
Frontiers in Neuroscience 01 frontiersin.org

Expert and deep learning model 
identification of iEEG seizures and 
seizure onset times
Sharanya Arcot Desai 1*, Muhammad Furqan Afzal 1, Wade Barry 1, 
Jonathan Kuo 2, Shawna Benard 2, Christopher Traner 3, 
Thomas Tcheng 1, Cairn Seale 1 and Martha Morrell 1,4

1 NeuroPace, Inc., Mountain View, CA, United States, 2 Department of Neurology, University of Southern 
California, Los Angeles, CA, United States, 3 Department of Neurology, Yale University, New Haven, CT, 
United States, 4 Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 
United States

Hundreds of 90-s iEEG records are typically captured from each NeuroPace 
RNS System patient between clinic visits. While these records provide invaluable 
information about the patient’s electrographic seizure and interictal activity 
patterns, manually classifying them into electrographic seizure/non-seizure 
activity, and manually identifying the seizure onset channels and times is an 
extremely time-consuming process. A convolutional neural network based 
Electrographic Seizure Classifier (ESC) model was developed in an earlier study. 
In this study, the classification model is tested against iEEG annotations provided 
by three expert reviewers board certified in epilepsy. The three experts individually 
annotated 3,874 iEEG channels from 36, 29, and 35 patients with leads in the 
mesiotemporal (MTL), neocortical (NEO), and MTL + NEO regions, respectively. 
The ESC model’s seizure/non-seizure classification scores agreed with the three 
reviewers at 88.7%, 89.6%, and 84.3% which was similar to how reviewers agreed 
with each other (92.9%–86.4%). On iEEG channels with all 3 experts in agreement 
(83.2%), the ESC model had an agreement score of 93.2%. Additionally, the ESC 
model’s certainty scores reflected combined reviewer certainty scores. When 0, 1, 
2 and 3 (out of 3) reviewers annotated iEEG channels as electrographic seizures, the 
ESC model’s seizure certainty scores were in the range: [0.12–0.19], [0.32–0.42], 
[0.61–0.70], and [0.92–0.95] respectively. The ESC model was used as a starting-
point model for training a second Seizure Onset Detection (SOD) model. For this 
task, seizure onset times were manually annotated on a relatively small number 
of iEEG channels (4,859 from 50 patients). Experiments showed that fine-tuning 
the ESC models with augmented data (30,768 iEEG channels) resulted in a better 
validation performance (on 20% of the manually annotated data) compared to 
training with only the original data (3.1s vs 4.4s median absolute error). Similarly, 
using the ESC model weights as the starting point for fine-tuning instead of other 
model weight initialization methods provided significant advantage in SOD model 
validation performance (3.1s vs 4.7s and 3.5s median absolute error). Finally, on 
iEEG channels where three expert annotations of seizure onset times were within 
1.5 s, the SOD model’s seizure onset time prediction was within 1.7 s of expert 
annotation.

KEYWORDS

seizure classification, big data, EEG, epilepsy, deep learning

OPEN ACCESS

EDITED BY

David B. Grayden,  
The University of Melbourne, Australia

REVIEWED BY

Omid Kavehei,  
The University of Sydney, Australia
Jonas Duun-Henriksen,  
UNEEG Medical A/S, Denmark

*CORRESPONDENCE

Sharanya Arcot Desai  
 sdesai@neuropace.com

RECEIVED 01 February 2023
ACCEPTED 13 June 2023
PUBLISHED 05 July 2023

CITATION

Arcot Desai S, Afzal MF, Barry W, Kuo J, 
Benard S, Traner C, Tcheng T, Seale C and 
Morrell M (2023) Expert and deep learning 
model identification of iEEG seizures and 
seizure onset times.
Front. Neurosci. 17:1156838.
doi: 10.3389/fnins.2023.1156838

COPYRIGHT

© 2023 Arcot Desai, Afzal, Barry, Kuo, Benard, 
Traner, Tcheng, Seale and Morrell. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 05 July 2023
DOI 10.3389/fnins.2023.1156838

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1156838&domain=pdf&date_stamp=2023-07-05
https://www.frontiersin.org/articles/10.3389/fnins.2023.1156838/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1156838/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1156838/full
mailto:sdesai@neuropace.com
https://doi.org/10.3389/fnins.2023.1156838
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1156838


Arcot Desai et al. 10.3389/fnins.2023.1156838

Frontiers in Neuroscience 02 frontiersin.org

1. Introduction

Clinical management of epilepsy is fraught with challenges 
(Dalic and Cook, 2016). One of them is the difficulty with objectively 
assessing patient responses to treatments since patient self-reports 
of seizures are unreliable (Hoppe et al., 2007). Baseline ambulatory 
iEEG recordings captured using implanted devices such as the 
NeuroPace RNS System contain features that correlate with clinical 
outcomes (Skarpaas et al., 2018; Desai et al., 2019a) and can be used 
as an objective data source for supplementing patient self-reports of 
seizures. Although not necessarily indicative of a clinical seizure, 
another straightforward and objective measure is simply the 
numbers and types of electrographic seizures captured in the 
ambulatory iEEG recordings. Comparing numbers and types of 
electrographic seizures before and after treatment changes could 
potentially be a reliable indicator of the patient’s clinical response. 
Counts of electrographic seizures in ambulatory iEEG recordings 
can have diagnostic uses too. For example, if electrographic seizures 
are restricted to certain channels in the ambulatory multi-channel 
iEEG recordings, the patient may be identified as a candidate for 
resection surgery (King-Stephens et  al., 2015). Thus, identifying 
electrographic seizures in iEEG recordings is valuable and of 
particular interest to physicians.

Hundreds of 90-s, 4-channel iEEG records are typically captured 
from each patient treated with the RNS System between clinic visits, 
which are generally 3–6 months apart. Manual review of these iEEG 
records prior to every visit adds significant time to the clinic workflow, 
and can lead to reviewer fatigue and increased errors in iEEG review. 
Additionally, manual iEEG review can be subjective in nature (Halford 
et  al., 2015). Differences in EEG training and varying levels of 
experience may contribute to differences in manual iEEG 
interpretations. Automated methods for classifying iEEG recorded 
electrographic seizures and identifying channels with the earliest 
seizure onsets could (1) simplify iEEG review and speed up clinic 
workflows, (2) facilitate objective iEEG analysis, and (3) contribute to 
better clinical outcomes.

Electrographic seizure patterns can vary substantially from patient 
to patient (Haas et al., 2007). Manually determining rules to identify 
each type of electrographic seizure and seizure onset pattern is a 
daunting process, with machine learning models trained using hand-
engineered features having limited practical applications. For example, 
machine learning models are frequently trained to classify iEEG data 
within a single patient or a small group of patients (Thodoroff et al., 
2016; Acharya et al., 2018; Ansari et al., 2019; Roy et al., 2019). A 
generic model that can work out-of-the box for many patient and 
seizure types would have greater practical usability.

Deep learning models that can directly learn patterns from large 
amounts of data have made great strides in recent years (LeCun et al., 
2015). For example, transformer-based models can take a text prompt 
and generate relevant synthetic videos automatically (Singer et al., 
2022). Language models capable of understanding human 
conversations can reply to complex verbal queries (Brown et al., 2020). 
In the domain of computer vision, self-driving cars serve as a prime 
example of the progress made with deep convolutional neural 
networks (CNN) (Chen and Huang, 2017; Totakura et al., 2021). Even 
in the medical field, several studies have leveraged deep neural 
networks to identify abnormalities in MRIs, mammograms, and 
retinal images with a high degree of confidence (Ting et al., 2017; 

Lundervold and Lundervold, 2019; Yala et al., 2019). Several medical 
diagnostic tools with “AI in the loop” (AI, Artificial Intelligence) that 
aid physicians in making clinical decisions have also been recently 
approved by the FDA (Benjamens et al., 2020). Thus, the data science 
tools required for learning complex patterns directly from data are 
available and have demonstrated successful practical applications in 
several domains.

Big datasets are central to all these models. With the NeuroPace 
RNS System (Jarosiewicz and Morrell, 2021), over 10 million iEEG 
records have been captured from >4,500 patients. Out of this, ~1 
million iEEG records have been captured from 256 patients enrolled 
in the RNS System feasibility, pivotal, and LTT clinical trials (Sun 
and Morrell, 2014; Nair et  al., 2020). Large datasets offer the 
opportunity to train deep learning models directly on the dataset 
without the need for extracting hand-engineered features and 
creating hand-engineered rules. By manually labeling a fraction of 
the RNS System clinical trial dataset (~138,000 iEEG records from 
113 patients), an electrographic seizure classifier model was trained 
with 95.7% class-balanced classification accuracy in test patients 
(iEEG records from 20% of 113 patients). The entire clinical trial 
dataset could not be  manually labeled because of resource 
constraints. A flowchart showing RNS System iEEG data split into 
training and test datasets is available in a previous publication by our 
group (Barry et  al., 2021). Since model training and testing was 
performed on the dataset annotated by the same individual, it is not 
known how the model would fair against reviewer physicians’ 
annotations in a practical setting. Further, it is not known how the 
model’s agreement with reviewers would compare with reviewer 
agreement with other reviewers. Finally, it is not known if the 
trained models would have similar performance in different patient 
populations, and on data captured from a newer version of the 
neurostimulator. To address these questions, a new test dataset of 
iEEG records was created with annotations from three independent 
expert reviewers. Reviewer agreement with each other as well as 
model agreement with the reviewers are reported.

In addition to identifying electrographic seizures in iEEG records, 
physicians often also manually identify seizure onset times. This 
information is valuable for studying seizure spread patterns and for 
configuring neurostimulator detection settings for responsive closed-
loop stimulation. The task of manually identifying seizure onset times 
is particularly time-consuming since brain activity patterns at the 
onset of seizures can evolve slowly and often requires reviewing the 
activity at multiple time and frequency scales (Spencer et al., 1992; Lee 
et  al., 2000; Perucca et  al., 2014; Nune et  al., 2019). Hence, an 
automated method for identifying seizure onset times is desirable. 
Training a reliable deep learning-based seizure onset time detection 
model from scratch would require a large number of manually 
annotated examples of seizure onset times from many patients. 
Alternatively, transfer-learning techniques could be applied to fine-
tune a previously trained model with a relatively small, annotated 
training dataset (Weiss et al., 2016). Since the electrographic seizure 
classifier model was trained on a large multi-patient dataset, it could 
serve as an excellent starting point for solving the problem of 
identifying seizure onset times. In this paper, we explore this idea with 
data augmentation techniques applied to a relatively small, annotated 
dataset for seizure onset time estimation.

This paper significantly adds to existing literature on leveraging 
deep learning and machine learning techniques for facilitating data 
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review in epilepsy. First, it quantifies expert seizure classification 
agreements in patients with seizure onsets in mesial temporal and 
in neocortical regions. Second, it compares the trained 
electrographic seizure classifier scores against each reviewer 
individually and against all three reviewers grouped together. Third, 
it demonstrates that the seizure classifier model can serve as an 
excellent starting-point model for solving other related problems 
with small, labeled datasets.

2. Methods

2.1. The RNS system and iEEG records

The NeuroPace RNS System (Figure 1) is FDA approved for the 
treatment of drug-resistant partial onset epilepsy in adults 18 years 
and older (Jarosiewicz and Morrell, 2021). Details about the RNS 
System have been published in numerous previous studies (Skarpaas 
et al., 2018; Desai et al., 2019a,b, 2022; Barry et al., 2021). Briefly, 
the device delivers responsive neurostimulation when patient-
specific abnormal brain patterns are detected. Programming the 
responsive neurostimulator with patient-specific detection patterns 
is performed by the patient’s physician. Physicians also program the 
stimulation settings, which include the stimulation frequency, 
charge density, burst duration, pulse width, and 
stimulation pathways.

In addition to stimulating abnormal activity, the device also 
captures short iEEG recordings of brain activity. Each iEEG record 
contains 4-channels of iEEG data with each channel sampled at 
250 Hz. The two major types of iEEG records captured by the device 
are long episode (LE) iEEG records and scheduled iEEG records 
(Figure 1). As the name suggests, storage of LE iEEG records is 
triggered when long durations of abnormal activity are detected by 
the device. Many, but not all, of the LE iEEG records contain 
electrographic seizures. Scheduled iEEG records, on the other hand, 
are captured at scheduled times every day, typically at 2 a.m. and 
2 p.m., and usually contain baseline activity but rarely 
electrographic seizures.

2.2. The electrographic seizure classifier 
model

Each channel of activity in 138,000 iEEG records was manually 
annotated as electrographic seizure or non-seizure by a NeuroPace 
employee (Barry et al., 2021). An iEEG record clustering tool was used 
to speed up the process of labeling such a large dataset. Three other 
employees, including the Chief Medical Officer of NeuroPace, an MD 
who is board certified in epilepsy, were consulted when the activity 
could not be  annotated with a high degree of confidence. iEEG 
channels from 80% of 113 patients were used for training a series of 
convolutional neural network (CNN) models to perform the binary 
classification task of classifying each iEEG channel as electrographic 
seizure or not. The best model, a ResNet50 architecture-based model, 
had a class-balanced classification accuracy of 95.7%, and F1 score of 
94.3% on iEEG records from the test dataset (iEEG records from the 
remaining 20% of patients). Details about the unsupervised iEEG 
clustering process, time taken to manually label each channel in 
138,000 iEEG records, and methods used for training the CNN 
models can be found in a previous publication (Barry et al., 2021).

2.3. Sample size computations to 
determine the number of iEEGs records 
needed in the clinical validation dataset

A statistician was consulted to compute the sample size required 
to clinically validate the trained electrographic seizure classifier. 
Sample size computations were performed assuming a true model 
classification rate of at least 85%, target performance goal of at least 
70%, and within patient correlation of classification scores in the range 
of 0.4–0.7. Selection of these parameters was guided by ad hoc analyses 
performed on the RNS System dataset, and a previous study (Onorati 
et  al., 2021), which aimed to clinically validate an electrographic 
seizure classifier model on continuous heart rate and electrodermal 
activity captured using a wrist worn device.

Anecdotally, it is known that between 30% and 40% of long 
episodes (LE) are electrographic seizures, while less than 5% of 

FIGURE 1

The RNS System (left). Two example 90-s scheduled iEEG records in time-series and spectrogram representation (right top). Two example 90-s long 
episode (LE) iEEG records in time-series and spectrogram representation (right bottom).
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scheduled iEEG records contain electrographic seizures. Hence, to 
increase the chances of picking iEEG records with electrographic 
seizures when randomly selecting test iEEG records, selections were 
only made from the LE iEEG records from each patient. Additionally, 
since LE type iEEG records are the primary iEEG type that needs to 
be classified as an electrographic seizure or not in a practical setting, 
selecting only LE iEEG records for testing the performance of the 
trained models is appropriate. Subsequently, 10 LE iEEG records were 
randomly selected from each RNS System patient, and an assumption 
of including 2–6 electrographic seizures per patient was made for 
sample size calculations.

Given a target number of iEEG records required to perform the 
testing, selecting the iEEG records from a larger number of patients 
provided higher statistical power than selecting the same target 
number from fewer patients, which requires a larger number of iEEG 
records per patient (Table 1). Based on power calculations, a total of 
1,000 iEEG records were randomly selected from 100 RNS System 
patients, with 10 randomly selected LE iEEG records from 
each patient.

2.4. Expert review of iEEG data

Three expert reviewers independently annotated each channel of 
brain activity in the 1,000 randomly chosen LE iEEG records from 100 
RNS System patients. The 1,000 iEEG records were presented to the 
physicians in a randomized order via an iEEG record annotation 
web-based tool. A screenshot of the reviewer annotation tool is shown 
in supplementary material (Supplementary Figure S1). Time-series 
waveforms of the 4 channels of brain activity along with their 
spectrogram representation were presented. The iEEG annotation tool 
allowed physicians to zoom into the time-series waveforms or 
spectrograms at 5 different timescales—5 s, 10 s, 30 s, 60 s or full (i.e., 
to view the entire length of the iEEG record). Additionally, physicians 
could also vertically zoom in on the timeseries waveforms and 
spectrogram images.

The reviewers were asked to annotate each channel of each iEEG 
record as electrographic seizure, non-seizure, or unsure. On the 
electrographic seizure channels, the reviewers were additionally asked 
to annotate the seizure onset time at a resolution of 1/10th of a second 
or 1 decimal point.

Qualifications of the three reviewers recruited for labeling the test 
dataset are presented below.

Reviewer 1: Assistant Professor of Neurology, Epilepsy Division. 
Associate Fellowship Director, Clinical Neurophysiology/Epilepsy, 

Department of Neurology, Yale School of Medicine. Board 
certifications: Neurology, Clinical Neurophysiology, Epilepsy.

Reviewer 2: Assistant Professor of Neurology, Epilepsy Division, 
Department of Neurology, Keck School of Medicine. Board 
certifications: Neurology, Clinical Neurophysiology, Epilepsy.

Reviewer 3: Assistant Professor of Neurology, Epilepsy Division, 
Department of Neurology, Keck School of Medicine. Board 
certifications: Neurology, Epilepsy.

2.5. Test data set split

Out of the 100 patients included in the test dataset, 50 had the 
newer RNS-320 model of the RNS Neurostimulator implanted, while 
the remaining 50 patients had the older RNS-300 M model implanted. 
A deliberate decision was made to evenly split the test data between 
the two models of the RNS System to determine if the neurostimulator 
version influenced the trained model’s performance. Since the 
Electrographic Seizure Classifier (ESC) model (Barry et al., 2021) was 
trained entirely on data captured from the older RNS-300 M model, a 
lower performance on data captured from the RNS-320 might suggest 
data drift and the need for re-training the ESC model on data captured 
from the RNS-320.

Additionally, out of the 100 patients included in the test dataset, 
36 had both RNS leads implanted in the mesiotemporal region, 29 had 
both leads implanted in the neocortical region, and the remaining 35 
had leads implanted in both regions. The data split by lead location 
was not pre-determined. Instead, data were selected from 100 
randomly picked patients to generally reflect the RNS System’s overall 
patient population.

2.6. Model vs. reviewer scores

2.6.1. ESC model vs. reviewer scores on iEEG 
channels

The electrographic seizure classifier (ESC) model was re-trained 
on the same training datasets as before (Barry et al., 2021), using the 
same model architecture (ResNet50), but using an updated version of 
TensorFlow (version:2.6.0). The same five cross-validation data splits 
were performed to produce five versions of the electrographic seizure 
classifier models. Each iEEG channel in the reviewer-annotated iEEG 
records was converted to a spectrogram image by using the function 
matplotlib.pyplot.specgram with window size 256 and step size 128. 
The resulting spectrogram images were tested on all five versions of 

TABLE 1 Sample size computations for a few scenarios with different numbers of assessments per patient, and different numbers of patients.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Assumed true rate 85% 85% 85% 85%

Target performance goal (TPG) 70% 70% 70% 70%

Assumed within patient correlation 0.70 0.70 0.70 0.70

Assessments per patient (i.e., number of 

electrographic seizure iEEG records per patient)

6 4 2 3

Sample size (i.e., number of unique patients) 50 75 100 100

Power 79% 92% 94% 95.7%
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the trained ESC models. The trained models returned prediction 
scores in the range of 0–1. An operating point of 0.5 was selected for 
determining the ESC model’s prediction class of each individual iEEG 
channel. Results are also shown for an operating point of 0.8 for 
comparison purposes.

The methodology described in Scheuer et al. (2017, 2021) was 
followed to calculate pairwise sensitivity and false positive rates for 
inter-reviewer and reviewer-model pairs. In the inter-reviewer 
comparisons, each reviewer was used as a reference against which the 
other two reviewers were tested. Similarly, in the model to reviewer 
comparisons, each of the three reviewers was used as a reference, and 
the models were tested against them.

To evaluate whether the models were noninferior to the human 
reviewers (discussed in Scheuer et al., 2017), an accelerated bootstrap 
analysis (BCa) of the pairwise sensitivity and false positive rates for all 
patients was conducted. This approach resembled the one outlined in 
Scheuer et  al. (2017). The 95% confidence intervals for the mean 
sensitivity and false positive rates were computed for each comparison 
(inter-reviewer and model to reviewer).

2.6.2. ESC model vs. reviewer scores on iEEG 
records

In some applications, it may be sufficient to classify each iEEG 
record as seizure or not, without the need for knowing which iEEG 
channels contain the electrographic seizure. For comparing the model 
scores with reviewer scores at the iEEG record-level, the maximum 
seizure probability among the 1–4 (usually 4) iEEG channels was 
taken, and if it exceeded the model operating point, the iEEG record 
was classified as an electrographic seizure. Similarly, if the reviewers 
annotated any one of the channels in the iEEG record as an 
electrographic seizure, the iEEG record was considered to be  an 
electrographic seizure record. Higher model operating points of 0.8 
and 0.9 were selected for this task since the probability of false 
positives is high when all channels need to be classified as non-seizures 
for the multi-channel iEEG record to be classified as non-seizure, but 
only one channel needs to be classified as seizure for the iEEG record 
to be a classified as seizure.

2.6.3. Seizure onset detection model training and 
validation

Seizure onset times were annotated on 4,859 iEEG channels from 
50 RNS System patients by a NeuroPace employee. The annotated 
dataset was augmented by shifting the time series data points to create 
time-shifted versions of the same iEEG channel. Time-shifting was 
done several times on each iEEG channel but only in the one direction, 
with the electrographic activity shifted to the right by deleting several 
seconds of activity towards the end of the file and duplicating an equal 
amount of activity in the beginning of the file. The amount of right 
shift was randomly determined in ranges incrementing by 5 s. An 
example original spectrogram and a few time-shifted versions of the 
same spectrogram are shown in Figure 2. The data augmentation step 
produced a total of 30,768 spectrogram images.

Seizure activity was not time-shifted in the opposite direction (to 
the left) because in that case the resulting augmented images could 
look unrealistic if the seizure activity in the original image ended 
before the end of the file, since duplicating activity towards the end of 
the file could make the resulting image appear to contain 2 back-to-
back seizure events, which could confuse model training.

The SOD model was trained with and without the augmented data 
to assess whether the data augmentation process contributed to 
increased model performance. Additionally, the ESC model’s weights 
were used as the starting point for fine-tuning, but also random weight 
initialization was tested, along with ImageNet weights (Deng et al., 
2009) to check if the ESC weights offered any training advantage.

All layers of the ESC model were fine-tuned to make the SOD 
model. The code for fine-tuning the ESC model is provided in the 
Supplementary section. To train the SOD model, the final sigmoid 
activation layer of the ESC model was replaced with a dense layer 
which is appropriate for regression tasks. Adam optimizer was used 
with learning rate of 0.0001. Model training and validation 
experiments were performed on a Linux Ubuntu 18.04 machine using 
Tensorflow version 2.6.0. Following preliminary exploration of the 
hyperparameter space, model training was performed for 400 epochs 
in each training fold. Five-fold cross-validation was performed with 
80% of the data used for training and 20% used for testing. Models 
were saved after every epoch of training, and the saved model which 
had the lowest median absolute error on the held-out validation 
dataset was selected in each cross-validation fold. The selected SOD 
models were tested on iEEG channels with reviewer-annotated seizure 
onset times.

3. Results

3.1. Reviewer labeling of 1,000 iEEG 
records as electrographic seizure or 
non-seizure

Reviewers 1, 2, and 3 annotated 98.2%, 99.7%, and 98.9%, 
respectively, of the 1,000 randomly selected LE iEEG records as 
electrographic seizure or non-seizure. A small number of iEEG 
records were not annotated by the reviewers primarily because the 
reviewer was not able to decide what the activity represented. Overall, 
iEEG annotations from all three reviewers were available on 978 or 
97.8% of the iEEG records. The numbers of iEEG records and channels 
annotated by the three reviewers is shown in Table 2.

3.2. Reviewer agreement with each other, 
and reviewer agreement with the trained 
ESC model

3.2.1. iEEG channels where all three reviewers 
agreed

A subset of iEEG channels on which all three reviewers provided 
the same (electrographic seizure or non-seizure) annotation (3,225 or 
83.24% of iEEG channels) was selected. These represent iEEG 
channels with clear seizure or non-seizure activity. The classification 
performance of the trained ESC model on this subset of iEEG channels 
was analyzed using precision-recall curves and class-balanced 
accuracy metrics. All 5 versions of the trained ESC models (i.e., 
models from the 5 cross-validation folds) were applied to the test 
dataset resulting in 5 precision-recall curves as shown in Figure 3. The 
mean AUPRC (Area Under the Precision Recall Curve) of the 5 
precision-recall curves was 0.96. In comparison, the AUPRC of a 
model with chance level performance would be 0.50.
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On the subset of iEEG channels classified by all three experts as 
electrographic seizure or non-seizure (n = 3,225), the trained ESC 
models had an overall agreement of 92.5% at a model operating point 
of 0.5 (Table 3A), and an overall agreement of 93.19% at a model 
operating point of 0.8 (Table 3B). As expected, higher agreement on 

seizure channels only (95.2%) was observed with a lower operating 
point (0.5) since the model is more easily able to classify iEEG 
channels as electrographic seizures with a lower seizure threshold, and 
a higher agreement on non-seizure channels only was observed 
(95.4%) with a higher operating point (0.8). Model agreement with 
experts on iEEG channels split by lead location is also shown in 
Tables 3A,B at the two operating points of 0.5 and 0.8, respectively. At 
both operating points, the trained ESC models had significantly better 
classification performance (p < 0.05, independent t-test) on MTL leads 
compared to Neocortical and MTL + Neocortical leads. Agreement 
between the ESC model and experts in each training fold for each lead 
location is shown in the Supplementary section. The trained models 
had comparable performance on both models of RNS 
neurostimulations (model 300 M and 320) (Table 3C).

3.2.2. Agreement on all iEEG channels
Model classification certainty was compared against combined 

reviewer classification certainty. Out of 3,874 iEEG channels 
annotated by all three reviewers, 1,808 or 46.67% of iEEG channels 
were annotated as non-seizure by all three reviewers. In other 
words, the combined reviewer-provided seizure probability on 
46.67% of all annotated iEEG channels was 0. The trained ESC 
models gave these iEEG channels a mean seizure probability score 
in the range [0.12–0.19]. Figure  4 shows mean ± std. model 
probability scores vs. combined reviewer probability scores. Seizure 
probability scores from the 5 splits of ESC model are shown in the 
Supplementary section. In 382 or 9.8% of the iEEG channels, only 
1 out of three reviewers classified the iEEG channels as showing an 
electrographic seizure. On these channels, the overall reviewer-
provided seizure probability was 1/3 or 0.33, and ESC model’s 
means seizure probability score was in the same range [0.32–0.42]. 
Similarly, 215 or 5.5% IEEG channels were classified as 
electrographic seizures by 2 out of the three reviewers, giving these 
iEEG channels a combined reviewer-provided seizure probability 
value of 2/3 or 0.66. On these channels, the 5 versions of the ESC 
models produced mean seizure probability scores in the range 
[0.61–0.70]. Finally, the remaining 1,417 or 36.6% of IEEG channels 
were classified by all three reviewers as electrographic seizure, 
giving them a combined reviewer-provided seizure probability 
score of 1.0. The 5 versions of the ESC models gave these iEEG 
channels mean seizure probability in the range [0.92–0.95].

The ESC model’s seizure probability scores had a linear 
relationship with reviewer probability scores. A linear line of best fit 

FIGURE 2

Example original and time-shifted (augmented) annotated iEEG channels used for training a seizure onset time detection model. The seizure onset 
time annotated in the original dataset was at 29.40 s. After time-shifting, the onset times in the augmented spectrograms were at 41.08, 54.47, and 
64.36 s, respectively.

TABLE 2 Numbers of iEEG records and channels annotated as 
electrographic seizure or non-seizure by the three reviewers.

Reviewer 1 Reviewer 2 Reviewer 3

Number of 

iEEG records 

annotated

982 997 989

Number of 

iEEG channels 

annotated

3,927 3,976 3,923

Number of 

iEEG records 

annotated by all 

three reviewers

978

Number of 

iEEG channels 

annotated by all 

three reviewers

3,874

FIGURE 3

PR (Precision-Recall) curves of the 5 ESC models (each model 
trained on data from one cross-validation split) on a subset of iEEG 
channels in which all three reviewers’ annotations matched (left). PR 
curves and AUPRC of the ESC models against each individual 
reviewer (right).
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was calculated for ESC model scores vs. reviewer model scores and are 
shown above each plot in Figure 4. In all cases, the r2 values (a measure 
of goodness of fit) was ≥0.98.

The ESC model’s iEEG channels classification agreement with 
each individual reviewer was at the same level as the reviewer’s 
agreement with other reviewers (Table 4). Reviewer 1 annotated a total 
of 3,927 iEEG channels. Out of these, 41.7% were annotated as 
electrographic seizures while the remaining 58.3% were annotated as 
non-electrographic seizures. Reviewer 1’s overall agreement with 
reviewers 2 and 3 was 92.9% and 86.9%, respectively. Against the ESC 
model, the average (of 5 ESC model versions) overall agreement was 
at 86.8% with the seizure and non-seizure annotation agreements at 
90.4% and 84%, respectively. Reviewer 1’s agreements with the other 
2 reviewers and the ESC models were higher on the MTL channels 
compared to neocortical channels.

Reviewer 2 annotated a total of 3,976 iEEG channels, with 39.5% 
(1,571) of the iEEG channels annotated as seizures and the remaining 
60.5% (2,405) annotated as non-seizures. Out of the three reviewers, 
reviewer 2 annotated the smallest percentage of iEEG channels as 
seizures. Reviewer 2’s overall agreements with reviewers 1 and 3 was 
at 91.8% and 86.4%, with relatively high seizure agreements of 92.9% 
and 96.7%, respectively. Reviewer 2’s overall agreement with the ESC 
model was 86.8%, with seizure and non-seizure class agreements at 
90.4% and 84.3%, respectively. Reviewer 2’s agreement with other 
reviewers and the ESC model was higher on MTL channels compared 
to neocortical channels.

Reviewer 3 annotated a total of 3,923 iEEG channels. A relatively 
high percentage (50.1%) of the total annotated iEEG channels were 
given the seizure class label by reviewer 3, with the remaining 49.9% 
annotated as non-seizures. Reviewer 3’s seizure class agreement with 
the other 2 reviewers was relatively low at 79.1% and 77.3%, 
respectively. Against the ESC model, reviewer 3’s overall, seizure, and 
non-seizure class agreements were at 85%, 81.8%, and 88.3%, 
respectively. Like reviewers 1 and 2, reviewer 3’s agreements with the 
other 2 reviewers were higher on MTL channels compared to 
neocortical channels. Overall, MTL channels on average had 5.65% 
greater agreement compared to neocortical channels in all three 
reviewers’ annotations (p < 0.05, paired t-test).

The ESC model’s agreement with each of the reviewers at a higher 
operating point of 0.8 is also shown in the table for comparison. In this 
case, model prediction probabilities ≥0.8 were assigned seizure class, 
and probabilities <0.8 were given the non-seizure class. As expected, 
the higher model operating point produced higher non-seizure 
agreements and lower seizure class agreements with all three reviewers.

Performance of the ESC model against each of the three reviewers 
is also shown using individual reviewer precision-recall curves 
(Figure 3 right panel). The AUPRC for Reviewers 1, 2, 3 are 0.92, 0.93, 
and 0.92, respectively.

As described in Section 2, pairwise sensitivity and false positive 
rates were computed following methods described in Scheuer et al. 
(2017, 2021). Figure  5 illustrates that models demonstrated 
noninferiority compared to the human reviewers according to the 
criteria outlined in Scheuer et al. (2017).

3.2.3. Classification agreement on iEEG records
Agreement between the ESC model and reviewers was studied at 

the iEEG record level (Table  5). As described in Section 2, if the 
reviewer annotated any of the channels in the iEEG record as seizure, 
the record was assigned the electrographic seizure annotation. 
Similarly, if the model predicted any of the channels as an 
electrographic seizure (at the selected operating points shown in 
Table 5), the model’s classification of the iEEG record would be to the 
electrographic seizure class. Otherwise, it would be to the non-seizure 
class. An operating point of 0.8 was selected for iEEG record-level 
classification, as computing the iEEG record level scores by combining 
individual channel scores would lead to high false positive rates since 
only one channel needs to be classified as a seizure for the entire multi-
channel iEEG record to be classified as a seizure. The table also shows 
ESC record level classifications for an operating point of 0.9. 
Supplementary Figure S2 shows the effects of changing the operating 
point on the iEEG record-level classification agreements between each 
reviewer and the trained ESC model. As expected, at lower operating 
points, seizure class agreements are low and non-seizure class 
agreements are high. The overall agreements, however, are within a 
relatively narrow range (85%–90%).

3.3. Seizure onset detection model training 
and validation

3.3.1. Comparing seizure onset prediction 
performance with augmented data vs. original 
dataset used for training

As described in Section 2, 4,859 iEEG channels annotated with 
seizure onset times were augmented by time-shifting the time-series 

TABLE 3 Agreement between ESC model and reviewers on iEEG channels 
with full reviewer agreement.

A. Operating point = 0.5, split by lead location

Lead 
location

Seizure 
agreement

Non-seizure 
agreement

Overall 
agreement 

(%)

All 95.2% (n = 1,417) 89.83% (n = 1,808) 92.52

MTL 97.06% (n = 626) 93.91% (n = 584) 95.48

NEO 91.36% (n = 338) 84.76% (n = 538) 88.46

MTL + NEO 94.50% (n = 453) 90.35% (n = 686) 92.92

B. Operating point = 0.8, split by lead location

Lead 
location

Seizure 
agreement

Non-seizure 
agreement

Overall 
agreement 

(%)

All 90.98% (n = 1,417) 95.40% (n = 1,808) 93.19

MTL 94.73% (n = 626) 97.64% (n = 584) 96.18

NEO 84.85% (n = 338) 92.23% (n = 538) 88.54

MTL + NEO 90.38% (n = 453) 95.98% (n = 686) 93.18

C. Operating point = 0.5, split by RNS neurostimulator 
model

Model Seizure 
agreement

Non-seizure 
agreement

Overall 
agreement 

(%)

All 95.2% (n = 1,417) 89.83% (n = 1,808) 92.52

RNS-300 M 93.63% (n = 800) 90.23% (n = 850) 91.93

RNS-320 97.25% (n = 617) 89.48% (n = 958) 93.36

Data is split by lead location, and RNS neurostimulator model.
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waveforms and duplicating waveforms at the start of the iEEG 
channels. One of the 5 trained ESC models (the trained ESC model 
from 1st cross validation fold was randomly chosen) was fine-tuned 
using the augmented and original datasets and 5-fold cross-validation. 
The median absolute error on the validation dataset (i.e., iEEG 
channels from 20% of the patients not used for training in each of the 
5 cross-validation folds) is shown in Figure 5 (top). The lowest median 
absolute error on the validation dataset for each of the 5 folds is shown 
in Table 6. Across the 5 training folds, the average median absolute 
error with the augmented data was significantly better (p < 0.05, paired 
t-test) when compared to training with only the original dataset. 
Overall, training with the augmented dataset led to an average median 
absolute error of 3.12 s compared to 4.4 s with the original dataset. 
Data augmentation improved the model’s prediction accuracy by 1.3 s.

In addition to the median absolute error, mean absolute error and 
root mean squared error also improved when training was performed 
with the augmented dataset [Figure 6 (top), right panel].

3.3.2. Comparing seizure onset detection 
performance with different initial model weights

The Seizure Onset Detection (SOD) model was developed by fine-
tuning the weights of the ESC model as described in Section 2. For 
comparison, a ResNet50 model with weights learned from training on 
the ImageNet dataset (Deng et  al., 2009), and random weight 
initialization were also trained on the augmented datasets to assess if 
the ESC model initialization contributed to improvements in model 
performance. Validation errors from the three types of model 
initialization are shown in Figure  6 (bottom) and Table  6. As 
hypothesized, transfer-learning using the ResNet-50 model with 
initial weights from training on a relevant training task (ESC model) 

was significantly better (p < 0.05, paired t-test) compared to training 
with random weight initialization and ImageNet weight initialization. 
Specifically, an overall improvement in median absolute error of 1.6 s, 
and 0.4 s, respectively, was observed with ESC model weights 
compared to random and ImageNet weights. Figure 7 (top) shows 
three example seizure onset detections by a SOD model trained using 
the augmented dataset using ESC model weights as the starting point 
for training.

3.3.3. Performance of the trained SOD prediction 
model on reviewer-annotated dataset

As described in Section 2, reviewers were asked to annotate 
seizure onset times on electrographic seizure iEEG channels. Table 7 
shows the number of seizure onset times annotated by each of the 
three reviewers. A small percentage (8.3%, 8.5%, and 11.4%) of the 
electrographic seizures were not annotated with a valid onset time 
because the reviewers concluded that the electrographic seizure began 
before the start of the captured iEEG file.

On iEEG channels where all three reviewers agreed that the onset 
time was within a 0.25 s window, the SOD model’s median absolute 
error was 2.9 s [Figure 7 (bottom)], and on iEEG channels when all 
three reviewers agreed that the onset time was within a 1.5 s window, 
the SOD model’s median absolute error was 1.7 s.

Across all iEEG records, the median absolute error between the 
SOD model and the reviewer annotations was 3.4 s. In comparison, a 
trivial model that uses the neurostimulator-detected episode start time 
as the seizure onset time, had a median absolute error of 8.3 s. Finally, 
a histogram of differences between SOD and reviewer scores [Figure 7 
(bottom), right panel] shows that the model predictions were not 
biased in any one direction. That is, number of positive errors (or 

FIGURE 4

Left top panel: model certainty of the ESC model trained on fold 1 of the training data (y-axis) vs combined reviewer certainty (x-axis). Other panels: 
similar performance on the other 4 folds of the model training.
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model prediction time > reviewer annotated onset time) and number 
of negative errors were comparable.

4. Discussion

This paper significantly adds to existing literature on leveraging 
deep learning and machine learning (AI) techniques for facilitating 
data review in epilepsy. First, it shows that AI models can be trained 
with the same level of iEEG seizure/non-seizure classification 
performance as board certified neurology and clinical neurophysiology 
and epilepsy experts. Second, it quantifies expert agreement levels 
with each other and shows that experts tend to agree more on iEEG 
records captured on leads implanted in the MTL regions compared to 
neocortical regions. Similarly, the trained electrographic seizure 
models also agreed more with reviewers on MTL channels compared 
to neocortical channels. Finally, it demonstrates how a second AI 
model can be trained on a related task of finding seizure onset times 
using a relatively small, labeled dataset by leveraging transfer learning 
(LeCun et al., 2015) of features learned by the first AI model, and 
through data augmentation techniques.

Overall, the Electrographic Seizure Classifier model’s agreement 
with the expert iEEG reviewers was on-par with experts’ agreement 
among themselves. This was particularly striking in the analysis of 
model prediction certainty vs. combined expert prediction certainty. 
On iEEG channels in which all three experts were in complete 
agreement, the model’s electrographic seizure and non-seizure 
prediction probabilities were also very high. For instance, on the 1,808 
channels in which all three experts agreed on the non-seizure class, 
the ESC model agreed that the probability of a seizure on that channel 

was low, in the range of [0.12–0.19]. Similarly, on 1,417 channels in 
which all three experts agreed on the seizure class, the ESC model 
agreed that the probability of a seizure on that channel was high, in 
the range of [0.92–0.95]. When the experts were not in complete 
agreement, the ESC model’s probabilities reflected the disagreement 
among experts. For instance, for channels classified as a seizure by 
only one of three experts, the ESC model’s predicted seizure 
probability was in the range of [0.32–0.42], and when two of three 
experts classified channels as a seizure, the ESC model’s seizure 
probability was in the range of [0.61–0.70]. This shows that the trained 
model’s learned iEEG features and decision criteria for classifying 
iEEG records might be similar to those learned by human reviewers.

Just as human reviewers exhibit disagreement and uncertainty 
about seizure and non-seizure classifications, so does the ESC model, 
as reflected in its prediction probabilities. Hence, when building 
clinical applications using the Electrographic Seizure Classifier model 
(Barry et al., 2021), it may be useful to display model certainty scores, 
or seizure probability values, in addition to the predicted seizure or 
non-seizure class. This would allow a physician making use of the ESC 
model to manually review only those iEEG records where the model’s 
classification certainty is low and rely on the model’s classifications 
when the model’s confidence is high. Even though these results are 
very encouraging and demonstrate that the trained Electrographic 
Seizure Classifier’s performance matches that of trained experts, it 
should be noted that only three reviewers were recruited for labeling 
the ~1,000 test iEEG records. Resource and time constraints did not 
permit recruiting more experts or the review of a larger iEEG test 
dataset. Nevertheless, the clinical validation tests performed in this 
study demonstrate that the trained Electrographic Seizure Classifier 
model performs well enough to be practically useful in the clinical 

TABLE 4 iEEG channel classification agreement between reviewers and ESC model.

Agreement with

Reviewer 1 Reviewer 2 Reviewer 3 ESC model (0.5) ESC model (0.8)

All channels (3,927)

(sz: 1,638, non-sz: 2,289)

92.94%

(89.13, 95.67%)

86.91%

(94.99, 81.12%)

86.81%

(90.37, 84.26%)

88.68%

(84.52, 91.67%)

MTL channels (1,416)

(sz: 686, non-sz: 730)

95.48%

(94.02, 96.85%)

88.49%

(96.21, 81.23%)

91.36%

(93.96, 88.91%)

92.25%

(90.44, 93.97%)

NEO channels (1,151)

(sz: 434, non-sz:717)

88.27%

(80.86, 92.75%)

82.71%

(91.47, 77.40%)

79.88%

(84.05, 77.37%)

83.04%

(75.55, 87.80%)

Reviewer 2 Reviewer 1 Reviewer 3 ESC model (0.5) ESC model (0.8)

All channels (3,976)

(sz: 1,571, non-sz: 2,405)

91.80%

(92.93, 91.06%)

86.39%

(96.69, 79.66%)

86.97%

(92.40, 83.40%)

89.59%

(87.20, 91.17%)

MTL channels (1,452)

(sz: 675, non-sz: 777)

93.11%

(95.55, 90.55%)

87.67%

(97.19, 79.41%)

91.47%

(95.20, 88.19%)

93.16%

(92.40, 93.83%)

NEO channels (1,160)

(sz: 405, non-sz: 755)

87.59%

(86.67, 88.08%)

82.85%

(94.57, 76.56%)

80.19%

(87.07,76.52%)

84.31%

(78.74, 87.28%)

Reviewer 3 Reviewer 1 Reviewer 2 ESC model (0.5) ESC model (0.8)

All channels (3,923)

(sz: 1,965, non-sz: 1,958)

86.99%

(79.18, 94.84%)

87.56%

(77.30, 97.85%)

85.04%

(81.80, 88.33%)

84.30%

(74.32, 94.38%)

MTL channels (1,421)

(sz: 790, non-sz: 631)

88.18%

(83.54, 93.98%)

89.58%

(83.04, 97.78%)

88.79%

(85.92, 92.40%)

88.0%

(81.32, 96.41%)

NEO channels (1,144)

(sz: 549, non-sz: 595)

83.22%

(72.31, 93.27%)

84.0%

(69.76, 97.14%)

80.31%

(77.21, 83.12%)

79.15%

(65.55, 91.54%)

https://doi.org/10.3389/fnins.2023.1156838
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arcot Desai et al. 10.3389/fnins.2023.1156838

Frontiers in Neuroscience 10 frontiersin.org

workflow. Continuous monitoring of the deployed model should 
be performed to ensure that the model performs well in different 
patient populations, and feedback received from users should be used 
to improve the model’s performance in the future.

The three reviewers’ had better agreement on seizure and 
non-seizure classifications on iEEG channels from MTL regions 
compared to neocortical regions. On average, expert iEEG 
classification agreement on MTL channels was 5.65% better than on 
neocortical channels. This difference may be  partially due to 
homogeneity in MTL seizure patterns across patients, with seizure 
onsets frequently starting with either hypersynchronous spiking 
activity or low voltage fast activity. Neocortical seizures, on the other 
hand, tend to be more heterogeneous across patients (Spencer et al., 
1992; Lee et al., 2000; Perucca et al., 2014). Similar to experts, the 
trained ESC models also had better classification performance on 
MTL vs. neocortical channels (95.48% vs. 88.46%). Overall, the ESC 
model’s classification performance was 7% better on MTL leads 
compared to neocortical leads. Training data for the ESC models 
consisted of 44% MTL patients, and 56% neocortical patients (Barry 
et al., 2021). Hence, there was no bias in ESC model training which 
could have possibly explained the performance differences in the two 
patient populations. One way to improve the model performance in 

neocortical patients could be  to train a model specifically for the 
neocortical patient population, so that feature learning can 
be performed exclusively for this patient group.

Model operating point is an important parameter that needs to 
be  selected based on the application of interest and can have a 
significant impact on the success of the clinical application (Jordan 
and Mitchell, 2015). In this paper, a few different values of model 
operating points were explored and, in general, a higher operating 
point of 0.8 led to a slightly better overall classification performance 
(93.19%) than the default value of 0.5 (92.52%). However, the two 
different operating points had a substantial impact on class-specific 
performances, with a higher operating point of 0.8 identifying 95.4% 
of non-seizure iEEG channels annotated by the experts, and a lower 
operating point of 0.5 identifying 95.2% of seizure iEEG channels. 
Hence, for problems requiring higher seizure class specificity (i.e., true 
positive rate), a higher operating point must be chosen, and a lower 
operating point chosen for problems requiring higher seizure class 
sensitivity (i.e., true negative rate).

No difference was seen between the ESC model’s classification 
performance on iEEG data captured with the two different models of 
the RNS Neurostimulator (RNS-300 M vs. RNS-320), which shows 
that the ESC model’s performance is robust across neurostimulator 
models. However, model performance monitoring tests should 
be performed periodically to ensure sustained performance levels on 
data captured with future new releases of the RNS System. If 
performance degrades in the future, it could suggest data drift and 
may require re-training the ESC models with iEEG data captured from 
the newer RNS System models.

Overall, iEEG record-level agreements between experts and the 
trained ESC models were similar to iEEG channel-level agreements 
(87.73% at a model operating point of 0.5, and 87.56% at a model 
operating point of 0.9). For an application to count the number of 
electrographic seizures, it may not be relevant to know which channel 
in the iEEG record contains seizures. Instead, it may be sufficient to 
classify the entire multi-channel iEEG record as seizure or 
non-seizure. For example, counts of electrographic seizure iEEG 
records captured after a change in epilepsy treatment (such as a 
change in an antiseizure medication) can be compared to counts 
before the change, to assess if the change had a favorable (or 
unfavorable) impact on the patient. Such a measure may be used in 
conjunction with other recently identified iEEG biomarkers 
(Skarpaas et al., 2018; Desai et al., 2019a; Khambhati et al., 2021; Sun 
et  al., 2021) to efficiently supplement patient self-reports of 
clinical outcomes.

FIGURE 5

Pairwise sensitivity and false positive rate comparisons show that 
the model’s performance (operating point shown here is 0.8) lies 
within the 95% confidence intervals (dotted lines) of the expert 
pairs, thus demonstrating that the ESC model’s performance is 
non-inferior compared to the experts according to the methods 
outlined in Scheuer et al. (2017).

TABLE 5 iEEG record classification agreement between reviewers and ESC model at 2 operating points (0.8 and 0.9).

Agreement with

Reviewer 1 Reviewer 2 Reviewer 3 ESC model (0.8) ESC model (0.9)

Overall (982)

(sz: 569, non-sz: 413)

91.85%

(89.98, 94.43%)

87.52%

(95.22, 77.00%)

88.17%

(90.19, 85.38)

88.13%

(87.21, 89.39)

Reviewer 2 Reviewer 1 Reviewer 3 ESC model (0.8) ESC model (0.9)

Overall (997)

(sz: 541, non-sz: 454)

91.85%

(95.70, 87.24%)

87.65%

(97.77, 75.50%)

89.4%

(93.79, 84.12)

89.88%

(91.05, 88.47)

Reviewer 3 Reviewer 1 Reviewer 2 ESC model (0.8) ESC model (0.9)

Overall (989)

(sz: 635, non-sz: 345)

87.79%

(85.39, 92.17)

87.82%

(82.99, 96.58)

85.62%

(84.31, 87.98)

84.67%

(80.88, 91.51)
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Manually annotating seizure onset times can be  very time-
consuming, even more so than annotating iEEG activity as seizure or 
non-seizure. This is because identifying the seizure onset times in 
iEEG channels requires zooming into the iEEG activity at multiple 
time and frequency scales, and thoughtful consideration of when 
seizure activity begins (Spencer et al., 1992; Lee et al., 2000; Perucca 
et al., 2014; Nune et al., 2019). In our previous study (Barry et al., 
2021), an unsupervised clustering method was used for facilitating 
manual labeling of iEEG channels as seizure and non-seizure. With the 
clustering tool, 138,000 iEEGs records were annotated in roughly 320 h 
(Barry et al., 2021). A similar approach cannot be taken for labeling 
seizure onset times, since seizure onset times relative to the start of the 
iEEG record can vary substantially from one iEEG record to another, 
even within individual patients, and hence a clustering method would 
simply not work for seizure onset labeling. As an alternative, transfer 
learning and data augmentation techniques were explored for training 
a seizure onset detector with a relatively small, labeled dataset. 

Accordingly, seizure onset times were manually annotated in 4,859 
seizure iEEG channels. Time-shifting of the signal within the iEEG 
channels resulted in a synthesized augmented dataset consisting of 
30,768 iEEG channels. The RNS System is generally configured to store 
90-s iEEG records with 60 s of pre-trigger activity and 30 s of post-
trigger activity. Long episode iEEG records are usually triggered 30 s 
after a detection episode begins (i.e., long episode duration configured 
to 30 s). This contributes to a bias in the dataset for seizure onsets to 
occur around 30 s after the record start. To mitigate this bias and 
enlarge the dataset, time-shifting augmentation was performed. 
Consequently, Seizure Onset Detection (SOD) models trained on the 
original plus augmented dataset had significantly (p  < 0.05 paired 
t-test) better performance (3.12s median absolute error or MAE) than 
models trained on only the original dataset (4.4 s MAE).

The utility of using a model pre-trained on a relevant task to 
improve SOD performance was explored (LeCun et al., 2015; Desai 
et al., 2019b). To test our hypothesis that using a model pre-trained 

TABLE 6 Median absolute error of the trained seizure onset detection model in each of the five training folds with and without augmented data used 
for training, and by training using different types of model weights as starting point.

Training 
fold 
number

Median absolute error

With data 
augmentation 

(and ESC weight 
initialization)

Without data 
augmentation 

(and ESC weight 
initialization)

ESC weight 
initialization (and 

data 
augmentation)

Random weight 
initialization (and 

data 
augmentation)

ImageNet weight 
initialization (and 

data 
augmentation)

1 3.51 4.62 3.51 5.19 3.96

2 3.05 4.33 3.05 4.44 3.39

3 2.47 3.86 2.47 4.95 2.72

4 3.38 5.05 3.38 4.20 3.69

5 3.38 4.13 3.38 4.83 3.69

Mean 3.12 4.40 3.12 4.72 3.49

FIGURE 6

(Top) Seizure Onset Detection (SOD) model validation performance vs. training epochs on original (left) and augmented (center) datasets. Right panel 
shows median absolute error, mean absolute error, and root mean squared error. In all cases, better model performance was observed when model 
training was performed on the original + augmented datasets. (Bottom) Seizure Onset Detection model validation performance vs. training epochs 
observed by fine-tuning the electrographic seizure classifier (left), a ResNet50 model with random weight initialization (center), and a ResNet50 model 
with weight learned by training on the ImageNet dataset (right).
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on a relevant task could offer performance boosts, three types of 
model weight initializations for the same ResNet50 architecture 
were performed when training the SOD model. The first model was 
initialized using ESC model weights from the relevant task, the 
second used randomly initialized weights, and the third was 
initialized using weights learned by training on the ImageNet 
dataset (Deng et  al., 2009), which consists of over 14 million 
training examples from 1,000 classes. Even though the ImageNet 
weights were derived by training the ResNet50 model on a much 
larger dataset, over 100 times larger than the ESC training set, 
model performance was significantly better (p < 0.05, paired t-test) 
when transfer-learning was performed with ESC weights as the 

starting point. This demonstrates the importance of using task-
relevant weight initializations when fine-tuning models with small, 
annotated datasets. Future model development for iEEG datasets 
collected from the RNS System and other neuromodulation devices 
could use the ESC models as starting-points for transfer learning 
(available for download for academic use at: https://dabi.loni.usc.
edu/dsi/000012) and avoid the resource-intensive task of annotating 
large iEEG datasets. As an example, the ESC model demonstrated 
a classification accuracy of 70% on scalp EEG data in the TUH EEG 
dataset, which is a large publicly available collection of scalp EEG 
recordings (Sun and Morrell, 2014). This accuracy level is higher 
than chance level (50%), indicating that the ESC model has learned 

TABLE 7 Number of seizure onset times annotated by the three reviewers.

Reviewer 1 Reviewer 2 Reviewer 3

Number of iEEG channels with onset time annotated 1,615 1,570 2,081

Number of iEEG channels with onsets before iEEG record start (i.e., 

no valid onset time)

135 (8.36%) 133 (8.47%) 237 (11.39%)

Number of iEEG channels with onset times within iEEG record (i.e., 

with valid onset times)

1,516 (93.89%) 1,437 (91.53%) 1,844 (88.61%)

Number of iEEG channels with all three expert annotations within a 

10-s window

887

Number of iEEG channels with all three expert annotations within a 

5-s window

670

Number of iEEG channels with all three expert annotations within a 

3-s window

549

FIGURE 7

(Top) Seizure onset time prediction in 3 example iEEG channels. The pink vertical line shows the SOD model’s predicted onset time in each of the three 
spectrogram images. (Bottom) Left panel: median difference in onset times between SOD model and human reviewer (y-axis) vs. median difference in 
onset times between reviewers (x-axis). Numbers above data points show the number of iEEG channels used to compute the difference. Right panel: 
Histogram of difference between trained SOD model vs. human reviewer in seconds.
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features that can be applied to EEG datasets captured using different 
devices and recording techniques. By fine-tuning the ESC model 
with labeled EEG examples from these other devices, it is likely that 
the model’s performance on those datasets would significantly 
improve. Alternatively, the ESC model can also be used as a feature 
extractor without additional fine-tuning. For instance, it has been 
utilized as a feature extractor to identify patients with similar 
intracranial EEG (iEEG) seizures in the context of the RNS System 
(Nune et al., 2019).

The combined ESC and SOD models could be of great assistance 
in several clinical scenarios. The ESC model can identify the iEEG 
channels with electrographic seizures, and the SOD model can 
identify the seizure onset time. Since the goal of responsive stimulation 
is often to stimulate early in the electrographic seizure, information 
from the ESC and SOD models can potentially be combined to select 
the neurostimulator detection settings to best detect the iEEG patterns 
that indicate the seizure onset. Another potential scenario is to use 
these models to help physicians as they determine whether a patient 
might benefit from an epilepsy resection or ablation procedure (King-
Stephens et  al., 2015). The ESC model can be  used to determine 
whether the seizures are unilateral or bilateral. If seizures are seen 
bilaterally, the SOD model can determine the hemisphere with the 
earliest seizure onset. If the patient consistently has seizures 
originating only from one hemisphere, or if the onset is consistently 
earlier in one hemisphere than the other, then the patient could be a 
candidate for an ablation or resection of that seizure onset zone (King-
Stephens et al., 2015).

In summary, the work in this paper aims to clinically validate an 
Electrographic Seizure Classifier (ESC) model (Barry et al., 2021) and 
train a second Seizure Onset Detection (SOD) model using a relatively 
small, labeled dataset by leveraging features learned by the first model. 
There are abundant opportunities for improving the performance of 
both the ESC and SOD models described in this paper. For example, 
transformer-based models which have recently shown exceptional 
performance on tasks involving sequence data (Vaswani et al., 2017) 
may be a promising area to explore for iEEG data analysis. Nevertheless, 
clinical tools developed with the models presented in this paper could 
significantly improve epilepsy clinical workflows, particularly with the 
iEEG data review that is predominantly performed manually as of 
today. The ultimate goal is to provide physicians with information to 
assist them in their treatment of patients with challenging epilepsy.
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