
University of Missouri, St. Louis University of Missouri, St. Louis

IRL @ UMSL IRL @ UMSL

Dissertations UMSL Graduate Works

4-14-2023

Topological Data Analysis of Weight Spaces in Convolutional Topological Data Analysis of Weight Spaces in Convolutional

Neural Networks Neural Networks

Adam Wagenknecht
University of Missouri-St. Louis, ajwkc2@umsystem.edu

Follow this and additional works at: https://irl.umsl.edu/dissertation

 Part of the Algebraic Geometry Commons, Data Science Commons, Geometry and Topology

Commons, and the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Wagenknecht, Adam, "Topological Data Analysis of Weight Spaces in Convolutional Neural Networks"
(2023). Dissertations. 1312.
https://irl.umsl.edu/dissertation/1312

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has
been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information,
please contact marvinh@umsl.edu.

https://irl.umsl.edu/
https://irl.umsl.edu/dissertation
https://irl.umsl.edu/grad
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/176?utm_source=irl.umsl.edu%2Fdissertation%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=irl.umsl.edu%2Fdissertation%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=irl.umsl.edu%2Fdissertation%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=irl.umsl.edu%2Fdissertation%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=irl.umsl.edu%2Fdissertation%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/1312?utm_source=irl.umsl.edu%2Fdissertation%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu

Topological Data Analysis of Weight Spaces in
Convolutional Neural Networks

Adam Wagenknecht

M.A Mathematics, University of Missouri-St. Louis, 2019
B.S. Mathematics, Truman State University, 2015

B.S. Computer Science, Truman State University, 2015

A Dissertation Submitted to The Graduate School at the University of
Missouri-St. Louis in partial fulfillment of the requirements for the degree

Doctor of Philosophy in Mathematical and Computational Sciences

May 2023

Advisory Committee

Adrian Clingher, Ph.D.
Chairperson

Haiyan Cai, Ph.D.

David Covert, Ph.D.

Prabhakar Rao, Ph.D.

Abstract

Convolutional Neural Networks (CNNs) have become one of the
most commonly used tools for performing image classification. Unfor-
tunately, as with most machine learning algorithms, CNNs suffer from
a lack of interpretability. CNNs are trained by using a training data
set and a loss function to tune a set of parameters known as the layer
weights. This tuning process is based on the classical method of gradi-
ent descent, but it relies on a strong stochastic component, which makes
the weight behavior during training difficult to understand. However,
since CNNs are governed largely by the weights that make up each of
the layers, if one can gain an understanding of the space in which these
weights lie, then much can be learned about the structure of the CNN
and how it calculates its output. Topological Data Analysis (TDA) is a
recent addition to the field of data science, which uses ideas from geome-
try and algebraic topology to create a novel methodology for analyzing
high-dimensional datasets. Specifically, TDA offers a mathematically
rigorous method for studying the structure of CNN weight spaces. In
this thesis, we use TDA to study the weights of a binary classifica-
tion CNN model trained on a large dataset known as Dogs vs Cats.
Our analysis reveals that, during training, the 3x3 convolutional filter
weights of the CNN model in question exhibit non-trivial homological
properties. Namely, persistent 1-cycles occur within the first homol-
ogy groups. This structure is similar to the structure that is found in
3x3 high-variance image patches of natural images [47, 3] demonstrat-
ing that a CNN built on this data set learns features of the ambient
structure of the image data. This demonstrates the validity of the CNN
and, along with work done by Carlsson and Gabrielsson [18], furthers
the hypothesis that convolutional layer weights arising from training a
CNN on natural image data lie on a space with non-trivial geometry, in
particular a non-empty first homology group.

1

Contents

1 Introduction 6
1.1 General Background: CNN Models in Deep Learning 6
1.2 Motivation: the Carlsson-Gabrielsson Hypothesis 8
1.3 Our Work: Objectives and Outline 16

2 Mathematical Theory 18
2.1 Algebra Refresher . 18
2.2 Topological Background . 20

2.2.1 Simplicial Complexes 21
2.2.2 Constructing A Simplicial Complex 23
2.2.3 Homology . 25

2.3 Persistent Homology . 29
2.3.1 Filtration . 29
2.3.2 Persistence . 32
2.3.3 Persistence Complex 32
2.3.4 Computation . 36
2.3.5 Computing Persistent Homology 40
2.3.6 Visualization . 43

3 Convolutional Neural Networks 44
3.1 Convolutional Layers . 46
3.2 Pooling Layer . 50
3.3 Fully-Connected Layer . 51
3.4 Activation Functions . 52
3.5 Training . 57

3.5.1 Gradient Descent . 57
3.6 Loss Functions . 59
3.7 Overfitting . 62

3.7.1 Why Does Overfitting Occur 62
3.7.2 How To Solve Overfitting 63
3.7.3 Partitioning the Dataset 63
3.7.4 Overtraining . 63
3.7.5 Optimizers . 64
3.7.6 Dropout . 65
3.7.7 L1 and L2 Regularization 66
3.7.8 Data Augmentation . 66

3.8 Why CNN’s . 68
3.9 Problems with CNNs . 68
3.10 What Is a Convolutional Layer Weight Space? 69
3.11 Visual Cortex . 70

4 Topological Data Analysis 71
4.1 Pre-Processing Data for TDA 72

2

4.1.1 Normalization . 72
4.1.2 K-Nearest Neighbors Density Filtration 73
4.1.3 PCA . 74

4.2 TDA Methods . 75
4.2.1 Mapper . 75

4.3 TDA Process . 79

5 Methods 80
5.1 Main Work: TDA of CNNs Trained on Dogs vs Cats 82

6 MNIST Analysis 82
6.1 MNIST Dataset . 83
6.2 Gabrielson and Carlsson MNIST CNN 84
6.3 Author’s Replication . 85
6.4 Additional MNIST Results . 89

6.4.1 One Layer CNN . 90
6.4.2 Three Layer CNN . 91

6.5 MNIST Conclusion . 92

7 Dogs vs Cats 93
7.1 Dogs vs Cats CNN Architecture 95
7.2 Solving the Overfitting Problem 97

7.2.1 Training . 99
7.3 Statistical Analysis . 100

7.3.1 Kullback-Leibler Distance - Theory 101
7.3.2 Voronoi Analysis . 102

7.4 TDA Analysis . 106
7.4.1 Hyper-parameter Analysis 106
7.4.2 Results . 109
7.4.3 4-Layer CNN . 116

7.5 Dogs vs Cats Conclusion . 118

8 Discussion 118
8.1 MNIST Results . 118

8.1.1 Verification of Carlsson Gabrielsson Results [18] 118
8.1.2 3rd Layer Cycle . 119
8.1.3 Persistence Evolution Through Training 119

8.2 Dogs vs Cats . 120
8.2.1 CNNs Learn a Cycle as Epochs Increase 120
8.2.2 Cycle Weak In the Presence of Overfitting 121
8.2.3 Cycle Exists at Multiple Different Choices of Hyper-

parameters . 121
8.2.4 Primary Circle vs C3 122

9 Conclusion 122

3

References 125

A Computation of Persistent Homology an Example 130
A.1 Example 1 . 130
A.2 Example 2 . 133

B Dogs vs Cats Mapper Hyper-parameter Analysis 137

C 4-Layer CNN for MNIST 141

4

Acknowledgments

First and foremost I would like to thank my advisor Dr. Adrian Clingher for
his support, advice, and the copious amount of time he put in to helping me
with this work. I would also like to thank the University of Missouri Science
and Technology for use of their computing cluster ”The Foundry” which is
supported in part by the National Science Foundation under Grant No. OAC-
1919789. Lastly, I would like to thank my wife Emily for her patience and
loving support during all of my work.

5

1 Introduction

1.1 General Background: CNN Models in Deep Learn-
ing

Over the last two decades, the study and development of machine learning
methods for natural image classification have become an important inter-
disciplinary field, at the confluence of science and engineering. Machine learn-
ing and statistical learning models seek to replicate the remarkable ability of
humans and many other animals to make sense of and classify natural images.
Hypotheses on how this is achieved have long been advanced by neuroscien-
tists. Of particular importance is the 1962 work of Hubel and Wiesel [29]
on the function of the primary visual cortex (V1). The primary cortex be-
longs to the larger mammalian visual cortex (MVC) and is the lowest level
image-processing layer, beyond the retina. Hubel and Wiesel showed that the
primary visual cortex of monkeys and cats contains two special types of neu-
rons, referred to as simple and complex, that tend to individually respond to
small regions and features in the visual field. In particular, these cells are
responsible for detecting edges and lines. Higher MVC levels are known to
perform more abstract tasks. Later on, Fukushima [17] developed the first
functional mathematical model for the biological visual system. This model,
called Neocognition, consists of layers of artificial neurons (non-linear statisti-
cal models for classification), referred to as S-cells and C-cells, whose activation
seeks to replicate the behavior of the Hubel-Wiesel specific neurons. The S-cell
and C-cell layers, as computational systems, are arranged in a self-organized
hierarchical architecture, governed by numerical weights that change over re-
peated exposure to labeled digital images. Over the next decade, the Neocog-
nition model ideas have been further improved and refined, culminating, in the
early 1990s, with the development of a class of models called Convolutional
Neural Networks (informally referred to as CNNs or ConvNets). This class of
models have their origin in computer vision and their methodology belongs to
the larger class of feed-forward neural networks.

Figure 1.1: Generic CNN Architecture (Source: KDnuggets.com)

The CNN architecture consists of a hierarchical succession of layers, organized

6

as 2D or 3D grids (or tensors, in machine learning lingo) that encode the pixel
array format of digital pictures. Information circulates in a sequential manner,
each layer being activated from the previous one, according to several possible
computational patterns and via a choice of numerical weights. The two most
important layer types are: convolutional and pooling. Convolutional layers at-
tempt to replicate the behavior of S-cells in Neocognition. Pooling layers are
akin to the C-cells. In addition, a fully connected layer is traditionally added
at the end of the sequential hierarchy, where the final image classification is
performed. The accuracy of a CNN model depends on an optimal choice of
weights. Such a choice is obtained via a process called training - a mathemat-
ical optimization process inspired by the method of gradient descent, but with
an added stochastic component. This procedure uses the training data - given
digital images labeled according to the desired classification - and involves a
repeated updating of the weights, via a sequence of forward-propagation and
back-propagation algorithms.

Figure 1.2: Hubel-Wiesel Pathway vs. CNN model [40]

In recent years, benefiting from the dramatic increase in available computing
power, CNNs and neural network models, in general, have become powerful
tools for solving problems associated with large and complex datasets. They
have produced outstanding classification results on images, text, time series,
etc. The neural network methodology has permeated the fields of machine and
statistical learning, leading to the appearance of deep learning - a new field at
the interplay of mathematics, statistics and computer science.

While strongly anchored in mathematics and statistics, the field of deep learn-
ing is nevertheless driven by practical applications. CNN models are nowadays
crucial components in a wide array of technologies: object detection in self-
driving cars, banking fraud detection, natural language recognition, medical
image analysis, healthcare risk assessment, social media, etc. However, the
interpretability of CNN models is far from ideal. Models are in a continu-

7

ous process of transformation and their efficiency is routinely judged rather
experimentally, via a testing and validation process. A model is considered sat-
isfactory if its accuracy consistently meets a pre-agreed validation threshold.
A model is good if it largely works as expected, when given independent new
data. This methodology has led to a significant and continuously growing gap
between practically successful applications and the theoretical understanding
of their underlying deep learning models. In short - practice is far ahead of
theory.

This prevalent lack in theoretical understanding has consequences. For in-
stance, it limits the usefulness of these models in many key domains, such as
regulated industries like the financial sector or healthcare. But from a more
practical point of view, the absence of a good theoretical understanding makes
it very difficult for one to predict a CNNs ability to generalize on unseen new
data. For instance, it has been observed [22] that certain standard CNN mod-
els tend to be vulnerable to what is called adversarial behavior - they overfit
on particular datasets that are slightly modified from their core training data.
Intuitively, some image recognition CNN models can be made to fail by making
small changes to the image data, changes that would be almost imperceptible
to a human. For these reasons, it is necessary to develop new methods for
gaining a better understanding of the internal states of a CNN. Due to the
very large number of nodes and the highly stochastic nature of the training
mechanism, this is a problem in data analysis.

1.2 Motivation: the Carlsson-Gabrielsson Hypothesis

A key to understanding CNNs is an understanding of the statistical proper-
ties of their weights and the space in which they lie. Thus, studying how the
CNN weights evolve during the training process is a topic of great interest in
machine learning research. Several studies [63, 58, 43] have been done in this
direction, from a machine-learning point of view, with interesting qualitative
results. Most of these works involved a direct inspection of the weights, using
traditional statistical analysis techniques. The difficulty in drawing rigorous
conclusions here mainly stems from the high-dimensionality of the weight data
and the fact that the weight effect on the behavior of the network is simul-
taneous. Attempts at reducing the dimension of the data, via traditional
dimension-reduction techniques, like Principal Component Analysis (PCA),
lead to significant information loss.

A relatively new methodology for studying this area is Topological Data Anal-
ysis (TDA). TDA is a data analysis methodology that combines classical geo-
metric ideas with modern machine learning algorithms, to identify shape fea-
tures in data. Pioneered about a decade ago by Gunnar Carlsson, a Stanford
University mathematician and founder of the data analytics company Ayasdi,
TDA’s theoretical foundation is based on a branch of pure mathematics called

8

algebraic topology, which studies the notion of shape and builds topological
invariants. Algebraic topology takes on two main tasks: the measurement
of shape and the representation of shape. Both tasks are meaningful in the
context of large, complex, high-dimensional datasets. They provide one with
a way to measure shape-related properties within the data, such as the pres-
ence of loops. These measurements are then recorded in an algebraic structure
called persistent homology. TDA uses the theory of persistent homology to
create so called persistence diagrams - compressed representations of datasets
that retain features and reflect the relationships among data points in the form
of a combinatorial graph, with the purpose of identifying hidden structures,
trends, and critical patterns. The TDA methods have proved to be quite useful
for a plethora of machine learning technologies.

The application of TDA to study shape features of the data begins by con-
structing a simplicial complex, such as a Rips-Complex or C̆ech Complex,
on top of the data being considered. These are discussed in greater detail
in Section 2, but in general both the Rips and C̆ech Complexes are built by
defining a distance metric d(x, y) and a threshold ρ. These then determine
the simplices based on distances between the points compared to the thresh-
old. From this there are two general paths that are most commonly used in
TDA. The first uses an algorithm known as Mapper which constructs a sim-
plicial complex from a projection of the data (often referred to as a lens) into
a low-dimensional subspace which can be visualized. This allows for a visual
inspection of the data to determine its structure. Mapper is explained in detail
in Section 4.2. This method is quite useful in that it produces a visualization
of the data; however, this visualization is heavily dependent on several hyper-
parameter choices and only shows the structure for a specific lens. Without a
broader understanding of the structure this makes the visualization susceptible
to misinterpretation.

The other TDA method used is that of persistent homology. Using the sim-
plicial complex one can build out the Homology Groups Hk and subsequently
determine the Betti numbers {βi} where βk = Rank(Hk) (i.e., rank of each
Homology Group). These Betti numbers are topological invariants that de-
scribe the structure of the data. This process, like Mapper, is dependent on the
threshold value ρ, used to build the simplicial complex. As such, the structure
that is found is true of one given scale or coarseness (see def 2.16) defined on
the data which may not give much information about what the true structure
of the data is. If the threshold is chosen too coarse or not coarse enough the
true structure of the data set may be hidden. For example, consider a sine
wave with noise on it. If the threshold is equal to the period, then one cluster
will exist for every period and thus the structure will look like a straight line.
However, if the threshold is too small then every feature created by a variation
in the noise will be modeled which will cause the true smooth sine wave to be
hidden.

9

The solution to this is to examine the data under a set of increasing threshold
values. This gives rise to a set of nested simplicial complexes

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Km = K

referred to as a filtration. This is the same concept that Carlsson refers to as
functoriality [4], which is the idea that topological invariants should be studied
not solely in relation to the objects being inspected but also in relation to maps
between the objects. From [4]: ”Functoriality is central in algebraic topology in
that the functoriality of homological invariants is what permits one to compute
them from local information, and that functoriality is at the heart of most of
the interesting applications within mathematics. Moreover, it is understood
that most of the information about topological spaces can be obtained through
diagrams of discrete sets, via a process of simplicial approximation.”

The TDA method for studying topological invariants, more specifically in our
case Betti numbers, over a filtration is via Persistent Homology. As we will
describe in detail in Section 2, using a filtration f , a 2-dimensional structure,
referred to as a persistence complex, can be built consisting of a family of
chain complexes

C0
∗

f0−→ C1
∗

f1−→ · · · f
p−1

−−−→ Cp
∗

which are produced by the filtration (one for each level of the filtration). Each
complex is a set of chain groups which can be traversed via the boundary
operator

∂p, · · ·
∂p+2−−→ C∗p+1

∂p+1−−→ C∗p
∂p−→ C∗p−1

∂p−1−−→ · · ·

This complex gives rise to a map of homology groups at each dimension. The
filtration allows homology groups to be defined together now with the number
of filtration levels they span, H i,j

p = Zi
p/(B

i+j
p ∩Zi

p). That is, we can denote i as
the filtration level for which p a non-bounding cycle first appears and j as the
filtration level in which p′ a boundary homologous to p exists and thus derive
the persistence as j− i−1. Using this persistence value, we can talk about the
topological invariants that persist for some time t > M , as the true structure
of the data, invariant of the choice for clustering threshold value.

Turning back now to CNNs, we seek to gain a better theoretical understanding
of how CNNs characterize a given problem space. As outlined in the prior
section, it is known in practice that CNNs perform very well in Supervised
Learning for Classification, that is, they are able to use a training data set
to derive a description of the problem space in order to determine correct
classification of input data taken from the same space as the training data.
It is, however, not fully understood from a theoretical perspective why or
how CNNs are able to accomplish this. Thus, there is a need for deeper and
more theoretical studies of how CNNs function. It should be noted that we
said ”derive a description” rather than ”approximate the distribution” because

10

while it is assumed in practice that CNNs approximate the distribution of the
problem space there is no theoretical property that ensures that this is true.
That being said, the work of many in this field as well as our work in this
paper lend further credence to the idea that CNNs do in fact approximate the
distribution of the problem space.

In our case, we seek to further the understanding of CNNs applied to the
problem of natural image classification, a problem at which, in practice, CNNs
are known to perform well. Now, a CNN, after training, is described primarily
by the weights of each of its layers (see Section 3 especially Section 3.10)
and most of the computational power in a CNN comes from the convolutional
layers. Therefore, if a CNN is correctly able to classify a set of images it would
be expected that the convolutional weights from that CNN would resemble
the structure of the images it is seeking to classify. As such, before seeking
to understand the structure of a CNN built to classify natural images it is
important to understand if there is a structure to the space of natural images
and if so, what it is.

An image is made up of an m × n grid of pixels each of which has either a
single grayscale value (typically 0-255) or a 3-tuple of color values - typically
red, green, and blue with each value being 0-255 denoting the hue of each
color, in this way any color can be represented. For the sake of the present
discussion, we assume only grayscale images. This assumption is valid since
in a CNN RGB values are often separated into their color channels in which
case the hue of a single color acts the same as a grayscale value. Using this,
we can say that an image lies in the space Rp where p = m× n. The question
then becomes, what is the nature of the collection of all images in Rp. For
instance, does the collection appear as a manifold modeling a p-dimensional
multivariate gaussian distribution or is there some sort of submanifold with
lower dimension than p and if so, what is the dimension and topology of this
submanifold.

It seems fairly obvious that natural images are non-Gaussian. Intuitively by
looking at a picture if one knows what part of the image is they can guess to
some extent what the rest of the image contains, thus making it non-Gaussian.
For example, consider an image with half a tree in the middle of the image,
if the other half of the image is missing the observer can guess with fairly
high confidence that the pixels next to the visible half of the tree will depict
features of a tree instead of some random set of grayscale or RGB values. Of
course, from a mathematical point of view, intuition is not enough and so
many studies have been done to show that natural images are not random.
Take as an example the work of Daniel Ruderman [54]. This then begs the
question, if not Gaussian, what is the structure of natural images?

While some effort had been made in this area, David Mumford was the first to
fully tackle this problem. The bulk of his work in this area was published in
a 2003 paper with co-authors Ann Lee and Kim Pedersen [47]. In this work,

11

Mumford et. al. came to the conclusion that although the entire manifold of
images is not characterizable in any meaningful way, the space of small im-
age patches does appear to have a structure which can be at least partially
described. Additionally, Field [15] and van Hateren [25] found that an under-
standing of local statistics within an image provides a lot of information about
the global statistical properties of the image. This means that we can restrict
our study to small local image patches and still be able to make some claim
about the overall structure of images.

In order to study this space of small image patches, Mumford et. al. utilized
a set of black and white images published in conjunction with a paper by van
Hateren and van der Schaaf [26]. They then examined 3x3 patches within the
image, yielding vectors in R9. Amongst these images the authors restricted
their research to ”high contrast” (high variance) image patches (call this set
M) as most of the patches lie within solid color portions of the image which
do not carry any interesting structure to them. By restricting to high-contrast
image patches, they restricted their study to those patches which were inter-
esting and non-trivial. This aligns with human visual processing as Reinagel
and Zador [52] found that humans tend to focus on regions with high spa-
tial contrast when presented with a natural image scene. To determine those
patches which are high contrast, the authors developed a measure of contrast
which they referred to as the D-norm. The developed D-norm is a logarithmic
measure of the differences in the values calculated by summing the differences
between 4-connected neighbors (i ∼ j) in the 3x3 patch and then taking the

square root. Formally, ‖x‖D =
√∑

i∼j(xi − xj)2, or in matrix form:

‖x‖D =
√
xTDx where D =

2 −1 0 −1 0 0 0 0 0
−1 3 −1 0 −1 0 0 0 0
0 −1 2 0 0 −1 0 0 0
−1 0 0 3 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 3 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −1 0 −1 3 −1
0 0 0 0 0 −1 0 −1 2

Using this, the authors focused on the top 20% of high-variance patches in the
data set as evaluated by the D-norm. These values were then mean centered,
meaning that the mean over the 9 pixels in the patch was subtracted from each
of the pixels. This has the effect of mapping patches with the same relative
brightness between the pixels but an overall brighter patch to the same point.
This also reduces the data to an 8-dimensional subspace within R9. The data
was also normalized using the D-norm which has the effect of mapping patches
that differ only in overall contrast to the same point. Formally for x ∈ R9,
then:

12

x̂ =
x− 1

9

∑9
i=1 xi

‖x− 1
9

∑9
i=1 xi‖D

is the normalized form of x.

The result of these two operations projects the data to the surface of a 7-
dimensional ellipsoid in R8. The author’s work was then to study how the
data M was arranged within S7. From this, the authors surprisingly found
that the data was concentrated around an annulus. Their conclusion was
then that high-density, high-contrast patches from images lie along a high-
codimensional manifold within the space of patches and that this submanifold
has a non-trivial geometry meaning that H1 (the first homology group) was
non-zero. Codimension refers to the dimensional difference between a mani-
fold and its containing space, so formally, if N is a submanifold in M , then
codim(N) = dim(M)−dim(N). Understanding this, the fact that the space of
high-contrast image patches is a high-codimensional manifold is a non-obvious
and particularly interesting result.

Building on the work of Mumford et. al., Carlsson, Ishkhanov, de Silva, and
Zomorodian, in their 2007 paper [3], sought to apply TDA to the study of
high-contrast image patches, M, in order to develop a topological model of
M. In particular, they found that the 2-dimensional submanifold of M has
the topology of the Klein bottle. More specifically the authors showed that
the topology is that of the three-circle model C3 (see Figure 1.3) which is
topologically equivalent (i.e., homotopy equivalent) to the Klein Bottle. In C3,
two of the circles (pictured as red and green in Figure 1.3) intersect the third
circle in precisely two points while they themselves do not intersect. This is
possible because C3 lies inside of R8 so such a geometry is feasible. The authors
show that the topology of each of the components is in fact topologically a
circle. The authors also found that the value k used to determine the density
of the filtration (larger values of k allow for less dense points to be considered,
see Section 4.1.2 K-Nearest Neighbors Density Filtration) has a large effect on
the topology of the submanifold. When k is smaller the 3 circle/Klein bottle
topology is found; however, when k is increased the topology collapses to a
single circle of linear gradients rotating around the circle. This is referred to as
the Primary Circle. The authors used a TDA software package called PLEX
to verify their results by using it to compute the Betti numbers of each of the
data sets.

The authors also give a potential rendering of the layout of the image patches
on the C3 model (see Figure 1.4); however, no work within the paper ap-
pears to prove that this is in fact how the patches are arranged within the
submanifold.

In 2018, Carlsson, in collaboration with computer scientist R. Gabrielsson,
used this theoretical background to propose a novel TDA-inspired approach
on the CNN weight analysis problem [18] (expanded in [5]) using a program
called Ayasdi which implements a TDA algorithm known as Mapper [60].
Mapper produces a visual representation of the structure of a point cloud

13

Figure 1.3: 3 circle configuration and Klein Bottle representation

Figure 1.4: Potential rendering of the layout of the image patches on the C3

model [3]

set (see Section 4.2.1). Carlsson and Gabrielsson noted statistical similarities
between the weights in a given layer of a CNN model and small 2D digital
image patches extracted from a large dataset of natural images (e.g. the same
data studied by Mumford et. al.). Given that a CNN will attempt to learn the
structure of a data set, it would make sense that the topology of 3x3 weights
in a CNN would be similar to that of high density, high-contrast 3x3 patches
of natural images.

Extrapolating the above observations to CNN models, Carlsson and Gabriels-
son then advanced the hypothesis that CNN weights form high-dimensional
point-clouds that evolve over the training process, according to geometric man-
ifold patterns similar to the ones found by Lee, Mumford and Pedersen. They
also proposed that one should be able to understand the evolution of these geo-
metrical shapes using TDA methods. In their work, Carlsson and Gabrielsson
show that for several different CNNs the weights of the convolutional layers
approximate a similar topological structure as found in high density 3x3 image

14

patches found by Carlsson et. al. in [3]. The authors show that for grey-scaled
images the network weights take on non-trivial geometry, namely that there is
a high persistence cycle in H1. This circle consists of rotating gradients (i.e.,
Primary Circle). For color images, the weights approximate a geometry with
a similar 1st homology group to that of C3 i.e., the three-circle model where
each color is represented by one of the circles. The authors also found the
three-circle model in a few of the greyscale convolutional layers, but, while
not discussed in their work, it is assumed that the single circle shows up as
opposed to C3 in grayscale because the density value k is set high enough, just
as observed in [3].

Building on all of this we can now attempt to state the hypothesis of the
work performed by Carlsson and Gabrielsson. This hypothesis is not explic-
itly stated anywhere, although the summation of it is posited in [3] and verified
in [18] and [5]. As such, we will explicitly define the Carlsson-Gabrielsson Hy-
pothesis [18] as follows:

Carlsson-Gabrielsson (C-G) Hypothesis: The point-cloud of 3x3 weights
arising from training a CNN on natural image data lie on a manifold with
non-trivial geometry. In particular, one in which H1 is non-zero. This is the
same structure found in high-density, high-variance, normalized 3x3 patches
taken from natural images [3].

The Carlsson-Gabrielsson hypothesis carries significant implications in several
directions. First, if validated, the hypothesis would shed light on how CNN
models learn during the training process, and give a theoretical model for
their understanding. It would also provide evidence for the believed similarity
between the CNN image recognition learning and the biological Hubel-Wiesel
visual pathway. Additionally, if the hypothesis holds, this gives a defined
geometry for the weight space. This would allow for the validation of trained
CNNs by checking to see if, after training, the weights have taken on this
geometry. A lack of the expected geometry would then point to an issue with
the model. Lastly, the hypothesis indicates a possible way of accelerating the
training process of a CNN model, an aspect of fundamental importance in
deep learning. The CNN training procedure is a stochastic version of gradient
descent optimization, with the starting weight set initialized either randomly
or according to a specific distribution (e.g. Glorot initialization). One would
then assume that initializing the starting weights according to the learned
geometrical global structure predicted by the Carlsson-Gabrielsson hypothesis
would result in faster training.

To summarize, we have the following set of observations leading up to the
Carlsson-Gabrielsson Hypothesis and subsequently our work.

• In order to understand the structure of the weight space of a CNN built

15

to classify natural images one must first understand the structure of
natural images

• The structure of pixels in natural images is known to be highly non-
gaussian (e.g. [54])

• Building on this non-normality Mumford et. al. showed that the set
of high-variance local patches from natural images can be modeled by a
high-codimensional submanifold [47]

• Carlsson, Ishkhanov, de Silva, and Zomorodian used TDA methods to
show that this same set of high-variance local patches from natural im-
ages takes on the structure of a 2-dimensional submanifold [3]

• Carlsson and Gabrielsson [5] showed that the weight data from convo-
lutional layers of CNNs seems to resemble the set of high-variance local
patches from natural images studied by Mumford and also Carlsson,
Ishkhanov, de Silva, and Zomorodian

• Carlsson and Gabrielsson thus applied TDA to discover whether the
convolutional weights had the same structure as the high-variance local
patches from natural images [18, 5]

• Carlsson and Gabrielsson were able to show for several datasets (MNIST,
CIFAR-10, and SVHN) that the convolutional weights did in fact approx-
imate a similar structure [18]

• Thus Carlsson and Gabrielsson posited the Carlsson-Gabrielsson Hy-
pothesis [18]

1.3 Our Work: Objectives and Outline

Given the implications of the Carlsson-Gabrielsson hypothesis and the promise
shown in their published results as well as the larger body of work in char-
acterizing local image patches of natural images, our goal is to further the
application of CNNs by studying the structure of weight spaces in CNNs. In
particular, we will study the structure of weight spaces in CNNs built to clas-
sify a previously unstudied complex image set known as Dogs vs. Cats. This
structure will be studied by applying TDA methods to analyze the weight
spaces of convolutional layers of CNNs trained using the Dogs vs Cats data
set, to determine what the underlying structure of the weight space for a CNN
applied to this set is. In this work, a secondary objective will be to validate
the C-G Hypothesis by extending it to a more realistic data set to demonstrate
the legitimacy of the hypothesis.

To do this, the first step will be to replicate the work in [18]. Using the
MNIST data set, a CNN of the same architecture will be created and trained
on the data set. The results will then be compared to the work in [18]. Since

16

Carlsson and Gabrielsson used a proprietary software suite (Ayasdi) to achieve
their results and did not publish any of their code their results have been
left unverified. An attempt was made by Larsen [39] to verify the results of
Carlsson and Gabrielsson using Python packages with only limited success. By
replicating the work of Carlsson and Gabrielsson we will verify their results and
will also demonstrate the validity of our methods and subsequent results.

After replicating the results from [5], the next step and real work will be to
extend the results to a more realistic data set. To do this we will use the
Dogs vs. Cats data set. This data set comes from a 2013 Kaggle competition
[34] used to test the robustness of Asirra (Animal Species Image Recognition
for Restricting Access) [11] which is a form of CAPTCHA (Completely Auto-
mated Public Turing test to tell Computers and Humans Apart) developed by
Microsoft in conjunction with petfinder.com. The Kaggle competition was in-
tended to test whether Asirra was safe from attack and ”benchmark the latest
computer vision and deep learning approaches” [34]. As opposed to the 28x28
pixel monochromatic images of the MNIST data set the Dogs vs Cats data set
consists of 200x200 pixel colored images making it much more representative
of actual images.

Using this data set, we will use TDA to show that there is an underlying
structure to the CNN weight space after training and that this structure ap-
proximates a manifold with non-trivial geometry. In particular, we will seek to
show that this structure includes the presence of a high persistence cycle in H1

i.e., the ”Primary Circle”, which is the same structure found in high-variance
local image patches of natural images. This structure is also analogous to
the arrangement of neurons in the primary visual cortex which perform edge
detection.

The remaining structure of the paper is as follows. Sections 2-4 will cover
the necessary theoretical background needed to understand and interpret the
results. This includes a refresher of Algebra and Topology and a look at
the necessary theory of Homology and Persistent Homology in Section 2, an
introduction to Convolutional Neural Networks in Section 3, and in Section
4 we will cover some of the methods of Topological Data Analysis which will
be used. Section 5 will give a description of the methods used before jumping
in to the results in sections 6-7. In Section 6 we will give an overview of the
results found by Carlsson and Gabrielsson on the MNIST data set [18] and
then will show our work recreating their results and furthering the study of
MNIST. Section 7 will detail the analysis of the Dogs vs Cats data set and the
results of the TDA study of CNNs built for this data set. In Section 8 we will
discuss the results and relevant findings with a conclusion in Section 9.

17

2 Mathematical Theory

2.1 Algebra Refresher

Before delving into the primary work of this paper, it is necessary to review
some concepts from Abstract Algebra which will be foundational to the ideas
presented later. For a more complete introduction to algebra the reader is
directed to [14].

Definition 2.1. Ring: A ring R is a set, together with two binary operations,
addition (+) and multiplication (·), defined such that the following are satis-
fied:

1. 〈R,+〉 is an abelian group.
2. · is associative
3. For a, b, c ∈ R, a·(b+c) = (a·b)+(a·c) and (a+b)·c = (a·c)+(b·c)

Definition 2.2. Integral Domain: An Integral Domain D is a commutative
ring with unity 1 6= 0 (multiplicative identity) such that if a and b are two
elements of a ring R with a · b = 0, then at least one of a, b must be zero. (If
neither are 0 then a and b are referred to as zero divisors of R).

Integral domains are important because the cancellation laws for multiplication
apply. In other words, if one has a polynomial equation with coefficients from
an Integral Domain which can be factored into linear factors then it can be
solved by setting each term equal to 0. This is not always true in a more
general ring.

Taking this one step further we arrive at the concept of a field.

Definition 2.3. Field A Field is a commutative ring R with unity 1 6= 0 such
that for u ∈ R there exists u−1 ∈ R where u · u−1 = u−1 · u = 1.

Every Field is an Integral Domain but the converse does not hold. However,
every Integral Domain D can be enlarged to, or embedded in, a Field F made
up of quotients from D [14]. Such a field F is referred to as a field of quotients
of D.

Definition 2.4. Ideal: If N is an additive subgroup of a ring R such that
aN ⊆ R and Nb ⊆ R for a, b ∈ R, then N is called an Ideal.

If R is a commutative ring with unity and a ∈ R, then the set {ra|r ∈ R} is an
ideal and is referred to as the principal ideal generated by a and denoted
〈a〉. If an ideal N = 〈a〉 for some a ∈ R, then N is referred to as a Principal
Ideal.

18

Definition 2.5. Principal Ideal Domain (PID) R is a principal ideal
domain if R is a ring with no zero divisors and every ideal in R is principal.

A polynomial f(t) with coefficients from a ring R is the formal sum
∑
i=0

ait
i

where ai ∈ R, k ∈ N, and only a finite number of ai are non-zero. The set of all
polynomials f(t) with coefficients from a ring R forms a commutative ring with
unity denoted R[t]. (Note the distinction between f(t) a single polynomial with
coefficients from R and R[t] the set of all polynomials f(t) whose ai ∈ R). This
applies to fields as well. The set F [t] of polynomials with coefficients from a
field F is an Integral Domain - and more precisely - is a Principal Ideal Domain.

Definition 2.6. Graded Ring: A graded ring is a ring 〈R,+, ·〉 containing
a direct sum decomposition of Abelian groups R ∼=

⊕
iRi, i ∈ Z such that mul-

tiplication is defined by pairings Rm ⊗Rn → Rm+n.

Definition 2.7. Module: A Module M is a commutative group which can
be acted on by elements from a ring R satisfying the following properties, if
r, s ∈ R, x, y ∈M , then:

1. r · (x+ y) = (r · x) + (r · y)
2. (r + s) · x = (r · x) + (s · x)
3. (r · s) · x = r · (s · x)
4. 1 · x = x

M is also referred to as an R-module. This is the same idea as a vector space
except that the scalars are only required to be from a ring as opposed to a
field in the case of the vector space.

As an example of a graded ring we can take the standard polynomial ring R[t]
and grade it using the standard grading such that Rn = Rtn, n ≥ 0. Clearly
Rn ⊗Rm = Rtn ⊗Rtm = Rtn+m = Rn+m, so this is a graded ring.

Similar to the ring we can also talk about a graded module.

Definition 2.8. Graded Module: A Graded Module M over a graded ring
R is a module with a direct sum decomposition M ∼=

⊕
iMi, i ∈ Z such that

the action of R on M is defined by pairings Rm ⊗Mn →Mm+n.

One may recall that the Fundamental Theorem of Finitely Generated Abelian
Groups gives a description for the structure and composition of every finitely
generated abelian group. There is a generalization of this theorem referred
to as the Structure Theorem for Finitely Generated Modules Over a Princi-
pal Ideal Domain [23] (henceforth referred to as the Structure Theorem). This
theorem describes the structure of finitely generated D-modules over a PID D.

19

Theorem 2.1. Structure Theorem: If D is a PID then every finitely gen-
erated D-module M decomposes into the following form:

M ∼= Dβ ⊕
m⊕
i=1

D/diD for di ∈ D, β ∈ Z, such that di|di+1.

By corollary the Structure Theorem can also be extended to a graded module
over a graded PID [23].

Corollary 2.1.1. : The Structure Theorem can be extended to describe M if
M is a graded module over a graded PID D. In this case:

M ∼= (
n⊕
i=1

ΣαiD)⊕(
m⊕
j=1

ΣγjD/djD) for dj ∈ D such that dj|dj+1, αi, γj ∈ Z,

and Σα denotes an α-shift upward in
grading, i.e., ΣαDm → Dm+α.

Similar to the Fundamental Theorem of Finitely Generated Abelian Groups
the structures described by the Structure Theorem and its Corollary above
consist of two parts, the free portion on the left and the torsional portion
on the right. If D is a field rather than a PID then the torsional portion
disappears and we are left with only the free portion on the left. When D is
a PID the torsional elements on the right describe generators which may only
generate a finite number of elements so the structures look like vector spaces,
as they would with a field, except that some of the dimensions may appear
”finite”.

2.2 Topological Background

The primary topological structure used in TDA is the Simplicial Complex.
This section contains its definition and other relevant definitions and results
which will be used. For a more complete introduction to Algebraic Topology
the reader is directed to [48].

20

2.2.1 Simplicial Complexes

Definition 2.9. Simplex: A k-simplex is a convex hull of k + 1 affinely in-
dependent points, σ = conv{u0, u1, ...uk}. More formally,
Given a set {u0, u1, ...uk} of points in RN , such that for real scalars, ti, if
k∑
i=0

ti = 0 and
k∑
i=0

tiui = 0 then ti = 0 ∀i = 0..k. Then the k-simplex σ is the

set of points x ∈ RN such that x =
k∑
i=0

tiui where
k∑
i=0

ti = 1.

Figure 2.1: On the left X is 3-simplex and Y is a face of X. On the right M
is a 2-simplex consisting of the points t, u, v and N is a face of M containing
u and v

If σ is a simplex then a face of σ is the convex hull of a non-empty subset of
the ui (See Figure 2.1).

Using this definition, a Simplicial Complex is just a finite collection of sim-
plices K with the following properties.

Definition 2.10. Simplicial Complex A finite collection K of simplices
such that

1. σ ∈ K and τ a face of σ implies τ ∈ K
2. σ, τ ∈ K implies σ ∩ τ is either empty or a face of both.

Above is an example of a Simplicial Complex K = {{t}, {u}, {v}, {t, u}, {u, v},
{v, t}, {t, u, v}}. As one can see the face of every simplex in K is also in K, so
{t, u, v} ∈ K ⇒ {t, u} ∈ K. Now it is not the case that every point must be
connected. For instance, we can remove the simplex {t, v} from K; however,
in this case we no longer have a Simplicial Complex because {t, v} is a face
of {t, u, v}. If we also remove {t, u, v} from K then we once again have a
valid Simplicial Complex K ′ = {{t}, {u}, {v}, {t, u}, {u, v}} (pictured in Fig-
ure 2.3).

21

Figure 2.2: A simplicial complex K = {{t}, {u}, {v}, {t, u}, {u, v}, {v, t},
{t, u, v}}, i.e., the Simplex from Figure 2.1 and its faces.

Figure 2.3: The simplicial complex K from Figure 2.2 with the simplices {t, v}
and {t, u, v} removed.

One problem with the use of Simplicial Complexes is that it requires a geo-
metric realization. To get around this we can define an Abstract Simplicial
Complex which can be defined and used in a more general topological space
without having to worry about its geometric representation.

Definition 2.11. Abstract Simplicial Complex: An Abstract Simplicial
Complex is a finite collection of sets A such that α ∈ A and β ⊆ α implies β ∈
A.

This definition allows the use and description of Simplicial Complexes without
the need for a geometric realization. That being said we can essentially use
these definitions interchangeably since the Geometric Realization Theorem [8]
states:

Theorem 2.2. Geometric Realization Theorem Every abstract simpli-
cial complex of dimension d has a geometric realization in R2d+1.

So even if a specific geometric realization is not known we can talk about
the simplicial complex in terms of a general geometric realization since one is
known to exist.

22

2.2.2 Constructing A Simplicial Complex

With this idea in hand we turn now to a discussion of constructing simplicial
complexes. This is a complex and broad topic that depends, among other
properties, on the type of data being used to build the complex and the space
in which that data lies. For the sake of simplicity and application to the results
in this paper the discussion is restricted to point cloud sets in a metric space.

Definition 2.12. Metric: A metric d on a set X is a function d : X×X → R
satisfying the following properties:

1. d(x, y) ≥ 0 ∀x, y ∈ X and d(x, y) = 0 iff x = y
2. d(x, y) = d(y, x) ∀x, y ∈ X
3. d(x, y) + d(y, z) ≥ d(x, z) ∀x, y, z ∈ X

A metric is often referred to as the distance between two points. Given a
metric d we can define the set known as the ε-ball.

Definition 2.13. Given a metric d, a point x and real value ε > 0, the ε-ball
centered at x, denoted Bd(x, ε), is defined as:

Bd(x, ε) = {y ∈ X|d(x, y) < ε}

Definition 2.14. Metric Space: If X is a topological space, X is said to
be metrizable if there exists a metric d on the set X that induces the topology
of X. A Metric Space (X, d) is a topological space X together with a metric d
such that the topology of X is induced by d.

Definition 2.15. Point Cloud: A point cloud is a finite set of vectors
{vi} ∈ M a metric space. Almost always, as will be the case with the re-
sults throughout this paper, the metric space is Rn.

To start with, let X = {xi : i = 1..n} be our finite point cloud data set. Using
this data set, a simplicial complex can be constructed using the data. There
are many different ways to construct the complex, a discussion of which is
beyond the scope of this paper; however, below are two examples of ways in
which a simplicial complex can be constructed from a point cloud.

C̆ech Complex
Definition 2.16. Given a collection of points X = {xi} in a metric space and
ε > 0, the C̆ech Complex Cε is the abstract simplicial complex where for each
σ ⊆ X, σ ∈ Cε iff ⋂

x∈σ
B(x, ε

2
) 6= ∅.

23

Definition 2.17. Nerve: Given a finite collection of sets F , the Nerve of
F, N (F) = {X ⊆ F |

⋂
X 6= ∅}. That is, the Nerve consists of all non-empty

subcollections of F whose sets have a non-empty intersection. The Nerve of F
is an abstract simplicial complex whose vertices are elements of F and whose
simplices are the subcollections with non-empty intersection.

Theorem 2.3. Nerve Theorem: Let F be a finite collection of closed,
convex sets in Euclidean space. Then the nerve of F and the union of the sets
in F have the same homotopy type.

The C̆ech Complex is the Nerve of the point cloud X (i.e., Cε = N (X)).
So by the Nerve Theorem, Cε is homotopy equivalent to the union of the
ε
2

balls around X. Because of this the C̆ech Complex behaves nicely. For
X = {xi|xi ∈ Rd} while the complex can have dimension much higher than
d the Nerve Theorem tells us that the complex behaves like a subset of Rd.
However, despite this nice property, the computation of the C̆ech Complex
is quite difficult and cumbersome [19]. As a more computationally efficient
alternative we can compute the Rips Complex.

Rips Complex
Definition 2.18. Given a collection of points X = {xi} from a metric space,
the Rips Complex Rε is the abstract simplicial complex where for each σ ⊆
X, σ ∈ Rε iff for x, y ∈ σ, d(x, y) < ε.

The reader is directed to [19] for a more in-depth comparison of the C̆ech
and Rips Complexes, a summary of which is presented below. The important
take away is that Rips Complexes are both easier to compute and require less
storage than C̆ech Complexes. The Rips Complex is a flag complex meaning
that a set of k + 1 vertices spans a k-simplex if and only if any two span a
1-simplex, so it is defined by its 1-skeleton. Due to this, the complex can be
stored as a graph and the entire boundary operator is not needed like it is for
the C̆ech Complex. Thus, even though the Rips Complex typically has more
simplicies than the C̆ech Complex (since the C̆ech Complex is a subcomplex of
the Rips Complex) it is more efficient to compute and store. However, unlike
the C̆ech Complex it does not necessarily behave like an n dimensional space
[19].

24

Figure 2.4: On the left we show the Cech Complex and the corresponding
simplicial complex and on the right the Rips Complex and its simplicial com-
plex.(Image taken from [19])

2.2.3 Homology

Let σ be a simplex, then it has a vertex set {v0, v1, ...vk}. We say that two
orderings of the vertex set are equivalent if they differ from one another by an
even permutation. So if we assume dim{σ} 6= 0 (dim{σ} = |{vi}i=0..k| = k)
then the orderings fall into two equivalence classes, each of which are called
an orientation of σ. A simplex together with its ordering is referred to as an
oriented simplex. In Figure 2.5 [t, u, v] is an oriented 2-simplex.

Figure 2.5: An oriented simplicial complex K = {[t], [u], [v], [t, u], [u, v], [v, t],
[t, u, v]}

Definition 2.19. Given a simplicial complex K and p ∈ N, a p-chain on K
is a function c from the set of oriented p-simplicies of K to a Ring R such
that:

(1) c(σ) = −c(σ′) if σ and σ′ are opposite orientations of the same
simplex.

(2) c(σ) = 0 for all but finitely many oriented p-simplices of K.

An example of a p-chain is the Elementary Chain corresponding to σ.

25

Definition 2.20. elementary chain: If σ is an oriented simplex, then the
elementary chain c corresponding to σ is defined by

c(τ) =

1 : τ = σ
−1 : τ = σ′ where σ′ is the opposite orientation of σ
0 : otherwise

p-chains can be added together by adding their values. So, if c, c′ are p chains,
then (c+ c′)(σ) = c(σ) + c′(σ). This results in abelian groups Cp(K) for each
p ∈ N, which are referred to as the p-th chain groups. For p = 0 and p >
dim{K} we define Cp(K) as the trivial group. Using this we can then define
the Boundary Operator.

Lemma 2.4. A basis for Cp(K) can be obtained by orienting each p-simplex
and using the corresponding elementary chain as a basis.

For proof see [48]

Definition 2.21. Boundary Operator: The boundary operator ∂p : Cp(K)→
Cp−1(K) is a homomorphism defined as follows. Given an oriented simplex
σ = [v0, v1, v2, ...vp] with p > 0

∂pσ = ∂p[v0, ...vp] =
p∑
i=0

(−1)i[v0, ...v̂i, ...vp]

where v̂i means that the vertex vi is to be deleted from the array.

As an example, consider the oriented 2-simplex [t, u, v] from Figure 2.5. Then:
∂2[t, u, v] = (−1)0[t̂, u, v] + (−1)1[t, û, v] + (−1)2[t, u, v̂] = [u, v]− [t, v] + [t, u]
This is the set of oriented 1-simplices pictured in Figure 2.6.

Figure 2.6: The ∂2 boundary operator acting on the oriented simplex σ =
[t, u, v]

Using the boundary operator on each of the chain groups we obtain the fol-
lowing sequence of groups:

· · · ∂p+2−−→ Cp+1
∂p+1−−→ Cp

∂p−→ Cp−1
∂p−1−−→ · · ·

26

Figure 2.7: The ∂1 boundary operator acting on the oriented simplices
{σ1, σ2, σ3} = {[t, u], [u, v], [v, t]}

This sequence is referred to as a chain complex and is denoted C∗.

This boundary operator gives rise to the two groups we need to build the Ho-
mology Groups. First, we have the kernel of ∂p : Cp(K) → Cp−1(K) which is
referred to as the group of p-cycles and denoted Zp(K). Secondly, we have the
image of ∂p+1 : Cp+1(K) → Cp(K) which is called the group of p-boundaries
and is denoted Bp(K). Using these two groups we arrive at the construction
of the pth homology group.

Theorem 2.5. The boundary of a p+ 1-chain is automatically a p-cycle (i.e.,
Bp(K) ⊆ Zp(K))

Proof.
Let [v0, v1, ..., vp] be a p + 1 chain. Then ∂p+1[v0, v1, ..., vp] is a p-cycle if
∂p∂p+1[v0, v1, ..., vp] = 0.

∂p∂p+1[v0, v1, ..., vp] =
p∑
i=0

(−1)i∂[v0, ...v̂i, ..., vp]

=
p∑
i=0

(−1)i
i−1∑
j=0

(−1)j[v0, ..., v̂i, ...v̂j, ..., vp]

+
p∑
i=0

(−1)i
p∑

j=i+1

(−1)j−1[v0, ..., v̂j, ...v̂i, ..., vp]

For any pair (i, j) in the first sum there exists a pair (j, i) in the second sum and
so (−1)i(−1)j[v0, ..., v̂i, ...v̂j, ..., vp] + (−1)j(−1)i−1[v0, ..., v̂i, ...v̂j, ..., vp] = 0.
Similarly every pair (i, j) in the second sum has a corresponding pair (j, i) in
the first sum.
Thus:
p∑
i=0

(−1)i
i−1∑
j=0

(−1)j[v0, ..., v̂i, ...v̂j, ..., vp]

+
p∑
i=0

(−1)i
p∑

j=i+1

(−1)j−1[v0, ..., v̂j, ...v̂i, ..., vp]

= 0
Therefore the boundary of a p+ 1-chain is automatically a p-cycle.

27

Definition 2.22. Homology Group: The pth homology group is defined as
Hp(K) = Zp(K)/Bp(K).

Since each boundary of a p+ 1-chain is automatically a p-cycle (i.e., Bp(K) ⊆
Zp(K)) this is well defined.

As an example, consider the simplicial complex K pictured in Figure 2.5. We
have already shown in Figures 2.6 and 2.7 the results of the ∂1 and ∂2 operators.
We know that H2(K) = Z2(K)/B2(K), and we know that ∂2[t, u, v] ∈ Z2(K).
Since there are no 3-simplices then B2(K) = {0}, so H2(K) = Z2(K) ∼= Z.
Additionally for H1(K) since B1(K) = C1(K), then Z1(K) = B1(K) and thus
H1(K) = {0}.

As another example consider the simplicial complex pictured in Figure 2.5
where we add a point {d} and directed simplices {[c, d], [d, a]} as pictured be-
low in Figure 2.8. Then:

∂1{[a, b], [b, c], [c, a], [c, d], [d, a]} = {b− a, c− b, a− c, d− c, a− d}
∂2{[a, b, c]} = bc− ac+ ab = {[a, b], [b, c], [c, a]}

So
B1(K) = {[a, b], [b, c], [c, a]}
Z1(K) = {[a, b], [b, c], [c, a], [d, a]}

Thus H1(K) = Z1(K)/B1(K) = Z2

And similarly to the previous example there are no 3-simplices and there is at
least one 2-cycle so H2(K) = Z2(K) ∼= Z.

Figure 2.8: Oriented simplicial complex K = {[a], [b], [c], [d], [a, b], [b, c], [c, a],
[c, d], [d, a], [a, b, c]}

28

Recall that the Fundamental Theorem of Finitely Generated Abelian Groups
tells us that for any finitely generated abelian group G, G can be decomposed
into a free abelian subgroup H with finite rank β (the Betti number of G)
and its Torsion Subgroup T (where G = H ⊕ T). In our context then, the pth
Betti number is the rank of the pth homology group, i.e., βp = rank{Hp}. This
turns out to be quite important as Poincare’ proved that the Betti numbers
are topological invariants, thus in the context of data analysis they provide
important information about the underlying structure of the data.

A few more relevant definitions:

Definition 2.23. Two cycles c, c′ ∈ Zp(K) are homologous if they differ by
a boundary, i.e., there exists a p+ 1-chain d such that c− c′ = ∂p+1d.

Definition 2.24. A homotopy is a family of maps ft : X → Y, t ∈ [0, 1],
such that the associated map F : X × [0, 1] → Y given by F (x, t) = ft(x) is
continuous. Then f0, f1 : X → Y are homotopic via the homotopy ft, denoted
f0 ' f1.

Definition 2.25. A map f : X → Y is called a homotopy equivalence if
there is a map g : Y → X such that f ◦ g ' 1 and g ◦ f ' 1. Then, X and Y
are homotopy equivalent. We denote this by X ' Y .

Given two cycles σ, τ with a shared boundary occurring in opposite directions,
the sum σ+ τ eliminates the shared boundary thus resulting in a cycle homo-
topic to σ. Since this holds for any boundary τ we can look for equivalence
classes σ+Bp for a p-cycle. However, this is the group Zk/Bk. Homology thus
lets us measure the cycles up to the homology equivalence relation, i.e., those
cycles which are homologous, because it is precisely the cycles modulo the set
of boundaries.

2.3 Persistent Homology

2.3.1 Filtration

For many reasons having a single simplicial complex may not be sufficient. For
one, in our context, we are building a simplicial complex out of point cloud
data, and as such we must have some method of forming the Simplicial Com-
plex, e.g. C̆ech or Rips Complex. The problem with this is that these methods
rely on a threshold to determine whether two vertices are connected; however,
this begs the question, what is an appropriate threshold? There is not an
obvious choice for threshold value, but this value has a major impact on the
structure of the complex. For example, choosing a threshold ε small enough
will mean that there are only 0-simplexes whereas if ε is chosen sufficiently

29

large, then there will exist an n+1 simplex where n is the number of points in
the point cloud. Persistent Homology offers a way of looking at the structure
over a set of increasing threshold values allowing one to study how the struc-
ture changes and learn information that is true about the structure of point
cloud rather than information that is true only at a specific threshold value.
The following section outlines the necessary theory for Persistent Homology.

Definition 2.26. Let K be a simplicial complex defined from a point cloud
data set X with some metric d. Then the coarseness δ of K is defined as
the maximum distance between any two points contained in the same simplex,
i.e.,

δ = max{d(x, y) | x, y ∈ X, x, y ∈ k ∈ K}

In many cases it may not be obvious what this threshold value should be or it
may be desirable to see how the properties of the complex change over various
values for δ. To do this we can use a filtration on the complex.

Definition 2.27. Filtration: A filtration is a function f on K that results
in a nested subsequence of complexes ∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Km = K.

In this case we call K a filtered complex. Using a filtered complex we can then
talk about the homology groups of each complex Ki. We denote Ci

p, Z
i
p, and

Bi
p as the p-chains, p-cycles and p-boundaries, respectively, of Ki.

Definition 2.28. The j-persistent p-th homology group in the k-th dimension
is:

H i,j
p = Zi

p/(B
i+j
p ∩ Zi

p)

So then for each i, j ∈ N, 0 ≤ i ≤ m and 0 ≤ j ≤ m− i, there exist j-persistent
p-th homology groups H i,j

p . These exist for each dimension p > 0 as well and
if we generalize and let K l = K for l > m then we can remove the restriction
j ≤ m− i.

To better understand filtrations, consider once again the C̆ech Complex. By
increasing the value for ε, a filtration can be constructed out of the C̆ech
Complexes built for each epsilon value (see Figure 2.9). This is by no means
the only way to create a filtered complex, but a thorough discussion of methods
is beyond the scope of this paper.

Returning to our discussion of filtered complexes - using a filtration allows
us to see how the topological properties derived from the homology groups
change at different scales. This is particularly useful when dealing with noisy
data. Since all sampled data inherently contains noise, we want to be able to

30

Figure 2.9: On the top row we show the filtration on a data set containing three
points. On the bottom row we show the simplicial complex created at each step
of the filtration

filter out the noise and determine what the ambient non-noisy space really is.
By using a filtration, we can view the properties at various scales and ignore
”features” which appear only at specific scales and thus focus our attention
on those properties that persist across many or all scales.

Using a filtration on a complex K, we create groups H i,j
p which we call the

persistent homology groups and with them introduce the subfield of Persistent
Homology. Let us recall what these groups represent. As defined above H i,j

p =
Zi
p/(B

i+j
p ∩Zi

p) so H i,j
p is the set of homologous non-bounding p-cycles which are

not boundaries in Ki and ”survive” or do not become boundaries until Ki+j.
The persistent homology groups then represent topological properties which
persist through levels of filtration. The idea is that important topological
features are precisely those with a long lifetime, i.e., those that persist through
many levels of filtration [65]. Intuitively then, by focusing on those properties
that survive through many levels of filtration, we can ignore the properties
which arise as features of the noise on our data and as such only persist through
a small number of filtration levels.

Just as with standard homology groups we can derive topological information
from the ranks of the persistent homology groups, i.e., their Betti Numbers.

Definition 2.29. the j-persistent p-th Betti number of Ki for each i, j, p, de-
noted βi,jp is defined as the rank of the free subgroup of H i,j

p .

By looking at the j-persistent Betti Numbers where j is at least some value
M > 1 we can observe the topological properties which persist for at least
M levels of the filtration. Thus by tuning the parameter M we can remove
the spurious features created by noise. We will show later that βi,jp is the
number of equivalence classes of non-bounding p-cycles in H i with homologous
boundaries in H i+j.

31

Since Ki ⊆ Ki+j, we have inclusion for Zi
p ⊆ Zi+j

p , Ci
p ⊆ Ci+j

p , Bi
p ⊆ Bi+j

p , and
Zi
p ⊆ Bi

p ⊆ Ci
p, thus we can define a map ηi,jp : H i

p → H i+j
p . Using this then

the image of ηi,jp is equivalent to H i,j
p .

2.3.2 Persistence

We have so far discussed the idea of persistence but let us define it formally.

Definition 2.30. If z ∈ Ki is a non-bounding k-cycle such that there is no
homologous k-cycle z′ ∈ K l for l < i then we say that z is created at time i.

Definition 2.31. If z ∈ Kj is a k-cycle that is also a boundary we say that z
dies at time j.

Definition 2.32. If z is a non-bounding k-cycle that is created at time i and
z′ is a k-cycle that is homologous to z (i.e., z ∼ z′) that dies at time j then
the persistence of z is pers{z} = j − i − 1. If there exists z′ ∈ K such that
z ∼ z′ (i.e., z does not die) then pers{z} = ∞. That is, the persistence of
a Persistent Homology Group H i,j

p is the number of filtration levels through
which the non-bounding cycles within the group persist (i.e., exist).

Definition 2.33. A P-interval is an ordered pair (i, j) with 0 ≤ i < j, i, j ∈
Z∞ = Z ∪ {+∞}

As we will discuss in the next section, these P-intervals turn out to be quite
important and useful for describing the structure of the persistent homology
groups.

2.3.3 Persistence Complex

We have so far seen how the boundary operator takes us between the chain
groups and we have seen how to move between the levels in the filtration.
We attempt now to merge these two concepts into one structure and thus ob-
tain a single unifying structure which describes the movement across the chain
groups of different dimensions and across different levels of the filtration. By
doing so we will construct a more formal and algebraic description of persis-
tent homology.

Definition 2.34. A persistence complex C is a family of chain complexes
{Ci
∗}i≥0 over a ring R, together with the maps between the chains f i : Ci

∗ →
Ci+1
∗ .

This produces the following structure:

32

C0
∗

f0−→ C1
∗

f1−→ · · · f
p−1

−−−→ Cp
∗

Recall that a filtered complex K is made up of a set of subcomplexes Ki which
can be traversed using the filtration function. Each subcomplex Ki is itself a
chain complex consisting of the chain groups on each set of p-simplicies which
can be traversed using the boundary operator. So each chain complex pro-
duces the following:

· · · ∂p+2−−→ Cp+1
∂p+1−−→ Cp

∂p−→ Cp−1
∂p−1−−→ · · ·

Thus, expanding this out, we get the following two-dimensional structure:

∂2

y ∂2

y ∂2

y
C0

2

f0−→ C1
2

f1−→ C2
2

f2−→ · · ·
∂1

y ∂1

y ∂1

y
C0

1

f0−→ C1
1

f1−→ C2
1

f2−→ · · ·
∂0

y ∂0

y ∂0

y
C0

0

f0−→ C1
0

f1−→ C2
0

f2−→ · · ·

Definition 2.35. A Persistence Module M is a family of R-modules M i

together with homomorphisms φi : M i →M i+1.

Theorem 2.6. The homology of a persistence complex is a persistence module.

Proof. We have already discussed that the homology of a filtered complex pro-
duces the groups H i

p. So, let σ +Bi
p, τ +Bi

p ∈ H i
p and r ∈ R for some ring R,

then for any b ∈ Bi
p

1. Recall that σ, τ, b are chains and thus are of the form
∑

j nj(λj)

for λj ∈ Ki and thus r ·[(σ+b)+(τ+b)] = [r ·(σ+b)]+[r ·(τ+b)].
By the same reasoning

2. (r + s) · (σ + b) = [r · (σ + b)] + [s · (σ + b)]
3. (r · s) · (σ + b) = [r · (σ · b)] + [s · (σ · b)]
4. 1 · σ = σ

Therefore H i
p is an R-Module.

We have already defined the map ηi,jp : H i
p → H i+j

p which is clearly a homo-
morphism.
Thus the homology of a persistence complex {Ki} with maps ηi,i+1

p : H i
p →

H i+1
p is a persistence complex.

33

Definition 2.36. A persistence complex {Ci
∗, f

i} or persistence module {M i, φi}
is of finite type if each component complex - or module in the case of the
persistence module - is a finitely generated R-module and the maps f i or φi

respectively are isomorphisms for some i ≥ m, i,m ∈ N.

Lemma 2.7. The persistence module {H i
p, η

i,i+1
p } is of finite type.

This result is trivial from the previous results.

We have now defined a structure for our persistent homology, but at this point
what that structure actually looks like, if there is any pattern to it, still alludes
us. As such, we now seek to show what this structure looks like and produce
a unifying definition for its format.

Correspondence
Taking our persistent module M = {M i, φi} = {H i

p, η
i,i+1
p }i≥0 over some ring

R we can equip R[t] with the standard grading (defined in Section 2.1), and
thus define a graded module:

α(M) =
∞⊕
i=0

M i

The R-module structure is then given by the sum of the structures on each
of the individual components where the action of t shifts the elements up one
level in grading. More concretely:

t · (m0,m1,m2, ...) = (0, φ0(m0), φ1(m1), φ2(m2), ...)

Theorem 2.8. The correspondence α defines an equivalence of categories be-
tween the category of persistence modules of finite type over R and the category
of finitely generated non-negatively graded modules over R[t].

The proof is the Artin-Rees Lemma which can be found in [12]

It turns out that this is now enough to produce a concrete structure for the
persistence homology groups which we will show in the next section.

Decomposition
Looking at the correspondence defined above, we arrive at two possibilities.
If the ground ring R is a field, then as we have already noted, the graded
ring R[t] (more appropriately denoted F [t]) is a Principal Ideal Domain and
so by its construction the only graded ideals are homogeneous of the form
(tn) = tn · R[t] for n ≥ 0. Therefore, its structure is exactly that which is
defined in Corollary 2.1.1. Specifically in our case then the structure is:

34

(
n⊕
i=1

ΣαiF [t])⊕ (
m⊕
j=1

ΣγjF [t]/tnj)

The other possibility occurs when R is not a field and thus R[t] is not a PID.
In this case no simple classification for the graded R[t] module is known to
exist. An example of this is the modules over Z[t] which are known to be
difficult to classify. While it is conjectured that no simple classification exists
for such modules over non-PIDs this has yet to be proven.

Turning back to our correspondence over fields, it turns out that an even sim-
pler correspondence exists for these F [t] modules which can be obtained by
using the P-intervals described in Definition 2.33. Using these we can define
a correspondence Q from I the set of P-intervals to an F [t] module where Q
is defined as follows:

For i, j ∈ Z, Q(i, j) = ΣiF [t]/tj−i and for (i,+∞), Q((i,+∞) = ΣiF [t].
Thus for any set I = {(i1, j1), (i2, j2), ..., (ik, jk)} of P-intervals, Q(I) =⊕n

k Q(ik, jk)

Clearly if F [t] is of the form (
n⊕
k=1

ΣαkF [t]) ⊕ (
m⊕
l=1

ΣγlF [t]/tnl) then for any

ΣαkF [t] there exists an i ∈ N, i = αk and thus there exists (i,+∞) in the set
of P-intervals.
Similarly for any ΣγlF [t]/tnl , there exists i, j ∈ N such that i = γl and
j = nl + i. By our definition nl ≥ 0, so j > i and thus there exists (i, j)
in the set of P-intervals.
Since F [t] is finitely generated there is a finite set of intervals (i, j) and (i,+∞).
Therefore Q is a bijection between this set and Q(S).

Now using this correspondence we can simplify our previous correspondence
and restate Theorem 2.8 as follows:

Corollary 2.8.1. The correspondence I → Q(I) defines a bijection between
the finite sets of P-intervals and the finitely generated graded modules over
a graded ring F [t] when F is a field (then F [t] is a PID). Consequently, the
isomorphism classes of persistence modules of finite type over F are in bijective
correspondence with the finite sets of P-intervals.

This means that computing the set of P-intervals is equivalent to computing
the persistent homology over a field, which we arrive at by the following lemma:

Lemma 2.9. Let T be the set of triangles defined by P-intervals for the k-
dimensional persistence module (described in Section 2.3.6). The rank βl,pk of

H l,p
k is the number of triangles in T containing the point (l, p).

35

This lemma is just a restatement of the K-Triangle Lemma a definition and
proof of which can be found in [9].

Recap Let us review what we have done so far. We started with a set of
point cloud data X = {xi}. Using this, we create a simplicial complex K from
X and define a filtration f on K resulting in a nested sequence of complexes
∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K. We then calculate the homology
group for each dimension on Ki, resulting in the groups H i

p described by their
rank βip. If we take these groups over a field, they become vector spaces
and thus our Structure Theorem (Theorem 2.1) can be used to describe their
structure. Expanding our view, we need to produce a description for the
persistent homology on the full filtration. From Theorem 2.6 we know that
this persistent homology is in fact a persistence moduleM. Thus, taken over
a field F , we can define a graded module taken over F [t]. By Corollary 2.1.1
we know the structure of this graded module and thus we know that there
exist compatible bases for the vector spaces. In the next section we will look
at how to compute such bases.

2.3.4 Computation

Now that we have discussed persistent homologies and have built a structure
with which we can describe them, we will take a look at how to effectively
compute these persistent homologies. We begin by illustrating the standard
reduction algorithm and then show how it can be used to compute homology
groups. From there we show how it can be extended to graded modules which
of course will be our step from the homology groups to the persistent homol-
ogy. We then show how the algorithm can be extended to compute persistent
homology over a field and then finally over a PID.

Standard Reduction Algorithm
Definition 2.37. Let G and G′ be free abelian groups with bases a1, ..., an and

a′1, ...a
′
n respectively. If f : G→ G′ is a homomorphism then f(aj) =

m∑
i=1

λija
′
i

for unique integers λij . The matrix (λij) is called the matrix of f relative
to the given basis for G and G′.

Theorem 2.10. Let G and G′ be free abelian groups of ranks n and m respec-
tively, and let f : G → G′ be a homomorphism. Then there exist bases for G
and G′ such that, relative to these bases, the matrix of f has the form:

36

B =

b1 0
b2

. . .

0 bl

0

0 0

where bi ≥ 1 and b1 | b2 | · · · | bl.
The matrix B is said to be in Smith-Normal Form

The standard reduction algorithm that we will outline below is actually a
constructive proof of Theorem 2.10 (see [48] for more information). We first
examine the Standard Reduction Algorithm which will later be used to com-
pute the homology. Without loss of generality, we can consider this method
using integer coefficients though in our case any PID will work.

Reduction Algorithm
The reduction algorithm transforms an m × n matrix A = (aij) = λij into
its normal form, the matrix B described in Theorem 2.10, by a series of ele-
mentary row and column operations defined below. These preserve a mapping
from the bases which make up A to the bases which make up B.

Elementary Row Operations:
(r1) Exchanging row i with row k
(r2) Multiplying row i by -1
(r3) Exchanging row i by row i+ q ∗ row k

Note: (r2) is analogous to the multiplication of row i by any nonzero real
number in Linear Algebra. In our case since we are working in an arbitrary
PID and thus only ±1 are guaranteed to have multiplicative inverses as opposed
to every nonzero real number in R.

Each of these operations corresponds to a change of bases in G′ as defined
below:

(r1) Swap a′i and a′k
(r2) Replace a′i with −a′i
(r3) Replace a′k with a′k − q ∗ a′i

Similarly there are three elementary column operations:

37

(c1) Exchanging column i with row k
(c2) Multiplying column i by -1
(c3) Exchanging column i by column i+ q ∗ column k

Each of these operations corresponds to a change of bases in G as defined
below:
(c1) Swap ai and ak
(c2) Replace ai with −ai
(c3) Replace ai with ai + q ∗ ak

Using these operations the reduction algorithm reduces the matrix A to the
form of matrix B

Definition 2.38. Let α(A) denote the smallest non-zero magnitude in A, i.e.,
α(A) = min

i,j
{|aij| > 0}. aij is called the minimal entry of A iff α(A) = |aij|

Step 1. Minimize the value of α(A)

Lemma 2.11. If α(A) fails to divide some entry of A, then it is possible
to decrease the value of α(A) by applying elementary operations to A; and
conversely.

(See [48] for proof)

The minimization algorithm proceeds as follows:
1. Find aij = α(A)
2. Check each entry of column j of A to see if α(A) | akj
3. If 2 fails goto 4 else goto 7
4. Find q ∈ Z such that |akj − q ∗ aij| < aij
5. Replace row k with row k - q*row i
6. Goto 1
7. Check each entry of row i of A to see if α(A) | aik
8. If 7 fails goto 9 else goto 12
9. Find q ∈ Z such that |aik + q ∗ aij| < aij
10. Replace column k with column k + q*column i
11. Goto 1
12. Check each entry akl, k 6= i, l 6= j of A to see if α(A) | akl
13. If 12 fails goto 14 else goto 16
14. Replace row i by row i + row k
15. Goto 5
16. End

38

Step 2. Bring the minimal entry to the upper left corner of the matrix.
1. Using elementary operations bring aij = α(A) to a11.
2. Make a11 positive.
3. Using elementary operations make all other entries in row 1 and column 1
zero. Since a11 divides all entries in the matrix this is clearly possible.

It is important to note here that a11 still divides all entries in the matrix
A

Step 3. Reduce the remaining rows and columns
1. Repeat steps 1 and 2 on the submatrix of A ignoring the first row and
column.
2. Terminate when the submatrix is empty or when it is the zero matrix

Since each element akk divides all elements aij, i, j > k and since all elements
a∗k and ak∗ are zero (except for akk) then the matrix is in Smith-Normal Form.

Application of the Reduction Algorithm
We may now consider the boundary operator ∂k : Ck → Ck−1. Since the chain
groups Ck are free and the boundary operator is a homomorphism, we can
represent ∂k as an integer matrix Mk relative to the standard bases of the
chain groups. By Theorem 2.10 (utilizing the algorithm listed above) Mk can
be transformed into Smith-Normal Form, we will call this matrix M̃k .

Let lk = rank{M̃k} = rank{Mk} = number of non-zero diagonal entries in
M̃k. Of course, the algorithm also computes bases {ej} and {êi} for Ck and
Ck−1 respectively. By computing this for all dimensions k we get the following:

1. The torsion coefficients of Hk−1 are the elements bi > 1.
2. {ei|lk + 1 ≤ i ≤ mk} is a basis for Zk and thus rank{Zk} = mk − lk

where mk is the number of columns in Mk

3. {biêi|1 ≤ i ≤ lk} is a basis for Bk−1 and so
rank{Bk} = rank{Mk+1} = lk+1

Finally we are able to calculate the Betti numbers by combining 2 and 3 and
thus βk = rank{Zk} − rank{Bk} = mk − lk − lk+1

Similarly, we can compute the homology over graded PIDs using the standard
reduction algorithm and the structure in Corollary 2.1.1. We begin by rep-
resenting ∂k using the standard basis for Ck (which is in fact homogeneous)

39

and a homogeneous basis for Zk−1. The algorithm then proceeds as before
resulting in a matrix M̃k. From the reduced matrix we can build a structure
of the form presented in Corollary 2.1.1 where the following two rules apply:

i. zero row i contributes a free term with shift αi = deg{ẽj}
ii. row with diagonal term bi contributes a torsional term with

homogeneous dj = bj and shift γj = deg{ẽj}

2.3.5 Computing Persistent Homology

In this section we present the modified standard reduction algorithm developed
in [65] which can be used to compute persistent homology over a field. This
work builds off the pairing algorithm developed by Edelsbrunner Letscher, and
Zomorodian [9].

Computing Persistent Homology Over a Field Just as with the previ-
ous section we consider the boundary operator ∂k except in the previous case
∂k : Ck → Ck−1 as opposed to the case when considering persistent homologies
∂k : C∗k → C∗k−1. For simplicity, we assume that we are computing the persis-
tent homology over Z2 although the following algorithm holds for any field. As
referenced above we begin by building the matrix Mk using the standard basis
for Ck and a homogeneous basis for Zk−1. Since we are now using the graded
module Z2[t] produced by the correspondence α defined in Section 2.3.3, the
elements êi which make up the homogeneous basis for Zk−1 may not have the
same degree as the elements ej. We know ∂(ej) =

∑
i

ai · êi where ai ∈ Z2, but

if êi has degree n and ej as degree m (by necessity n ≤ m) then we must shift
êi by m − n levels in the filtration and so we use tm−n · êi. Therefore, in our
matrix we multiply the element in each position Mk(i, j) by the difference in
degree between the homogeneous elements ej and êi. We then proceed as in
the previous section by reducing the matrix and reading off the description for
the homology group.

One may notice at this point that in order to determine the matrix Mk a ho-
mogeneous basis is needed for Zk−1. This of course is not as easy to find as it
is for the group Ck−1 where we can just use the standard basis. However, if
one is trying to classify the entire homology then this can be computed using
induction. We start with k = 1 (the base case k = 0 is trivial), where Z0 = C0.
Using this, the matrix representation of ∂1 may be found and used as above.
For the inductive step we assume we have some matrix Mk representative of
∂k relative to the standard basis {ej} of Ck and a homogeneous basis {êi} for
Zk−1.We must now find a homogeneous basis Zk.

40

Definition 2.39. Column Echelon Form - A matrix is said to be in column
echelon form iff its transpose is in row echelon form.

Recall that the composition of consecutive boundary operators is 0, i.e., ∂k∂k+1 =
0. As such, since Mk is the representation of ∂k we know that MkMk+1 = 0.
Of course, this is also unchanged by elementary operations on the matrices.
Additionally, since the domain of ∂k is the codomain of ∂k+1 column opera-
tions on M̃k are row operations on Mk+1. Thus, the column operations used
to transform Mk into echelon form zero out rows in Mk+1 corresponding to
nonzero pivot columns in M̃k and represent ∂k+1 relative to the homogeneous
basis for Zk. And so, we arrive at the following lemma [65]:

Lemma 2.12. To represent ∂k+1 relative to the standard basis for Ck+1 and
the homogeneous basis computed for Zk it is only necessary to delete the rows
in Mk+1 that correspond to nonzero pivot columns in M̃k.

This gives us the basis (no pun intended) for the algorithm developed in [9]
which proceeds as follows:

1. Sort the rows of Mk corresponding to the êi basis elements for
Zk−1 in reverse degree order.

2. Transform Mk into column echelon form
3. The non-pivot columns of the transformed matrix then form the

basis for Zk
4. Write the matrix for Mk+1 using the basis elements for Ck and

Ck−1 as the column and row bases.
5. Remove the rows corresponding to non-zero pivot columns in M̃k

6. This matrix is now the representation of ∂k+1 that we are after.

It also turns out that having the column echelon form of the matrix represen-
tation Mk of ∂k is enough to determine the P-intervals for Hk−1

Theorem 2.13. Let M̃k be the column-echelon form for ∂k relative to bases
{ej} and {êi} for Ck and Zk−1, respectively. If row i has pivot Mk(i, j) = tn,

it contributes
∑deg{êi} F [t]/tn to the description of Hk−1. Otherwise, it con-

tributes
∑deg{êi} F [t]. Equivalently, we get (deg{êi}, deg{êi}+n) and (deg{êi},∞),

respectively, as P-intervals for Hk−1.

Proof can be found in [65].

41

Computing Persistent Homology Over a PID Recall that the Struc-
ture Theorem gives a classification for the structure of graded modules over
graded PIDs. If our persistent groups are taken over R where R is a field, we
can apply the results of the Structure Theorem since R[t] is a PID when R is a
field. However, if R is not a field, then we cannot necessarily use the Structure
Theorem to provide a simple classification of the graded module. As such we
have no simple classification for persistent homologies over PIDs like we do
over fields. Despite this, there is an algorithm which produces a description
of the groups H i,p

k for fixed i and p that was developed in [9].

As previously discussed, H i,p
k = Zi

k/(B
i+p
k ∩ Zi

k). Without the need to move
through the grading (since i and p are fixed) we can still utilize the previous
method of building the matrix M i

k as the representation of ∂ik and using the
standard reduction method to produce a characterization of Zi

k.

For the denominator then we have Bi,p
k = Bi+p

k ∩ Zi
k and so instead of consid-

ering the matrix M i
k+1 we need to build a new matrix M i,p

k which represents
the boundary group of p-persistent k-chains beginning in Ki. This matrix is
then constructed as follows:

1. Begin by reducing matrix M i
k to its normal form and thus

construct the basis {zj} for Zi
k.

2. Reduce the matrix M i+p
k+1 to its normal form and construct a basis

{bl} for Bi+p
k .

3. Now construct a matrixN = [{bl}{zj}] = [B Z] where the columns
of the matrix N are the basis elements of the bases computed in
steps 1 and 2 and the matrices B and Z are the sub-matrices
defined by the bases respectively. Reduce the matrix N to Smith
Normal Form which reveals a basis {um} using the method
described above Of course {um} = [αmβm] where αm and βm are
vectors of coefficients from the bases {bl} and {zj} respectively.
Both {Bαm} and {Zβm} are bases for Bi,p

k so either can now be
used to build the matrix M i,p

k+1

Then by reducing the matrix M i,p
k+1 we constructed we now have a description

for H i,p
k . Using Theorem 2.13 and Lemma 2.9 we can produce a description

for the persistence homology via its P-intervals and its Betti numbers.

Some examples of computing persistent homologies can be found in Appendix
A.

42

2.3.6 Visualization

Persistence Diagram We can immediately see that the P-intervals can be
used to describe the equivalence class of cycles created in Ki and dying in
Kj. The use of these P-intervals allows us to visualize the persistence pairs
across the levels of filtration within the filtered complex. First by examining
the homologous cycles in a two-dimensional space consisting of the filtration
index by the persistence, we see that a homologous cycle exists non-bounding
in Ki and remains until Kj. So, in our two-dimensional space, a homologous
p-cycle exists at the point (i, 0) and exists at (l, 0) for l < j and at (i, l) for
l < j − 1. Thus, it exists in the triangular convex hull of these points with
open boundary the line l + p = j.

Figure 2.10: Triangular Region containing homologous cycles defined by the
inequalities p ≥ 0, l ≥ i, l + p < j [65]

We have seen that the Persistent Homology over a field can be decomposed
into simplex pairs (σi, σj) - where σi is created in Ki and σj ∼ σi dies in
Kj - and those non-bounding cycles τ ∈ K. In this case each pair (σi, σj)
which gives us the pair (i, j) produces a triangular region like the one depicted
in Figure 2.10. A Persistence Diagram takes all of the triangles and simplex
pairs and combines them together into a single diagram like the one depicted
in Figure 2.11. On the bottom half of the diagram, we have the triangles
associated with each pair and along the top we have line segments equal to
the persistence of σi. For those non-bounding cycles in K the line continues
until the edge of the diagram.

43

Figure 2.11: Persistence Diagram [65]

Bar Code We can also use a visualization scheme known as the Bar Code
[10]. The Bar Code functions similarly to the line segments along the top of
the persistence diagram, except in the case of the Bar Code diagram we also
display the dimension p of the p-cycles. Along the vertical axis we display
the dimension and along the x-axis, the levels of the filtration. We denote
non-bounding cycles in K using an arrow rather than a line segment.

Figure 2.12: Example of a Bar Code diagram [19]

3 Convolutional Neural Networks

The last piece of background material needed is a discussion of Convolutional
Neural Networks, these will be the application of the TDA theory being de-
fined. One of the most recognized and used machine learning techniques is
the Artificial Neural Network. Artificial Neural Networks, typically shortened
to Neural Networks or ANNs, are a machine learning method that seeks to
replicate the organization of neurons in the human brain to achieve pattern

44

recognition. A Neural Network consists of a set of nodes known as the input
layer, one or more hidden layers, and an output layer. Each node is connected
to one or more nodes in the following layer and has an associated weight and
activation function.

Figure 3.1: Diagram of a Neural Network with 2 hidden layers (source: [45])

Each node, after the input layer, sums the output of an activation function
applied to the dot product of the output values of the nodes in the prior layer
with the weights associated with each connection. Typically, each node in the
output layer is associated with a class and outputs the probability of the input
belonging to its associated class (in the case of classification) or it outputs the
estimated value (in the case of regression).

Usually, a Neural Network is created by defining a network architecture -
number of layers and nodes in each layer as well as the activation functions
- and then a training data set is used to tune the weights of the network.
The data is fed through the network and then the output is compared to a
”truth” value which is used to tweak the weights through a method known as
backpropagation. This process is repeated a number of times either with all of
the data or some subset of the training data with each round of training with
a particular set being referred to as an epoch. After a predetermined number
of epochs, or a desired threshold of accuracy achieved, the network is ready to
be used. The data in question can be input into the first layer of the network
and the network will output the most likely class associated with that input
(or value in the case of regression).

The concept of Neural Networks as an algorithm or mathematical model is
typically attributed to Warren McCullough and Walter Pitts [44]. After their
advent, they were studied extensively until 1969 when Marvin Minsky and
Seymour Papert [46] showed that computing power was not sufficient to handle
any Neural Network sophisticated enough to produce good results. Neural
Networks have waxed and waned since. In the most recent decade, they have
had a resurgence under their use in deep learning which uses neural networks
with many hidden layers.

45

Convolutional Neural Networks, as referenced in Section 1, are a subclass of
Artificial Neural Networks. While an overview was given in Section 1.1 it is
necessary here to delve a bit further into the theory behind CNNs.

One of the issues with Neural Networks, especially when it comes to image
processing, is that all of the elements of an input vector are considered together,
assuming they are connected to the same node in the next layer. In a fully
connected neural network, meaning that every node is connected to every node
in the subsequent layer, all input elements are related. In ANNs which are
not fully connected the architect of the network has to carefully choose which
values should be considered together. While this is desired in a network that
is handling basic vectors of parameterized data, such as a network considering
health data to predict cancer, in image processing and many other areas this
is a problem. For example, when performing image processing it is desirable
to only consider pixels which are near to each other, this is known as the
receptive field and is how the neurons in the human visual cortex function.
Convolutional Neural Networks offer a way of doing this by making each node
correspond to an m × n filter which is ”scanned” across each position in the
image. In this way, each node corresponds to a field around a pixel instead of
an individual pixel. CNNs have three main types of layers.

3.1 Convolutional Layers

First and most importantly, is the convolutional layer. The convolutional layer
is where the majority of the computation is done in the CNN architecture. The
idea of the convolutional layer is that a filter is applied to local patches (i.e.,
receptive field) in the layer to attempt to detect features in local areas of the
data. This is performed by convolving an m× n matrix of filter weights with
the values in the layer. So, given a matrix of data A the m × n filter F is
multiplied element-wise by values in the upper left corner, A1..m,1..n and the

values are then summed, so (F ∗ A)1,1 =
m∑
i=1

n∑
j=1

Fi,jAi,j. The filter is then

moved s number of positions to the right and the process is repeated. Once
the filter has made it all the way across the matrix it returns to the left and is
stepped down s number of positions (s is known as the stride and is discussed
in more detail below). See figures 3.2, 3.3 for examples of the convolutional
operation.

For those familiar with signal processing the term convolution should be fa-
miliar. However, while the convolution operation in CNNs is similar, it is not
quite the same. The CNN convolution operation is more akin to the correla-
tion operation in signal processing whereas the convolution operation in signal
processing represents a flip of the filter in both vertical axis and the horizontal
axis (see Figure 3.4).

46

Figure 3.2: Graphical representation of a 3× 3 filter applied to a set of values
in a convolutional layer (source: [30])

Figure 3.3: Graphical representation of a 2× 2 filter (shown in green) applied
to a set of 4 × 4 values in a convolutional layer. The receptive field (i.e., the
values being multiplied by the filter) are shown in orange while the output is
shown in blue. (source: [36])

47

Figure 3.4: Graphical comparison between the correlation operation and con-
volution operation in signal processing. The CNN convolution is the same as
the correlation operation (source: [36])

From a neural network perspective, in the convolutional layer, each node is
connected to an m× n set of local points, meaning that the points exist in an
m× n rectangle in the image, data matrix, or CNN layer. So, if the receptive
field is 3x3 then the upper right node in the convolutional layer is connected
to the upper rightmost 3x3 grid. The next node to the right of this is then
connected to a 3x3 patch to the right of the upper rightmost 3x3 grid, the
distance between which is referred to as the stride. In this way the filter is
”slid”, across the input layer.

To compute the output in the subsequent layer node, the matrix of filter
weights is multiplied by the matrix of nodes/values it is connected to in the
previous layer. These values are then summed and passed through an activa-
tion function. The output of this function is then pass to the next node.

The dimension of the following layer depends on the size of the filter, the stride,
and the padding applied to the data. As referenced above, the stride is the
number of positions the filter is ”stepped” between each set of multiplications.

So for a given stride s we get B1,1 = (F ∗A)1,1 =
m∑
i=1

n∑
j=1

Fi,jAi,j and (F ∗A)1,2 =

m∑
i=1

n+s∑
j=s

Fi,jAi,j. These values along with the height h and width w of the input

matrix A determine the size h′ × w′ of the output matrix B. Where:

h′ = bh−m+s
s
c and w′ = bw−n+s

s
c

Given this, the dimension of the output of each convolutional layer must al-
ways be less than the input. However in some applications this is not a de-
sirable quality. As such, we can introduce the concept of zero padding. Zero
padding inserts zeros around the edges of the input data matrix increasing the
size of A from h×w to h+2p×w+2p. The padding can be one of three types:

48

- Valid Padding: In this case no zeros are padded around the
image/layer so the dimension will decrease

- Same Padding: This pads the edges with zeros so that the output
dimension is the same as the input dimension

- Full Padding: This can be any padding that increases the dimension
of the output.

This then causes the size h′ × w′ of the output matrix B, to be:

h′ = bh−m+s+p
s
c and w′ = bw−n+s+p

s
c

In general:

(F ∗ A)l,k =
m+s(l−1)∑
i=s(l−1)+1

n+s(k−1)∑
j=s(k−1)+1

Fi,jAi,j

Figure 3.5: Left: Convolutional Layer with a 3x3 filter, padding, and a stride
of 1, Right: Convolutional Layer with a 3x3 filter, padding, and a stride of 2
(source: [55])

Unlike traditional ANNs, a convolutional layer has two dimensions (height
and width) which are determined by the size of the input layer, the filter size,
the stride, and the zero padding. Additionally, most convolutional layers also
have a 3rd dimension known as the number of channels. If the input image is
a color image, then each pixel actually contains three values known as RGB.
(Digital images use an encoding called RGB which gives values for the hue of
red, green, and blue, respectively contained in the pixel, using red, green, and
blue, any color can be represented). A convolutional layer then should include
at least one channel for each color value, typically 3. This being said, there is
no theoretical reason why a convolutional layer can only have one channel for
each color value. Convolutional layers can actually have multiple channels for
each color value. This allows the layer to tune the weights in different ways to
represent different lenses with which to look at an image.

Lastly, the convolutional layer must also contain an activation function. Once
the matrix of filter weights is applied to the matrix of input values, the output

49

is fed through an activation function which determines the value to be fed
through to the next node. These are typically the same sort of functions
used in ANNs and include ReLU, threshold, softmax, logistic, and others. A
detailed discussion of these can be found below in Section 3.4.

With all of this then the architecture of a convolutional layer contains the
following:

- Filter size
- Stride
- Zero Padding
- Number of channels
- Activation Function

3.2 Pooling Layer

Then there is the pooling layer. Pooling layers perform the function of di-
mensionality reduction, sometimes referred to as downsampling, which is very
similar to the concept of the same name in Digital Signal Processing. The
pooling layer functions very similar to the convolutional layer, by using a fil-
ter that is slid across the previous layer, but instead of using weights to try
to detect features it uses an aggregation function across the values to which
the filter is applied. Typically, Pooling Layers use one of two functions, Max
Pooling - in which case the output is the largest value of the nodes to which
the filter is applied, or average pooling - in which an average is taken across
the values to which the filter is applied. The idea in either case is that a
receptive field can be reduced down to a single node, or smaller set of nodes,
representing the feature or features of that specific field.

While both max pooling and average pooling induce information loss, they
preserve the most important information. In this way, both - but especially
max pooling - act as a sort of noise suppressant or high pass filter which
preserves higher outputs from the activation functions of the previous nodes
and suppresses or throws out noisy activation values. In general, because of
its ability to suppress noisy features, max pooling is much more effective and
therefore more popular in CNN architectures.

A Pooling layer is defined by its function (max or average pooling), its filter
size, the stride, and the amount of padding. These uniquely determine the
shape of the layer as the size of its output can be computed from the size of
the previous layer and the filter and padding.

50

Figure 3.6: Example of a 2×2 max pooling filter on a 4×4 input data with stride
1. The receptive field is highlighted in orange while the output is highlighted in
blue (source: [36])

Figure 3.7: Example of the results of 2×2 max and average pooling filters with
stride 2 on a 4× 4 input (source: [55])

Similar to the convolutional layer the output size is determined by the filter
size, the stride, and the zero-padding. As a result, the size h′×w′ of the output
matrix B, are:

h′ = bh−m+s+p
s
c and w′ = bw−n+s+p

s
c

3.3 Fully-Connected Layer

The Fully-Connected layer is basically the same as the layers in a typical ANN.
It is used to ”flatten” the CNN as every node in the previous layer is mapped

51

to every node in the fully connected layer (hence the name) and thus instead
of having a 3-D h×w× d representation there are just h×w× d nodes in the
fully connected layer giving it a flat representation.

Thus, if Ni is the i-th node with Wi its associated weight values, and Ai,j,k
is the i-th row, j-th column and k-th channel of the previous layer, then

Ni = g(
h∑
i=1

w∑
j=1

d∑
k=1

Ai,j,kWi+(j−1)∗(h)+(k−1)∗(h∗w)) where g is the activation func-

tion.

Each node then represents a feature (or set of features) detected in the original
input layer. These features are then mapped, using a standard ANN weight
and activation function, typically softmax, to a set of output nodes represent-
ing the possible classes. This architecture can be seen in Figure 3.8.

Figure 3.8: Diagram of a Convolutional Neural Network (source: [55])

3.4 Activation Functions

So far, we have mentioned two specific activation functions which are used in
CNNs, ReLU and softmax. While there are many different activation functions
ReLU and softmax are the most common in CNNs. An activation function in
its most basic form is just a map from Rn into X ⊆ R. Typically X = R+ or
in some cases X = {0, 1}. There is nothing precluding X from being negative;
however, it is not desirable to have a negative activation function and therefore
it is almost always non-negative. The output of the activation function is used
to determine whether or not to activate a neuron f(v) > 0 or not f(v) =
0. In linear classification or other statistical learning models this function is
used to determine a class to which an input belongs by using it to describe a
probability and then using a threshold to determine membership. So explicitly
p : Rn → [0, 1] and f : Rn → {0, 1} where f(v) = 1 if p(v) ≥ ρ ∈ (0, 1) and
p(v) = 0 if p(v) < ρ.

52

While technically any function which maps a vector from Rn into R is eligible
to be used as an activation function, there are several properties which are
assumed in order to give the function the behavior necessary for it to provide
value to the learning method to which it is applied.

First, the function should be monotonic, i.e., for x, y ∈ Rn, x > y ⇒ f(x) ≥
f(y) (increasing) or for x, y ∈ Rn, x > y ⇒ f(x) ≤ f(y) (decreasing). The
reason for this is that in training if there is point that is not monotonic than
the training can get ”stuck” oscillating between values above and below this
point and never converge to an actual solution. While this is not guaranteed
(nor does monotonicity imply that training will always converge), the absence
of monotonicity greatly increases the risk of nonconvergence.

Secondly, the function ought to be differentiable. This allows methods like
gradient descent and back propagation to be used to find optimal, or converge
towards optimal, solutions. This also implies that the function must be con-
tinuous which is a useful property as it provides some ”smoothness” to the
training preventing rapid jumps in output (this is why modern ANNs tend to
prefer R+ to {0, 1}).

Additionally, it is general practice to assume that the function is increasing.
While this is not necessary it lends itself to the theory behind neural nets from
neuroscience which uses activation functions to model synapses which only fire
after a threshold of energy is surpassed.

Activation functions tend to be the integral of bell-shaped functions. This is
because the most important data is centered around the threshold or separat-
ing line and so these values must be pulled rapidly away from this line in order
for the method to converge to a solution. That being said this does not hold
for ReLU which is the most commonly used activation function for CNNs. A
discussion of why ReLU is favored can be found below.

The most commonly used activation functions then are:
ReLU
R(x) = max{0, x}

Softmax

σ(x)i =
exi∑k
j=1 e

xj
for i ∈ 1..k, x ∈ Rk

Standard Logistic Function:
f(x) = 1

1+e−x

Additional activation functions include:
Hyperbolic Tangent Function:
f(x) = tanh(x) = ex−e−x

ex+e−x

53

Gudermanian Function:
gd(x) =

∫ x
0

sech(z)dz = arcsin(tanh(x))

Error Function:
erf(x) = 2√

π

∫ x
0
e−z

2
dz

ReLU
The ReLU or Rectified Linear Unit is the following function:

R(x) = max{0, x}

The ReLU then activates the node if the value is positive and otherwise is
0 and therefore inactivate. This means that features will never negatively
contribute to the output of the network.

Unlike ANNs the ReLU is used almost exclusively in all but the final layer
of a CNN. This is for three main reasons. First off, ReLUs themselves are
computationally inexpensive as they are only a simple comparison instead of
a set of multiplies and divides as is the case with logistic functions such as the
softmax function. Secondly, the derivative of the ReLU function is either 0 or
1 which makes computation for the backpropagation algorithm substantially
easier and cheaper. These two reasons are of great importance as CNNs are
very computationally intensive and so any place where we can achieve good re-
sults but reduce computations it is necessary to do so. In the case of the CNN,
as the number of nodes increase the weights increase exponentially, but the
activation functions increase linearly. Lastly, the ReLU does not contribute
negatively to the network, as mentioned above. This is advantageous as in
a CNN a neuron being not relevant does not mean that other local neurons
are less relevant as neurons represent different lenses applied to local receptive
fields and often times important features can be found locally near irrelevant
features or noise.

Softmax
The other function commonly used in CNNs is the softmax function. The
softmax function is defined as:

σ(x)i =
exi∑k
j=1 e

xj
for i ∈ i..k, x ∈ Rk

In the case that there are only two classes (binary classification) the softmax
function is the same as the Standard Logistic function:

S(x) =
ex

1 + ex
=

1

1 + e−x

54

The softmax function is beneficial because it maps each output into [0,1] in
such a way that the sum of the σi’s sum to 1, allowing it to be interpreted
as a probability. This gives it an advantage over the ReLU function used
throughout most of a typical CNN as a ReLU’s output gives only a 0 or a
positive real, so while this could be used in the final layer, the probability
interpretation of the softmax gives smoother training and provides a measure
of error or uncertainty both for training and in the final use of the network.
Thus, it is often used in the final layer of CNNs and ANNs as it can be used
to give a probability of the input belonging to each output class.

Unlike the hidden layers in a CNN, a softmax activation function can be used
in the final layer as the dimension of the data has been greatly reduced by the
time it reaches the final layer, therefore the concern of computational com-
plexity is removed. For these reasons the softmax (or Standard Logistic in the
case of binary classification) is the most common activation function for the
output layer of a CNN.

Hyperbolic Tangent Function
The hyperbolic tangent function can also be used for Linear Classification or
Neural Net Activation.While it maps into [-1,1] and thus does not have a prob-
abilistic interpretation of the output it does still have a logical connection to
probability theory. If one assumes that the output is distributed with a Gaus-
sian distribution around their respective means then the hyperbolic tangent
function is just the difference between the conditional probabilities.

Let D(x) = P (0|x)−P (1|x) where 0 and 1 are our two classes. Then assuming
the distributions for the two classes are Gaussian with means equally spaced
from the origin (µ,−µ), and standard deviations of σ, then:

D(x) = P (x,0)−P (x,1)
P (x,0)+P (x,1)

= e
−(x−b)2

2h2 −e
−(x+b)2

2h2

e
−(x−b)2

2h2 +e
−(x+b)2

2h2

= e
bx
h2 −e−

bx
h2

e
bx
h2 −e−

bx
h2

= tanh(bx
h2

)

The hyperbolic tangent function can also be shown to be a scaled, stretched,
and shifted standard logistic function:
1
2

+ 1
2
∗ tanh(x) = 1

2
+ ex−e−x

2(ex+e−x)

= ex−e−x+ex+e−x

2(ex+e−x)

= 2ex

2(ex+e−x)

= 1
1+e−2x

= f(2x) where f(x) is the Standard Logistic function

At first glance this would appear then to be no different than the Standard Lo-

55

gistic function, but hyperbolic tangent actually has some advantages over the
Standard Logistic function. First, it has a larger gradient around the threshold
value. This allows the training to converge faster as data is pulled away from
the threshold more quickly than with the Standard Logistic function. Also,
in neural net training, it is advantageous to have the mean of the function
centered around 0 so as not to bias the network. So, when using the stan-
dard logistic function, which has a mean of 0.5, the network is biased towards
activation and so the network will tend towards saturation of the neurons;
however, since the hyperbolic tangent function has a mean of 0, it does not
have this problem. Though as noted prior, with CNNs this property is not
desirable as the output is negative.

The derivative of the hyperbolic tangent function is d
dx

tanh(x) = sech2(x).
But similar to the standard logistic function this is just a form of the original
function.
1− tanh2(x) = 1− (e

x−e−x
ex+e−x

)2

= e2x+2+e−2x

(ex+e−x)2
− e2x+2−e−2x

(ex+e−x)2

= 4
(ex+e−x)2

= 1
cosh2(x)

= sech2(x) = d
dx

tanhx

So, by using memory, it is only necessary to perform a simple multiplication
(square) of the original function value and then subtract this value from 1.

Gudermanian Function
While less common than the standard logistic function and the hyperbolic tan-
gent the Gudermanian is also a sigmoid function which is used for activation.
The Gudermanian Function was designed to be a bridge between the circular
trigonometric functions and the hyperbolic trigonometric functions without
explicitly using complex numbers. It is most commonly used in the Mercator
Projection as a line of constant latitude is displaced from the equator by an
amount proportional to the inverse Gudermannian of the latitude.

The Gudermanian has similar properties to the hyperbolic tangent. In fact,
around its mean, the two functions are nearly identical and only diverge as
they approach their limits. Its range is from −π

2
to π

2
with mean at 0 and it

has a steeper slope around its mean than the standard logistic function. It
however, does not have a simplified (in complexity) version of its derivative.

Error Function
The error function, also known as the Gauss Error Function is another sig-
moid function which can be used for activation/classification. Given a random
variable from a normal distribution with mean 0 and variance 1/2 the error
function evaluated at x gives the probability of the random variable falling in
the region [−x, x]. The error function cannot be evaluated in closed form so
it must be approximated by integrating its Maclaurin Series expansion. This

56

is generally not a problem since most calculations for activation or classifica-
tion would be performed using a computer package which in general would
use a series expansion to evaluate the integral rather than a closed form solu-
tion.

The Error Function also behaves similarly to the hyperbolic tangent and Gud-
ermannian functions. Its range is from -1 to 1 just like the hyperbolic tangent.
It does have a higher gradient in the neighborhood around 0 than either the
Gudermannian or the hyperbolic tangent, but it is in general not enough to
make a substantial difference. The derivative of the error function is given by
d
dx
erf(x) = 2√

x
e−x

2
.

3.5 Training

The training of an ANN can be interpreted as an optimization problem, where
the weights are the unknowns which can be tuned to minimize the error or
loss in the output values. By starting with the error in the output layer
this can be passed (or propagated) backwards (backpropagation) through each
layer calculating an error or loss function at each layer using the loss and
optimal weights calculated in the following layer. Using this method to train a
neural network, each training sample is input into the network and its output
calculated and then using this value the error is calculated, via a loss function.
The loss is propagated backwards through the network using an optimization
method to tune the weights at each layer to minimize the error. Once this
has been done all the way through to the input layer the method of sample
input→error calculation→backpropagation is repeated. This process will be
repeated either a set number of times, or until a minimum error at the output
is reached.

3.5.1 Gradient Descent

In almost all neural networks the optimization method used is gradient descent.

Definition 3.1. Gradient The gradient of a function f : Rn → R is defined
as the vector of the partial derivatives of the function with respect to each
dimension, i.e.,

∇f : Rn → Rn where ∇f = [∂f
∂x1

∂f
∂x2
... ∂f
∂xn

]

Gradient descent is a method for finding a local minimum of a function where
a starting point p is selected and then the algorithm moves in steps of size γ
in the opposite direction of the gradient.

57

Since the gradient of f at a point p (i.e., ∇f(p)) is the direction of the greatest
increase of f at p then moving in the opposite direction will move towards a
local minimum. It can be shown that for small enough γ if pn+1 = pn − γ ∗
∇f(pn), then f(p0) ≥ f(p1) ≥ f(p2) ≥ · · · is a decreasing function. This
means that if we can select γ small enough then gradient descent will take us
towards a local minimum. Of course, γ must be selected large enough that the
sequence converges which poses a problem for how to select γ. Selection and
tuning of γ (known as the learning rate) is beyond the scope of this paper, but
a fairly common value is 0.001.

In order to perform training for a neural network the training data is broken
up into two sets, one which is used to train, and one which will be used to
validate the training. It is necessary to split the data and use a set which is
not trained on to perform validation because after long training times neural
networks can overfit the training data, meaning they learn exactly the data
being trained with and not the ambient data space from which the samples
were taken. This means that when presented with new data that does not
exactly fit the training data, the network will perform poorly. When an ANN
overfits and learns only the training data and is not able to perform well on
data outside the training class, it is said of the ANN that it does not generalize
well. For more explanation see Section 3.7.

Using the training data set, the samples are input into the network and an error
is calculated at the output layer using the loss function. The backpropagation
algorithm then propagates these errors back through the network calculating
new weights at each connection. This process is referred to as an epoch.

Definition 3.2. Epoch An epoch is one iteration of a set of samples through
the network, a calculation of errors at the output layer, and then an iteration
of the backpropagation algorithm using these errors to tune the weights.

Often times it is advantageous to use different randomly sampled subsets of
the training data for each epoch. This further helps prevent overfitting and
also reduces the time it takes to perform an epoch. The size of the random
sample is known as the batch size.

One problem with backpropagation is that in large networks it becomes com-
putationally expensive. Since the gradient requires computing a partial deriva-
tive for each dimension, or in our case connection. As the connections in the
network grow the number of computations needed to compute all the gradients
grows with it. As such two alternatives are often used.

Definition 3.3. Mini-Batch Gradient Descent functions the same as
gradient descent except instead of using the full gradient [∂f

∂x1

∂f
∂x2
... ∂f
∂xn

] it uses

some subset of the features so we get [∂f
∂xi1

∂f
∂xi2

... ∂f
∂xim

] where m� n.

58

Definition 3.4. Stochastic Gradient Descent functions the same as gra-
dient descent except instead of using the full gradient [∂f

∂x1

∂f
∂x2
... ∂f
∂xn

] it uses a

randomly selected feature [∂f
∂xi

] for some i ∈ {1..n}

Both of these methods drastically reduce the number of computations at each
iteration; however, they are noisy estimators so they result in the need for
more epochs to reach a desired error tolerance.

3.6 Loss Functions

As mentioned above the loss function gives a measure of ”goodness” for the
output or output(s) of a neuron and is used to optimally tune the set of weights
feeding a neuron. A Loss Function is part of a more general class of functions
called objective functions which are used in mathematical optimization. In
Optimization the idea is to find the global maximum or minimum of the ob-
jective function. In general, if a function is not convex it is not guaranteed to
have a single (global) minimum or maximum and thus the problem simplifies
to finding local maximum or minimum. For training of neural networks an ob-
jective function is used which measures the error or loss in a neuron’s output,
so for training of neural networks we seek to find a local minimum as the goal
will be to minimize the amount of error in the system.

Almost all ANNs use either a cross-entropy loss function (of which there are
several depending on the type of network) or a mean squared error loss func-
tion.

Cross Entropy

Definition 3.5. Entropy Entropy is the average level of information or un-
certainty inherent in a random variable’s possible outcomes. It is formally
defined as:

H(x) = −
∑
x∈X

P (x) log(P (x)) = E[− log(P (x)]

where x is a random variable in the alphabet X distributed according to p(x) :
X → [0, 1] i.e., the probability distribution of x
This can also be considered the number of bits required to transmit a randomly
selected event from a probability distribution.

59

Cross-entropy is the measure of the difference between two probability distri-
butions. Cross-Entropy originates from the field of information theory and is
based on the idea of entropy.

Definition 3.6. Cross Entropy Is the number of bits required to represent
an event from one estimated distribution q compared to the true distribution p
and is defined as:

H(p, q) = −Ep[log(q)] = −
∑
x∈X

p(x) log(q(x))

where Ep is the expected value operator with respect to p.

From this we see that if a probability distribution q is the same as p, then the
cross-entropy is equal to the entropy.

For training a neural network classifier with m classes, we first use a method
called one-hot-encoding. One-hot-encoding is a method for converting categor-
ical data into numerical data which is required for processing data in a neural
network. Since most categorical data does not have an implicit ordering to
the categories, we instead assign each category a different random integer 1..m
and then give each example as output an m× 1 vector In = [0, 0, ..., 1, ..., 0, 0]
where a one is placed in the nth position given that the example’s class is
assigned the integer n. This then gives a discrete probability distribution of
In for each example.

Calculating the entropy for each example results in an entropy of 0. Thus, if
we are able to perfectly represent the true distribution of each example in the
output of the ANN, the cross-entropy will be equal to the entropy which is 0.
As the distribution estimated by the output neurons of the ANN differs from
the true distribution the cross-entropy will grow. Therefore, by minimizing
the cross-entropy of the output neurons we get the optimal weights for the
network.

As an example, consider a binary classification with a target distribution of
[0 1]. Calculating the cross-entropy of an estimated probability distribution
results in the image show in Figure 3.9.

If the reader is familiar with maximum likelihood estimation, it turns out that
while they are different functions/measurements, as a loss function the cross-
entropy loss is equivalent to a maximum likelihood function under a Bernouli
or Multinouli probability distribution [2].

60

Figure 3.9: Line Plot of Probability Distribution vs Cross-Entropy for a Binary
Classification Task With Extreme Case Removed [2]

Mean Squared Error
As discussed above, Cross-Entropy is suited well for classification problems
where the network needs to output the probability of an input belonging to
each class. However, if the problem is a regression problem rather than clas-
sification, meaning that we are trying to predict a real valued output, then
cross-entropy will not work as well. The range of Cross-Entropy is [0, 1] so
many regression problems that require a range outside of this will either fail
completely or require a scaling factor which does not perform well. Addi-
tionally, from a logical perspective, cross-entropy is attempting to compute
the loss for an entirely different type of output then regression. As such, we
need a different loss function for regression problems. This is where the mean
squared error function is useful.

Definition 3.7. Mean Squared Error (MSE) The mean squared error
is the mean of the squared differences between the predicted values and actual
values, and is defined as follows:

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2

interpreted with respect to an estimator θ̂,

MSE(θ̂) = Eθ[(θ̂ − θ)2]

It is fairly easy to see the motivation for MSE. If we have an estimate Ŷi for Yi
then the error for Ŷi is (Yi − Ŷi)2 and the closer this value gets to 0 the closer
Ŷi approximates Yi. So, by summing these errors we get an estimate of the
loss in the estimators. This works better for regression as the loss is precisely

61

the error in the estimates and the range of MSE is [0,∞). MSE is the most
common loss function used in ANNs applied to regression problems.

3.7 Overfitting

Overfitting is one of the biggest problems in ANN’s and in machine learning
in general. The basis of the problem is: how does one build an estimator for
a population, using a sample set, that adequately estimates the population
rather than only the sample set. When training a Neural Network, a training
set taken from some ambient population space is used to optimize the Neural
Network estimator. The goal is to get the estimator to approximate the am-
bient population space rather than the training data set. Often times this is
called ”generalization”; that is, can the Neural Network ”learn”, i.e., approx-
imate, patterns in the training data set which apply in general to the larger
ambient population space. Overfitting occurs when the estimator estimates
the training set space rather than the more general population space.

Typically, overfitting is detected by splitting the training data set into two dif-
ferent sets, one which will be used for training, and one which will be used for
evaluating the model at each epoch. If the network performs with much higher
accuracy on the training data set than the evaluation data set this generally
implies that the network has overfitting. Meaning it has learned specifically
the training data set and not the more general population space from which
the training data was sampled.

3.7.1 Why Does Overfitting Occur

Overfitting occurs because of two main issues. The first is bias in the training
data set.

Definition 3.8. Bias Statistical bias is anything that causes a difference be-
tween the sampled data set and the population set from which it is sampled.

In any data set there is statistical bias. Typically, this occurs when, due to the
manner in which the data was sampled, some features are over or under repre-
sented versus the population. For example, if a random sample of people was
taken on a college campus the age demographic of 18-22 would be over rep-
resented versus the actual population. Or if a political survey was conducted
in a rural town in Kansas as opposed to downtown Los Angeles the political
leanings of the constituents would be drastically different (skewed conservative
or liberal respectively) as compared to the overall population.

62

While these biases seem obvious and should be easy to catch, many biases are
not. Take for example the analysis done by Goldfarb in [21] on the VGG16
CNN [59] applied to a subset of ImageNet images [31]. The author found
that an image of a black panther was incorrectly categorized as a chimpanzee
because many of the training images of chimpanzees were taken at zoos and
therefore had bars or cages in them. This led the network to associate bars
with chimpanzees and so when presented with an image of a black panther in
a cage it categorized it as a chimpanzee.

Besides bias, the other cause of overfitting is the ability of ANNs to learn very
abstract and complex patterns. Due to this, if trained for long enough, ANNs
are able to learn almost exactly and specifically each element in the training
data set instead of learning general patterns that apply across categories. That
is, rather than learning that tusks, large ears, and trunks are indicative of an
elephant, the model is capable of learning the set of pixels in each specific
image of elephants in the training set. This will of course not generalize to
new pictures.

3.7.2 How To Solve Overfitting

There are many different methods for limiting overfitting in a neural network.
The usefulness of each depends on the reason for the overfitting which is typ-
ically difficult to discern, although TDA is a method which may lead to a
better understanding of overfitting, as is seen in [21]. Given this difficulty,
it is standard to start with the easiest methods and work towards the more
complex checking to see if any solve the problem. While a comprehensive re-
view of techniques is beyond the scope of this paper, below is a synopsis of
the more common techniques including the ones which were used during the
analysis outlined in Section 7.2.

3.7.3 Partitioning the Dataset

The simplest way to limit the effects of overfitting is to split the dataset into
training and validation sets. While this does not prevent overfitting as nothing
is done to the data or methods being used, this does reveal the presence of
overfitting which can lead to the introduction of other techniques to prevent
overfitting as well as the prevention of overtraining.

3.7.4 Overtraining

One of the most common reasons for overfitting, and one of the easiest to fix
is that of overtraining. Many practitioners are fooled into thinking that an

63

ANN should be trained until it reaches a specific accuracy, but often times
this causes more harm than good. It is best to train an ANN until a ”knee in
the curve” is reached in the accuracy. In training, the accuracy of most ANNs
will increase steadily and then begin to level out at a certain point, normally
this signals that the network has learned all of the general patterns that it
can learn using the training set, architecture of the network, and methods
supplied and that instead it is starting to specify on the individual training
data. Thus, it is best to train to the point that the accuracy begins to level off
and then stop as lower accuracy is better than overfitting since overfitting will
lead to low accuracy when presented with samples not found in the training
set. Figure 3.10 illustrates this knee in the curve where the accuracy levels off
and the loss of the evaluation data set begins to increase.

Figure 3.10: Plot of Cross-Entropy Loss and Classification Accuracy of a CNN
applied to a training data set (Blue) and evaluation data set (yellow) across
100 Epochs of training

3.7.5 Optimizers

Optimizers are an add on to the gradient descent method used to train ANNs.
With typical gradient descent (batch, stochastic, or mini-batch) the parame-
ters used for the algorithm are constant. For instance, the learning rate is set
before training and stays the same throughout training. Optimizers introduce
an adaptive capability to this method. Optimizers seek to improve gradient
descent by shifting the parameters, or sometimes by using multiple gradient
descent algorithms and aggregating their results. As an example, many opti-
mizers start with a specified learning rate and then gradually alter the rate
across each iteration of the gradient descent algorithm based on the magnitude
of the gradient, this means faster convergence while avoiding step sizes that
miss the minimum. This method is known as momentum. Below is a list of
the most common optimizers:

64

• Adagrad

• Adadelta

• RMSprop

• Adam

Adam is the most used optimizer.

3.7.6 Dropout

Dropout is a method for preventing overfitting that works by zeroing the out-
put of a random set of neuron outputs in a given layer. This functions very
similarly to the concept of boosting and works because if features that are
important across a large number of samples (general features) are zeroed then
the loss function will go up and other neurons will begin to learn these features,
whereas if a neuron representing a feature specific to only one or a very small
number of samples (specific feature) is zeroed it will not affect the overall error
of the network and thus the loss function will not change by much.

X

X

Figure 3.11: Left: Fully Connected Neural Network Layers without Dropout,
Right: Fully Connected Neural Network Layers with Dropout in the middle
layer

65

3.7.7 L1 and L2 Regularization

L1 and L2 Regularization works by adding a cost to the loss function associated
with the magnitude of the weight values. By doing this, many of the less
important features become or approach zero which simplifies the model and
thus prevents overfitting. If H(Xi, β) is the loss function for a model acting
on a set of weights β, then the regularized loss function is:

HR(Xi, β) = H(Xi, β) +R(β)

where R is some cost function on the weights.

The two main regularization functions are L1 (also known as Least Absolute
Shrinkage and Selection Operator - LASSO Regression) and L2 (also known
as Ridge Regression).

Definition 3.9. L1 Regularization If H is the loss function and β the set
of weights for a given node, then the L1 Regularized loss function is:

HR(Xi, β) = H(Xi, β) + λ
k∑
j=1

|βj|

where k is the number of weights and λ is some constant in [0,R]

Definition 3.10. L2 Regularization If H is the loss function and β the set
of weights for a given node, then the L2 Regularized loss function is:

HR(Xi, β) = H(Xi, β) + λ
k∑
j=1

β2
j

where k is the number of weights and λ is some constant in [0,R]

With L1 regularization the weights of less important features will be shrunk
to 0 while in L2 regularization the weights of less important features will be
shrunk but will still have some impact on the output. Because of this L1
regularization will be robust to outliers but will produce models capable of
handling only simpler features; whereas L2 Regularization is able to handle
more complex features but is not robust to outliers.

3.7.8 Data Augmentation

Data Augmentation is a technique which attempts to deal with the issue of
having sparse training data. One of the big problems in training CNNs is
the limited availability of data. The fewer images available to train with,
the less effective a model will be and the more likely it will overfit. Data

66

Augmentation works by taking each image and creating a set of additional
training images by performing one or more operations taken from a pool of
operations which typical includes, rotation, flip vertically/horizontally, crop,
add noise. By doing this the size of the training set is increased which provides
more examples for the model to fit to and makes it harder to overfit since it
becomes increasingly more difficult to fit each individual image as the number
of images grows. It also helps the model generalize by presenting alternate
views of images. If every image is taken at the same scale with the same
angle to the object, training a model to perform image classification would
become much easier. Unfortunately, in the real world, most images are taken
from different ranges with different values of zoom, different rotations of the
camera, different aspect angles, and different centerings. As such, performing
data augmentation helps the model prepare for these more general cases.

Figure 3.12: Original Image before Data Augmentation

Table 3.1: Examples of Data Augmentation applied to an Image

The downside to data augmentation is that it drastically increases the size of
the training set which increases training time. A balance is needed between
the number of additional images added by data augmentation and the need
for reasonable training times.

67

3.8 Why CNN’s

A big question has so far been left unanswered, why use CNNs over ANNs?
While there are many answers for this, the most important boil down to two
facts about ANNs:

1. ANN’s assume that the input data has low dimension, i.e., if xi ∈ Rk

then k is small.
2. ANN’s assume that the input features are linearly independent

Unfortunately for images this does not hold. Thus, while ANNs can work on
images they produce suboptimal models.

CNNs on the other hand use filters or lenses to look at portions of the input
and try to observe features rather than relationships between the input values.
It turns out that generally, the features become linearly independent even
if the data is not, which in an image much of the data is not completely
linearly independent. Also, by learning features rather than each individual
pixel the dimension of the data being learned is much lower. Given this and the
recent increase in computing power CNNs have become increasingly popular
for handling image recognition and other image processing tasks.

3.9 Problems with CNNs

While CNNs are better suited to handle images than ANNs and have shown to
be impressive image processing models, there are still many issues with CNNS.

Large Number of Hyper-parameters
The first is that throughout all the sections above there are a large number of
user defined parameters (hyperparameters) that have a substantial impact on
the system. Gradient Descent learning rate, regularization lambda, filter size,
number of layers, etc. All of these impact the performance, usefulness, and
functionality of CNNs. With so many parameters, it is incredibly difficult to
tune each one optimally or to control for one to test how it drives the learning
of the model. As such, most practitioners work using ”rule of thumb” guide-
lines which may not be the correct choices for these parameters.

Training Time
Even with recent increases in processing speed and available memory, training
CNNs is still very resource and time intensive. For the Dogs vs. Cats data set
discussed later, the author’s CNN still took approximately 6 hours to execute
each run of 60 epochs even while running on a Google cloud server with GPU
acceleration and with a relatively small set of images (only two classes). This
training could not run on the author’s own machine in any sort of reasonable

68

amount of time. Until computing resources grow exponentially more or further
breakthroughs are made in optimization of training, the development of CNNs
and their use will continue to be difficult.

Use Outpaces Theory
Like many areas in machine learning, practice far outpaces theory. The prolif-
eration of libraries for creating CNNs has allowed users to create and use CNNs
without an understanding of what is actually happening. These libraries make
it easier to create a CNN by trial and error - adjusting parameters and the ar-
chitecture without understanding why these adjustments are having an effect
or what is happening in the model. This leads to results that are not under-
stood and can lead to problems when the model behaves in ways that are not
expected in the real world, especially when used in safety critical applications
such as health care or self-driving vehicles. While these libraries are very ben-
eficial, a substantial amount of work is needed to better understand the theory.

CNNs Are Black Boxes
Similarly, since CNNs are very complex data structures, little is often under-
stood about the inner workings of a CNN. What patterns are learned and why
is difficult to ascertain which can lead to problems as anytime the reason for
decisions is not understood there is room for wrong decisions to be made, but
in this case, it often happens without supervision. This is where TDA can
lend a hand, as TDA, and the process outlined above and in Section 4, can
help practitioners understand why certain decisions are being made by CNNs
and how to solve issues with misclassification.

3.10 What Is a Convolutional Layer Weight Space?

In a convolutional layer, as described in Section 3.1, each filter position on the
previous image contains a set of m×n weights (see Figure 3.2). These weights
are initialized to some set of random values before the network is trained.
Then using the backpropagation method described in Section 3.5, the weights
are trained to minimize the overall loss function. Given that these weights are
each a set of m × n values they constitute a subset of Rm×n. Initially before
training, since they are randomly chosen, the set of weights will approximate
a multivariate distribution which should approximate a sphere in Rm×n with
a density inversely proportional to the distance from the center (assuming
Gaussian distribution). The question that we will attempt to answer, alongside
the work of Carlsson, Gabrielsson, et. al. is after training what structure do
these weights approximate? For instance, is the spherical structure maintained
or perhaps do the weights begin to approximate only the surface of the sphere
(S8), or is there some other structure entirely? While there are weight spaces

69

for each layer in a CNN that has weights the term weight space in this paper
will be restricted to only convolutional layers.

3.11 Visual Cortex

Let us now pause for a second to consider a few interesting topics related to
this study of CNN Convolutional Weights and the Primary Circle learned by
their training. As discussed in Section 1, Neural Networks are based on the
biological model of the neurons and connected synapses in the mammalian
brain. In particular, CNNs are designed to mimic the connection of neurons
in the visual cortex particularly C-Cells which the pooling layer is based off of
and S-Cells which the convolutional layer is based off of. It turns out though
that the neurons in the visual cortex are arranged so that different groups work
together to detect lines of different orientations. From [27], ”once information
reaches the primary visual cortex, these circular receptive fields combine to
create receptive fields that are activated by lines. These receptive fields cause
neurons in the primary visual cortex to respond best to a line in a specific
orientation. The firing rate of the neuron will increase as the line rotates
toward the preferred orientation. The firing rate will be highest when the line
is in the exact preferred orientation. Different orientations are preferred by
different neurons.”

Figure 3.13: Neurons in the primary visual cortex show increased firing rates in
response to a preferred line orientation. Lines rotated away from the preferred
orientation will not cause activity. CNS Receptive Field Responses by Casey
Henley is licensed under a Creative Commons Attribution Non-Commercial
Share-Alike (CC BY-NC-SA) 4.0 International License.

This becomes particularly interesting in regards to this study of CNNs because
what the work of Carlsson and Gabrielsson and what our work in this paper
seek to show is that the nodes in the convolutional layers of CNNs trained on
natural images turn out to mimic the exact behavior of the neurons in the
primary visual cortex. That is, the annulus or H1 cycle discussed in Section 1
and demonstrated in the subsequent work of this paper is made up of nodes
which recognize or fire based on a specific gradient, i.e., orientation of a line.
So what is seen is that constructing a CNN with the same basic functionality or
architecture as the primary visual cortex and training it with natural images

70

causes a CNN to actually learn the same structure that the neurons in the
primary visual cortex are designed with.

In general, this process of recognizing gradients or orientations of lines is known
as ”Edge Detection”. Edge Detection is one of the most important concepts in
performing image classification as the discovery of edges is the first step in sep-
arating objects from each other and the background which must be performed
before classifying. As such, Edge Detection is almost always considered the
first step necessary when creating an algorithm to perform image processing.
It is also quite interesting that the first step a CNN performs when attempting
to do image classification is to perform edge detection even though this step
is in no way instructed or architected in the design of CNNs. (See [64] for a
more thorough discussion of edge detection.)

4 Topological Data Analysis

With the mathematical theory for Topological Data Analysis (TDA) in hand
it is appropriate now to introduce the general notion of TDA. Often in data
analysis applications, a set of samples or data points is known while the ambi-
ent space from which these points were sampled remains unknown. The goal
then is to determine the ambient space from the samples so that more general
conclusions can be drawn. While there exist many ways to try to determine the
ambient space, one recent approach, which has shown much promise, involves
using abstract simplicial complexes to derive topological data from data sets.
This method has sparked the creation of a whole new field known as Topologi-
cal Data Analysis. TDA seeks to utilize the topological or geometric structures
underlying data to try to make larger generalizations about the ambient space
and thus the data beyond just the samples being examined. This, at least in
theory, prevents the problems that arise from overfitting in Neural Networks
and other data analysis techniques.

TDA consists of four main areas referred to by Chazal and Michel [6] as the
”TDA Pipeline”. While these areas are not mutually exclusive, and many
approaches overlap some or all of them, they illustrate the process that TDA
takes to perform analysis and categorization of the data.

1. Data Processing - The data that we start with is assumed to be a finite
set of point cloud data. This data may come with a given metric or a metric
may need to be chosen. In either case, the choice of metric is pivotal to
the type of features which will be discovered via the TDA process. How to
choose an appropriate metric and how metrics impact the output remain open
questions.

2. Structure Application - Once the input data has been described, character-

71

ized, and an appropriate measure has been applied, a ”continuous” structure
must be applied to the data. This is done to provide a more continuous shape
to the discrete data so that the underlying structure can be analyzed or ex-
amined. There are many ways to apply a structure to the data but simplicial
complexes and filtrations are the most common.

3. Information Extraction - Once the continuous structure is applied to the
data one can begin to extract topological or geometric information from this
structure.

4. Feature Description - Once the information from the structures is extracted
it can be examined to produce features of the data or - more importantly - of
the ambient space from which the data was taken.

A thorough discussion of these fields is beyond the scope of this work but
the reader is referred to [6] for a more in-depth study. Nevertheless, this is
mentioned to show the broader area of TDA and situate the work outlined in
this paper in the larger context of the field of TDA. Specifically, our work falls
under the concepts of structure application and information extraction, namely
the construction of abstract simplicial complexes, filtrations, and persistent
homology. This includes a novel method for building simplicial complexes
from high dimensional data sets known as Mapper.

In the remainder of this section, we will discuss the concept of data pre-
processing for TDA and then the primary methods for performing TDA on
point cloud sets. Then in Section 5 we describe the process used for applying
TDA to the convolutional weight vectors from the CNNs analyzed in sections
6 and 7.

4.1 Pre-Processing Data for TDA

The TDA Process begins with a point cloud data set which must be pre-
processed before analysis can occur. The pre-processing consists of normalizing
the data and then filtering to limit the results to the dense clusters of data (a
way of removing noise) and finally PCA is performed to reduce the dimension
and provide a lens on the data. After this, the data is ready for analysis.
Specifically, we will use a filtration of Rips Complexes to compute persistence
diagrams and the ”Mapper” algorithm, which will be described in this section,
to provide a 2-D visualization.

4.1.1 Normalization

In the first step, the data is normalized. By doing this, the data, which may or
may not have units, is transformed so that the relative values can be compared

72

rather than the absolute values. In many applications, such as CNN weight
values, the values have no bounds and as such the absolute values have little
to no meaning. Rather, the values relative to other elements of the data set
are what is important. So, by normalizing, we transform the vectors in the
point cloud set to relative values preserving the ratios between the values. This
becomes especially important when comparing weights over multiple runs as
the absolute values may differ wildly but the relative ratios should remain
the same. In a CNN, higher weights are associated with features that are
important for classification (i.e., the weight is a measure of importance), but
only as a comparison to other weight values. Their absolute magnitudes are
essentially meaningless as the weights of the network are unitless. The values
have much more to do with the training process and the magnitude of the input
values (in CNNs for image processing this is typically related to contrast and
brightness). Because of this, the information and relationship of the weights
are stored in their relative value to other weights. Thus, it is necessary to
normalize so that ratios between weights in different parts of the layers can be
compared.

In normalization, each weight vector is normalized so that it has unit variance
and centered so that its mean is 0. More formally if v = {vi}i=1..n is a weight

vector, with mean µ = 1
n

n∑
i=1

vi and variance σ2 = 1
n

n∑
i=1

(µ − vi)
2 then the

normalized weight vector v̂ = {(vi − µ)/σ2}i=1..n.

As discussed in Section 1, this is the same process that Mumford et. al. [47]
used on their analysis of high-variance local image patches. The result of
normalizing the weight vectors is a projection from the weight space Rm×n to
S(m×n)−1 i.e., the surface of the ball with radius 1 in R(m×n)−1.

4.1.2 K-Nearest Neighbors Density Filtration

Now that the data is normalized, it is necessary to filter the data. While it
is possible to perform the TDA steps on the full data set, this requires a very
large amount of computing power and is not really necessary. The areas where
the data is ”clumped together”, i.e., dense, are the areas of interest and so by
filtering out the vectors which are not located near others, some of the noise
within the data set is filtered out. This is akin to throwing out outliers. Recall
that the information stored in the vectors is their relative value to each other
not their absolute magnitudes, so in this case rather than outliers lying at the
extremes of the dataset, outliers are weights which are not located near other
weights in the weight space.

To filter the data, a K-Nearest Neighbors Density Filtration is used. The K-
Nearest Neighbors Density Filtration comes from the concept of the K-Nearest
Neighbors Density Estimator which was first introduced by Loftsgaarden and

73

Quesenberry [42] as an estimator of the probability density function of a ran-
dom variable X ∈ Rd with a continuous distribution function. The K-Nearest
Neighbors Density Estimator or KDE is defined as follows:
Given a point x ∈ Rn, with Dk(x) the distance from x to its k-th nearest
point, then

p̂kde = k
n
· 1
Vd·(Dk(x))

= k
n
· 1
V olume of Bd(x,Dk(x))

where Vd = πd/2

Γ(d/2+1)
is the volume of a unit dimensional ball in Rd and Γ(x) is

the Gamma function.

Loftsgaarden and Quesenberry showed in [42] that p̂kde is a consistent density
estimator. As such, it is a valid choice for use in performing a density filtration.
This is the same density filtration used by Carlsson and Gabrielsson in [18]
which is why it was chosen for our work in order to show consistency.

In K-Nearest Neighbors Density Filtration the pairwise distance is calculated
for each set of points vi, vj ∈ V the set of weight vectors where i 6= j. Any
distance metric can be used, but the standard Euclidean distance is most
common and was used for this research. Once all of the distances are computed
the k-th nearest distance to each point is used and then the top ρ% of points
are kept. So, if k is 100 and ρ is 0.3 (30%) and the data set has 3000 vectors,
then the top 1000 vectors with the shortest distance to the 100-th closest point
from each are kept. This results in a reduction of the data where outliers are
filtered out and areas of interest are highlighted.

To be more precise let vi, vj ∈ V be points in the point cloud V with distance
function d(vi, vj). Then for each point vi ∈ V we can define the set of distances
of each point from vi, D

i = {d(vi, vj) | ∀vj ∈ V } and the sorted set of distances
D̃i = {dk ∈ Di | dk ≤ dk+1}. Then we can define D̃i

k as the k-th element of
D̃i (i.e., the k-th closest point to vi). Using this, let Ak = {Di

k | i = 1..|V |}
and Ãk = {ai ∈ Ak | ak ≤ ak+1}. Then the K-Nearest Neighbors Density
Filtration F (k, ρ) = {Ãki }i=1..bρ∗|Ak|c

4.1.3 PCA

Another step often performed in data pre-processing for TDA is dimensionality
reduction. Dimensionality reduction projects the data onto a space which is
easier to visualize and understand, and is often used whenever a lens is needed
to summarize the data in some way. Specifically, as will be seen in the next
section, this is used in the TDA algorithm known as Mapper. While there are
many ways to perform dimensionality reduction on a point cloud set, the most
popular is Principal Component Analysis. In Principal Component Analysis
(PCA) the data is projected onto the first n principal components of the data.
The principal components are unit vectors where the i-th vector is the vector
which best fits the data (i.e., minimizes the least squares distance) while being

74

orthogonal to the first i− 1 components. These principal components are the
eigenvectors of the covariance matrix of the data set. These components then
form an orthonormal basis and are used to perform a change of basis which
reduces the dimension of the data to the number of components used. For
more information on PCA see [1]. Gabrielsson and Carlsson state that other
lenses can be used to reduce the dimension of the data set, but that PCA gave
the best results [5]. PCA is used for the analysis in this paper.

4.2 TDA Methods

The primary TDA methods we used in our analysis are the Mapper algorithm
and Persistence Diagrams. These are two of the most commonly used TDA
methods and were the methods which would allow us to best evaluate 1-st
persistent homology groups and the existence or lack of the Primary Circle
corresponding to a high persistence cycle in H1. The Mapper Algorithm is
discussed in detail in the next section. The Persistence Diagram was discussed
in Section 2 and so it will be glossed over here.

In short, a Filtered Rips Complex is constructed using the point cloud set
of convolutional weights. This filtered complex is then used to compute the
p-persistent Betti numbers of H0 and H1, which are then plotted based on the
filtration level in which each cycle was created and the level that it died (i.e.,
the P-intervals). These are then plotted in a diagram with the axes of birth
and death (see Figure 4.1). In Figure 4.1, the value on the birth and death axes
is the threshold value ε used at the corresponding level of the filtration. Recall
that the Rips Complex Rε is defined by a threshold value ε. The Filtered Rips
Complex then is formed by gradually increasing this threshold at each level of
the filtration. So, rather than listing out the numerical level of the filtration,
we can instead use the value ε to indicate where in the filtration a cycle was
created and a homologous cycle died.

4.2.1 Mapper

Mapper is a computational algorithm created by Singh et. al. [60] which is
intended to create simple descriptions of high dimensional data sets through
the use of simplicial complexes, while still maintaining the topological and
geometric properties of the data set at a given resolution. Mapper has been
widely adopted by the TDA community as a method for determining the struc-
ture of high dimensional data at a specified resolution and, together with the
use of persistence diagrams, can provide insight into the underlying topolog-
ical structure of a data set. In particular, Mapper was the method used to
visualize the structure of the CNN weights in the analysis of the Dogs vs Cats
CNNs.

75

Figure 4.1: Example of a Persistence Diagram created in Python using the
Ripser package from Sckikit TDA [53]

While the main use of the Mapper algorithm is for use in determining the
structure of point cloud data, in general it can be applied to any topological
space. As such we begin with a generic topological space and then discuss in
more detail its application to point cloud sets.

Definition 4.1. Given points x and y of a space X, a path in X from x to y
is a continuous map f : [a, b]→ X such that f(a) = x and f(b) = y. A space
X is said to be path connected if ∀x, y ∈ X there exists a path in X from x to y.

Definition 4.2. The Path Connected Components of X are the equivalence
classes defined by the equivalence relation x ∼ y if there exists a path in X
from x to y.

Theorem 4.1. The path connected components of X are path-connected dis-
joint subspaces of X whose union is X, such that each nonempty path-connected
subspace of X intersects only one of them. [48]

Let T be a topological space, then the Mapper algorithm is

1. Chose f : T → Z a continuous function mapping T to a metric space Z
(typically Z is Rn)

2. Construct an open covering of Z, U = {Uα}α∈A for some finite indexing
set A.

3. Define Xα = {x|f(x) ∈ Uα} Given that f is a continuous map, the sets
f−1(Uα) also form an open covering of T .

76

4. Decompose f−1(Uα) into its path-connected components, so
f−1(Uα) =

⋃βα
i=1 V (α, i) where βα is the number of path-connected com-

ponents in f−1(Uα)

5. Define M = {{V (β, γi)}β∈B,i∈{1..|B|} ⊆ {Xα}α∈A :
B ⊆ A,

⋂
{V (β, γi)}β∈B,i∈{1..|B|} 6= ∅}

i.e., M is the simplicial complex N (U) whose vertex set is V (α, i) and
where a k-simplex exists in M for all non-empty intersections of k +
1 V (α, i)’s

Consider now X, a point cloud set inside of a metric space S. The goal of
the Mapper algorithm on point cloud sets is to construct a simplicial com-
plex M from X which captures the topological properties of S at a specified
resolution. The problem with X is that it is itself not necessarily a sub-
space and therefore the sets Xα = f−1(Uα) cannot be decomposed into path
connected components. Instead a clustering algorithm is used to separate
Xα into disjoint sets where the points in each cluster have some notion of
”closeness”. By applying a clustering algorithm C to each of the Xα we get
Xα = f−1(Uα) =

⋃βα
i=1 C

βα
α =

⋃
C(Xα). The Point Cloud Mapper algorithm

is:

1. Define a continuous map f : S → Z, where Z is the reference metric
space and X ⊆ S

2. Construct a finite open covering U = {Uα}α∈A. of Z

3. Define Xα = {x|f(x) ∈ Uα x ∈ X} = f−1(Uα) ∩X

4. Apply a clustering algorithm C to each {Xα}, this results in C(Xα) =
{C1

α, C
2
α, ...C

βα
α } such that Xα =

⋃βα
i=1C

βα
α =

⋃
C(Xα) and i 6= j →

Ci
α ∩ Cj

α = ∅

5. Define M = N ({C(Xα)α∈A}), that is
- 0-simplexes (nodes) are the clusters Cβ

α

- Non-empty intersections form edges/larger k-simplexes
i.e., a family {(Cβ0

α0
), ..., (Cβk

αk
)} spans a k-simplex if and only if

their intersection is nonempty

Mapper has four different choices/hyper-parameters which must be made and
which impact the outcome of the algorithm. These are the filter map f , the
reference metric space of the filter Z, the open covering U , and the choice of
clustering algorithm.

The function f is referred to as the filter or lens on the data. The job of the
filter is to embed the structure of the more complex (or unknown) topological
space in a simpler space. Examples of filters include,

• Distance function f(x) =‖ x− p ‖d

77

• A dimension reduction function such as Principal Component Analysis
(see Section 4.1.3)

• Density estimates

• The centrality function f(x) =
∑

y∈X d(x, y) or the eccentricity function
f(x) = maxy∈Xd(x, y)

In our analysis we used 2-Component PCA as the filter.

The reference metric space is typically chosen in conjunction with the filter
as the filter often drives the choice of reference space. The reference space
chosen is almost always R or R2 as these are easily visualized and using a
higher dimensional space does not typically provide any additional structural
information.

After choosing a filter and reference space the open cover U must be chosen.
The typical choice (when the reference space is Rn) for U is a set of evenly
spaced overlapping intervals. When this is the choice for the open cover, there
are two corresponding parameters that must be chosen, resolution and gain.
The resolution is typically the length of each interval although in some work
the resolution refers to the number of intervals as in [18]. For the sake of
clarity, in this paper we refer to this as number of cubes instead of resolution.
The other parameter, gain, is typically the percentage of overlap. Although,
sometimes the gain is defined as gain = 1 / (1 - percentage of overlap). For
the sake of clarity, we will use percentage of overlap.

Lastly the clustering algorithm must be chosen. Any clustering algorithm can
be chosen as long as it produces disjoint clusters. Examples include K-Means
[41], Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[13], and Agglomerative Hierarchical Clustering [56]. In their original paper
Singh et. al. [60] chose a single linkage clusterer [32, 33]. This is also the
method chosen by Carlsson and Gabrielsson in their work on MNIST [18] as it
is implemented in their proprietary software AYASDI. Single-linkage clustering
is a form of agglomerative clustering.

Figure 4.2 gives two examples of the Mapper algorithm. In the top example, a
3-dimensional double torus is shown with one hole much larger than the other.
Since the smaller hole is completely covered by a single Uα while the larger
hole is not the resulting simplicial complex has one 1-cycle (element of H1)
instead of two, even though the topology of the double torus has Betti number
β1 = 2. The bottom example shows the Mapper algorithm on a point cloud
set, specifically a set arranged in a circular pattern. Since no single Uα covers
the whole set, a 1-cycle appears in the simplicial complex.

These examples illustrate the need for care in choosing the filter and open
cover for the Mapper algorithm. Typically, multiple different runs are needed
with varying parameters to see what structures appear in the data. This is
of course the importance of the persistent homology structure and associated

78

Figure 4.2: Visual example of the Mapper algorithm [6]

visualizations such as the persistence diagrams in that they show the struc-
ture over many different resolutions rather than a single one. However, the
persistence visualizations only give persistent Betti numbers and so indicate
the homology type of the ambient space for the point cloud data, but they
fail to give any indication of what that structure truly looks like. This is
where the Mapper diagram can be of great value. These two facts together
are why we utilized both persistence diagrams and the Mapper algorithm in
our analysis.

4.3 TDA Process

In order to perform the TDA processes outlined above we used the Python
programming language. It is possible to perform the calculations by hand using
the TDA methods outlined above; however, that would have taken a painful
amount of time so instead it was decided to use computational packages to
perform the work once the mathematical theory had been understood and
verified. In order to do this, the Scikit Learn Preprocessing package [57] was
used to perform the normalization of the data. After this, we used a K-Nearest
Neighbors Density filtration function which we wrote in Python, and finally
the PCA package from the Scikit Learn Decomposition library [57] was used
to apply the PCA lens to the filtered and normalized data.

Once the data had been pre-processed the Ripser package [53] which is a part
of the Scikit TDA package was used to generate the persistence diagrams.

79

Then the Keppler Mapper package [37] from the Scikit TDA package was used
to build out the Mapper diagrams. This package implements the Mapper
algorithm which is outlined in the TDA section. All of our analysis code can
be found in a GitHub repository [61].

5 Methods

Now that we have considered the historical context for our work in Section 1
and the theoretical framework in sections 2-4 it is time to move into the actual
work. Recall that the objective is to study the structure of weight spaces in
CNNs built to classify natural images and in particular a previously unstudied
complex image set known as Dogs vs. Cats. In so doing we would like to
understand if the structure of the weights matches the known space of high-
variance local image patches of natural images which was found by Mumford
et. al. [47], i.e., a manifold with non-trivial geometry and in particular a non-
empty first homology group. The presence of a structure approximating this
space in the weights of a CNN built on natural images gives a pathway for a
better theoretical understanding of CNNs and also gives increased confidence
in the CNN model. This structure was found by Carlsson and Gabrielsson
in CNNs built on MNIST, CIFAR-10, and SVHN [18] and used to posit the
Carlsson-Gabrielsson Hypothesis stated in Section 1.2. The datasets used in
[18] are fairly simple so our work is to extend the study to a more complicated
dataset and show that the structure of the weights for CNNs built on more
complicated datasets still match that of high-variance local image patches of
natural images.

Our methodology is as follows. We first start by designing a CNN architecture
that achieves reasonable accuracy and does not have overfitting. While an
overfit or low accuracy CNN may have the same structure, these models are
generally not considered valid and therefore there is little point in studying
them. Once a valid architecture has been defined, we train M number of CNNs
for N epochs each recording the weights from the convolutional layers at each
epoch.

After completing the training, the weights must be pre-processed. As dis-
cussed in Section 4, this is done by normalizing the weights and then using a
filtration to find the densest sets of points. In our case, we use the K-Nearest
Neighbor Density Filtration. Once the pre-processing is complete the weights
are ready for TDA analysis. In our work, we used two different TDA meth-
ods for analysis. In the first, we used a filtration of Rips Complexes to build
the Persistence Homology and Persistence Diagrams in order to determine the
Persistent Betti numbers. The other method used is the Mapper algorithm.
This was used to create a visualization of the weight structure. Lastly, the Per-
sistence Diagrams and Mapper Diagram are inspected to determine if there is

80

any visible evidence of a clear structure to the weight data.

In particular, we are looking for two main results. First, we expect to see a
single high-persistence element in H1 (cycle). This will tell us that the struc-
ture of the weights approximates a manifold with non-trivial geometry and is
consistent with what was found by Carlsson and Gabrielsson. It should be
noted here that in some cases Carlsson and Gabrielsson found three elements
of H1 rather than one; however due to the use of grayscale images for MNIST
and separate color channels for Dogs vs Cats we do not expect to see one for
each color; therefore, only 1 H1 cycle should appear. The other expected result
is revealed by the Mapper diagram. In the Mapper diagram, we expect to see
the Primary Circle, i.e., a circle of rotating gradients. This corresponds to the
cycle found in the persistence diagram. Supporting all of this we also expect
that as training increases the persistence of the H1 cycle and the clarity of
the Primary Circle should also increase at least until the model hits a ”knee
in the curve” in its training accuracy. (Typically, Neural Networks increase
in accuracy up to a point where the line becomes asymptotic or may actually
decrease, this is known as the ”knee in the curve”.)

In our work, we applied the methods described above to CNNs trained for two
different datasets, MNIST and Dogs vs Cats. For MNIST, we followed the
work of Carlsson and Gabrielsson in [18]. As discussed in Section 1, for CNNs
trained on the MNIST dataset, Carlsson and Gabrielsson found a clear high
persistence cycle in H1 in the persistence diagrams and the Primary Circle
present in the Mapper diagram. My first goal was to replicate their results
since they used a proprietary software package (Ayasdi) and thus their work
has so far not been replicated. Additionally, this will allow us to verify our
methods and show that they are valid.

To study MNIST we designed a CNN with the same architecture as used in
[18] using the Python programming language. 100 different CNNs (with this
architecture) were trained and the weights from their convolutional layers were
extracted resulting in 64*100 = 6400, 9-dimensional weight vectors from Layer
1 and 32*64*100 = 204800 9-dimensional weight vectors from the second layer.
These weights were then analyzed using the methods described above. The
full process and results are outlined in Section 6.

81

5.1 Main Work: TDA of CNNs Trained on Dogs vs
Cats

After analyzing the MNIST dataset we turned to the original portion of the
work which is a study of CNNs trained using the Dogs vs Cats dataset. We
started by training a number of different architectures, using the Python pro-
gramming language, in order to find one that achieved reasonably high ac-
curacy (> 90%) without overfitting. Once a good architecture was found 50
different CNNs (with this architecture) were trained to 60 epochs using Python
on the Google Colab cloud server [24] and ”The Foundry” [28], the computing
cluster at the University of Missouri Science and Technology. Another CNN
was built by adding an additional convolutional layer (4 instead of 3) to the
good architecture. Together these CNNs were then analyzed to determine the
structure of the convolutional weights.

In order to study the structure of the CNN weight spaces from CNNs trained
using Dogs vs Cats, we used two different paths. The first was a statistical
analysis using Voronoi Cells and the Kullback Leibler Distance (see Section
7.3.1). This method is a more traditional method which was used to determine
whether the weights appeared with some sort of Normal or Uniform distribu-
tion. If the weights follow the same structure as expected, the distribution of
weights in the weight space should appear highly non-normal.

After performing a statistical analysis, we moved to the application of TDA
methods. Specifically, we used the Persistence Homology and Persistence Dia-
grams to determine the Persistent Betti numbers this should show the presence
of a high persistence cycle in H1 (the 1st-homology group). Then the Map-
per algorithm was used to create a visualization of the weight structure. This
could then show whether the data was arranged in the expected Primary Circle
model. This process was performed using the methods outlined in Section 4.3
executed on the University of Missouri Science and Technology cluster ”The
Foundry” [28] using the Python Scikit Learn and Giotto TDA packages (the
code can be found in the GitHub repository [61]). The full process and results
are outlined in Section 7.

6 MNIST Analysis

As briefly discussed in the prior section, the first step in our research was
to replicate the work of Carlsson and Gabrielsson in [18]. Using the MNIST
data set a CNN of the same architecture was created and trained on the data
set. The results were then compared to the work in [18]. Since Carlsson and
Gabrielsson used a proprietary software suite to achieve their results and did
not publish any of their code their results have been left unverified. An attempt
was made by Larsen [39] to verify the results of Carlsson and Gabrielsson with

82

only limited success. By replicating the work of Carlsson and Gabrielsson
we were able to verify their results and also demonstrated the validity of our
methods and subsequent findings. This section outlines our replication of the
Carlsson and Gabrielsson work on MNIST as well as further research on CNNs
built using MNIST. We were able to verify the results found by Carlsson and
Gabrielsson. We also were able to show why their work was unable to find a
clear H1 cycle in their 2nd Layer and how to improve on their method in order
to show that a clear high persistent cycle does exist in the 2nd layer. Further,
we explored different CNN architectures and found an interesting and not fully
explained result on CNNs for MNIST with more than two layers. These results
are outlined in the rest of this section.

6.1 MNIST Dataset

The MNIST data set [62] is a set of 28x28 pixel images of handwritten digits
(0 to 9) taken from two databases created by NIST which were sampled from a
set of high school students and employees of the US Census Bureau. The data
set is commonly used in machine learning and image processing systems. It
consists of 60,000 training images and 10,000 test images. Below is an example
of some of the images from the MNIST data set.

Figure 6.1: Example images from the MNIST dataset

MNIST is commonly used because it consists of relatively simple images which
are already tagged with classes (which digit was being drawn). Because the
images are small (28x28 pixels) the amount of memory needed to hold and
process the data is substantially less than that needed to process standard
full-size images. This makes training and testing much quicker, and thus
allows for easier experimentation of networks and their architectures.

Using the MNIST data set we started by following the work of Gabrielson
and Carlsson and attempted to replicate the results found here [18] before
moving on to a more complicated data set. The goal in replicating the results
of Gabrielson and Carlsson was to further validate their results since they do
not offer publicly available source code to repeat their experiments and also
to ensure that our code was functioning properly.

83

6.2 Gabrielson and Carlsson MNIST CNN

According to [18], Gabrielson and Carlsson used the MNIST data set to train
100 CNNs with the architecture listed in Table 6.1 below for 40,000 batch
iterations with a batch size of 128, which turns out to be around 85 epochs.
This resulted in a test accuracy of about 99.0%.

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 28x28 64 ReLU
Layer 2 Max Pooling 14x14 64 n/a
Layer 3 Convolutional 14x14 32 ReLU
Layer 4 Max Pooling 7x7 32 n/a
Layer 5 Fully Connected 7x7 64 ReLU
Layer 6 Flatten 3136 n/a
Layer 7 Dropout (50%) 3136 3136 n/a
Layer 8 Fully Connected 3136 10 softmax

Table 6.1: Architecture of the MNIST CNN created in [5]

After performing the training, the weights of the first layer were extracted
as 9-dimensional vectors which were then normalized. After this a k-nearest-
neighbor density filtration with k = 200 and ρ = 0.3 was used to get 1920
points. To this point cloud Carlsson and Gabrielsson applied TDA, specif-
ically they used Ayasdi to create a Persistence Diagram and apply Mapper
(resolution = 30, gain = 3) with Variance Normalized Euclidean Norm and
two PCA lenses. The resulting graph can be seen in the Figure 6.2.

Figure 6.2: Mapper output of the first layer of the MNIST CNN created and
published in [18]

As can be seen from Figure 6.2 there is a very clear cycle in H1, with a
long lifespan (persistence), shown in the bar code plot. This cycle, when
the clusters making up the cycle are examined, matches the Primary Circle
(rotating gradients). This can be seen on the left of Figure 6.2.

84

6.3 Author’s Replication

In order to replicate the results of Gabrielsson and Carlson we utilized the
Python language and available package repository, primarily Keras [35], Scikit
Learn [57], and Giotto-TDA [20]. Analysis and training of CNNs was done
in Spyder on an Intel(R) Core(TM) i5-4210U CPU 1.70GHz with 8GB of
RAM hosting Windows 10, Google Colab using GPU acceleration [24], and
the University of Missouri Science and Technology computing cluster ”The
Foundry” [28].

The MNIST data set was obtained from the Keras Python package and a
CNN was built using the Python Keras package with the same architecture as
is shown in Table 6.1 above.

This CNN was then trained using the optimizer ADAM, 100 times, recording
the weights at 1,2,3,4,5,10,15,20,40,60,80,100, and 200 epochs, for each run.
The weights were normalized and filtered using the process outlined in Section
4 with Filtration(200, 30%) and then PCA (2 component) was applied to the
normalized and filtered weights. Using this data, and the Scikit Learn and
Giotto TDA packages, the persistence diagrams and Mapper diagrams were
constructed for each of the epoch sets.

Figure 6.3: Plot of the Classification Accuracy and Cross-Entropy Loss for the
2-Layer CNN using the MNIST test (yellow) and training (blue) data sets

In their paper Gabrielsson and Carlson use the same CNN for 100 runs of
40,000 batch iterations with a batch size of 128 on a 60,000 element data set
(which turns out to be around 85 epochs). With the weights from the first
layers of these runs they found a cycle with a persistence of around 0.6 which
is precisely what we found after 60 epochs and just under what we found
after 100 epochs (0.65). Given that the results match there is now additional
confidence in the results of Gabrielsson and Carlson and more importantly
assurance in the legitimacy of the code that we developed and will use for the
remainder of the analysis outlined in this paper.

Below are the results from the 2-layer CNN. The first row contains the persis-

85

tence diagrams at each of the labeled epochs and the second row contains the
Mapper diagram. Note that in the Mapper diagram there is information about
each point and the connections it has but there is no geometric data describ-
ing the distance between points, thus the plotting software for the Mapper
diagram takes a best guess and therefore circles may be squeezed and appear
more like a line when zoomed out or twisted into a pretzel. The persistence
diagram, on the other hand, will indicate the presence of a cycle regardless of
how the diagram is plotted.

Layer 1
From the analysis of the first layer a cycle (which turns out to be the Primary
Circle) appears almost immediately (by the first epoch) and continues to grow
in its persistence until between the 5th and 10th epoch where it reaches a
peak persistence of approximately 3.5. After this, it starts to decay, although
only gradually. Even with this decay there is still a strong cycle all the way
through the 200th epoch. The persistence severely wains starting between the
40th and 60th epochs.

1 Epochs 10 Epochs 20 Epochs 60 Epochs 100 Epochs

Table 6.2: Top: Persistence Diagrams for the weights from the 1st layer of the
2-Layer MNIST Bottom: Mapper Diagrams for the weights from the 1st layer
of the 2-Layer MNIST

86

Figure 6.4: Illustration of the Primary Circle in the Mapper diagram from the
Layer 1 Analysis after 10 Epochs

Layer 2
The weights of the second layer were also considered using Filtration(200, 10%)
and even better results were obtained than in the first layer. A cycle once again
appears after the first epoch with persistence of around 2, and continues to
grow until 20 epochs where it peaks near 3 and then decays. However, it still
remains very strong (persistence greater than 1.5) at 200 epochs.

1 Epochs 10 Epochs 20 Epochs 60 Epochs 100 Epochs

Table 6.3: Top: Persistence Diagrams for the weights from the 2nd layer of the
2-Layer MNIST with filtration(200, 10%) Bottom: Mapper Diagrams for the
weights from the 2nd layer of the 2-Layer MNIST with filtration(200, 10%)

87

Figure 6.5: Illustration of the Primary Circle in the Mapper diagram from the
Layer 2 Analysis after 20 Epochs

Layer 2 - Filtration(10,10%)
In their paper, Gabrielsson and Carlson state that they analyzed the second
layer and found only a very weak Primary Circle (”significantly weaker than
that found in the first layer” [18]). However, Gabrielsson and Carlson use a
very strong density filtration, Filtration(10, 10%). We ran this same density
filtration on the second layer and found similar results, a very weak Primary
Circle does appear and appears much weaker than in the first layer or the
second layer with the same weaker density filtration that was used on the first
layer. (See below for the comparison.) While it is not clear why Gabrielsson
and Carlson used a different filtration it is likely that this was done in order to
handle the much larger number of points and subsequent computational load
required when using the second layer (layer 1 has 64*100 = 6400, 9-dimensional
weight vectors while the second layer has 32*64*100 = 204800 9-dimensional
weight vectors).

In using a stronger filtration, the data becomes over filtered and no longer
represents the larger data structure underneath the data but rather represents
only certain local patches of the data. However, if too weak a filtration is
used, then the structure also becomes hidden as there are enough noisy points
to fill the space causing the cycle to appear only weakly. Finding the correct
filtration requires a number of different runs controlling for each parameter of
the filtration, (k and ρ).

88

1 Epochs 10 Epochs 20 Epochs 60 Epochs 100 Epochs

Table 6.4: Top: Persistence Diagrams for the weights from the 2nd layer of
the 2-Layer MNIST with filtration(10, 10%) Bottom: Mapper Diagrams for
the weights from the 2nd layer of the 2-Layer MNIST with filtration(10, 10%)

6.4 Additional MNIST Results

In order to further test the C-G Hypothesis on the MNIST data, a single
convolutional layer model and a 3 convolutional layer model were trained and
analyzed in the same way as the 2-layer network. The goal of this was to verify
that the structure found in the weights was not a feature of 2-layer networks,
but rather is a property of the ambient space which will be learned by any rea-
sonably well performing CNN (acc > 90%), in this case the architecture should
only matter insofar as it leads to a reasonably well performing CNN.

1-Layer CNN 3-Layer CNN

Table 6.5: Classification Accuracy and Cross-Entropy Loss for the 1-Layer and
3-Layer CNNs

89

6.4.1 One Layer CNN

For the single Convolutional Layer network (for architecture see Table 6.6)
the weights were analyzed using the same method as the 2-layer CNN with
Filtration(200, 0.3%). Using this, a very strong cycle (persistence around
3) was found in the first epoch and increased until peaking (around 4) in
the 5th epoch and then the persistence decreased slowly through each epoch.
This is not surprising as the first layer had significant overfitting (Table 6.5)
which started around the 5th epoch. The fact that overfitting reduces the
persistence (i.e., overall strength) of the H1 cycle in the data lends further
credence to the C-G Hypothesis, as one would expect that if the H1 cycle
is a true generic property of the ambient space, then as the model overfits
and learns the specific examples rather than the space, the properties of the
ambient space would weaken.

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 28x28 64 ReLU
Layer 2 Max Pooling 14x14 64 n/a
Layer 3 Fully Connected 7x7 64 ReLU
Layer 4 Flatten 3136 n/a
Layer 5 Dropout (50%) 3136 3136 n/a
Layer 6 Fully Connected 3136 10 softmax

Table 6.6: Architecture of the 1-Layer MNIST CNN

1 Epochs 10 Epochs 20 Epochs 60 Epochs 100 Epochs

Table 6.7: Top: Persistence Diagrams for the weights from the 1st layer of the
1-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the 1st
layer of the 1-Layer MNIST CNN

90

6.4.2 Three Layer CNN

For the three layer CNN (for architecture see Table 6.8), in layer 1 a clear cycle
appears in epoch 1 (persistence 3) and then decreases through each epoch
becoming very weak to non-existent around epoch 40. In layer 2, a clear
cycle appears in epoch 1 (persistence 2.3) and then slowly decreases reaching
persistence of 0.7 by epoch 200. In layer 3 no cycle was found. A number of
different filtrations were used in order to determine whether this was due to
filtration, but in all cases no cycle appeared. For further discussion on this see
Section 8.1.2.

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 28x28 64 ReLU
Layer 2 Max Pooling 14x14 64 n/a
Layer 3 Convolutional 14x14 32 ReLU
Layer 4 Max Pooling 7x7 32 n/a
Layer 5 Convolutional 7x7 64 ReLU
Layer 6 Max Pooling 4x4 64 n/a
Layer 7 Fully Connected 4x4 64 ReLU
Layer 8 Flatten 3136 n/a
Layer 9 Dropout (50%) 3136 3136 n/a
Layer 10 Fully Connected 3136 10 softmax

Table 6.8: Architecture of the 3-Layer MNIST CNN

1 Epochs 10 Epochs 20 Epochs 60 Epochs 100 Epochs

Table 6.9: Top: Persistence Diagrams for the weights from the 1st layer of the
3-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the 1st
layer of the 3-Layer MNIST CNN

91

1 Epochs 10 Epochs 20 Epochs 60 Epochs 100 Epochs

Table 6.10: Top: Persistence Diagrams for the weights from the 2nd layer of
the 3-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the
2nd layer of the 3-Layer MNIST CNN

1 Epochs 10 Epochs 20 Epochs 60 Epochs 100 Epochs

Table 6.11: Top: Persistence Diagrams for the weights from the 3rd layer of
the 3-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the
3rd layer of the 3-Layer MNIST CNN

6.5 MNIST Conclusion

The results from the work presented in this section corroborate the results
found by Carlsson and Gabrielsson. In the 2-Layer CNN a clear high persis-
tence H1 cycle can be found in the persistence diagrams for the 1st Layer and a
clear circle can be seen in the Mapper diagram for the 1st Layer. Additionally,
we were able to show why the cycle in the 2nd layer weights is not very clear
in the results of Carlsson and Gabrielsson, and by altering the filtration pa-
rameters show that there is a clear high persistence H1 cycle in the 2nd layer.
Building on this work we also showed that there is a clear high persistence H1

cycle in the weights of a 1-layer CNN and in the 1st and 2nd layer weights

92

of a 3-layer CNN. We also showed that there is no cycle in the 3rd layer of a
3-layer CNN. For further discussion on these results see Section 8.

7 Dogs vs Cats

After verifying the results found by Carlsson and Gabrielsson and ensuring
that our analysis methods function correctly, it is time to move to the bulk of
our work (both in content and originality). As previously stated, the goal of
our research is to further the application of CNNs by studying the structure of
weight spaces in CNNs built to classify a previously unstudied complex image
set known as Dogs vs. Cats. In this section, we will discuss the Dogs vs
Cats dataset and why I chose it, the CNN architecture and methods used to
determine it, and then the results of the statistical and TDA analysis of the
convolutional weights.

The Dogs vs. Cats data set comes from a 2013 Kaggle competition [34] used to
test the robustness of Asirra (Animal Species Image Recognition for Restrict-
ing Access) [11] which is a form of CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans Apart) developed by Microsoft in
conjunction with petfinder.com. The Kaggle competition was intended to test
whether Asirra was safe from attack and ”benchmark the latest computer
vision and deep learning approaches” [34].

Figure 7.1: Some examples of images from the DC data set

Dogs vs Cats (referred to from here on as DC) was chosen for a couple of
reasons. First of all, it is a more complicated data set than MNIST. Even
though there are fewer classes in the DC data set, the images presented are
much more complicated and the differences between cats and dogs are much

93

more nuanced than handwritten digits. For instance, a ”1” digit follows a very
clear and defined pattern, in fact most people could describe the pattern of
a digit very clearly, and that becomes even easier when asked to describe the
difference between two digits say a one and a seven; however, when asked to
describe the pattern of a cat (versus a dog) this becomes much more difficult
and nearly impossible to do. While we all implicitly can discern the difference
between a cat and a dog, actually enumerating this is an incredibly difficult
task. MNIST images are only 28x28 pixels whereas DC is 200x200 pixels.
While this is still not the size of a full resolution image (typically 1280x720
up to 3840x2160 for 4K) it is more representative and allows features to be
spread out into multiple pixels instead of the compression that happens on a
28x28 pixel image. On the flip side, using an image that is 200x200 (rather
than 3840x2160) greatly reduces the number of data points as the runtime for
training. For research purposes, this is important as it allows more iterations
to be conducted in order to perform thorough research and allows the use of
standard computing resources without the need for intense processing power.
Although, even with 200x200 pixel images, a computing cluster was still needed
to perform the TDA and to achieve reasonable run times. DC images are also
in color as opposed to MNIST which is gray-scale.

The other reason DC was chosen is that it is an easily available data set with
many examples of high performing CNN architectures. While it is not difficult
to design a CNN with high accuracy on a simple data set like MNIST, once
the data set becomes complex it can become difficult to determine an archi-
tecture which will perform with high accuracy on the data. One of the issues
with CNNs, and with ANNs in general, is that there is no solid science for
how to design the network. While there are rules of thumb, most of architec-
ture design is trial and error until an architecture is found that produces the
desired results. Since the design of a CNN architecture is beyond the scope
of this work, this data set allowed more time to be spent on analysis of the
weights of the network rather than its design. That being said, the author
did try several different configurations as outlined below. This was both to
find an architecture which achieved good accuracy and also to present some
different architectures which could be tested to see if the expected structure
appears in different architectures analogous to the results from the MNIST
data and corresponding CNNs. Unfortunately, as is described below, only two
architectures were found with reasonably high accuracy. This is a potential
avenue for future work.

The goal was to analyze this more complicated data set to determine what the
structures of the weight spaces are, and from that, gain a better understanding
of CNN weight spaces. In so doing, the work will lead to a better understanding
of CNNS, offer an avenue for improvements in speed and accuracy of CNN
training, and give further confidence in the robustness of the CNN model.
Additionally, together with the work of Carlsson and Gabrielsson, this work
will go a long way in both validating the C-G hypothesis and also in helping

94

define and demonstrate the underlying geometry of CNNs.

Specifically, the goal was to see if the CNN weights approximate a manifold
with non-trivial geometry especially a non-empty first homology group. This
will - along with the MNIST results - add credence to the hypothesis in [18]
that this structure appears in a more general sense for CNNs built on all image
data sets, i.e., the C-G Hypothesis. If successful, this will be the first time
someone has shown the presence of this non-trivial geometry with a cycle in
H1, as well as the presence of the Primary Circle, on the DC data set or the
larger superset of images from Asirra.

In order to determine the underlying topological structure of the weight space,
persistence diagrams were used to discover the high persistence features (i.e.,
high persistence Betti numbers of H0 and H1) that arise as the accuracy of the
CNN increases and then Mapper was utilized to determine the structure of the
weights. My work was restricted to the first two homology groups as larger
groups become increasingly resource intensive to compute and according to
the work done by Mumford, Carlsson, et. al the structure of local 3x3 image
patches and similarly CNN weights using a 3x3 filter can be primarily described
using a 2-dimensional manifold, thus much can still be understood by looking
solely at H0 and H1.

Additionally, if the C-G hypothesis holds, a high persistence H1 cycle should
appear in the persistence diagrams as the accuracy increases, and when exam-
ined the Mapper diagram should contain a clear circle. The nodes of this circle,
when traced back, should contain filter values that appear as a rotating tran-
sition from dark to light. What this shows is that a CNN trained on the DC
data set learns the Primary Circle as the underlying structure of its weights,
that is, the weights are an approximation of the Primary Circle which is (at
least in part) a feature of the ambient space from which the optimal classifier
is a part. This ambient space then is an analog for the space from which the
design for the neurons in the human visual cortex comes.

7.1 Dogs vs Cats CNN Architecture

To analyze the Dogs vs Cats data several different CNN models were run.
Since this data set is more complicated it was necessary to experiment with
different CNN configurations to determine which performed the best and to
make sure that the CNN achieved reasonable accuracy without overfitting. In
order to analyze the CNNs with this data set each CNN was run for 50 epochs
to determine their accuracies. Each of these CNNs were created using the
Python Keras package from TensorFlow [35] and trained on the Google Colab
cloud server [24]. Below is shown the configurations of the CNNs which were
tested.

95

1-Layer

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 200x200 32 ReLU
Layer 2 Max Pooling 100x100 32 n/a
Layer 3 Flatten 320000 n/a
Layer 4 Fully Connected 128 ReLU
Layer 5 Fully Connected 1 Standard Logistic

Table 7.1: Architecture of the 1 Convolutional Layer CNN

2-Layer

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 200x200 32 ReLU
Layer 2 Max Pooling 100x100 32 n/a
Layer 3 Convolutional 100x100 64 ReLU
Layer 4 Max Pooling 50x50 64 n/a
Layer 5 Flatten 160000 n/a
Layer 6 Fully Connected 128 ReLU
Layer 7 Fully Connected 1 Standard Logistic

Table 7.2: Architecture of the 2 Convolutional Layer CNN

3-Layer

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 200x200 32 ReLU
Layer 2 Max Pooling 100x100 32 n/a
Layer 3 Convolutional 100x100 64 ReLU
Layer 4 Max Pooling 50x50 64 n/a
Layer 5 Convolutional 50x50 128 ReLU
Layer 6 Max Pooling 25x25 128 n/a
Layer 7 Flatten 80000 n/a
Layer 8 Fully Connected 128 ReLU
Layer 9 Fully Connected 1 Standard Logistic

Table 7.3: Architecture of the 3 Convolutional Layer CNN

96

3-Layer with Dropout

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 200x200 32 ReLU
Layer 2 Max Pooling 100x100 32 n/a
Layer 3 Dropout (20%) 100x100 32 ReLU
Layer 4 Convolutional 100x100 64 ReLU
Layer 5 Max Pooling 50x50 64 n/a
Layer 6 Dropout (20%) 50x50 64 ReLU
Layer 7 Convolutional 50x50 128 ReLU
Layer 8 Max Pooling 25x25 128 n/a
Layer 9 Dropout (20%) 25x25 128 ReLU
Layer 10 Flatten 80000 n/a
Layer 11 Fully Connected 128 ReLU
Layer 12 Dropout 128 ReLU
Layer 13 Fully Connected 1 Standard Logistic

Table 7.4: Architecture of the 3 Convolutional Layer with Dropout CNN

The following accuracies were achieved after 50 Epochs:
1 Block Model Acc = 73%
2 Block Model Acc = 74%
3 Block Model Acc = 80%
3 Block Model with Dropout = 81%

Given these results, the 3 block model with dropout was chosen because it
performed the best. This was then used to perform 100 training runs saving the
weights after 1,2,3,4,5,10,15,20,40, and 60 epochs. However, after investigating
the results further it was revealed that not only did the model achieve less
than desired accuracy it also suffered from overfitting. Thus, it was necessary
to remove the problem of overfitting before analysis of the weights could be
completed.

7.2 Solving the Overfitting Problem

The first attempt to solve the problem of overfitting was to use an optimizer. In
the previous MNIST example the Adam Optimizer was used and is generally
known to produce good results so it was chosen. For more information on
overfitting see Section 3.7

97

Figure 7.2: Left: 3-Layer Network with 128 Node 3rd Layer and Adam Opti-
mizer, Right: 3-Layer Network with 32 Node 3rd Layer and Adam Optimizer

As can be seen from the results in Figure 7.2, this did not fix the problem
of overfitting so a different method to counteract this was sought. Additional
methods tried were, Dropout after each layer, L1 Regularization, and L2 Reg-
ularization. Ultimately, none of these methods were successful in removing
the problem of overfitting. As such an alternate method known as Data Aug-
mentation was used.

Figure 7.3: Left: Dropout 0.4, Center: L1 Regularization, Right: L2 Regular-
ization

98

Figure 7.4: 3-Layer CNN with Dropout and Data Augmentation

Using Data Augmentation we were able to achieve the nearly identical results
on both the training and test data set which demonstrated that the CNN was
not overfitting. For the rest of the paper, the results used were achieved using
this 3-Layer CNN with data augmentation (unless otherwise stated). Table
7.5 lists the architecture for each of the CNNs considered when trying to solve
the overfitting problem.

1st 2nd 3rd Layer FC Layer Regular- Data
Layer Layer Layer Dropout Dropout ization Aug

Adam 32 64 128 0.2 0.5 None None
Adam 32 32 64 32 0.2 0.5 None None

Dropout 0.4 32 64 128 0.4 0.5 None None
L1

Regularization 32 64 128 0.2 0.5 L1 None
L2

Regularization 32 64 128 0.2 0.5 L2 None
Data

Augmentation 32 64 128 0.2 0.5 None Yes

Table 7.5: Architectures for the models used to test solutions to the problem of
overfitting

7.2.1 Training

Once the problem of overfitting had been dealt with the 3-Layer CNN with
dropout and data augmentation was trained 50 times for 60 epochs. From the
prior overfitting analysis, it was shown that the CNN is capable of achieving
around 94% accuracy by epoch 100. While training out to 100 or 200 epochs
would have been preferred for completeness and for the accuracy, training

99

for 60 epochs even with GPU acceleration took six to eight hours per run,
so training for 200 epochs would have taken nearly twenty hours per run
which would have made the training last for nearly 3 months. Instead, it
was decided that since the CNN achieved 90% accuracy by 60 epochs (90%
is a typical benchmark for ”good” performance in a Neural Network) that 60
epochs would be enough to provide reasonable results and allow for the analysis
of the structure of the weight data for the Dogs vs. Cats data set.

For each of the 50 runs the weights for each of the three convolutional layers
and the model accuracy were recorded at epochs 1, 2, 3, 4, 5, 10, 15, 20, 40, and
60 epochs. This results in 3*32*50 = 4800 layer 1 weights (3 color channels *
32 filter channels * 50 runs), 32*64*50 = 102,400 layer 2 weights (32 channels
from the prior layer * 64 filter channels * 50 runs), and 128*64*50 = 409,600
layer 3 weights (128 channels from the prior layer * 64 filter channels * 50
runs). After training for 60 epochs the mean training accuracy achieved was
around 90%.

Figure 7.5: Mean training accuracy across the 50 training runs for the 3-Layer
with dropout CNN on the Dogs vs Cats dataset

7.3 Statistical Analysis

The analysis we performed on the Dogs vs Cats CNNs is split into two different
methods. First, we performed a more classical statistical analysis of the data.
This is in keeping with the work performed by Mumford et. al. [47] on
the set of high variance high density image patches. The goal was to use
traditional statistical methods to show that the weights from the convolutional
layers of the 3-Layer CNN model are highly non-normal and thus demonstrate
that there must be some interesting shape to the data before moving on to
examine the data using TDA. In doing both of these methods, we were able
to demonstrate that the results from TDA analysis are in line with the results
of traditional statistical analysis and further show how TDA is able to provide

100

more information and a better description of the structure of the data. The
statistical analysis methods included the computation of Voronoi Cells and
their density and the calculation of the KL Distance for the CNN convolutional
weights.

7.3.1 Kullback-Leibler Distance - Theory

The Kullback-Leibler Distance or Kullback-Leibler Divergence, is a commonly
used statistical measure for determining how two probability distributions P
and Q differ over the same variable x and is denoted DKL(P (x)|Q(x)). The
Kullback-Leibler (KL) Distance was originally introduced by Solomon Kull-
back and Richard Leibler [38]. Given two probability distributions P (x) and
Q(x) of a discrete random variable x It is defined as:

DKL(P (x)|Q(x)) =
∑

x∈X Q(x) log2
P (x)
Q(x)

It is often referred to as the KL Divergence instead of KL Distance because it is
not actually a metric due to its lack of symmetry, i.e., DKL(P (x)|Q(x)) = m
does not imply DKL(Q(x)|P (x)) = m. It should also be noted that when
computing the KL Distance, it is necessary to only use samples for which Q
is defined.

The KL Distance is closely related to the idea of entropy (see Section 3.6) from
the field of information theory.

From an information theory perspective, the KL Distance then measures the
information lost when using Q(x) to model P (x) or more explicitly, the ex-
pected number of bits required to code samples from P (x) when usingQ(x).

From a statistical perspective, the Neyman-Pearson Lemma [49] states that
the best way to distinguish between two distributions is through their log
likelihood ratio, i.e., log(P (x)) − log(Q(x)). The KL Distance then mea-
sures the expected value of the log likelihood ratio, i.e., DKL(P (x)|Q(x)) =
E[log(P (x))− log(Q(x))].

While it has many applications, most notably using samples to determine if a
distribution matches a theoretical model, it is often used to determine whether
a distribution is Gaussian or Uniform. One only need define a Gaussian or
Uniform distribution over the same set of samples and then calculate the KL
Distance. In our case, we can use it to show from a statistical perspective
that the distribution of convolutional weights from a trained CNN are not
Gaussian.

101

7.3.2 Voronoi Analysis

Using Voronoi Cell analysis, the density of the points on the 7-sphere (S7) can
be determined and used to show that the weights are localized to some sub set
of S7. (Recall that the normalization process of the point cloud set X ⊆ R9

projects the data on S7.) The statistical distribution of the points illustrates
their relative density on S7. This shows whether the points are distributed
in a Gaussian distribution or arranged in some more sparse manner. Unlike
TDA however, it does not give any indication of the shape of the points.

To perform this analysis, we followed the methods used in [47] to analyze
high-variance high-density natural image patches. The first step is to define
the set of Voronoi Cells. Since the data lies on S7 after it is normalized, then
to define the set of Voronoi Cells, a set of evenly distributed points are needed
on S7 with a small enough distance between the points to accurately capture
the density of the data. Mumford et. al. pointed out that this is analogous to
the ”kissing number” problem in R8, i.e., how to arrange a maximum number
of non-intersecting spheres of radius 1 so that they all touch the unit sphere,
S7. This problem is itself non-trivial [7], but fortunately a solution does exist
for R8 given by the E8 lattice.

From [7], the first spherical shell is the unique solution to this problem. In [47]
the authors use the 4th spherical shell without explanation. It is assumed that
this is to have a higher fidelity analysis of the points since the first spherical
shell only has 240 points while the 4th has 17520, but it is not explained in
the paper. For the sake of comparison to the results from Mumford et. al.
on natural images, we also chose the 4th spherical shell as the set of Voronoi
points. This results in the following set of points:

1. The 112 permutations and sign changes of < 2, 2, 0, 0, 0, 0, 0, 0 > /
√

(8)

2. The 8960 permutations and sign changes of < 2, 1, 1, 1, 1, 0, 0, 0 > /
√

(8)

3. The 256 permutations and sign changes of < 1, 1, 1, 1, 1, 1, 1, 1 > /
√

(8)

4. The 7168 permutations and sign changes of< 3
2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
> /

√
(8)

5. The 1024 permutations and sign changes of< 5
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
> /

√
(8)

Using these points, the Voronoi Cell of each weight vector is determined by:
Ωi = {x ∈ X|dist(x, Pi) ≤ dist(x, Pj) for Pj ∈ P} where P is the set of
Voronoi Points defined above and X is the set of weight vectors.

One will note that although lying on S7, the weight vectors are in R9 while the
Voronoi Points are in R8. In order to compute the distance, we must either
transform the Voronoi Points into R9 or transform the weight vectors into R8.
The latter option was chosen in which case it was necessary to determine an

102

orthonormal basis for R8 which could be used to project the weight vectors
into S7. The Gram-Schmidt Orthogonalization Process was used to find the
following orthogonal basis.

Since the weight vectors lie on S7, an 8-dimensional subspace of R9, we can
define an 8-dimensional basis for the weight vectors X. However, in order
to project the points in X to R8 we need an orthogonal basis. To do this
we start with our basis V = {v1, v2, ...v8} and then use the Gram-Schmidt
Orthogonalization Process to find an 8-dimensional orthogonal basis.

The Gram-Schmidt Orthogonalization Process is as follows:
Given a basis V = {v1, v2, ...vp} for a subspace W of Rn, one can construct an
orthogonal basis {b1, b2, ...bp} ofW such that for any i = 1, ..., p, span{v1, v2, ...vi} =
span{b1, b2, ...bi} by the following steps:

b1 = v1

b2 = v2 − Projb1(v2) = v2 − v2bt1
b1bt1

b1

b3 = v3 − Projspan{b1,b2}(v3) = v3 − v3bt1
b1bt1

b1 − v3bt2
b2bt2

b2

bp = vp − Projspan{b1,...bp−1}(vp) = vp − vpbt1
b1bt1

b1 − vpbt2
b2bt2

b2 − ...−
vpbtp−1

bp−1btp−1
bp−1

Starting with a basis for R8 ⊆ R9 we have the following:
b1 =< 1, 0, 0, 0, 0, 0, 0, 0,−1 >
b2 =< 0, 1, 0, 0, 0, 0, 0, 0,−1 >
b3 =< 0, 0, 1, 0, 0, 0, 0, 0,−1 >
b4 =< 0, 0, 0, 1, 0, 0, 0, 0,−1 >
b5 =< 0, 0, 0, 0, 1, 0, 0, 0,−1 >
b6 =< 0, 0, 0, 0, 0, 1, 0, 0,−1 >
b7 =< 0, 0, 0, 0, 0, 0, 1, 0,−1 >
b8 =< 0, 0, 0, 0, 0, 0, 0, 1,−1 >

Performing the Gram-Schmidt Orthogonalization Process results in the fol-
lowing orthogonal basis:

b1 =< 1, 0, 0, 0, 0, 0, 0, 0,−1 >
b2 =< 1

2
, 1, 0, 0, 0, 0, 0, 0,−1

2
>

b3 =< 1
3
, 1

3
, 1, 0, 0, 0, 0, 0,−1

3
>

b4 =< 1
4
, 1

4
, 1

4
, 1, 0, 0, 0, 0,−1

4
>

b5 =< 1
5
, 1

5
, 1

5
, 1

5
, 1, 0, 0, 0,−1

5
>

b6 =< 1
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1, 0, 0,−1

6
>

b7 =< 1
7
, 1

7
, 1

7
, 1

7
, 1

7
, 1

7
, 1, 0,−1

7
>

b8 =< 1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1,−1

8
>

Once normalized this set provides an orthonormal basis for R9. By normalizing

103

we are able to use B =

b̃1

b̃2

b̃3

b̃4

b̃5

b̃6

b̃7

b̃8

where b̃i = bi/‖bi‖

to project our weight vectors x ∈ X where Bxt projects to 8-dimensions while
preserving the position on S7, i.e., norm of 1.

We now use this to define our distance function dist(x, Pi) = arccos(Bxt · Pi)
for x ∈ X and Pi ∈ P the set of Voronoi Points defined above.

With this distance function and the membership function Ωi(x) defined above,
the points X can be binned into their respective Voronoi Cells.

To perform the analysis, the weights from each of the 3-layers were taken after
60 epochs (Layer 1 = 4800 points, Layer 2 = 102400 points, Layer 3 = 409600
points). The points were then normalized using the same method as applied
during the TDA analysis. Similarly, a K-Nearest Neighbors Density Filtration
was applied using ρ = 30% and k = 100. Lastly, the points were then divided
by 3 (since unit variance meant that the points all had a norm of 3 not 1).
Using the filtered points (Layer 1 = 1440 points, Layer 2 = 30720 points, Layer
3 = 122880 points) the points were then binned and the percentage of bins
containing at least one point was calculated. The results are show below:

Percentage of Voronoi Cells Containing at least one point in Layer 1 = 6.67%
Percentage of Voronoi Cells Containing at least one point in Layer 2 = 20.10%
Percentage of Voronoi Cells Containing at least one point in Layer 3 = 40.56%

In order to compare to a normal distribution, a set of random Gaussian 9-
dimensional vectors were generated using a mean of 0 and a standard deviation
of 1. Using 4800, 102400, and 409600 random points, to compare to layers
1, 2, and 3 respectively the same analysis (normalization and filtration) was
performed resulting in the following:

Percentage of Voronoi Cells Containing at least one point with 4800 (filtered
to 1440) Random Normal Points = 7.51%
Percentage of Voronoi Cells Containing at least one point with 102400 (filtered
to 30720) Random Normal Points = 67.60%
Percentage of Voronoi Cells Containing at least one point with 409600 (filtered
to 122880) Random Normal Points = 96.30%

104

Additionally, the Kullback-Leibler Distance (Divergence) was used to mea-
sure the deviation of our data from a uniform distribution. We can compare
to a uniform distribution here because a Gaussian distribution is uniform af-
ter whitening which has already been done via the scaling and normalization
process.[47].

We define the probability distribution function for the data points as:

p(Ωi) = N(Ωi)∑
iN(Ωi)

where N(Ωi) is the number of points in the i-th Voronoi

Cell.

Then the uniform distribution is defined as:

qu = vol(Ωi)
vol(S7)

where vol(Ωi) is the volume of the i-th Voronoi Cell.

From [47] the volume of the Voronoi Cells are 6.3∗10−3, 1.8∗10−3, 4.1∗10−3, 1.8∗
10−3, 1.8∗10−3 for the 5 types of Voronoi Cells defined above respectively. The
volume of S7 is π4/3.

The KL Divergence is then:

DKL(p|qu)) =
∑

i p(Ωi) log2
p(Ωi)
qu(Ωi)

This results in the following:

KL Distance of Layer 1 = 3.72
KL Distance of 4800 (filtered to 1440) Random Points = 3.40

KL Distance of Layer 2 = 2.89
KL Distance of 102400 (filtered to 30720) Random Points = 0.49

KL Distance of Layer 3 = 1.93
KL Distance of 409600 (filtered to 122880) Random Points = -0.03

From this analysis it can be seen that the weight vectors are highly non-uniform
meaning that the original non-whitened vectors are highly non-Gaussian. The
Gaussian points have a high KL Distance in the first layer because there are
only a small number of points which are also density filtered making them
no longer normally distributed. Even still, it can be seen that the filtered
weight vectors are much more densely packed than the Gaussian points. From
a statistical perspective this further demonstrates that the weight vectors are
contained in some kind of non-normal subset of the state space (R9).

105

7.4 TDA Analysis

7.4.1 Hyper-parameter Analysis

Moving on to the TDA analysis the first step was to determine the optimal
hyper-parameters which will be used. For the MNIST analysis the filtration,
numbers of cubes, and overlap were determined by the values used in [18],
although, as discussed, different filtration values were studied to achieve better
results. For the Dogs vs. Cats analysis, it was necessary to perform a set of
analysis runs to determine the optimal values for each of the hyper-parameters
(i.e., number of cubes, overlap, ρ, and k-value).

The number of cubes and overlap are hyper-parameters provided to the Map-
per function to define the cover used by the Mapper function. Recall that
Mapper first uses a function f : X → Rd to map the data into Rd for some d
(typically R2). Then a cover U is used to cover the image of f . The Python
Kepplermapper package used in this analysis defines a cover using a set number
of cubes (squares since it is R2) N and a percentage of overlap β. The cover is
then defined by splitting the image of f into N equally sized hypercubes with
β% overlap.

The filtration of the data, as described above, is performed by the K-Nearest
Neighbors Density Filtration. The hyper-parameters for this filtration are two
values, the percentage of filtration - ρ and k, that is, the k-th distance to be
used by the filtration. ρ% refers to the number of points to keep. That is, after
the k nearest neighbor is found for each point only the dρ ∗ .01 ∗ Ne closest
points are kept (where N is the number of points in the data set). The k
value used in the KNN Density Filtration refers to the k value in the k nearest
neighbors. That is, the value used to compare is the distance between the
point and the k-th closest point. So, if k is 10 then for each point x the value
used to compare to the other values is the distance to the 10-th closest point
to x.

Filtration Parameters
In order to test the filtration parameters, the 40 epochs set of weights was
chosen as it was known to have a clear cycle and thus would make it easy
to compare the results of the different filtration parameter combinations. Us-
ing this, runs were made with ρ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2} and
k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500}.
During prior experimentation ρ = 0.3, k = 200 were used so by testing less
than ρ = 0.3 we could evaluate if it performed better as ρ grew smaller and if
not then a different set of runs would be made using larger values for ρ. As
can be seen below, smaller ρ values resulted in better results thus it was not
necessary to test with larger values. As shown in figures 7.6-7.8 the persistence
increases as k grows, but only until around 100 to 200. The results from these
runs for each of the 3 layers are shown in figures 7.6-7.8 where the persistence

106

of the primary cycle is graphed against k value for each of the ρ values tested.
There are only results for a few k-values used in conjunction with ρ = 0.1 and
0.2 in Layer 3. This is because there are enough points in these filtrations
(0.1*409600 = 40960 and 0.2*409601 = 81,920) that the computing cluster
used did not have enough memory to handle the processing, so few results for
these values could be obtained.

As can be seen below, the persistence increased for smaller values of ρ and also
increased for larger values of k. However, the increase in persistence for larger
values of k tails off near k = 100. Thus k = 100 and ρ = 0.05 were chosen for
the analysis of the 3-layer CNN for Dogs vs Cats.

Figure 7.6: Layer 1 Persistence Over Different ρ and k values

Figure 7.7: Layer 2 Persistence Over Different ρ and k values

107

Figure 7.8: Layer 3 Persistence Over Different ρ and k values

Mapper Hyper-parameters
In order to test the Mapper hyper-parameters (cubes and overlap) the 40
epochs set of weights was chosen as it was known to have a clear cycle and
thus would make it easy to compare the results of the different Mapper hyper-
parameter combinations. Then runs were made using cubes ∈ {10, 20, 30, 40, 50,
60} and overlap ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Using these values, it was discovered that the best results appeared for 20 and
30 cubes in Layer 1 with 40 cubes looking reasonable but not as good as 20
or 30, Layer 2 had good results with 20, 30, and 40 cubes with 20 looking the
best, and Layer 3 had good results in 20, 30, and 40 with reasonable results
in 50 cubes but the best results were with 40 cubes. Given this, 30 cubes
was chosen as the optimal parameter given that it had the best results across
all three layers and the desire was to use the same parameters for each layer
where possible.

For the overlap, with 30 cubes, the best results were achieved using an overlap
of 0.6 and 0.7. As such, 0.66 was chosen as it is between these values and was
the value used in the prior analysis for MNIST. For Layer 1, 0.7 % was used
as the overlap because the circle in the Mapper diagram was not always closed
for 0.66 % and 0.6 % overlap. This is different than the results above because
the analysis used to generate those pictures used k = 200 and ρ = 0.1, whereas
the Mapper hyper-parameters test used k = 100 and ρ = 0.05. The results for
the 30 cubes runs with ρ = 0.6 and 0.7 are shown in Table 7.6. The full set of
cubes vs overlap runs are shown in Appendix B.

108

Overlap 0.6 Overlap 0.7

Layer 1 - 30 Cubes

Layer 2 - 30 Cubes

Layer 3 - 30 Cubes

Table 7.6: Mapper diagrams for layers 1,2, and 3 of the 3-Layer CNN with
Dropout performed at 40 epochs with varying overlap.

7.4.2 Results

After training for 50 runs, the weights for each of the three convolutional layers
were analyzed using the same process as with the MNIST data set. The anal-
ysis was done on the University of Missouri Science and Technology cluster
”The Foundry” [28] using the Python Scikit Learn and Giotto TDA packages
(the code can be found in the GitHub repository [61]). As described above,
different hyper-parameters were chosen in order to determine the optimal re-
sults. The only variation is that for Layer 3 epochs 40 and 60, 1/2 of the data
points were chosen (so only the first 25 runs were used) while the other half
were ignored. This was done because the function used to perform the per-
sistence diagram measurements required more computing resources than were
available even on ”The Foundry” computing cluster. The parameters chosen
are summarized in Table 7.7.

Epochs k Value ρ number overlap Mapper Lens
of cubes

{1,2,3,4,5,10, 66%
15,20,40,60} 100 0.05 30 (70% Layer 1) 2 Component PCA

Table 7.7: Parameters used for the analysis of the 3-Layer CNN with Dropout

Using these hyper parameter values the following results were found:

109

Layer 1
In layer 1, starting with the persistence diagrams, a clear cycle (i.e., element
of H1) does not begin to appear until epoch 20 where a cycle is found with
persistence of 1. A clear cycle is found with increasing persistence in epochs
40 and 60 as well with a persistence value of 2.7 in epoch 40 and 3.2 in epoch
60. By looking at the Mapper diagrams, the Primary Circle is unclear at
epochs 20 and 40 but becomes clear in epoch 60. It is reasonable that a
persistent cycle will be clear in the persistence diagram but no cycle will appear
in the Mapper diagram due to the fact that the Mapper diagram is created
at a single threshold value on the data and thus if this value is not chosen
correctly will result in no cycle being present. This is further complicated by
the choice of clustering for the pullback of the cover in the Mapper algorithm,
see Section 4.2.1. The implementation of the Mapper algorithm in Python
(KepplerMapper) does not allow for user choice of the threshold parameter for
building the simplicial complex.

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table 7.8: Top: Persistence Diagrams for the weights from the 1st layer of
the 3-Layer CNN with Dropout and Data Augmentation Bottom: Mapper Di-
agrams for the weights from the 1st layer of the 3-Layer CNN with Dropout
and Data Augmentation

In any case it is clear to see that by epoch 60 an obvious persistent cycle
appears in the weight data as is shown by the persistence diagram and that
the same cycle appears in the Mapper diagram.

Looking at the Mapper diagram the nodes were traced back to their original
weight values with the mean 3x3 weight patch plotted. The following function
was used to compute the mean of the nodes.

Let Ni = {W0,W1, ...Wm−1} be a node in the Mapper diagram with each
weight vector Wj = {x0, x1, ...x8} ∈ R9, then:

110

Mean(Ni)j =
m∑
k=0

xkj
|Ni| where xkj is the j-th element of Wk ∈ Ni

The mean of each node was then plotted where x0 is the upper right-hand
component and the color is a greyscale value with higher values associated
with lighter colors. Examining the mean of the nodes in the Mapper diagram
in this way revealed that they were arranged in the Primary Circle pattern that
was expected, i.e., rotating gradients around the circle. (see Figure 7.9).

It should be noted here that the exact layout of the Mapper diagram in Ta-
ble 7.8 and Figure 7.9 are different because they are drawn by two different
plotting mechanisms. In the table, the Mapper diagrams are produced using
an external plotting function known as Plotly [51]; whereas, the Mapper dia-
gram in Figure 7.9 is drawn using the kmapper [37] native function visualize.
In both cases the differences arise from the difficulty in creating a geometric
representation of an abstract simplicial complex. In the abstract simplicial
complex, we have a set of simplexes which give rise to nodes and edges but
there is no geometric information. Thus, different methods of creating a ge-
ometric representation can produce different layouts; however, both will have
the same nodes and edges. While difficult to tell from the small pictures,
in this paper, when inspected closely, the Mapper diagram in Table 7.8 and
Figure 7.9 are in fact the same nodes and edges just with different layouts.
From a topological perspective this is not an issue, as two topological struc-
tures are homotopic (i.e., same type or structure) if they are the same save for
stretching, contracting, twisting, and translating.

Figure 7.9: Mapper Diagram from Layer 1 of the 3-Layer CNN with Dropout
at 60 Epochs, with images of the means of nodes around the cycle showing the
presence of the Primary Circle

111

Layer 2
In layer 2, starting with the persistence diagrams, a clear cycle first appears in
epoch 15 where a cycle is found with a persistence of 1.5. A clear cycle is found
with increasing persistence in epochs 20, 40, and 60 as well with persistence
values of 2.9 in epoch 20 and 4.1 in epoch 40 and 4.2 in epoch 60. By looking
at the Mapper diagrams, the Primary Circle is quite clear in epochs 15, 20,
40, and 60. It is easier for the Mapper algorithm to detect a cycle in layers
2 and 3 because there are substantially more points which makes the cycle
smoother and less likely to have jumps or missing sections due to a sparseness
of data. In Layer 1 there are only 4800 points to start with which is reduced to
0.05*4800 = 240 points after the filtration. Whereas there are 102400 points
in layer 2 which are reduced to 5120 points after the filtration. Images for the
Layer 2 results are pictured in Table 7.9.

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table 7.9: Top: Persistence Diagrams for the weights from the 2nd layer of
the 3-Layer CNN with Dropout and Data Augmentation Bottom: Mapper Di-
agrams for the weights from the 2nd layer of the 3-Layer CNN with Dropout
and Data Augmentation

Looking further at the Mapper diagram from epoch 60 we can trace the nodes
back to their original points using the same method that was used for Layer 1.
Examining the mean of the nodes in the Mapper diagram in this way revealed
that they were arranged in the Primary Circle pattern that was expected, i.e.,
rotating gradients around the circle. (see Figure 7.10).

112

Figure 7.10: Mapper Diagram from Layer 1 of the 3-Layer CNN with Dropout
at 60 Epochs, with images of the means of nodes around the cycle showing the
presence of the Primary Circle

Layer 3
In layer 3, starting with the persistence diagrams, there is potentially a cycle
appearing at epoch 20 but the persistence is too low to draw any conclusions
and is made more unclear by the presence of another cycle of lower persis-
tence. The assumption is that at this point Layer 3 has not correctly learned
the structure of the data. By epoch 40, a single cycle becomes very clear
with a persistence of 3.8. By epoch 60, the persistence increases to 4. The
Mapper diagrams align with the persistence diagrams. In epoch 20, the Map-
per diagram does not reveal a clear cycle although it can be noticed that one
is forming. In epochs 40 and 60 a single cycle is very clear in the Mapper
diagram. Images for the Layer 3 results are pictured in Table 7.10.

Looking further at the Mapper diagram from epoch 60 we can trace the nodes
back to their original points using the same method that was used for Layer 1.
Examining the mean of the nodes in the Mapper diagram in this way revealed
that they were arranged in the Primary Circle pattern that was expected, i.e.,
rotating gradients around the circle. (see Figure 7.11).

113

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table 7.10: Top: Persistence Diagrams for the weights from the 3rd layer
of the 3-Layer CNN with Dropout and Data Augmentation Bottom: Mapper
Diagrams for the weights from the 3rd layer of the 3-Layer CNN with Dropout
and Data Augmentation

Figure 7.11: Mapper Diagram from Layer 3 of the 3-Layer CNN with Dropout
at 60 Epochs, with images of the means of nodes around the cycle showing the
presence of the Primary Circle

Overfit Model
We also attempted to analyze the first layer weights of the 3-Layer Model
with dropout (but without data augmentation) referenced in Section 7.1 to
see if the weights from this overfit model with not ideal accuracy had the same

114

structure seen in the 3-Layer Model with Dropout and Data Augmentation
analyzed above.

The Layer 1 weights were normalized using the same methods as above fol-
lowed by Filtration(200, 30%) and then PCA (2 component) was applied to
the normalized and filtered weights. Using this data, and the Scikit Learn and
Giotto TDA packages, the persistence diagrams and Mapper diagrams were
constructed for each of the epoch sets. The summary of this is shown in tables
7.11 and 7.12.

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table 7.11: TDA Diagrams for epochs 1, 10, 20, and 60 of training the 3
Convolutional Layer with Dropout CNN

Around 60 epochs a cycle did start to appear but it was very faint and the
expected Primary Circle was very unclear in the Mapper diagram. As a result,
we trained the model out to 80 and 100 epochs to see if more training caused
the cycle to appear more clearly. While the cycle did become clearer in epochs
80 and 100 the persistence of the H1 cycle is far lower than that found in
the Layer 1 weights of the 3-Layer Model with Data Augmentation that did
not overfit. In the overfit model, the cycle achieved a persistence value of 1.5
in epoch 80 and 2.1 in epoch 100. Further research could be performed to
consider the Layer 2 and Layer 3 weights or the weights from epochs greater
than 100, but this result was enough to show that overfitting can cause a model
to not have as clear of a high persistence cycle as that found in ones without
the problem of overfitting.

115

80 Epochs 100 Epochs

Table 7.12: TDA Diagrams for epochs 80 and 100 of training the 3 Convolu-
tional Layer with Dropout CNN

7.4.3 4-Layer CNN

To show that the structure of the weight space is the same for different archi-
tectures and that it persists through more than just the first 3 layers, a second
CNN was built with 4 convolutional layers. Similar to that of the 3-layer CNN
with dropout the architecture can be seen in Table 7.13.

Layer Type Input Dim. Channels Activation
Layer 1 Convolutional 200x200 32 ReLU
Layer 2 Max Pooling 100x100 32 n/a
Layer 3 Dropout (40%) 100x100 32 ReLU
Layer 4 Convolutional 100x100 64 ReLU
Layer 5 Max Pooling 50x50 64 n/a
Layer 6 Dropout (20%) 50x50 64 ReLU
Layer 7 Convolutional 50x50 128 ReLU
Layer 8 Max Pooling 25x25 128 n/a
Layer 9 Dropout (40%) 25x25 128 ReLU
Layer 10 Convolutional 25x25 64 ReLU
Layer 11 Max Pooling 12x12 64 n/a
Layer 12 Dropout (40%) 12x12 64 ReLU
Layer 13 Flatten 9216 n/a
Layer 14 Fully Connected 128 ReLU
Layer 15 Dropout (50%) 128 ReLU
Layer 16 Fully Connected 1 Standard Logistic

Table 7.13: Architecture of the 4 Convolutional Layer CNN

116

The CNN was trained with data augmentation for 50 separate runs up to 60
epochs resulting in a mean accuracy across the runs of around 93.6% by epoch
60.

The same TDA methods were applied as with the 3-Layer CNN. The weights
from each of the 4 convolutional layers were normalized and filtered using
the process outlined in Section 4 with Filtration(100, 20%) on Layer 1 and
Filtration(100, 5%) on layers 2,3, and 4, and then PCA (2 component) was
applied to the normalized and filtered weights. Using this data, and the Scikit
Learn package, the persistence diagrams and Mapper diagrams (cubes 30 and
overlap 66% for Layer 1 and 70% for layers 2, 3, and 4) were constructed for
each of the epoch sets. The results for epoch 60 are shown in Table 7.14. The
full set of results can be found in the GitHub repository [61].

Layer 1 Layer 2 Layer 3 Layer 4

Table 7.14: Top: Persistence Diagrams for the weights from the convolutional
layers of the 4-Layer CNN with Dropout and Data Augmentation after 60
epochs Bottom: Mapper Diagrams for the weights from the convolutional layers
of the 4-Layer CNN with Dropout and Data Augmentation after 60 epochs

In Layer 1, the first clear cycle appears in epoch 40 with a persistence of 1.1,
this increases to a persistence of 2.3 in epoch 60. In Layer 2, two cycles appear
in epoch 15 one with a persistence of 1.6 and one with a low persistence of 0.7,
this second cycle disappears in by epoch 20 and we are left with a single cycle
of persistence 3.6, 3.9, and 4.1 in epochs 20, 40, and 60 respectively. In Layer
3, a cycle first appears in epoch 15 with persistence of 1, this increases to 3.2
in epoch 20 and 4 in epochs 40 and 60. In Layer 4, a cycle first appears in
epoch 20 with a persistence of 1.3 which increase to 4 and 4.1 in epochs 40 and
60 respectively. Additionally, a very clear circle can be seen in the Mapper
diagrams at epoch 60. We did not trace the weights back to verify that this is
the Primary Circle (rotating gradients).

117

7.5 Dogs vs Cats Conclusion

From the work outlined in this section, it can be clearly seen that the convolu-
tional weights of CNNs built for and trained on the Dogs vs Cats dataset take
on some highly non-normal structure and that the data comes from a space
with non-trivial geometry, specifically a space with a non-empty first Homol-
ogy group. By using Voronoi Cells and the computation of the KL Distance,
we were able to show that the weights are highly non-normal. Further, we
were able to use TDA to show that the weights must come from some space
with 0th and 1st homology groups resembling that of a circle. That is, the
weights have a single high persistence cycle in H1. This can be seen in the
weights for all three layers of the 3-Layer CNN and all 4 convolutional layers
of the 4-Layer CNN. Examining this structure closer also reveals, by use of
the Mapper algorithm, that the structure of the weights resembles the Primary
Circle. These results shows that the Carlsson-Gabrielsson hypothesis holds for
the Dogs vs Cats dataset and thus for more complicated datasets than MNIST
and CIFAR-10. For further discussion on these results see Section 8.

8 Discussion

Before making our conclusion in Section 9 we devote this section to a discussion
in which we illustrate some observations from our results that are of particular
interest and discuss some of the results which require further illumination or
are unclear.

8.1 MNIST Results

8.1.1 Verification of Carlsson Gabrielsson Results [18]

Carlsson and Gabrielsson demonstrated that the weights in CNNs built for
three different simple image data sets (MNIST: 28x28 pixel grayscale, CIFAR-
10: 30x30 pixel color, SVHN: 32x32 pixel color) have the expected structure
to their convolutional weights, finding either a single cycle in H1 or 3 cycles
in H1, i.e., similar to the C3 topology discussed in Section 1. This shows that
the weights from these CNNs appear to come from a space with a non-empty
first homology group.

We were able to verify the presence of a single high persistence H1 cycle in
the 1st layer of a CNN built on the MNIST data set with the same archi-
tecture as used in [18]. We also found a high persistence H1 cycle in the
second layer weights which was not found by Carlsson and Gabrielsson as
they used a different filtration. These results corroborate the work of Carlsson
and Gabrielsson which was needed as the authors used a proprietary software

118

package to achieve their results and therefore they are not readily available for
verification. Some work has been done in [39] to replicate the results found
by Carlsson and Gabrielsson, but the author of that work was unable to fully
replicate their results. Expanding on the work of Carlsson and Gabrielsson,
we were able to show the presence of a high persistence H1 cycle in the second
layer of a two convolutional layer CNN built on MNIST and were able to show
the presence of a high persistence H1 cycle in the first and second layers of a
three convolutional layer CNN built on MNIST.

8.1.2 3rd Layer Cycle

In the 3rd layer of the 3-Layer CNN for MNIST no H1 cycle could be detected.
Analysis was performed using k ∈ {10, 20, ..., 100} and ρ ∈ {0.05, 0.1, 0.2, 0.3}
but no high persistence H1 cycles were found at any epoch. It is not clear
why a cycle fails to appear in the 3rd layer of the 3-Layer MNIST CNN. It is
hypothesized that the 3-layer CNN learns more specific features of the data
set because the first two layers are able to learn the network with very high
accuracy and so, as more layers are added, the network begins to learn more
abstract or specific features of each image. Because the data set is simple
enough, it is able to do this without overfitting. In order to verify that this is
a feature of deeper networks built on this simplistic dataset another CNN with
4 convolutional layers was built and analyzed in the same way. This network
had the same behavior as the 3-layer CNN in that the first two layers learned
high persistence H1 cycles while layers 3 and 4 did not. The results of this
analysis can be found in Appendix A.

In contrast, a high persistence H1 cycle is found in layers 3 and 4 of the 3 and
4-layer CNNs built on the Dogs vs Cats dataset and Carlsson and Gabrielsson
also found H1 cycles in deeper layers of their analysis of a CNN built on
CIFAR-10 and their study of SVHN. Since all of these are more complicated
datasets and ones for which a 2-layer CNN cannot achieve greater than 98%
accuracy this aligns with the hypothesis of the 3-layer CNN for MNIST.

8.1.3 Persistence Evolution Through Training

While the Carlsson Gabrielsson analysis of MNIST CNNs focused only on
CNNs at a single epoch, our analysis shows the progression of the weight
structure across epochs. From this, an important observation is that, for
the MNIST CNN, a cycle with highest persistence is achieved very early on
in training, typically around epoch 5 for Layer 1 and epoch 15 for Layer 2.
After this, the persistence of the cycle decreases through subsequent training.
This seems counter-intuitive as it is expected that the cycle, if a true part of
the geometric space from which the images were taken, should remain in the
weights as they are trained and so a cycle should be found with increasing or

119

steady persistence. Looking at the training accuracy it can be seen that the
CNNs for MNIST achieve optimal accuracy very early in training, typically
around the same number of epochs as the highest persistence cycle. After this
point, accuracy either does not increase or increases only marginally while
the loss function does increase. What this suggests is that the optimal CNN
occurs around epoch 15, and then, as training continues, it begins to learn
very specific features of each image. Because the MNIST dataset is relatively
simple this does not produce gross overfitting which would be apparent if the
loss function returned a large value (see Figure 6.3 and Table 6.5), rather,
enough specific features of the images are able to be encapsulated by the
weights that general structures of the data are not needed for classification.
This case is not possible with more complicated data sets (like Dogs vs Cats
or even CIFAR-10 as shown in [18]) and so this same result does not appear
in the Dogs vs Cats analysis.

8.2 Dogs vs Cats

More importantly, the same methods were applied to a CNN built on the Dogs
vs Cats dataset. This is a more complex data set with two orders of magnitude
more pixels per image than studied by Carlsson and Gabrielsson. We were able
to show a high persistence cycle exists and is a feature of the weights for all
three convolutional layers of a 3 convolutional layer CNN and all 4 layers of
a 4 convolutional layer CNN. This cycle appears with a high persistence in
the persistent diagrams and also a circle appears in the Mapper diagrams.
Additionally, in the Mapper diagrams, the nodes can be traced back to their
original filter values revealing that the cycle appears to be the Primary Circle
consisting of rotating gradients.

8.2.1 CNNs Learn a Cycle as Epochs Increase

In the Dogs vs Cats CNNs, it can be seen that in all three layers of the 3-Layer
model and all 4 layers of the 4-Layer model, the persistence of the cycle in
H1 either gets larger as the number of epochs increases or grows to a certain
persistence and then holds. Since the training accuracy is monotonically in-
creasing through 60 epochs and the Cross-Entropy Loss matches between the
test and training data sets through 60 epochs, this increase of persistence sug-
gests that the cycle is a true structure of not only the data but also the space
the weights lie in as the cycle only becomes clearer as the CNN training accu-
racy increases, i.e., the weights are tuned to better approximate the structure
of the data.

As discussed above, this was not apparent in the MNIST CNNs because the
MNIST dataset is fairly simple and so a CNN was able to learn the data

120

set accurately in the first few epochs and then would either overfit the data
or begin to encapsulate specific features of every image in the dataset rather
than the global structure. With Dogs vs Cats, since it is a more complicated
dataset, this was not possible. Exactly what features the MNIST CNNs were
able to learn and why these better minimized the loss function used for training
is not fully understood. Typically, in training a CNN, practitioners will train
a CNN only until a ”knee in the curve” appears, that is, once the accuracy
or loss function levels out. This can prevent the problem of overfitting or
specificity to the dataset. There are many open research questions here and a
lot of room for further work in investigating what specific features are learned
in these cases and why.

8.2.2 Cycle Weak In the Presence of Overfitting

As noted in Section 7.1, the first 3-Layer CNN for Dogs vs Cats had a problem
with overfitting. In the analysis of this model, a persistent H1 cycle was not
found in the first layer until epoch 80 and even in epochs 80 and 100 cycles
only appeared with a persistence of 1.5 and 2 respectively. This persistence
is much lower than what is achieved in earlier epochs in Layer 1 of the model
once the problem of overfitting was removed (persistence of 2.7 and 3.2 in
epochs 40 and 60 respectively). This suggests that the true structure of the
space in which the weights lie has a non-empty first homology group similar to
that of the space of natural images, and thus CNN weights will approximate
this structure as they learn the structure of the data. Overfitting means that
the weights have learned more specific features of the images in the training
data set but not in the test set and so the training set accuracy is high but
the test set is not. If the true structure of the data contains a cycle, then this
should be approximated better by a CNN without overfitting than one with
overfitting as this structure appears in both the training and test data. It can
still appear in CNNs with overfitting as it may be a filter that is used by the
CNN to learn more specific features. In summary, the fact that the cycle has
a higher persistence earlier on in training in the correct model (one without
overfitting) gives further confidence in its true presence in the weight space,
i.e., the space within which the weights lie.

8.2.3 Cycle Exists at Multiple Different Choices of Hyper-parameters

In Section 7.4.1, analysis is given for different choices of hyper-parameters.
Specifically, on the 3-Layer CNN for Cats vs Dogs a set of persistence dia-
grams is generated for epoch 40 of each layer using the filtration parameters ρ ∈
{0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2} and k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
150, 200, 250, 300, 350, 400, 450, 500}. With the exception of ρ = 0.01 and
ρ = 0.02 for Layer 2, a high persistence cycle is found at every combination of

121

ρ and k value. What this suggests is that the cycle is (mostly) independent
of choice for filtration values. Of course, if the filtration is chosen too low
there will not be enough data to determine the structure of the data, and if
there is no filtration then there will be too many noisy points which will make
detection of the structure difficult. In general, the cycle appearing at varying
filtrations means that this cycle is a true feature of the data and not an artifact
of the filtration. The lack of a high persistence cycle at ρ = 0.01 and 0.02 is
most likely due to these being very fine filtrations which do not leave enough
data to adequately determine the structure in Layer 2.

8.2.4 Primary Circle vs C3

In the work of Carlsson and Gabrielsson [5, 18] much of their analysis found
three cycles in H1 rather than a single cycle, this gives rise to the C3 model
referenced in Section 1.2 which has three cyclic generators. In [3] Carlsson
et. al. found that choice of k can have an effect on whether 1 or 3 cycles are
found in H1 finding that when k is smaller the 3 circle/Klein bottle topology
is found; however, when k is increased the topology collapses to a single circle
of linear gradients rotating around the circle. For both MNIST and CNN our
work found only a single persistent cycle in H1. The reason for this is two-fold.
In general, 3 generators occur because one cycle is formed for each color value
since the pixel input is actually a 3-tuple (red/green/blue). For MNIST, we
found only one cycle because the MNIST images are greyscale and thus there
is only a single color value. For Dogs vs Cats, the images are color images;
however, we used a separate color channel for each color. Because of this,
the weights were not applied to 3-tuples but rather a single hue value which
made the output the same as the grayscale weights. This causes only a single
generator to be discovered.

9 Conclusion

Given all of these results, what has actually been shown? Recall that the work
of Mumford, Carlsson, et. al. showed that three main results hold:

1. The entire set of natural images is not characterizable in any meaningful
way

2. The set of n×n high-contrast image patches lies on a high co-dimensional
submanifold of Rn2

3. The set of high-contrast image patches resembles a 2-dimensional annu-
lus, in particular, H1 is nonempty

122

Turning to CNNs, the goal of the CNN is to learn features of the structure of
the data set to which it is applied, i.e., characterize the ambient space from
which the data is taken. Given that CNNs used for image processing apply an
n× n filter to the image resulting in n× n response patches, then the weights
used for these n× n filters should approximate the structure of high-variance
n×n patches within the image set (high-variance because these are the patches
in which most of the information about the images lie). Thus, given the prior
results, the space of CNN convolutional weights should also approximate a
2-dimensional annulus, specifically H1 nonempty. In the case of CNN weights,
it is not necessary to restrict the study to high-contrast (high-variance) weight
patches. This is because as the CNN learns, the weights will be tuned to the
important features of the image set which means that low-contrast patches
will be ignored since there is little to no information contained in low-contrast
image patches.

This is precisely the hypothesis that Carlsson and Gabrielsson lay out in their
work [18]. They demonstrate this by showing that for a CNN trained on
certain data sets (MNIST, SVHN, CIFAR-10) the weights lie on a manifold
with non-empty H1.

Bearing this in mind, the ultimate goal that we set out to achieve was to further
the theoretical understanding of CNNs built to classify natural images by using
Topological Data Analysis methods to show that as it trains, a CNN encodes
a structure similar to that of high-variance local image patches of natural
images in its convolutional weights. This has been proposed in the Carlsson-
Gabrielsson Hypotheses stated in Section 1 and demonstrated on some simple
image sets [18] (MNIST, CIFAR-10, SVHN) but has not been proven or shown
to be true for more complex datasets. Given the stochastic nature of CNNs
it is highly unlikely that this property can ever be fully proven; therefore, we
sought out to demonstrate that the Carlsson-Gabrielsson Hypothesis holds for
more complex data sets, specifically for the Dogs vs Cats dataset.

In our work, we were able to replicate the results of Carlsson and Gabrielsson in
[18] by performing TDA on several different CNN architectures trained using
the MNIST dataset which showed that for the convolutional weights of the
CNN there is a high persistence cycle in H1 which, when observed using the
Mapper algorithm, contains the Primary Circle (rotating gradients around a
circle).

Further, and more importantly, we were able to show that a CNN built on a
more complex dataset (Dogs vs Cats) also encodes this same structure (sin-
gle high persistence cycle in H1 and a clear Primary Circle when observed
using the Mapper Diagram) in its convolutional weights and that this struc-
ture becomes clearer as training accuracy increases and becomes less clear or
disappears altogether in the presence of overfitting. As a result, this work
has gone a long way in demonstrating the validity of the Carlsson-Gabrielsson
Hypothesis.

123

From a broader perspective, by showing that a CNN trained on a complex im-
age set encodes a similar structure to that of the space from which the training
images are taken we have been able to add further confidence in the theoreti-
cal robustness of the CNN model for use in image classification and have shed
light on how a CNN is able to achieve good classification accuracy.

This also provides a potential avenue for use in validating CNNs and detecting
malicious interference in the training data. As pointed out in Section 1, CNNs
can be made to fail by making small changes to the image data which are
almost imperceptible to humans. However, it is likely that this change will
cause the images to no longer represent that set of natural images and as such
the CNN may not encode the same structure as it does with a valid image set.
If this is true then TDA can be applied to trained CNNs in order to detect
whether the training data used was valid or if it had been modified. This is
an area for further research.

In any case, what we have done is show that the weights of CNNs trained to
perform classification on the Dogs vs Cats dataset are arranged in a structure
which approximates a manifold with non-trivial geometry. Specifically, the
weights lie on a space with a single H1 cycle which appears to be made up of
weights consisting of rotating gradients (the Primary Circle). This is a similar
structure to that of high-variance local image patches of natural images. It is
also the same structure as the neurons in the Primary Visual Cortex of the
Mammalian Brain. This result shows that the CNN model for this type of
image is robust. It also, together with the results of Carlsson and Gabrielsson
[18], goes a long way in showing that this holds for any CNN designed to
perform image classification, which would indicate that the CNN for natural
image classification is theoretically robust.

124

References

[1] Bro, Rasmus, and Age K. Smilde. Principal Component Anal-
ysis. Anal. Methods, vol. 6, no. 9, 2014, pp. 28122831.,
https://doi.org/10.1039/c3ay41907j.

[2] Brownlee, Jason. A Gentle Introduction to Cross-Entropy for
Machine Learning. Machine Learning Mastery, 22 Dec. 2020,
https://machinelearningmastery.com/cross-entropy-for-machine-
learning/.

[3] Carlsson, Gunnar, et al. ”On the local behavior of spaces of natural im-
ages.” International journal of computer vision 76.1 (2008): 1-12.

[4] Carlsson, Gunnar. ”Topology and data.” Bulletin of the American Math-
ematical Society 46.2 (2009): 255-308.

[5] G. Carlsson and R. Gabrielsson, Topological Approaches to Deep Learn-
ing, Topological Data Analysis, Abel Symposia, vol 15, 2020

[6] Chazal, F., Michel, B.: An introduction to topological data analysis:
fundamental and practical aspects for data scientists. arXiv:1710.04019
(2017)

[7] Conway, John Horton, and Neil James Alexander Sloane. Sphere packings,
lattices and groups. Vol. 290. Springer Science & Business Media, 2013.

[8] Edelsbrunner, Herbert, and John L. Harer. Chapter 3 - Simplicial Com-
plexes. Computational Topology an Introduction, by Herbert Edelsbrunner
and John L. Harer, American Mathematical Society, 2010, pp. 5353.

[9] Edelsbrunner, Herbert, et al. Topological Persistence and Simplification.
Discrete Computational Geometry, vol. 28, no. 4, 2002, pp. 511533.,
doi:10.1007/s00454-002-2885-2.

[10] Edelsbrunner, H., et al. Topological Persistence and Simplification. Pro-
ceedings 41st Annual Symposium on Foundations of Computer Science,
2000, doi:10.1109/sfcs.2000.892133.

[11] Elson, Jeremy, et al. Asirra. Proceedings of the 14th ACM Confer-
ence on Computer and Communications Security - CCS ’07, 2007,
https://doi.org/10.1145/1315245.1315291.

[12] Eisenbud, David. Commutative Algebra: with a View toward Algebraic
Geometry. Springer, 1995.

[13] Ester, Martin, et al. ”A density-based algorithm for discovering clusters
in large spatial databases with noise.” kdd. Vol. 96. No. 34. 1996.

[14] Fraleigh, John B. A First Course in Abstract Algebra. Pearson Education,
2003.

125

[15] Field, David J. ”Relations between the statistics of natural images and
the response properties of cortical cells.” Josa a 4.12 (1987): 2379-2394.

[16] It Research Support Solutions Wiki. The Foundry [IT Research Support
Solutions Wiki], https://wiki.itrss.mst.edu/dokuwiki/pub/foundry.

[17] K. Fukushhima, Neocognition: A self-organizing neural network for a
mechanism of pattern recognition unaffected by shift in position, Biolog-
ical Cybernetics, Vol. 36, Issue 4, 1980.

[18] Gabrielsson, Rickard Brel, and Gunnar Carlsson. ”Exposition and inter-
pretation of the topology of neural networks.” 2019 18th ieee international
conference on machine learning and applications (icmla). IEEE, 2019.

[19] Ghrist, Robert. Barcodes: The Persistent Topology of Data. Bulletin of
the American Mathematical Society, vol. 45, no. 01, 2007, pp. 6176.,
doi:10.1090/s0273-0979-07-01191-3.

[20] giotto-tda: A Topological Data Analysis Toolkit for Machine Learning
and Data Exploration, Tauzin et al, arXiv:2004.02551, 2020.

[21] Goldfarb, Daniel. ”Understanding deep neural networks using topological
data analysis.” arXiv preprint arXiv:1811.00852 (2018).

[22] I. Goodfellow, J. Shlens and C. Szegedy, Explaining and Harnessing Ad-
versarial Examples, International Conference on Learning Representa-
tions, 2015

[23] Goodman, Frederick M. Section 8.5. Algebra: Abstract and Concrete, by
Frederick M. Goodman, 2.6 ed., SemiSimple Press, 2014, pp. 386391.

[24] Google Colab, Google, https://colab.research.google.com/.

[25] van Hateren, Johannes H. ”Theoretical predictions of spatiotemporal re-
ceptive fields of fly LMCs, and experimental validation.” Journal of Com-
parative Physiology A 171.2 (1992): 157-170.

[26] van Hateren, J. Hans, and Arjen van der Schaaf. ”Independent component
filters of natural images compared with simple cells in primary visual
cortex.” Proceedings of the Royal Society of London. Series B: Biological
Sciences 265.1394 (1998): 359-366.

[27] Foundations of Neuroscience Subtitle:Open Edition Author:Casey Henley

[28] It Research Support Solutions Wiki. The Foundry [IT Research Support
Solutions Wiki], https://wiki.itrss.mst.edu/dokuwiki/pub/foundry.

[29] D.H. Hubel and T.N. Wiesel, Receptive fields, binocular interaction and
functional architecture in the cats visual cortex, Journal of Physiology,
Vol. 160, Issue 1, 1962

126

[30] By: IBM Cloud Education. What Are Convolutional Neural Networks?
IBM, https://www.ibm.com/cloud/learn/convolutional-neural-networks.

[31] ImageNet, https://www.image-net.org/.

[32] Jain A. K., Dubes R. C., Algorithms for clustering data. Prentice Hall
Advanced Reference Series. Prentice Hall Inc., Englewood Cliffs, NJ, 1988.

[33] Johnson S. C., Hierarchical clustering schemes. Psychometrika 2 (1967),
241254.

[34] Dogs vs. Cats. Kaggle, https://www.kaggle.com/c/dogs-vs-cats.

[35] Chollet, Franois, and others. Keras. https://keras.io, 2015,
https://keras.io.

[36] Khan, Salman, et al. A Guide to Convolutional Neural Networks for Com-
puter Vision. Morgan & ; Claypool Publishers, 2018.

[37] Keplermapper 2.0.1 Documentation a Scikit-TDA Project. Kepler Map-
per - KeplerMapper 2.0.1 Documentation, https://kepler-mapper.scikit-
tda.org/en/latest/.

[38] Kullback, Solomon, and Richard A. Leibler. ”On information and suffi-
ciency.” The annals of mathematical statistics 22.1 (1951): 79-86.

[39] Larsen, Erik. Topological Data Analysis on Convolutional Neural Net-
works. Norwegian University of Science and Technology, 2020.

[40] G. Lindsay, Convolutional neural networks as a model of the visual sys-
tem: Past, present, and future, Journal of Cognitive Neuroscience, 2020

[41] Lloyd, Stuart. ”Least squares quantization in PCM.” IEEE transactions
on information theory 28.2 (1982): 129-137.

[42] Loftsgaarden, Don O., and Charles P. Quesenberry. ”A nonparametric
estimate of a multivariate density function.” The Annals of Mathematical
Statistics 36.3 (1965): 1049-1051.

[43] A. Mahendran and A. Vedaldi., Understanding deep image representa-
tions by inverting them, IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2015

[44] McCulloch, Warren; Walter Pitts (1943). ”A Logical Calculus of Ideas
Immanent in Nervous Activity”. Bulletin of Mathematical Biophysics. 5
(4): 115133. doi:10.1007/BF02478259.

[45] Melcher, Kathrin, et al. A Friendly Introduction to [Deep] Neural Net-
works. KNIME, https://www.knime.com/blog/a-friendly-introduction-
to-deep-neural-networks.

[46] Minsky, M.; S. Papert (1969). An Introduction to Computational Geom-
etry. MIT Press. ISBN 978-0-262-63022-1.

127

[47] A.B. Lee, K. Pedersen and D. Mumford, The non-linear statistics of high-
contrast patches in natural images, International Journal of Computer
Vision, Vol. 54, Issue 1, 2003

[48] Munkres, J. R. Algebraic Topology. Addison-Wesley, 1984.

[49] Neyman, Jerzy, and Egon Sharpe Pearson. ”IX. On the problem of the
most efficient tests of statistical hypotheses.” Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathe-
matical or Physical Character 231.694-706 (1933): 289-337.

[50] J.A. Perea, A Brief History of Persistence, arXiv:1809.03624.

[51] Plotly. Plotly Python Graphing Library, https://plotly.com/python/.

[52] Reinagel, Pamela, and Anthony M. Zador. ”Natural scene statistics at the
centre of gaze.” Network: Computation in Neural Systems 10.4 (1999):
341.

[53] Ripser.py 0.6.2 Documentation a Scikit-TDA Project. Setup - Ripser.py
0.6.2 Documentation, https://ripser.scikit-tda.org/en/latest/.

[54] Ruderman, Daniel L. ”The statistics of natural images.” Network: com-
putation in neural systems 5.4 (1994): 517.

[55] Saha, Sumit. A Comprehensive Guide to Convolutional Neu-
ral Networks-the eli5 Way. Medium, Towards Data Science, 17
Dec. 2018, https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[56] Sasirekha, K., and P. Baby. ”Agglomerative hierarchical clustering
algorithm-a.” International Journal of Scientific and Research Publica-
tions 83.3 (2013): 83.

[57] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,
pp. 2825-2830, 2011.

[58] K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps,
ICLR, 2014

[59] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional net-
works for large-scale image recognition.” arXiv preprint arXiv:1409.1556
(2014).

[60] Singh, Gurjeet, Facundo Mmoli, and Gunnar E. Carlsson. ”Topological
methods for the analysis of high dimensional data sets and 3d object
recognition.” PBG@ Eurographics 2 (2007).

[61] Wagenknecht, A. ”Existence-of-the-Primary-Circle-in-Convolutional-
Neural-Networks” (Version 1.0.0) [Computer software].

128

https://github.com/adam-wagen/Existence-of-the-Primary-Circle-in-
Convolutional-Neural-Networks (2023)

[62] LeCun, Yann and Cortes, Corinna and Burges, CJ, ”MNIST
handwritten digit database” ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist (2010)

[63] M.D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional
Networks, Computer Vision ECCV, 2014

[64] Ziou, Djemel, and Salvatore Tabbone. ”Edge detection techniques-an
overview.” Pattern Recognition and Image Analysis C/C of Raspozna-
vaniye Obrazov I Analiz Izobrazhenii 8 (1998): 537-559.

[65] A. Zomorodian and G. Carlsson, Computing Persistent Homology, Dis-
crete and Computational Geometry 33, 2 (2005) 249-247

129

A Computation of Persistent Homology an Ex-

ample

In this section we will take a look at two different filtrations and apply the
method used in Section 2.3.5 for computing persistent homology over a field.
In our case, we will compute both examples over the field Z2, but of course
the method is the same over any field.

A.1 Example 1

Figure A.1: Filtration 1, taken from [65]

Consider the filtration above taken from [65]. The simplices and degrees from
this filtration are:

a b c d ab bc cd ad ac abc acd
0 0 1 1 1 1 2 2 3 4 5

Using this table then we get the following matrix representation M1 for ∂1:

M1 =

ab bc cd ad ac

d 0 0 t t 0
c 0 1 t 0 t2

b t t 0 0 0
a t 0 0 t2 t3

⇒

cd bc ab ad ac
d t 0 0 t 0
c t 1 0 0 t2

b 0 t t 0 0
a 0 0 t t2 t3

⇒

cd bc ab ad− cd ac− t2 · bc

d t 0 0 0 0
c t 1 0 t 0
b 0 t t 0 t3

a 0 0 t t2 t3

⇒

130

cd bc ab ad− cd− t · bc ac− t2 · bc− t2 · ab

d t 0 0 0 0
c t 1 0 0 0
b 0 t t t2 0
a 0 0 t t2 0

⇒ M̃1 =

cd bc ab ad− cd− t · bc− t · ab ac− t2 · bc− t2 · ab

d t 0 0 0 0
c t 1 0 0 0
b 0 t t 0 0
a 0 0 t 0 0

Thus we get a basis {z1, z2} = {ac− t2 · bc− t2 · ab, ad− cd− t · bc− t · ab} for
Z1.

Now as described in the previous section we begin to calculate M̃2 by repre-
senting M2 relative to the standard bases for C2 and C1 and so we get:

M2 =

abc acd

ac t t2

ad 0 t3

cd 0 t3

bc t3 0
ab t3 0

Now we remove the rows corresponding to the nonzero columns in M̃1 and are
left with:

M̃2 =

 abc acd
z1 t t2

z2 0 t3

⇒
 abc acd− t · abc
z1 t 0
z2 0 t3

where z1 and z2 are defined as above.

Since there are no 3-simplices in our filtration this concludes the description of
the persistent homology. Lastly, we use Theorem 2.13 to obtain the P-interval
in each dimension.

For dimension 1 we get:
d→ (1, 2)
c→ (1, 1)
b→ (0, 1)
a→ (0,∞)

131

And for dimension 2 we have:
z1 → (3, 4)
z2 → (2, 5)

Plotting these we get:

P-intervals for dimension 1 P-intervals for dimension 2

Figure A.2:

We now recall Lemma 2.9, which says that the l level p persistent Betti num-
ber for the k-th dimension is the number of triangles containing the point
(l, p).Using this we get the following persistent Betti numbers:

β1,0
1 = β0,0

1 = 2
βi,p1 = 1 for p ≥ 0, i ≥ 0 and (i, p) /∈ {(1, 0), (0, 0)}
Otherwise βi,p1 = 0

β3,0
2 = 2
β2,1

2 = β4,0
2 = β2,2

2 = β2,0
2 = β3,1

2 = 1
Otherwise βi,p2 = 0

132

A.2 Example 2

Consider the following filtration.

Figure A.3: Filtration 2

The simplices and degrees from this filtration are:

a b c d ab e bc cd ad abc ac be ce acd bce
0 0 0 1 1 2 2 3 3 3 3 4 4 5 6

Using this table we get the following matrix representation M1 for ∂1:

M1 =

ab bc cd ad ac be ce

e 0 0 0 0 0 t2 t2

d 0 0 t2 t2 0 0 0
c 0 t2 t3 0 t3 0 t4

b t t2 0 0 0 t4 0
a t 0 0 t3 t3 0 0

⇒

be cd bc ad ac ab ce
e t2 0 0 0 0 t2 t2

d 0 t2 0 t2 0 0 0
c 0 t3 t2 0 t3 0 t4

b t4 0 t2 0 0 t4 0
a 0 0 0 t3 t3 0 0

⇒

133

be cd bc ad− cd ac− t · bc ab ce− be

e t2 0 0 0 0 0 0
d 0 t2 0 0 0 0 0
c 0 t3 t2 t3 0 0 t4

b t4 0 t2 0 t3 t t4

a 0 0 0 t3 t3 t 0

⇒

be cd bc ad− cd− t · bc ac− t · bc ab ce− be− t2 · bc

e t2 0 0 0 0 0 0
d 0 t2 0 0 0 0 0
c 0 t3 t2 0 0 0 0
b t4 0 t2 t3 t3 t 0
a 0 0 0 t3 t3 t 0

⇒

M̃1 =

ac− t · bc ad− cd ce− be
be cd bc ab −t2 · ab −t · bc− t2 · ab −t2 · bc

e t2 0 0 0 0 0 0
d 0 t2 0 0 0 0 0
c 0 t3 t2 0 0 0 0
b t4 0 t2 t 0 0 0
a 0 0 0 t 0 0 0

Thus we get a basis {z1, z2, z3} = {ce− be− t2 · bc, ac− t · bc− t2 · ab, ad− cd−
t · bc− t2 · ab} for Z1.

Now as described in the previous section we begin to calculate M̃2 by repre-
senting M2 relative to the standard bases for C2 and C1 and so we get:

M2 =

abc acd bce
ce 0 0 t2

be 0 0 t2

ac 1 t2 0
ad 0 t2 0
cd 0 t2 0
bc t 0 t4

ab t2 0 0

Now we remove the rows corresponding to the nonzero columns in M̃1 and are
left with:

134

M2 =

abc acd bce

z1 0 0 t2

z2 1 t2 0
z3 0 t2 0

where z1, z2, and z3 are defined as above.

Since there are no 3-simplices in our filtration this concludes the description of
the persistent homology. Lastly we use Theorem 2.13 to obtain the P-interval
in each dimension.

For dimension 1 we get:
e→ (2, 4)
d→ (1, 3)
c→ (0, 2)
b→ (0, 1)
a→ (0,∞)

And for dimension 2 we have:
z1 → (4, 6)
z2 → (3, 3)
z3 → (3, 5)

Plotting these we get:

P-intervals for dimension 1 P-intervals for dimension 2

Figure A.4:

We now recall Lemma 2.9, which says that the l level p persistent Betti number
for the k-th dimension is the number of triangles containing the point (l, p).

135

Using this, we get the following persistent Betti numbers:

β1,0
1 = β2,0

1 = β0,0
1 = 3

β3,0
1 = β0,1

1 = β1,1
1 = β2,1

1 = 2
βi,p1 = 1 for p ≥ 0, i ≥ 0 and (i, p) /∈ {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1)}
Otherwise βi,p1 = 0

β4,0
2 = 2
β3,0

2 = β5,0
2 = β3,1

2 = β4,1
2 = 1

Otherwise βi,p2 = 0

136

B Dogs vs Cats Mapper Hyper-parameter Anal-

ysis

Below is the full set of results from the Mapper hyper-parameter testing ref-
erenced in Section 7.4.1. These runs were made using using number of cubes
∈ {10, 20, 30, 40, 50, 60} and overlap ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
k = 100 and ρ = 0.05.

Layer 1
Cubes = 10

Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 20
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 30
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

137

Cubes = 40
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 50
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 60
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Layer 2
Cubes = 10

Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 20
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

138

Cubes = 30
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 40
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 50
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 60
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Layer 3
Cubes = 10

Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

139

Cubes = 20
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 30
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 40
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 50
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

Cubes = 60
Overlap 0.1 Overlap 0.3 Overlap 0.6 Overlap 0.7 Overlap 0.9

140

C 4-Layer CNN for MNIST

Layer 1

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table C.1: Top: Persistence Diagrams for the weights from the 1st layer of
the 4-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the
1st layer of the 4-Layer MNIST CNN

Layer 2

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table C.2: Top: Persistence Diagrams for the weights from the 2nd layer of
the 4-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the
2nd layer of the 4-Layer MNIST CNN

141

Layer 3

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table C.3: Top: Persistence Diagrams for the weights from the 3rd layer of
the 4-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the
3rd layer of the 4-Layer MNIST CNN

Layer 4

1 Epochs 10 Epochs 20 Epochs 60 Epochs

Table C.4: Top: Persistence Diagrams for the weights from the 4th layer of
the 4-Layer MNIST CNN Bottom: Mapper Diagrams for the weights from the
4th layer of the 4-Layer MNIST CNN

142

	Topological Data Analysis of Weight Spaces in Convolutional Neural Networks
	Recommended Citation

	tmp.1683072907.pdf.bWWaN

