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Actions in the real world have immediate sensory consequences. Mimicking

these in digital environments is within reach, but technical constraints usually

impose a certain latency (delay) between user actions and system responses.

It is important to assess the impact of this latency on the users, ideally with

measurement techniques that do not interfere with their digital experience.

One such unobtrusive technique is electroencephalography (EEG), which can

capture the users’ brain activity associated with motor responses and sensory

events by extracting event-related potentials (ERPs) from the continuous EEG

recording. Here we exploit the fact that the amplitude of sensory ERP components

(specifically, N1 and P2) reflects the degree to which the sensory event was

perceived as an expected consequence of an own action (self-generation e�ect).

Participants (N = 24) elicit auditory events in a virtual-reality (VR) setting by

entering codes on virtual keypads to open doors. In a within-participant design,

the delay between user input and sound presentation is manipulated across

blocks. Occasionally, the virtual keypad is operated by a simulated robot instead,

yielding a control condition with externally generated sounds. Results show that

N1 (but not P2) amplitude is reduced for self-generated relative to externally

generated sounds, and P2 (but not N1) amplitude is modulated by delay of

sound presentation in a graded manner. This dissociation between N1 and P2

e�ects maps back to basic research on self-generation of sounds. We suggest

P2 amplitude as a candidate read-out to assess the quality and immersiveness of

digital environments with respect to system latency.
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1. Introduction

Since the beginning of digital technologies, determining suitable values for system

latency has been a topic of scientific and practical interest (for a review, see Attig et al.,

2017). System latency refers to the time interval between the user’s input (e.g., pressing a

button) and the system’s response (e.g., producing a sound or updating the screen). Ideally,

the system’s response should follow the user’s input at close-to-zero latency to mimic real-

world physical interactions, yet this is impossible to achieve due to hardware and software

constraints (e.g., Stauffert et al., 2016). Thus, instead of instantaneous system responses,
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digital technologies strive for responses at acceptable latencies.

In determining what is acceptable, two aspects of system latency

need to be distinguished: latency delay refers to the average time

interval between user input and system response, while latency

jitter refers to trial-to-trial variation in the time interval between

user input and system response. Here we focus on latency delay

and ask whether we can exploit the users’ brain activity (measured

via electroencephalography, EEG) to differentiate between latency

delays in a virtual reality (VR) environment, using brain activity to

system events not caused by user input as a reference.

There is consensus that strongly delayed system responses

render the digital experience less natural, reduce the feeling of

presence (i.e., “being there,” Skarbez et al., 2018) in the virtual

environment, impede user performance as well as satisfaction with

and acceptance of the system, and even cause motion sickness in

some users (e.g., Stoner et al., 2011). At the same time, even in

real-world physical systems humans are exposed to small delays

(e.g., in the case of sound, as a consequence of travel time) and

can learn to tolerate uncommon (yet reasonable) amounts of

temporal mismatch between action and sensory consequence (e.g.,

Elijah et al., 2016; van Dam and Stephens, 2018). This adaptive

capability might alleviate the need for extremely small latency

delays. Exploiting this while avoiding the negative consequences

of strongly delayed system responses requires an understanding

of feasible boundaries of latency delay. Latency guidelines usually

recommend specific limits for acceptable system delay; however,

these recommendations are inconsistent across different guidelines

(Attig et al., 2017). Inconsistencies are partly due to the methods

chosen for evaluating the suitability of delay values, and partly due

to actual differences in suitable values depending on the virtual

environment and the nature of the interaction.

The adequacy of system latencies can be probed with different

methods. First, participants can be asked to directly judge the

system latency (e.g., Seow, 2008). This user-judgment approach has

some downsides, the most prominent one being that asking the

question frequently (“Do you have the impression that the system

responds immediately to your actions?”) interferes with the process

being measured—it reminds the user of the separation between the

physical and virtual environments. It might even put the user into

a “test mode” (Liebold et al., 2017) in which they devote attention

to aspects of the virtual environment that they would not notice

otherwise, leading to biased estimates of the actual effects of system

latency. To avoid these complications, a second possibility is to

measure the adequateness of system latency based on observable

user behavior (i.e., without asking users). One can take measures

of user performance (e.g., time and accuracy of completing certain

tasks) and study whether task performance suffers from poor

system latencies (e.g., Martens et al., 2018). This performance-

based approach complements the judgment-based approach, with

performance decrements even preceding the users’ awareness of

poor system latencies in some cases (Martens et al., 2018). Yet the

user-performance approach requires precise knowledge of what the

user is trying to achieve in order to interpret performance data in a

meaningful way.

These challenges have led to a quest for psychophysiological

methods that allow an unobtrusive on-line evaluation of the

user state, including their currently experienced (in)adequacy of

system latency. One approach is the measurement of breaks in

presence (Slater and Steed, 2000): If the user experiences a sudden

interruption in their interaction with the virtual environment,

such as caused by a system glitch in terms of latency, this

is reflected in physiological responses (Liebold et al., 2017)

similar to a classical orienting response (OR; Sokolov, 1975). The

promise of this approach is to turn the logic around for an

unobtrusive on-line evaluation:Whenever anOR-like physiological

signature is observed, system properties (including latencies)

must be inspected for their adequacy. A challenge with this

approach is that OR-like transient changes are ambiguous: Instead

of breaks in presence, they could be due to more unspecific

variation in user state, or they could constitute physiological

responses to actual events in the virtual environment. To avoid

these ambiguities, it is desirable to develop an approach that

maintains the unobtrusive psychophysiological on-line evaluation

while increasing the specificity of the inference (Wang and Suh,

2021).

In order to evaluate system latency more directly by

psychophysiological methods, here we propose to use brain activity

measured via EEG, and to capitalize on prior knowledge about EEG

changes caused by sensory and motor events. From a continuous

EEG recording, event-related potentials (ERPs) can be extracted,

reflecting the brain’s response to a particular event (e.g., a motor

act or a sensory stimulus). From basic EEG and ERP research,

it is well known that sensory ERPs are influenced not only by

the physical properties of the eliciting sensory event, but also

by the “inner state” of the recipient. Besides attentional aspects,

a key factor is the predictability of the event (Baldeweg, 2006;

Bendixen et al., 2009; Friston, 2010). All other things being

equal, predictable sensory events elicit lower ERP responses than

unpredictable events (see reviews by Bendixen et al., 2012; Denham

and Winkler, 2017). Among the most predictable sensory events

are those that were generated by the recipient him- or herself: We

are not surprised by the sensory consequences of our own actions

(Blakemore et al., 2000). The brain achieves this by activating a

template of the predicted stimulus before any information reaches

our sensory organs (SanMiguel et al., 2013a). If, however, the

sensory consequences of the action do not match our expectations

due to a production error (Sitek et al., 2013) or due to an

external manipulation of the sensory stimulus (Heinks-Maldonado

et al., 2005), the sensory ERP response increases back up to the

level of an externally generated (thereby unpredictable) event.

With appropriate control conditions, the amplitude of the sensory

ERP response (more specifically, of the N1 and P2 components,

see SanMiguel et al., 2013b) can thus be taken to reflect the

degree to which the sensory event was perceived as an expected

consequence of an own action. This so-called N1/P2 suppression

or self-generation effect is a well-established finding in cognitive

neuroscience, notwithstanding ongoing discussion of the precise

mechanisms underlying it (e.g., review by Horváth, 2015).

Here we transfer the self-generation effect to the context

of a virtual environment in order to assess ERP correlates of

system latency. We hypothesize that sensory events in the VR

that are generated by user actions show a characteristic reduction

in ERPs relative to the same events being externally generated

(i.e., a replication of the self-generation effect) as long as the
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events follow the user action with short latency delay. We further

hypothesize that with considerable latency delay, users no longer

perceive the sensory events as reliably resulting from their actions,

and thus the ERPs resemble those of externally generated events

(akin to Blakemore et al., 1999; for perceptual judgments). If

these hypotheses can be confirmed, the ERPs could in turn be

used as a readout of the suitability of system latency. Because

the assessment rests on a comparison of ERPs elicited by specific

self- vs. externally generated events precisely locked in time, the

method is robust against unspecific variation in user state. Indeed,

prediction-related ERPs have already been suggested as a quality

metric for VR interactions (Gehrke et al., 2019, 2022). These

authors introduced temporal mismatches between different sensory

channels—specifically, between visual and haptic stimuli elicited by

a user action. They show that such mismatches elicit a prediction-

error-related ERP component, and illustrate how this could in turn

be used for detecting visuo-haptic conflicts in VR (see also Alsuradi

et al., 2021). Here we extend their approach for multisensory

mismatches toward motor-sensory delays.

To test whether prediction-related ERPs reflect system

latencies, a virtual environment is needed in which it is plausible

for users to frequently elicit sensory stimuli by their actions,

and in which the time delay of these stimuli is controllable in a

highly precise manner. While the latter is a technical requirement

that can be solved by (custom-built) hardware solutions, the

former is a conceptual requirement that calls for VR construction

in which transient sensory events can be naturally embedded.

Transient sensory events with clear onsets facilitate the observation

of the expected sequence of ERP components (e.g., P50-N1-

P2 for sounds; see Alain and Winkler, 2012). Auditory events

(as long as they are audible) lend themselves readily toward

such an approach as it is guaranteed that the physical onset of

the event will initiate physiological processing, independent of

the users’ current gaze direction or focus of attention. Indeed,

many previous studies in basic lab settings (i.e., without the VR

context) have used the auditory domain to study ERP correlates of

sensorimotor prediction. In these studies, participants are provided

with a response button to be pressed at certain time points. The

button press elicits a sound whose processing is then compared

against sounds appearing with no preceding button press (i.e.,

the externally-generated control condition). Several studies have

shown that prolonging the interval between button press and

sound onset (i.e., introducing delay) reduces the amount of N1/P2

suppression relative to an immediate presentation of the sound

(Whitford et al., 2011; Elijah et al., 2016; Oestreich et al., 2016;

Pinheiro et al., 2019). Pinheiro et al. (2019) argue for a temporal

integration window in sensorimotor processing of about 200 ms,

beyond which events would be perceived as externally generated.

Yet some other studies have shown that even strongly delayed (by

500 to 1,000 ms) sounds can still lead to suppression of the sensory

ERP components (Bäß et al., 2008). These conflicting results might

relate to the reduced experimental setting in which participants

actively wait for the sound to occur (since their task is to produce

it; Bäß et al., 2008). Indeed, it is notoriously difficult to control the

level of attention participants devote to the sounds in such tasks,

and thus it has been argued that some observed differences might

be confounded by attention (Saupe et al., 2013).

To move toward more naturalistic paradigms in which

participants are not waiting for the sensory consequences of their

actions, we propose to use motor acts that produce sounds more

incidentally. Specifically, we have participants enter codes on

virtual keypads to open doors in our VR. As with real keypads,

entering a digit-based code is accompanied by sound. Yet the

action’s purpose and thus the participant’s focus of attention is

to open the door—not to generate the sound. The door-opening

task makes use of the engaging nature of VR interactions and

creates an enriched context compared to the typically reduced

laboratory setting used to study sensorimotor prediction. The

VR scenario also allows for plausible inclusion of the necessary

control conditions: First, to study whether ERPs elicited by self-

generated sounds are reduced in amplitude relative to ERPs elicited

by externally generated sounds, we add a condition in which

the virtual keypad eliciting the sounds is operated by a robot

sphere, relieving participants from their task of opening the door

occasionally. Second, for a fair comparison of ERPs elicited by self-

generated and externally generated sounds, a motor-only control

condition is needed to separate the motor and auditory parts of

the self-generated sound ERP. This is realized by adding blocks

in which operating the virtual keypad does not issue any sounds.

Hence all conditions are embedded in the same VR scenario

with an engaging task and en passant presentation of sounds and

manipulation of their latency of occurrence.

In terms of latency delay between keypad operation and sound

presentation, we contrast five different values: 10 ms (which was

the lowest possible delay that could reliably be achieved with our

custom-built hardware shortcutting the software-based VR latency

delays), 50 ms and 100 ms (both of which are assumed to be

tolerable by users based on typical guidelines; Attig et al., 2017),

150 ms (which is assumed to be tolerable by some guidelines but

not others), and 300 ms (which is unanimously classified as too

long; Attig et al., 2017). The chosen values also correspond with

the ones used in non-VR-based settings manipulating latency delay

(Whitford et al., 2011; Elijah et al., 2016; Oestreich et al., 2016;

Pinheiro et al., 2019), thereby allowing for a direct comparison of

the results.

We examine whether sensory ERPs elicited by self-generated

sounds are modulated by latency delay in the described VR context,

and how this relates to VR sounds not generated by the user.

Finding a modulation by delay would add to the body of evidence

regarding latency effects in sensorimotor prediction (Whitford

et al., 2011; Elijah et al., 2016; Oestreich et al., 2016; Pinheiro et al.,

2019), and would be promising in terms of using this effect for an

unobtrusive evaluation of VR quality (akin to Gehrke et al., 2019,

2022).

2. Materials and methods

2.1. Participants

Twenty-four volunteers aged 19 to 35 from the Chemnitz

University of Technology community participated in the study

(20 women, 4 men; 22 right-handed, 2 left-handed; mean age:

23.9 years, SD: 3.5 years). Due to substantial artifacts in the
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FIGURE 1

Schematic representation of the setup. The technical setup includes three synchronized computers and custom-built hardware elements with

Arduino-based processing of touchpad responses detected by a copper wire coil to circumvent the VR controller’s usual response latencies.

Continuous lines indicate wired connections, dashed lines indicate wireless communication. See text for details.

EEG data, one participant’s data were excluded from ERP data

analysis (this participant was female and right-handed; mean

age of the remaining sample: 24.0 years, SD: 3.6 years). All

participants reported normal hearing and normal or corrected-

to-normal vision. The study procedures were approved by the

applicable local ethics review board (Ethikkommission HSW,

Chemnitz University of Technology, case no. V-346-PHSFKS-

Latenz-21072019). According to the Declaration of Helsinki, each

participant gave written informed consent before the beginning

of the experiment. This included full information about the

background of the study, including the fact that the investigation

aims at EEG correlates of latency differences. Participants were

compensated for their participation at 10 EUR/h or with

course credit.

2.2. Experimental stimuli and apparatus

2.2.1. Virtual reality (VR) system with custom-built
latency manipulation

Participants sat comfortably inside an electrically shielded and

acoustically attenuated chamber (IAC Acoustics, Niederkrüchten,

Germany) while performing the experimental task. The technical

setup is schematically depicted in Figure 1. The setup parts inside

the chamber are displayed by photograph on Figure 2A. For

immersion into VR, participants wore an HTC Vive Pro Eye

headset (HTC Corporation, Taoyuan City, Taiwan), featuring dual

OLED displays with a combined resolution of 2,880 x 1,600 pixels,

a screen refresh rate of 90 Hz, and a maximum field of view of

110◦. Computations were performed on a Bestware XMG NEO

17 laptop (AMD Ryzen 9 5900HX CPU, 32 GB RAM, Nvidia

RTX 3080 Mobile GPU). The built-in headphones of the HTC

Vive were replaced with a Sennheiser HD 25-1 (70Ω) headset. For

interactions with the VR, one of the HTC Vive’s bluetooth hand-

held controllers was used. To minimize input delay, a copper wire

coil was added to the surface of the controller’s touchpad, and the

end of another thin copper cable was attached to the participants’

thumb, using two small strips of adhesive tape. On contact, a

signal was elicited, amplified and then fed to an Arduino UNO

for processing. This allowed for near-instant detection of haptic

contacts, with an accuracy better than one-tenth of a millisecond.

To achieve latency control between controller input and sound

output, the Arduino would send a trigger to the PS/2 port of a

Linux-based PC upon detecting a haptic contact at the copper wire

coil attached to the controller. The Linux PC handled the script for

latency manipulation and generated the auditory stimuli, played

binaurally through the Sennheiser headphones. The minimum

latency delay that was achievable with this processing chain was

10 ms, thanks to the sub-millisecond detection of haptic contacts

circumventing the usual response time of the controller itself. The

auditory stimulus was a 1,000-Hz sine tone of 50ms duration

presented at 70 dB(A). The tones’ A-weighted sound pressure level

was measured using binaural microphones and a sound level meter

(Brüel and Kjær, Nærum, Denmark). Temporal synchronization

between the auditory stimuli and the EEG triggers was achieved by

connecting the EEG system (see below) with the parallel port of
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FIGURE 2

Snapshots of the VR setup and environment. (A) Head-mounted display (HMD), VR controller, headphones and EEG cap worn by the participant. The

VR tracking devices and EEG amplifier are not visible on the photograph; all other setup components are placed outside of the experimental

chamber. (B) View of the corridor from the participant’s perspective before a trial of the self-generated condition, with the green cylinder indicating

the teleportation destination located in front of the subsequent door. (C) Virtual keypad with shu	ed numbers where the door code has to be

entered. The valid combination is displayed in black letters above and below the number pad. The black beam indicates the pointing direction. (D)

View of the corridor before a trial of the externally generated condition, with the robot sphere floating in front of the door. (E) Keypad during the

robot trial. Participants activate the robot with the controller, the keypad is locked, and tones are generated by the simulated robot only.

the Linux PC. This allowed for the transmission of precisely timed

8-bit format triggers to differentiate between the experimental

conditions in the EEG data.

The Linux PC was operated on GNU/Arch Linux 4.5.1

containing the real-time kernel. Auditory stimulus generation

and timing were performed in MATLAB R2015b using the

Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).

The 3D assets for the VR were modeled in Blender (2.93) and

the final environment was implemented and operated in Unity

(2019.4.28f1), using the SteamVR plugin (2.7.3) to handle the

tracking of the VR devices and to access controller inputs from

within Unity. The VR space was set up in Windows 11 running

SteamVR (1.20.4).

2.2.2. EEG recordings
EEG data were continuously recorded from a total of

32 active AgCl electrodes using a stationary actiCHamp EEG

system (BrainProducts GmbH, Gilching, Germany). Twenty-seven

electrodes were placed in an elastic cap (actiCAP SNAP) and

positioned according to the international 10–20 system (Chatrian

et al., 1985). Five additional electrodes were placed at the left and

right mastoids, on the tip of the nose (serving as online reference)

and below the left and right eye, but lower than the standard

locations IO1 and IO2 to accommodate the VR headset (see

Figure 2A). The ground electrode was placed at Fpz. Impedances

were kept below 20 kΩ . EEG signals were amplified by the

actiCHamp EEG system, recorded with the BrainVision Recorder

software (Brain Products GmbH), and sampled at 500Hz with a

249Hz online lowpass filter to avoid aliasing.

To ensure compatibility with the head-mounted VR setup,

electrodes could not be as evenly distributed over the head as usual

in EEG experiments. In detail, the electrodes O1 and O2 could

not be used due to their position interfering with the back-strap

of the VR headset, and LO1 and LO2 would have collided with

the display enclosure of the HTC Vive. Instead of O1, O2, LO1

and LO2, additional measurements were taken from FCz, CPz, C1,

and C2. This denser spatial sampling at frontocentral electrodes

was chosen because it reflects the expected topography of auditory

ERP components (Alain andWinkler, 2012). The resulting 27 scalp

electrode locations were Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FCz,

FC2, FC6, T7, C3, C1, Cz, C2, C4, T8, CP5, CP1, CPz, CP2, CP6, P7,

Pz, and P8.

2.3. Procedure

The experiment consisted of 12 blocks in which participants’

task was to open doors by operating a virtual numeric keypad. In 10

of the 12 blocks, virtual keypresses generated auditory stimuli with

different input delays (10 ms/50 ms/100 ms/150 ms/300 ms, two

blocks per condition). The remaining two blocks served as motor-

control condition, in which participants performed the same task

but without auditory stimuli. Prior to the actual experiment and the
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preparation of the EEG recordings, participants underwent a VR-

only training, in which they were familiarized with the controls and

the task, and in which VR-inexperienced participants were able to

test their tolerance to VR. The training phase consistently used the

shortest latency condition (10ms), and participants completed an

entire block of trials. The scenarios presented in both the training

andmain experiments were identical. Specifically, participants used

seated VR to navigate through an approx. 2mwide corridor divided

into 4.3 m long sections by locked doors. The participants’ task

was to teleport to the next section of the corridor by directing

the HTC Vive controller held in their right hand toward the

designated teleportation marker located in front of the subsequent

door, followed by pressing the trigger button on the controller with

their index finger (Figure 2B).

Located at each door was a virtual numeric keypad that required

the entry of a four-digit combination to open. The valid access

code was constantly displayed above the numeric keypad, while

the input was made by pointing a black beam emanating from the

controller at a digit on the number pad, followed by confirming

the input through a light tap of the touchpad on the controller

using the participant’s thumb, without pressing the touchpad down

(Figure 2C). Each digit entry (except in the two motor-control

blocks) was followed by a brief sound occurring 10 ms, 50 ms,

100 ms, 150 ms, or 300 ms after activation of the touchpad

depending on the delay condition. Each touchpad activation and

the following sound represented one trial to which event-related

brain potentials were analyzed. To ensure a distinct temporal

separation of the ERPs, the speed with which the digits could be

entered was deliberately slowed down. First, the numeric keypad

was made larger than usual (55 cm x 85 cm), thereby prolonging

the time needed for moving the beam to the next digit’s position.

Second, the arrangement of the numbers on the keypad was

randomized for each door, thereby prolonging the time needed

for finding the next digit’s position. Finally, input was blocked

between consecutive digit entries for about one second, with the

pointing beam turning off 500 ms after an input (to avoid potential

visual effects during the targeted auditory ERP components)—and

turning on again after another 500 ms, each with a jitter of +/-

100 ms to prevent predictability. No visual feedback was provided

to the participants. The door would open only if the four digits were

entered correctly in sequence. If there was an incorrect entry, the

display would show ’FALSE!’ after the fourth input, and the entry

process had to be restarted.

The blocks with sounds included a replay condition to record

ERPs elicited by sounds without a motor act of the participant

(i.e., externally generated). After every three doors, the door

code input was taken over by a hovering robotic sphere that

would flawlessly enter the code and generate a four-tone sequence

(Figures 2D, E). The tone sequence was randomly selected without

replacement from the pool of self-generated tone sequences that

had been created by successful door openings of the participant in

that block.

In each block, 15 doors had to be opened by the participant.

In blocks with self-generated sounds, an additional 5 doors were

opened by the robot sphere (externally generated sounds). Within

a block, the delay of auditory stimuli remained constant. After

each block with sounds, participants were asked whether they had

noticed a delay between their button presses and the resulting

sounds, and their verbal answers were taken down. The question

did not enforce a strict choice between “yes” and “no,” but also

allowed for answers such as “unsure,” “slightly,” or “in some trials.”

Of the 12 blocks in the experiment, the first five blocks included

all five motor-auditory latency conditions exactly once, with the

order randomly selected for each participant. The sixth block was

always the condition without auditory stimuli (motor control). In

blocks 7–12, the order of the first six blocks was reversed.

The whole experimental session lasted approximately 3 h to

3.5 h, including instructions and VR training, electrode application,

the main task (1 to 1.5 h), electrode removal as well as ample breaks

for the participants to maintain motivation and prevent fatigue.

2.4. Data analysis

2.4.1. Participant judgments
Participants’ judgments of system latency were categorized as 0

(no delay noticed), 2 (clear delay noticed), or 1 (answers falling in

between the two extremes, including the participant being unsure,

reporting a slight or minimal delay, or noticing delay on some

trials but not others). The frequencies of the three categories were

calculated separately per latency level.

2.4.2. EEG data pre-processing
The EEG data were analyzed offline using MATLAB R2020b

(The MathWorks Inc., Natick, USA) and the toolbox EEGLAB

(Delorme and Makeig, 2004) version 2022.1. EEG data recorded

below the left and right eyes were excluded from all analyses, as the

placement of the electrodes (lower than the standard locations IO1

and IO2 to accommodate the VR headset) could not be maintained

at a pre-defined anatomical position for all participants. In fact,

these electrodes’ signal had no added value for artifact rejection

(eye-movement-related artifacts were hardly picked up there). For

the removal of stereotypical artifacts, EEG data were decomposed

into independent components (ICs) with the extended Infomax

algorithm (Bell and Sejnowski, 1995). Prior to and only for the

purpose of independent component analysis (ICA), a copy of the

raw data was high-pass filtered using a Kaiser-windowed sinc finite

impulse response (FIR) filter with a 1 Hz cutoff (Kaiser β= 5.65326,

filter order: 9,056, transition bandwidth: 0.2 Hz, maximal passband

ripple: −60 dB), the data were epoched into 1-s segments (not

representing the actual experimental trials), and non-stereotypical

artifacts were excluded based on joint probability and kurtosis

with a threshold of three standard deviations. To identify ICs

representing artifacts caused by eye movements, blinks, and muscle

activity, the components were pre-labeled using EEGLAB’s IClabel

function (Pion-Tonachini et al., 2019) and then inspected visually.

Components classified as eye or muscle activity with a certainty

of more than 90% were marked for rejection and subsequently

removed from the untreated EEG dataset (i.e., without the 1-Hz

filter). The number of removed components per participant ranged

from 2 to 10 (Mean = 7.0, SD = 2.2). The ICA-corrected EEG

data were filtered using a windowed-sinc high-pass FIR filter with

a 0.1 Hz cutoff (Kaiser β = 5.65326, filter order 9,056, transition
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bandwidth: 0.2 Hz, maximal passband ripple: −60 dB), and a

windowed-sinc low-pass FIR filter with a 45 Hz cutoff (Kaiser β

= 5.65326, filter order 184, transition bandwidth: 10 Hz, maximal

passband ripple:−60 dB).

The resulting data were segmented into epochs of 600 ms

duration for all conditions with sounds (separated into externally

generated and self-generated with the five different delay levels).

Epochs ranged from −100 ms to 500 ms relative to the onset of

the auditory stimulus (Pinheiro et al., 2019). They were baseline-

corrected using the interval from−100 ms to 0 ms relative to sound

onset. In themotor-control condition (i.e., without sounds), epochs

of 890 ms duration were extracted from −90 ms to 800 ms relative

to the tap on the touchpad. The longer epoch duration was chosen

to compensate for the different auditory delays for later alignment

when subtracting the motor-only ERPs from the self-generated

auditory ERPs (Elijah et al., 2016). The start of the motor-control

epochs (−90 ms) matched the start of the epoch in the 10-ms-

sound-delay condition, and the end of the motor-control epochs

(800ms) matched the end of the epoch in the 300-ms-sound-

delay condition. Themotor-control epochs were baseline-corrected

separately for each subtraction, using the interval from −100 ms

to 0 ms relative to when the sound would have occurred in the

respective comparison condition with self-generated sounds.

Epochs with amplitude changes exceeding 150 µV on any

channel were rejected from further analysis. This left one

participant with <70% remaining epochs after artifact rejection;

the corresponding dataset was excluded from further analysis (see

above). The remaining datasets showed an average data loss of

3% across conditions and participants, with a maximum data loss

per participant of 14% across conditions. The range of remaining

epochs per participant and condition was 76 to 249 in the self-

generated sound conditions (Mean = 147.8, SD = 22.9), 147 to

200 in the externally generated sound condition (Mean = 187.3,

SD = 13.9), and 80 to 218 in the motor-control condition

(Mean= 147.4, SD= 30.3).

It should be noted that the variability in the number of

epochs between participants did not primarily stem from EEG

artifacts (as indicated by the average data loss of only 3%),

but from the requirement to repeat the task if not all four

digits were correctly entered. As explained above, a copper wire

coil was attached to the touchpad of the controller to enable

faster detection of haptic input and precisely manipulate the

timing of the sounds. However, due to the lower sensitivity

of the controller’s touchpad compared to the wire, participants

occasionally triggered only the wire (not the touchpad) and thus

failed to successfully input a number. Despite this, participants

were still presented with sounds since this was controlled by

the copper wire. As a consequence, they did not realize that the

virtual keypad input was unsuccessful until after trying to enter

the fourth digit. Trials with this type of error were classified as

‘false’ and repeated. This happened more often than expected and

consequently, a substantial number of additional (repeated) keypad

inputs was performed overall. As participants could not have

recognized the error while performing the task (since the sounds

were presented and no other feedback indicated an unsuccessful

number entry), these additional trials were not excluded from

EEG analysis.

2.4.3. Event-related brain potentials
Data from the remaining 23 participants were used to form

single-subject and grand-average ERPs per condition. All epochs

were averaged per electrode and condition within each participant,

resulting in single-subject ERPs per condition. To allow for

comparison of the ERPs elicited in the externally generated sound

condition (without a motor act by the participant) with the ERPs

elicited in the self-generated sound conditions (with a motor act

by the participant), brain activity elicited by the motor act first

had to be separated from brain activity elicited by processing

the auditory stimuli. To subtract the motor component, the ERP

elicited in the condition without sounds (motor control) was

subtracted separately for each participant and electrode from each

of the ERPs elicited in the conditions with self-generated sounds

(i.e., five difference waves calculated as ERP[motor-corrected]

= ERP[self-generated sound] minus ERP[motor-control]). The

motor-control and self-generated sound ERPs were temporally

aligned to the tap on the touchpad for the purpose of this

subtraction (Elijah et al., 2016). The resulting difference wave, re-

aligned to sound onset, reflects the motor-controlled processing of

self-generated sounds. The grand-average ERP was then calculated

by averaging ERPs across all participants for each electrode and

each of the six conditions (externally generated, self-generated

with 10/50/100/150/300 ms delay). Experimental conditions will be

referred to as “10 ms,” “50 ms,” “100 ms,” “150 ms,” “300 ms” for

self-generated sounds and “external” for the sounds replayed by the

robot sphere.

In order not to introduce any bias into the selection of the

intervals for analyzing the auditory ERP components, the ERP

traces were averaged across all six conditions that were to be

compared later (Keil et al., 2014). This all-condition average showed

the expected morphology of auditory ERP components (Figure 3),

with elicitation of the P50, N1, and P2 components each peaking

at frontocentral electrodes. A cluster of seven electrodes centered

around FCz (Fz, FC1, FCz, FC2, C1, Cz, C2) was used to identify

component latencies and quantify component amplitudes. Peak

amplitudes were identified at 54 ms (P50), 84 ms (N1), and

152 ms (P2). For peak-window-based statistics, time windows of

20 ms were symmetrically chosen around the component peaks

(Elijah et al., 2016) and cross-checked to adequately reflect the

component morphology in the single-subject ERPs. Component

amplitudes were thus measured from 44-64 ms (P50), 74-94 ms

(N1), and 142-162 ms (P2). It should be noted that peak-

picking procedures are being criticized for their circularity (“double

dipping”) (Kriegeskorte et al., 2009; Luck and Gaspelin, 2017).

In the current case, the research question is not whether the

auditory ERP components of interest are elicited, but whether their

amplitude is modulated by condition. Thus, choosing the latency

ranges based on an average of all conditions does not introduce

circularity into the analysis.

2.5. Statistical analysis

P50, N1, and P2 component amplitudes were quantified

separately for each participant and condition in the pre-determined
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FIGURE 3

EEG results across conditions for component identification.

Grand-average ERP (N = 23) at the frontocentral electrode cluster

averaged across all motor-corrected delay conditions and the

external condition, as well as scalp voltage distribution of the

identified ERP components P50, N1, and P2. Negative ERP voltage is

plotted upward. The average across all conditions was used for an

unbiased identification of component windows. The resulting

component windows used for topography plots and statistical

testing are indicated by gray rectangles. Please note the di�erent

scale in the topography plot of the P50 component.

latency ranges. The analysis focuses on the N1 and P2 components

as in most previous studies on suppression of self-generated

sounds (SanMiguel et al., 2013b). Since it was apparent from the

current waveforms that slow ERP drifts affected the P50 and N1

latency ranges alike, measuring baseline-to-peak N1 amplitudes

would not provide an adequate assessment of the N1 component

amplitude. N1 amplitudes were therefore measured as peak-to-

peak amplitudes (N1 amplitude minus P50 amplitude) to cover

the full amplitude of the N1 component. For P2 component

amplitudes, baseline-to-peak measurements were used as there was

no apparent overlap. N1 and P2 amplitudes were first compared

between self-generated and externally generated sounds by two-

tailed, paired-sample t-tests using the average of all five self-

generated sound conditions. N1 and P2 amplitudes were then

submitted to repeated-measures analyses of variance (rmANOVAs)

with the five-level factor delay (“10ms,” “50ms,” “100ms,” “150ms,”

“300 ms”) to assess the effect of the delay manipulation. Significant

main effects in the rmANOVAs were followed up by linear trend

tests to assess the effect trajectory across the delay values. In case

of a significant violation of the sphericity assumption according

to Mauchly’s test, p-values were adjusted using the Greenhouse-

Geisser correction and are reported alongside the uncorrected

degrees of freedom and the Greenhouse-Geisser epsilon. Statistical

analyses were conducted with IBM SPSS Statistics 29.0.0.0. The

alpha level for all statistical tests was set to 5%. Following Mordkoff

FIGURE 4

EEG results by condition. Grand-average (N = 23) ERP responses at

the frontocentral electrode cluster separated by condition. The five

self-generated conditions with di�erent latency delay values are

shown after being adjusted for the motor component, and

contrasted with the externally generated condition (without motor

correction). Negative voltage is plotted upward. The P50, N1, and P2

latency ranges are marked with gray rectangles.

(2019), all effects are reported alongside with adjusted partial eta

square as a measure of effect size.

Participants’ judgments of system latency were statistically

analyzed by comparing the frequency distribution of the three

response categories (delay noticed / unsure / not noticed) across

the five latency levels with a χ2 contingency test.

3. Results

As denoted above, the auditory P50, N1, and P2 components

were elicited with the expected time-course and topographies

(Figure 3; Alain and Winkler, 2012).

ERPs were modulated in different time-ranges by the sounds

being self- vs. externally generated and by the delay of self-

generated sound presentation (Figure 4). The amplitude of the N1

component was significantly larger for the external condition than

for the mean of the five self-generated conditions, t(22) = −3.54,

p = 0.002, adj. ηp² = 0.333, indicating N1 suppression for self-

generated sounds (Figure 5A). The comparison of the five self-

generated conditions with an rmANOVA revealed no significant

main effect for the factor delay, F(4,88) = 0.30, p = 0.879, adj.

ηp² = −0.032, indicating that N1 suppression was not modulated

by delay.

The amplitude of the P2 component did not significantly

differ between the external condition and the mean of the five

self-generated conditions, t(22) = −1.65, p = 0.112, adj. ηp²

= 0.070, indicating no overall P2 suppression for self-generated

sounds (Figure 5B). P2 amplitude for self-generated sounds was,

however, modulated by the delay of sound presentation, with longer

delays corresponding to larger P2 amplitudes (Figure 5B). This was

confirmed by a significant main effect of delay in the rmANOVA,

F(4,88) = 10.48, p < 0.001, adj. ηp² = 0.292, εGG = 0.61. A follow-

up linear trend test confirmed that the increase in P2 amplitude was

systematic to the increase in delay, F(1,22) = 21.37, p < 0.001, adj.

ηp²= 0.470.
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FIGURE 5

ERP component amplitudes and subjective judgments by condition.

Mean component amplitudes for N1 (A) and P2 (B) per condition

together with between-subjects standard error of the mean. N1

amplitudes (A) are determined as peak-to-peak values (N1 minus

P50), P2 amplitudes (B) are determined as baseline-to-peak values.

(C) Frequency distribution of the three subjective-judgment

categories for noticing the delay across the five latency delay levels.

Since the P2 amplitude of the external condition unexpectedly

fell in between the P2 amplitudes of the self-generated conditions,

and since the latter were significantly modulated by delay, we

conducted post-hoc two-tailed paired-sample t-tests comparing

each delay condition individually with the external condition.

These comparisons yielded significant differences for “150 ms”

[t(22) = −2.52, p = 0.020, adj. ηp² = 0.188] and “300 ms”

[t(22) = −4.73, p < 0.001, adj. ηp² = 0.482], but not for “10 ms”

[t(22) = 1.75, p = 0.094, adj. ηp² = 0.082], “50 ms” [t(22) = 0.42,

p = 0.681, adj. ηp² = −0.037] and “100 ms” [t(22) = −0.78,

p = 0.442, adj. ηp² = −0.017]. We note that only the p-value of

the “300 ms” condition is significant against a Bonferroni-corrected

alpha level of 0.01.

Overall, these results indicate a modulation of N1 (but not P2)

by self-generation, and a modulation of P2 (but not N1) by delay

between the motor act and the sound.

Participants’ judgments of having noticed a delay were

quite evenly distributed across the latency levels (Figure 5C).

Numerically, there were slightly more reports of having noticed

a delay for the 300 ms latency level, but this pattern was

not significant as determined by the χ2 contingency test,

χ2(8)= 11.69, p= 0.116.

4. Discussion

The current study was designed to evaluate whether brain

activity elicited by user-generated sounds can be used to assess

system latency in VR. To this end, we implemented different values

of motor-auditory delay in a VR task in which users generated

sounds en passant while operating a virtual keypad. Our EEG

results show a graded modulation of the P2 ERP component by

system latency, opening up the possibility of using P2 amplitude for

detecting inadequate latencies in future studies. The N1 component

was not modulated by system latency, but by the origin of the

sound, replicating the established sensory suppression effect of

self-generated relative to externally generated sounds.

Prior studies in which participants pressed buttons to generate

sounds (without a VR context) had yielded inconsistent results

in terms of the ERP components that would be affected by

latency delay manipulations. While some studies showed that N1

suppression decreases from 0 ms to 100 ms delay (Elijah et al.,

2016; Oestreich et al., 2016), in other studies the amount of N1

suppression was not affected by delay up to 100 ms (Pinheiro et al.,

2019) or even up to 200 ms (Timm et al., 2016). These different

N1 outcomes may partly be due to design differences. For instance,

Pinheiro et al. (2019) included delayed and non-delayed sounds

within the same blocks, thereby mixing effects of delay with effects

of expectation violations across trials (speaking in terms of system

latency, manipulating latency jitter in addition to latency delay). On

the other hand, Elijah et al. (2016) as well as Timm et al. (2016) were

specifically interested in having participants adapt to a certain delay

and thus used prolonged presentations with the same delay. In the

current study, participants experienced about 75 trials per delay

value before moving on to another delay value (with the precise

number of trials depending on how many times they had to re-

enter a code because the door would not open). Based on the trial

numbers employed in the non-adapted conditions by Elijah et al.

(2016), it seems unlikely that our participants adapted to the delay

value of each block of the current study to the extent of not showing

N1 modulation by delay anymore.

Not only in terms of trial number, but also in terms of

sample size, the current study was well in the range of prior lab

studies with similar delay manipulations (Klaffehn et al., 2019;

Pinheiro et al., 2019; also Elijah et al., 2016, taking the between-

subject manipulation into account) and rather at the upper end

of comparable VR-EEG studies (see review by Putze et al., 2022).

In terms of EEG data quality, although 64-channel EEG would

have been advantageous, ICA based on 32 channels as applied here

already leads to a substantial improvement in signal-to-noise ratio

(Klug and Gramann, 2021). It thus seems unlikely that the absence
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of an effect of delay on N1 amplitude was due to noise or lack

of statistical power. Rather, we conclude that N1 is not (or not

sufficiently) sensitive to latency delay in the current setting, and

thus does not lend itself toward a read-out of latency adequacy from

users’ brain activity.

N1 was, however, affected by whether a sound was self- or

externally generated, thereby replicating the well-established N1

suppression effect (Horváth, 2015) and confirming the validity

of our external control condition. Having the robot operate the

virtual keypad is similar to “social” versions of the classical button

press task in which there is another agent performing the same

action (Weiss et al., 2011; Ghio et al., 2021). In the current

study, participants could not see the robot’s movements, and hence

there was no temporal predictability based on action observation

(though effects caused by observing event initiation by another

agent should be small in any case, see Weiss and Schütz-Bosbach,

2012; Ghio et al., 2021; note that N1 suppression occurs even when

predictability is strictly controlled for by means of visual input, see

Klaffehn et al., 2019). The sound sequences generated by the robot’s

keypad operation constituted replay versions of the participant’s

self-generated sequences, ruling out physical differences between

the self- and externally generated versions. Thus we infer that

genuine motor-sensory attenuation led to N1 suppression in the

current study.

The current P2 results were opposite to those of the N1

component: P2 did not show a response difference between self-

and externally generated sounds, but it was clearly modulated by

the latency delay of self-generated sounds. This pattern of results

(N1 responding to self-generation, P2 responding to delay) is

consistent with the studies by Timm et al. (2016) as well as Pinheiro

et al. (2019). Further studies manipulating delay (Whitford et al.,

2011; Elijah et al., 2016; Oestreich et al., 2016) did not analyze the

P2 component, thus it is difficult to compare their results to the

current ones in this respect. Klaffehn et al. (2019) contrasted much

more extreme delay values (0 ms vs. 750 ms) and added visual cues

to maintain temporal predictability in the long-delay condition.

Their pattern of results is also consistent with the current one, with

the P2 showing an effect of delay but not of self-generation (when

predictability is controlled for).

It is worthy to note that the absence of a self-generation

effect on the P2 becomes apparent only by examining all five

self-generated conditions (Figure 4): Had we applied only the

10 ms and the 50 ms or 100 ms delay conditions, we might

have concluded that there is a tendency toward P2 suppression

for 10 ms delay but not anymore for 50 ms or 100 ms delay.

Yet the ERP trajectories for 150 ms and 300 ms delay indicate

that the P2 modulation is not related to bringing the amplitude

“back up” to that of the externally generated condition, but clearly

exceeds that level. This finding illustrates the benefit of a systematic

examination of a broad range of delay values. The modulation of P2

amplitude beyond the externally generated condition is in contrast

to our initial hypothesis that the amplitudes by externally generated

sounds would constitute an upper bound for the observable self-

generated sound amplitudes (as shown by Blakemore et al., 1999,

for perceptual judgments). There are two possible interpretations of

the pronounced ERP differences: First, there might be fundamental

processing differences between the self-generated and externally

generated sound conditions in the P2 latency range, which would

imply that additional cognitive processes are at play and overlay

the ERP comparison. One candidate process would be a variation

in attentional state: During external sound generation, participants

had no own task—the door-opening task was performed by the

robot, and watching the robot perform this task might be less

attentionally engaging than opening the door oneself. However,

devoting more attention to the sounds should have led to less

positive P2 amplitudes in the self-generated conditions due to an

overlaid negative difference or processing negativity (Näätänen,

1982; Saupe et al., 2013), whereas we found more positive P2

amplitudes in the self-generated conditions with high delay relative

to external sound generation. Moreover, our task deliberately used

en passant presentation of sounds to reduce attentional differences

between the self-generated and external conditions (as opposed

to lab studies in which participants arguably wait for the self-

generated sound to occur as this is part of their task template; see

Bäß et al., 2008).

Hence we consider a second interpretation more likely: If

we take P2 amplitude as a measure of how difficult it is for

the perceptual system to integrate the sound into a sensorimotor

reference frame of the current environment, it might actually be

“worse” to experience a self-generated sound with considerable

delay than it is to experience an externally generated sound.

This interpretation is in line with a previous finding of reduced

P2 for self-generated sounds when the perceived control over

sound generation is high (Seidel et al., 2021). The authors suggest

that while early processing (in the N1 range) is affected by

predictive action-related sensory suppression, later processing (in

the P2 range) is rather impacted by a postdictive judgment of

agency. Timm et al. (2016) similarly argue that—relative to N1—

the P2 component might be related more directly to perceived

agency. Thus, the detrimental consequences of high delay values

(specifically, 150 ms and 300 ms relative to the button press)

might reflect a more effortful process of forming agency judgments.

This would be consistent with system design guidelines classifying

such amounts of delay as beyond the acceptable range (Attig

et al., 2017). The delayed occurrence of the sound might be

particularly problematic in a context where the user cannot verify

by other means whether their motor input was received by the

system or not. We deliberately refrained from providing additional

immediate feedback that the touchpad was pressed, for instance

via a visual confirmation signal, because then delaying the sound

would involve not only a delay between button press and sound

but also a mismatch between the two sensory events, which would

confound the ERPs. However, delayed sound occurrence might

have added insecurity for our participants regarding the success of

their action, thereby posing challenges to smooth operation of the

virtual keypad. This difficulty might have extended to the motor-

only control condition as well, in which participants did not receive

any feedback as to whether the touchpad was truly pressed or not

due to the absence of auditory stimuli. However, due to the block-

wise administration of the motor-control condition, participants

knew that no sound was to be expected, and such knowledge might

be easier to adapt to than a changing delay from block to block.

In future studies we will probe the boundaries of such adaptation

effects by contrasting block-wise with trial-wise manipulations of

Frontiers inNeuroergonomics 10 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1196507
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Feder et al. 10.3389/fnrgo.2023.1196507

sound delay (including “infinite” delay as amotor-only control) and

examining the resulting ERP effects.

The robust modulation of P2 amplitude by delay in the current

studies is promising in terms of using this as a read-out for

detecting inadequate system latencies from users’ brain activity.

The work of Gehrke et al. (2019, 2022) has already demonstrated

that this is possible for a different type of ERP modulation:

They introduced temporal mismatches between sensory stimuli

received by the visual and haptic modalities, and showed that

these mismatches are accompanied by prediction-error-related

ERP components (Gehrke et al., 2019). In a follow-up study,

they showed that this ERP effect can actually be used as input

for a classifier that detects trials with visuo-haptic mismatches

solely based on participants’ EEG data (Gehrke et al., 2022). Their

ERP-based classification reached an accuracy of 77%, whereas

classification based on behavioral data barely exceeded chance level

(55%). Similarly, Alsuradi et al. (2021) showed that delayed haptic

feedback (relative to a visual collision) yields notable EEG changes

including enhanced oscillatory power in the theta band as well as

amplitude enhancements in the P2 latency range. This illustrates

the enormous potential of using EEG for unobtrusive continuous

evaluation of VR environments (Wang and Suh, 2021).

Other studies have pursued machine-learning approaches

similar to Gehrke et al. (2022), with ERP correlates of movement

error attribution to oneself or another VR agent yielding a single-

trial classification accuracy of 73% (Dimova-Edeleva et al., 2022),

and ERP correlates of visuospatial tracking errors reaching a single-

trial classification accuracy of 85% (Si-Mohammed et al., 2020).

In the study by Si-Mohammed et al. (2020), two other types

of VR errors (erroneous feedback and visual anomalies in the

background) could not reliably be detected at the level of the users’

EEG. This illustrates that EEG is a promising tool for unobtrusive

VR evaluation, but gaining information from it requires thorough

consideration of the specific EEG features that can be read out,

and of the tasks or events in which those EEG features are robustly

elicited. Si-Mohammed et al. (2020) emphasize that the VR events

associated with the targeted system anomaly should be part of

an ecologically valid task set for the user (see also Yazmir and

Reiner, 2022). This is in stark contrast to previous approaches in

which (auditory) ERPs in VR were elicited by task-irrelevant probe

stimuli to gain a measure of the users’ spare perceptual or cognitive

capacity, allowing for indirect inference from that measure on the

users’ presence in VR, and then again indirect inference from the

users’ presence on the adequacy of VR parameters (e.g., Kober and

Neuper, 2012; Burns and Fairclough, 2015).

Measuring direct correlates of VR errors or anomalies (such

as latency delay in the current study) allows for more specific

inference, but also poses stronger requirements on how to

seamlessly integrate appropriate test events into the VR. In other

words, not only should the measurement technique be unobtrusive

(as is the case for any physiological or behavioral measure that

does not take the user out of the VR context for the sake of

measuring), but also the event presentation itself. Unobtrusive

event presentation means that the events used for VR quality

evaluation are a natural element of the task users are performing

in VR (as opposed to presenting additional stimuli just for the sake

of VR evaluation). The incidental nature of sound presentation as

a byproduct of virtual keypad operation and door opening is also

what distinguishes the current work frommany previous lab studies

on self-generation of sounds (Bäß et al., 2008; Whitford et al., 2011;

SanMiguel et al., 2013b; Elijah et al., 2016; Oestreich et al., 2016;

Pinheiro et al., 2019), where participants might be waiting for the

sensory consequences of their actions as they have no other task

besides pressing buttons and listening to the resulting tones.

The transition from the “button-press-for-tone task” (Elijah

et al., 2016) to the incidental presentation of sounds in an engaging

VR task came with the additional challenge of manipulating motor-

auditory latencies in VR down to values smaller than what is

feasible with current VR hardware and software. In basic lab

paradigms in which button presses lead to sound presentation,

it is possible to ensure near-immediate presentation of sounds

by an appropriate combination of hardware (button, soundcard)

and software (response poll, sound initiation) elements—though

the labels “0 ms” or “immediate” might be somewhat optimistic

for the non-delayed condition even in many of those settings.

In the current setting, 10 ms delay was the absolute minimum

that was achievable with our custom-built hardware shortcutting

the software-based VR latency delays. One concern might be that

participants accustomed to modern VR controllers would perceive

a delay of 10 ms as unrealistically fast and thus experience an

illusory lack of agency over sound generation. Such impression

would, however, not have affected N1 suppression (Timm et al.,

2016; Seidel et al., 2021), and would have affected P2 in the opposite

direction of what we observed. It is thus unlikely that such illusory

lack of agency affected the current results. On the other end,

it might be questioned whether participants were accustomed to

longer delays based on their personal VR experience and thus more

quickly adapted to the blocks with 50, 100, and 150 ms delay than

they would have in comparable button-press paradigms (Elijah

et al., 2016). However, such higher-order effects of participants’

expectations regarding hard- and software response latencies would

typically not extend to the 300 ms condition, and this condition

was not notably different from all others in terms of ERPs. Thus

altogether, we consider it unlikely that participants’ expectations

regarding VR controller latencies shaped the ERP responses to a

great extent.

In terms of participant judgments, we found surprisingly little

influence of the actual delay value on the subjective reports of

noticing a delay. Even the 300 ms latency level was not identified

as clearly delayed by the majority of participants. A possible

explanation is that the question was asked at the end of each block,

where adaptation to the delay value of the just-experienced block

would be maximal (whereas the ERPs were aggregated across the

whole block, leaving more room for finding differences by delay

even if adaptation took place throughout the block). Alternatively,

the results might indicate that ERPs are sensitive even before users

are clearly aware of poor system latency in some cases, as has been

observed with user performance data as well (Martens et al., 2018).

The current work as well as the aforementioned studies

showing EEG/ERP correlates of other types of VR interface

errors (Gehrke et al., 2019, 2022; Si-Mohammed et al., 2020;

Alsuradi et al., 2021; Dimova-Edeleva et al., 2022; Yazmir and

Reiner, 2022) all have in common that they are examining brain

activity elicited by physically different events (i.e., immediate vs.
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delayed sound presentation, matched vs. mismatched timing of

multisensory information, correct vs. erroneous VR response to

user input). This is promising for identifying system glitches in

contexts in which the VR itself cannot be as precisely controlled

as in these research settings. It would be even more beneficial

if this could be brought to the next level, using EEG/ERPs

not only for distinguishing between physically different system

responses but between individual user judgments of the same

system response. For example, the same latency delay might be

perceived as acceptable by some users whilst other users might

notice the delay and perceive it as distracting. Identifying which

part of the ERP codes for such individual (and implicit) judgments

of adequacy, would require a combination of EEG measurements

with user judgments – taking the downside of interfering with

the process being measured for the sake of obtaining “ground

truth” on the users’ evaluation of the experienced VR latencies.

Obtaining different ERP trajectories for diverging subjective

evaluations of the same objective latency delay would also be highly

insightful for basic research on self-generation effects, which is

still struggling with potential alternative explanations based on

temporal proximity of the motor act and the sound (see review by

Horváth, 2015). Ruling out this physical confound is notoriously

difficult (Klaffehn et al., 2019), yet a promising starting point

might be to compare users that are accustomed to different latency

delays based on their VR experience and on the type of VR input

devices they are accustomed to. If successful, this approach would

benefit theoretical models of sensorimotor prediction and practical

applications for unobtrusive VR quality evaluation alike, thereby

truly bridging basic, translational and applied research in cognitive

neuroergonomics (Gramann et al., 2021).
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