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Clinical Relevance of Choroidal Thickness in Obese and Healthy Children: A 
Machine Learning Study

Introduction
Childhood obesity is an exceedingly prevalent health issue in 

the world. The World Health Organization (WHO) has declared 
obesity as an “escalating global epidemic.”1 Worldwide, 22 
million children under the age of 5 years and 150 million school-
age children have been reported to be severely overweight, with 
the prevalence of childhood obesity estimated to be 10%.2 While 
there are several parameters to indicate a child’s nutrition and 
growth status, the parameter recommended by WHO is the 
Z-score. The Z-score system displays a set of standard deviations 
(SD) from the reference median or mean. It allows more accurate 
assessments by standardizing measurements based on age and 
gender.3 The Z-score system can be used to calculate a number of 
anthropometric values such as weight-for-age Z-scores, height-
for-age Z-scores (HAZ), weight-for-height Z-scores, and body 
mass index-for-age Z-scores (BMIZ). Body mass index (BMI) is 
the most frequently used metric in ophthalmological research to 
define children’s nutrition and development. However, BMIZ 
has been reported to be the most helpful technique for assessing 
obesity.4

Obesity has been associated with multiple ocular diseases, 
including cataract, glaucoma, dry eye, diabetic retinopathy, and 
age-related macular degeneration.5,6,7 Although the reason for 
the relationship between obesity and eye diseases is unclear, it 
is thought to be related to obesity-related chronic oxidative 
stress, endothelial dysfunction, and vascular damage.6 Changes in 
choroidal thickness are also observed in various systemic diseases, 
including diabetes, hypertension, and endocrine diseases.8,9 
There are a few studies on the effects of obesity on the eyes, 
but no detailed assessment of macular choroidal thickness 
(MCT) and peripapillary choroidal thickness (PPCT) has been 
conducted.10,11,12 
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Abstract

Objectives: To analyze the effect of macular choroidal thickness (MCT) 
and peripapillary choroidal thickness (PPCT) on the classification of obese 
and healthy children by comparing the performance of the random forest 
(RF), support vector machine (SVM), and multilayer perceptrons (MLP) 
algorithms.

Materials and Methods: Fifty-nine obese children and 35 healthy 
children aged 6 to 15 years were studied in this prospective comparative 
study using optical coherence tomography. MCT and PPCT were measured 
at distances of 500 µm, 1,000 µm, and 1,500 µm from the fovea and optic 
disc. Three different feature selection algorithms were used to determine 
the most prominent features of all extracted features. The classification 
efficiency of the extracted features was analyzed using the RF, SVM, and 
MLP algorithms, demonstrating their efficacy for distinguishing obese 
from healthy children. The precision and reliability of measurements were 
assessed using kappa analysis.

Results: The correlation feature selection algorithm produced the most 
successful classification results among the different feature selection 
methods. The most prominent features for distinguishing the obese and 
healthy groups from each other were PPCT temporal 500 µm, PPCT 
temporal 1,500 µm, PPCT nasal 1,500 µm, PPCT inferior 1,500 µm, 
and subfoveal MCT. The classification rates for the RF, SVM, and MLP 
algorithms were 98.6%, 96.8%, and 89%, respectively.

Conclusion: Obesity has an effect on the choroidal thicknesses of 
children, particularly in the subfoveal region and the outer semi-circle at 
1,500 µm from the optic disc head. Both the RF and SVM algorithms are 
effective and accurate at classifying obese and healthy children.

Keywords: Choroidal thickness, feature selection, machine learning, 
obese children, optical coherence tomography
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Due to advances in computing technology, artificial 
intelligence has begun to replace conventional parametric tests 
in data analysis. Machine learning, the most important subset of 
artificial intelligence, makes it possible to interpret information, 
classify data, and make predictions for the future by analyzing 
the structures and texture patterns of a large number of computer 
data.13,14 Machine learning algorithms have been found to 
be more efficient, effective, and accurate than conventional 
statistical methods in the analysis of a large number of complex 
data.13,15,16 

The random forest (RF) algorithm is a grouping, correlation, 
and other task-specific ensemble learning process.17 Support 
vector machine (SVM) is a regulated classification algorithm with 
learning techniques for classification and correlation analysis. 
The SVM algorithm successfully allows multidimensional 
and nonlinear classifications.18 Multilayer perceptrons (MLP) 
is a well-known correlation algorithm for determining the 
relationship between a continuous dependent variable and two 
or more independent variables.19

Several image classification studies have been conducted in 
the field of ophthalmology to classify different eye conditions. 
Dong et al.20 conducted a study on eye state estimation with 
various feature sets using RF, random ferns, and SVM and 
reported high success with random forest/ferns. In another study, 
Agarwal et al.21 demonstrated the feasibility of a multilayer-
based methodology in detecting cataracts with a success rate 
of 94% and 75% with SVM and MLP, respectively. Improta 
et al.22 studied the eye-tracking patterns of newborns 
acquired by electrooculography and infrared oculography to 
detect congenital nystagmus. They demonstrated the feasibility 
of a regression analysis performed through machine learning 
algorithms like RF, logistic regression tree, gradient boosted tree, 
K-nearest neighbor, MLP, and SVM to detect variables related 
to congenital nystagmus. Avilés-Rodríguez et al.23 performed 
a quality assessment of eye fundus images acquired by digital 
fundoscopy with topological data analysis and machine learning 
methods like SVM, decision tree, k-NN, random forest, logistic 
regression (LoGit), and MLP. da Cruz et al.24 studied dry eye 
syndrome classification using machine learning algorithms like 
SVM, RF, naive Bayes, MLP, random tree, and RBF Network 
and reported the highest performance using the RF classifier 
(97% accuracy). 

In this study, we examined and compared the performance of 
RF, SVM, and MLP algorithms in the classification of obese and 
healthy children based on differences in MCT and PPCT. We 
aimed to examine the impact of childhood obesity on choroidal 
thickness and to recognize early clinical changes that could pose 
a risk for multiple ocular diseases by using machine learning 
algorithms, a modern method of analysis.

Materials and Methods

This research was reviewed by an independent ethical review 
board and conformed to the principles and applicable guidelines 
for the protection of human subjects in biomedical research.

In this prospective comparative study, healthy and obese 
children between 6 and 15 years of age who presented to the 
departments of pediatrics and ophthalmology for routine follow-
up were recruited from 1 June 2020 to 1 December 2020. The 
exclusion criteria were as follows: presence of chronic diseases 
such as diabetes, hypertension, heart disease, and obstructive 
sleep apnea syndrome; history of any medication use; ocular 
diseases such as strabismus, cataracts, glaucoma, amblyopia, 
uveitis, optic disc anomaly, and retinal disease; history of prior 
eye surgery; more than 2 diopters of spherical or cylindrical 
refractive error; corneal, lens, or vitreous opacity which does not 
allow quality optical coherence tomography (OCT) imaging; and 
insufficient cooperation for OCT imaging.

Physical Examination
Height and weight measurements were taken using a digital 

scale and a wall-mounted Harpender stadiometer. Z-scores were 
determined using the WHO AnthroPlus software (www.who.
int/tools/growth-reference-data-for-5to19-years/application-
tools). Obesity was defined as greater than +2 SD, while 
normal weight was defined as between 1 and +1 SD for both 
BMIZ and HAZ.3 After a resting period, blood pressure was 
measured using an automatic sphygmomanometer (Omron M2 
HEM7121E, Omron Healthcare Co, Japan) at least three times 
within a 10-minute period. Blood pressure was measured as the 
average of a total of three consecutive measurements taken after 
the required resting time. Children with systolic and/or diastolic 
blood pressure levels greater than the 95th percentile were 
defined as hypertensive.25

Ophthalmological Examination
A detailed ophthalmological examination, including 

measures of best-corrected visual acuity, spherical equivalent, slit-
lamp biomicroscopy, intraocular pressure (IOP), central corneal 
thickness (CCT), axial length (AXL), and anterior chamber depth 
(ACD), and OCT imaging were performed for each participant 
by an experienced ophthalmologist. Only the participants’ 
right eyes were included in the study. Autokeratorefractometry 
(Topcon KR-800, Topcon Medical Systems, Inc., Fukuoka, 
Japan) was used for refractive measurements. IOP was measured 
using Goldmann applanation tonometry and CCT was measured 
using a non-contact tonopachymeter (NT-530P, Nidek Co., 
Gamagori, Japan). AXL and ACD were measured using optic 
biometry (Nidek Axial Length-Scan, Nidek Co., Gamagori, 
Japan). Retinal and choroidal thicknesses were assessed using 
Spectralis OCT (Cirrus HD OCT, Carl Zeiss Meditec, Dublin, 
CA, USA).

All OCT imaging and evaluations were performed by the 
same experienced ophthalmologist without pupil dilatation. All 
examinations were performed between 9:00 and 11:00 a.m. to 
reduce diurnal variances. Retinal thickness and mean ganglion 
cell layer and inner plexiform layer (GCL + IPL) thickness were 
measured using automated segmentation values of the Spectralis 
OCT system with a macular cube position of 512x128. The 
OCT HD 1-line-EDI protocol’s high-resolution scan through 
the fovea was used for MCT measurements. Choroidal thickness 
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was assessed manually from the outer edge of the hyperreflective 
line corresponding to the retinal pigment epithelium to the 
inner layer of the sclera. MCT measurements were performed 
at the foveal center and at distances of 500 µm, 1,000 µm, 
and 1,500 µm nasally and temporally from the foveal center. 
For PPCT assessment, scans were carried out in vertical and 
horizontal planes through the middle of the optic disc using the 
OCT HD 5-Line Raster-EDI protocol.26 In this scan, the optic 
disc is divided into two equal sections in both the horizontal and 
vertical planes. Then, in each of the nasal, temporal, superior, and 
inferior regions, PPCT measurements were taken at distances of 
500 µm, 1,000 µm, and 1,500 µm from the optic disc margin 
(Figure 1). Both MCT and PPCT measurements were performed 
at 100% magnification by two masked ophthalmologists (E.B., 
O.D.) during different sessions for inter-observer reproducibility. 
The OCT Disc Cube 200x200 protocol was used for retinal nerve 
fiber layer thickness (RNFLT) and cup-to-disc ratio analysis. 
Superior, inferior, nasal, temporal, and average RNFLT values 
were calculated automatically. 

Data Analysis

Feature Extraction and Selection
We manually measured all the features considered significant 

and tested whether these parameters validated our hypothesis or 
not. All of the manually extracted features are given in Table 1.

Feature selection techniques are based on the procedure 
of selecting the most important parameters. Feature selection 
primarily focuses on removing non-informative or irrelevant 
predictors from the model to minimize the number of parameters. 
The classification efficiency of different systems is influenced by 
their capabilities in data classification. In order to produce an 
easier, faster, and efficient classification system, we used three 
feature selection algorithms: variable ranking (VR), correlation 
feature selection (CFS), and principal component analysis (PCA). 
All the extracted features were entered into the VR, CFS, and 
PCA algorithms, and the most prominent features were selected 
to form the feature vector. This feature vector is used as an input 
for the classification algorithms (Figure 2).

Classifiers for Machine Learning
After the feature selection process, we looked at how well 

RF, SVM, and MLP performed with the selected prominent 
features and compared them to see if they could differentiate 
between obese and healthy children. We analyzed and compared 
the efficiency of RF, SVM, and MLP based on selected features. 
The efficiency of the different algorithms can vary, since they 
are structured differently. RF works through building a large 
number of decision trees during training and then extracting 
the test.17,18 The SVM algorithm uses a training dataset to assign 
characteristics to just one or another subclass, making it a binary 
and linear classifier that cannot be predicted.18 MLP is often 
used to determine which variable has the largest influence on 
the expected output and which variables relate to each other.19 

Artificial intelligence-based categorization systems may 
be measured using precision (positive predictive), recall 

(sensitivity), and F-measure. Unlike precision, which only 
looks at correct positive predictions, recall also looks at positive 
predictions that did not come true. The F-measure gives us 
the harmonic mean of the values of precision and recall. The 
primary purpose of utilizing the F-measure value is to avoid 
selecting an inappropriate model of non-uniformly distributed 
datasets. The F-measure is a method for combining precision 
and recall into a single measure that includes all qualities. We 
conducted kappa analysis to assess the reliability and accuracy of 
our measurements. The kappa value ranges from 0 to +1. System 
reliability improves as the kappa value approaches 1.27

Results

This study included 59 obese children (35 girls, 24 boys) as 
the study group and 35 healthy children (21 girls, 14 boys) as 
the control group.

The CFS algorithm produced the most successful classification 
results among the three different feature selection methods. The 
CFS algorithm determined that subfoveal choroidal thickness is 
the most distinguishing feature, along with PPCT measurement 
locations including temporal 500 µm, temporal 1,500 µm, 
nasal 1,500 µm, and inferior 1,500 µm. In addition to these 

Figure 1. Example of macular and peripapillary choroidal thickness measurements 
(right eye). A) Macular choroidal thickness was measured at the central fovea (left 
panel: line denotes where the scan was taken relative to the fundus; right panel: 
lines show the measurement sites in the nasal (left) and temporal (right) quadrants. 
B) Peripapillary choroidal thickness measurements on the horizontal plane through 
the center of the optic disc (left panel: lines denote where the scan was taken relative 
to the fundus; right panel: lines show the measurement sites in the nasal (left) and 
temporal (right) quadrants. C) Peripapillary choroidal thickness measurements in 
the vertical plane through the center of the optic disc (left panel: lines denote where 
scan was taken relative to the fundus; right panel: lines show the measurement sites 
in the superior (right) and inferior (left) quadrants)
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features, the PCA algorithm selected the spherical equivalent 
value feature. However, when the spherical equivalent feature 
was absent, the classification results showed a higher success rate.

A 10-fold cross-validation process was used to test the 
stability and reliability of the RF, SVM, and MLP algorithms. 
The dataset was divided into two sections, with 70% of the data 
used for training and 30% for testing. To reduce selection bias, 
random sampling was conducted ten times to generate separate 
training and testing sets from the dataset.

The confusion matrix and classification rates of the RF, 
SVM, and MLP algorithms to classify children as normal or 
obese according to choroidal thickness are shown in Table 2. 
The overall accuracy rate of our system was 98.9% based on RF, 
96.8% based on SVM, and 89.4% based on MLP.

Although the RF and SVM algorithms were equally successful 
at classifying the healthy group, RF was more successful in 
tagging the obese group. While the RF algorithm identified all 

obese data sets correctly, the SVM algorithm incorrectly classified 
two obese datasets as healthy. The BMIZ values of misclassified 
children were respectively 2.01 and 2.02. The thickness of the 
choroidal layer differed between obese and healthy children, and 
this difference was crucial in classifying groups using both the 
RF and SVM algorithms.

Despite using different learning rates and architecture, 
success with the MLP algorithm only increased from 85.83% 
to 89.36%. The reason for this small change is most probably 
because the dataset is limited, falls into the local extremum, and 
lacks spatial information.

The overall precision rate was high for RF (98.9%) and SVM 
(96.8%) but was relatively unsatisfactory for the MLP system 
(89.4%). Similarly, the overall F-measurement results of RF and 
SVM were both high (98.9% and 96.8%, respectively), whereas 
the result of MLP was low (89%). The overall recall rates for the 
RF and SVM systems were also 98.9% and 96.8%, respectively. 

Figure 2. Flow chart of the proposed recognition system

Table 1. All extracted features

Physical examination-
based features

Ocular 
examination-based 
features

OCT imaging-based PPCT 
features

OCT imaging-based 
MCT features

OCT imaging-based other 
features

Age
Sex
Height
Weight
BMI
BMIZ
HAZ
Systolic BP
Diastolic BP

Spherical equivalent
AXL
ACD
IOP
Pachymetry

PPCT temporal 500
PPCT temporal 1000
PPCT temporal 1500
PPCT nasal 500
PPCT nasal 1000
PPCT nasal 1500
PPCT superior 500
PPCT superior 1000
PPCT superior 1500
PPCT inferior 500
PPCT inferior 1000
PPCT inferior 1500

MCT fovea
MCT temporal 500
MCT temporal 1000
MCT temporal 1500
MCT nasal 500
MCT nasal 1000
MCT nasal 1500

GCL + IPL complex thickness
MT
Average c/d ratio
Vertical c/d ratio
RNFLT temporal
RNFLT nasal
RNFLT superior
RNFLT inferior
RNFLT average 

ACD: Anterior chamber depth, AXL: Axial length, BP: Blood pressure, BMI: Body mass index, BMIZ: BMI-for-age Z-score, c/d: Cup-to-disc, GCL + IPL: Ganglion cell layer + inner plexiform 
layer, HAZ: Height-for-age Z-score, IOP: Intraocular pressure, MCT: Macular choroidal thickness, MT: Macular thickness, OCT: Optical coherence tomography, PPCT: Peripapillary choroidal 
thickness, RNFLT: Retinal nerve fiber layer thickness



165

Bulut et al. Machine Learning-Based Choroidal Thickness Analysis

However, recall values for the obese group for the RF and SVM 
systems were 100% and 96.6%, respectively, which confirms the 
power of the proposed system’s capability to recognize choroidal 
thickness measurements (Table 2). The average recall rate for 
the MLP system was 89.4%. However, the recall values of the 
obese and healthy groups were 98.3% and 74.3%, respectively 
(Table 2).

Reliability analysis yielded kappa coefficients of 0.9771, 
0.9305, and 0.7600 for RF, SVM, and MLP, respectively.

Discussion

According to the findings of the current study, obesity had 
an effect on choroidal thickness at specific measurement regions 
but not at all measurement sites. The results suggest that 
obesity-related metabolic alterations affect choroidal thickness, 
particularly in the subfoveal region and the outer semi-circle at 
1,500 µm from the optic disc head. This study is noteworthy 
because it not only comprehensively assessed choroidal thickness 
in obese children, but also utilized machine learning techniques 
in its analysis.

There are a few studies in the literature that assess the 
impact of childhood obesity on ocular structures. Baran et al.10 
found that obese children had higher IOP and lower RNFLT 
than healthy children and reported that childhood obesity may 
contribute to the development of glaucoma. They assessed 
choroidal thickness in the central subfoveal region alone and 
discovered no statistically significant differences. However, 
they did not conduct a comprehensive evaluation of MCT and 
PPCT. Bulus et al.11 determined that obese children had thicker 

MCT than healthy children, but they did not evaluate PPCT. 
Additionally, they also used the BMI SD score, which is equal 
to the BMIZ for childhood nutrition and growth classification 
reported by the WHO in 2006. Bulus et al.11 reported a strong 
positive correlation between BMI SD score and subfoveal MCT. 
Consistent with this study, we found that subfoveal MCT is 
affected by obesity and is a distinguishing feature between the 
obese and control groups.

While there are several literature studies assessing MCT in 
various diseases, there are few studies evaluating PPCT. Read et 
al.28 identified normal PPCT values and variations in healthy 
children and confirmed that myopic refractive errors cause a 
reduction in PPCT. Ozcimen et al.29 documented thinning in 
both PPCT and MCT in chronic obstructive pulmonary diseases. 
They attributed the choroidal thinning to vascular resistance 
resulting from hypoxia. Komma et al.30 evaluated PPCT and 
subfoveal choroidal thickness in healthy subjects and glaucoma 
patients using spectral domain OCT and swept-source OCT. 
They discovered that choroidal thickness was significantly 
thicker in glaucoma subjects than controls in the peripapillary 
region, but not in the macular region on swept-source OCT.

This is the first research that we are aware of that evaluates 
PPCT in childhood obesity. Furthermore, conventional statistical 
methods have been employed in previous studies, including 
choroidal evaluation in various disorders. There is no prior study 
in the current literature that evaluates both MCT and PPCT 
using machine learning algorithms.

In machine learning, feature selection helps boost classification 
efficiency by avoiding over-fitting, creating a time-saving model, 
and making the designed model more human-friendly. There are 

Table 2. Classification results of obese and healthy children based on choroidal thickness by algorithm

TP rate FP rate Precision Recall F-measure Confusion matrix

Random forest algorithm

Obese 1 0.029 0.983 1 0.992 59 0

Normal 0.971 0.000 1 0.971 0.986 1 34

Weighted average 0.989 0.018 0.990 0.989 0.989   

Support vector machine algorithm

Obese 0.966 0.029 0.983 0.966 0.974 57 2

Normal 0.971 0.034 0.944 0.971 0.958 1 34

Weighted average 0.968 0.031 0.968 0.968 0.968   

Multilayer perceptrons algorithm

Obese 0.983 0.257 0.866 0.983 0.921 58 1

Healthy 0.743 0.017 0.963 0.743 0.839 9 26

Weighted average 0.894 0.168 0.902 0.894 0.890   

TP: True positive, FP: False positive
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several feature selection approaches in the literature to minimize 
the number of features for classification purposes. Different 
subsets can be created with each feature selection method. We 
ran all of the data through a feature selection process using 
three different algorithms: VR, CFS, and PCA. None of the 
parameters associated with MCT and PPCT were excluded in 
any of the three analyses, and they were found to be distinctive 
in all of them. According to the results, obese and healthy 
children have significantly different choroidal thicknesses at 
specific measurement regions. These measurement regions were 
PPCT temporal 500 µm, PPCT temporal 1,500 µm, PPCT 
nasal 1,500 µm, PPCT inferior 1,500 µm, and the subfoveal 
region. In the PCA algorithm, spherical equivalent value 
was chosen in addition to the distinguishing features chosen 
in the CFS algorithm. There was no statistically significant 
difference between the two groups’ spherical equivalent values. 
The CFS algorithm outperforms PCA in classification because 
the spherical equivalent value was not a distinguishing feature 
for these groups. While machine learning algorithms identify 
distinct features in classification for the two groups, they do 
not show the relative value of these features in each group. As 
machine learning algorithms reveal the importance of features, 
classification is performed on all of the selected features.

In this study, we compared the results of three different 
classification algorithms (RF, SVM, and MLP) because it is 
difficult to predict which machine learning algorithm will 
perform better in classification. We selected RF because it is a 
good comparison and classification technique and can detect 
outliers very well. SVM is a very robust technique for solving 
high-dimensional problems and creating accurate classifications. 
MLP is an accessible technique with the ability to create a simple 
architecture, easily build it, and quickly calculate the model. The 
risk of falling into the local extremum, weak overfitting skills, a 
lack of theoretically-based rigid design programs, and difficulty 
managing the training program are disadvantages of the MLP 
algorithm. SVM may be more determinant in some cases, 
even though the RF algorithm is generally more successful in 
classification. We had several difficulties applying the SVM and 
MLP algorithms because of the limited and unbalanced datasets 
used in this study. To overcome this challenge, we focused on 
kernel selection, which had an effect on the kernel’s success 
in implementing the SVM algorithm. We used polynomial 
and radial base kernels to improve classification efficiency by 
reducing our margin of error. Additionally, the success of the 
MLP algorithm was influenced by the network structure. The 
more complicated the network’s structure, the more successful 
it will be. However, we did not increase the number of layers in 
order to reduce the margin of error.

While RF produces better results against outliers and 
noise than SVM, it is not as successful in handling the 
dataset imbalance problem. Although our dataset was slightly 
unbalanced, the results with RF were quite successful. MLP was 
found to be less successful than SVM and RF in the classification 
according to choroidal thickness.

The MLP algorithm had the highest rate of misclassification 
of all of the classification techniques. The MLP algorithm 
misclassified ten children, three of whom were also misclassified 
by the SVM algorithm. We found no similarities in terms of 
features such as height or weight in cases misclassified by the 
MLP algorithm. In terms of group classification, we discovered 
that the SVM algorithm outperformed the MLP algorithm. The 
main reason for misclassification based on the SVM algorithm 
may be that the children were at the threshold of obesity 
according to their BMIZ values. As a result, the classification 
success of the SVM algorithm is higher in obese cases with high 
BMIZ values.

The performance of machine learning algorithms, as well 
as the complexity of the models used, are influenced by the 
quality and quantity of data. To the best of our knowledge, 
there is no open dataset in the literature that is comparable to 
our dataset. The drawback of our analysis is the limited size of 
the dataset. However, the majority of medical research faces 
difficulty in achieving a sufficient number of cases. Obtaining 
large quantities of high-quality data for medical research is a 
time-consuming and difficult task. There is medical research in 
the literature that uses machine learning algorithms with small 
datasets. Ruiz Hidalgo et al.31 used machine learning algorithms 
to classify keratoconus using five Pentacam-derived parameters 
of 131 eyes. An et al.32 developed classification criteria that 
could aid in the clinical management of glaucoma by using 
machine learning algorithms to classify 163 glaucomatous optic 
discs. Cartes et al.33 evaluated the variability of tear osmolarity 
in 20 patients with dry eye using machine learning techniques. 
It has been demonstrated that machine learning algorithms can 
conduct self-diagnosis and classification analyses of OCT images 
with high accuracy, speed, and consistency.34 However, in the 
classification tests, we measured kappa values to ensure that the 
small dataset did not affect the reliability of our results and to 
maximize success. The kappa value is a measure that contrasts 
the observed precision with the predicted precision (random 
chance). This is a far more reflective indicator of model efficiency. 
Kappa values were measured as 0.9771, 0.9305, and 0.7600 for 
the RF, SVM, and MLP analyses, respectively. According to the 
kappa statistics, RF is the most accurate test, but the reliability 
of SVM is also very similar to RF. Despite the limited number 
of datasets, kappa analyses showed that both RF and SVM were 
very successful and reliable in the classification of obese and 
healthy children.

Conclusion

The current study indicates that MCT and PPCT differ in 
obese and healthy children and are effective in the categorization 
of these two groups using machine learning algorithms, especially 
when the RF or SVM algorithms were used. Additionally, obesity 
was shown to impact choroidal thickness in certain regions when 
compared to healthy children. The current study emphasizes the 
importance of subfoveal MCT as well as PPCT measurements in 
some regions (including temporal 500 µm, temporal 1,500 µm, 
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nasal 1,500 µm, and inferior 1,500 µm) in classifying children as 
obese or healthy. To improve classification performance, further 
deep learning studies with larger datasets are needed.
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