties of genera and monodromy groups could be studied 
for both Gassmann and Kronecker equivalent dessins. My research has further opened the 
door to a vast, new area of mathematics waiting to be explored. 
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0.4 Appendix 

The following is code I wrote in Java to simplify the task of finding permutations. There arc 
four classes: Cycle, Permutation, PermutationApp (contains the main method), and Permu­
tationFrame ( for the user interface). 

0.4.1 Cycle Class 

// File: Cycle.java 
// Author: Rachel Volkert 
// Date: 2/4/2013 
II Modified: new 

import java.util.Vector; 

public class Cycle 
{ 

private Vector<Integer> data; 
private int index; 

public Cycle 0 
{ 

} 

data= new Vector<Integer>(); 
index= O; 

public Cycle(String numbers) 
{ 

// numbers is expected to be a string of the elements 
//separated by non-alphanumeric characters (e.g. spaces, commas) 
data= new Vector<Integer>(); 
index= O; 
String[] list= numbers.split("\\W+"); 
for (inti= O; i < list.length; i++) 
{ 

} 

} 

data.add(Integer.parseint(list[i])); 
index += 1; 

public String display() 
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{ 

String string="("; 
for (inti= O; i < index; i++) 
{ 

string+=(""+ data.elementAt(i)); 

} 

} 

string+=")"; 
return string; 

public void append(int i) 
{ 

II adds element i to the end of the cycle 
data.add(i); 
index+= 1; 

} 

public int elementAt(int i) 
{ 

II returns the i-th element, or O if i is out of range 
if (i >= index) 

return O; 
return data.elementAt(i); 

} 

public int index() 
{ 

return index; 
} 

public int nextAfter(int i) 
{ 

II returns the next integer in the cycle after i, 
II or i if it is not in the cycle (1-cycle) 
if (! this.contains(i)) 

return i; 
return data.elementAt((data.indexOf(i) + 1) % index); 

} 

public Boolean contains(int i) 
{ 

II returns whether i is in the cycle 
return data.contains(i); 

} 
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} 

0.4.2 Permutation Class 

I I File: Permutation. j ava 
Rachel Volkert 
21412013 

II 
II 
II 

Author: 
Date: 
Modified: new 

import java.util.Vector; 

public class Permutation 
{ 

II stores the cycles in the permutation in order 
private Vector<Cycle> cycles; 
private int numOfCycles; II this is the number of cycles besides 1-cycles 

public Permutation() 
{ 

} 

II creates a new Permutation 
cycles= new Vector<Cycle>(); 
numOfCycles = O; 

public Permutation(Vector<Cycle> cycleVector) 
{ 

} 

II creates a new Permutation with an existing vector of cycles 
cycles= cycleVector; 
numOfCycles = cycles.size(); 

public void append(Cycle newCycle) 
{ 

} 

II adds the new cycle to the end of the permutation 
cycles.add(newCycle); 
numOfCycles += 1; 

public String display() 
{ 

String string=""; 
for (inti= O; i < numOfCycles; i++) 
{ 
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} 

string+= cycles.elementAt(i).display(); 
} 

if (string. equals ( 1111
)) 

return 11 e 11
; 

return string; 

public void simplify() 
{ 

II composes all the cycles together in order and takes out any 1-cycles 

Vector<Integer> usedNumbers = new Vector<Integer>(); 
Boolean completeCycle; 
int startOfCycle; 
int element; 
Cycle temp; 
Vector<Cycle> newCycles = new Vector<Cycle>(); 

for (int k = numOfCycles - 1; k >= O; k--) 
{ 

for (inti= O; i < cycles.elementAt(k).index(); i++) 
{ 

element= cycles.elementAt(k).elementAt(i); 
if (! usedNumbers.contains(element)) 
{ 

completeCycle = false; 
temp= new Cycle(); 
startOfCycle = element; 

while(! completeCycle) 
{ 

temp.append(element); 
usedNumbers.add(element); 
for (int j = k; j >= O; j--) 
{ 

element= cycles.elementAt(j).nextAfter(element); 
} 

if (element== startOfCycle) 
{ 

if (temp.index()> 1) 
{ 

newCycles.add(temp); 
} 

completeCycle = true; 
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} 

} 

} 

} 

} 

} 

cycles= newCycles; 
numOfCycles = cycles.size(); 

public void refill(Vector<Cycle> newCycles) 
{ 

cycles= newCycles; 
numOfCycles = newCycles.size(); 

} 

} 

0.4.3 PermutationApp Class 

II File: PermuationApp.java 
II Author: Rachel Volkert 
II Date: 21512013 
I I Modified: new 

public class PermutationApp 
{ 

public static void main(String[] args) 
{ 

PermutationFrame p = new PermutationFrame(); 
p. show(); 

} 

} 

0.4.4 PermutationFrame Class 

II File: PermutationFrame.java 
II Author: Rachel Volkert 
II Date: 21512013 
II Modified: 211212013 
II 
II Change: added coset feature: input for subgroup 
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import java.awt.*; 
import java.awt.event.*; 
import java.util.Vector; 

public class PermutationFrame extends Frame 
{ 

private Label inputCycleLabel; 
private Label subgroupLabel; 
private TextArea answerArea; 
private TextField inputField; 
private TextField subgroupField; 
private Permutation myPermutation; 

public PermutationFrame() 
{ 

setSize(500, 400); 
setTitle("Permutation App"); 

myPermutation = new Permutation(); 

inputCycleLabel = new Label("Enter cycles: "); 
II these are to be cycles of terms separated by non-alphanumeric 
II chars (except ,) with cycles separated by commas 
II for example: (123)(45) could be typed as 1 2 3,4 5 or 1©2©3*,4*5 
subgroupLabel = new Label("Enter a subgroup: "); 
II these are to be permutations in a subgroup made up of 
II cycles (separated by ,s) which are separated by ;s 
II for example: {e, (12)(34), (13)(24), (14)(23)} 
II could be entered as 1; 1 2, 3 4; 1 3, 2 4; 1 4, 2 3 

II if this field is filled, the program will permute (left permutation) 
II each of the elements in the subgroup with the permutation 
II entered in the top field 
II the result of the example entries is: 
II {(123)(45), (3541), (2543), (2154)} 

II else if the bottom field is left blank, the program will find 
II the simplification of the cycles entered above 
II the result of only typing the first entry is: (45)(123) 

inputField = new TextField(); 
subgroupField = new TextField(); 
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} 

Panel inputPanel = new Panel(); 
inputPanel.setLayout(new GridLayout(2, 2)); 
inputPanel.add(inputCycleLabel); 
inputPanel.add(inputField); 
inputPanel.add(subgroupLabel); 
inputPanel.add(subgroupField); 
add("North", inputPanel); 

answerArea = new TextArea(); 
add("Center", answerArea); 

Button simplifyButton = new Button("Simplify"); 
simplifyButton.addActionListener(new SimplifyButtonListener()); 
add("South", simplifyButton); 

addWindowListener( 
II taken from example in Intermediate Computing (Dr. Wallingford) 

new WindowAdapter() 
{ 

} ) ; 

public void windowClosing( WindowEvent e) 
{ 

System.exit(O); 
} 

private class SimplifyButtonListener implements ActionListener 
{ 

public void actionPerformed( ActionEvent e) 
{ 

String input= inputField.getText(); 
String subgroupString = subgroupField.getText(); 

if (! input.equals("")) 
II if there is a cycle to permute do the following, else do nothing 
{ 

String[] inputCycleList = input.split(","); 
if (! subgroupString.equals("")) 
II if there are elements for a subgroup listed below 
{ 

answerArea.setText( 
findCoset(subgroupString.split(";"), inputCycleList) ); 

} 
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} 

} 

} 

else II else if there is no subgroup listed 
{ 

answerArea.setText(simplify(inputCycleList)); 
} 

1/inputField.setText('"'); II optional clearing of the input field 

private String findCoset(String[] subgroupList, String[] inputCycleList) 
{ 

} 

String outputString = 1111
; 

String[] subgroupCyclesList; 
for (inti= O; i < subgroupList.length; i++) 
{ 

} 

subgroupCyclesList = subgroupList[i] .split(","); 
String[] newCycleList = new String[subgroupCyclesList.length + 

inputCycleList.length]; 
for (int j = O; j < inputCycleList.length; j++) 
{ II load the new list with the generating 

II cycle (the input cycles) on the left 
newCycleList[j] = inputCycleList[j]; 

} 

for (int k = inputCycleList.length; 
k < subgroupCyclesList.length + inputCycleList.length; k++) 

{ 

newCycleList[k] = subgroupCyclesList[k - inputCycleList.length]; 
} 

outputString += simplify(newCycleList) + 11 II• 

' 

return 11
{

11 + outputString. substring(O, outputString. length() - 2) + 11
}

11
; 

private String simplify(String[] inputCycleList) 
{ 

Vector<Cycle> cycleList = new Vector<Cycle>(); 
String elements; 

for (inti= O; i < inputCycleList.length; i++) 
{ 

elements= inputCycleList[i]; 
cycleList.add(new Cycle(elements.trim())); 

} 
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} 

} 

myPermutation.refill(cycleList); 
//String before= myPermutation.display(); //(*)option for 
// a before/after equation way of displaying results 
II for example: (123)(45) for the permutation cycles and 
I I {e, (12) (34) , (13) (24) , (14) (23)} 
//fora subgroup as seen above would produce the answer 
// {(123)(45)(1) = (123)(45), (123)(45)(12)(34) = (3541), 
// (123)(45)(13)(24) = (2543), (123)(45)(14)(23) = (2154)} 
// only entering the top permutation gives: (123)(45) = (45)(123) 

myPermutation.simplify(); 

//return before + 11 = 11 + myPermutation.displayO; // use this with 
//option(*) and comment out return statement below 
return myPermutation.display(); 
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