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Predicting pathogenicity of missense variants in molecular diagnostics remains a
challenge despite the available wealth of data, such as evolutionary information,
and the wealth of tools to integrate that data. We describe DeepRank-Mut, a
configurable framework designed to extract and learn from physicochemically
relevant features of amino acids surrounding missense variants in 3D space. For
each variant, various atomic and residue-level features are extracted from its
structural environment, including sequence conservation scores of the
surrounding amino acids, and stored in multi-channel 3D voxel grids which are
then used to train a 3D convolutional neural network (3D-CNN). The resultant
model gives a probabilistic estimate of whether a given input variant is disease-
causing or benign. We find that the performance of our 3D-CNN model, on
independent test datasets, is comparable to other widely used resources which
also combine sequence and structural features. Based on the 10-fold cross-
validation experiments, we achieve an average accuracy of 0.77 on the
independent test datasets. We discuss the contribution of the variant
neighborhood in the model’s predictive power, in addition to the impact of
individual features on the model’s performance. Two key features: evolutionary
information of residues in the variant neighborhood and their solvent
accessibilities were observed to influence the predictions. We also highlight
how predictions are impacted by the underlying disease mechanisms of
missense mutations and offer insights into understanding these to improve
pathogenicity predictions. Our study presents aspects to take into
consideration when adopting deep learning approaches for protein structure-
guided pathogenicity predictions.
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1 Introduction

Numerous Mendelian diseases can be attributed to alterations in the coding regions of
the DNA, i.e., missense variants (Kryukov et al., 2007). With rapid advances in sequencing
technologies, the ease and ability to map a person’s complete genome has dramatically aided
in obtaining genetic diagnosis. Nevertheless, only a small fraction of the missense mutations
is pathogenic (Lek et al., 2016) and for the majority of missense variants it is not clear
whether the phenotypic outcome is pathogenic or neutral. Such variants are coined “variants
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of uncertain significance” (VUS). Evidently, identifying and
comprehending the functional effects of missense variants is of
critical importance, not only to understand the etiology of the
disease but also towards development of treatment regimens.

Significant advances have been made in the development of
variant effect predictors that largely rely on evolutionary
conservation, which is a strong signal for predicting
pathogenicity. Such evolutionary cues in combination with
physicochemical properties of amino acids form the base
framework of several state-of-the-art techniques including SIFT
(Ng and Henikoff, 2003), PolyPhen2 (Adzhubei et al., 2010),
CADD (Kircher et al., 2014), and MutPred (Li et al., 2009).
Although evolutionary information holds value in predicting
pathogenicity, it does not provide mechanistic understanding.
The mechanisms of the pathogenicity of missense variants are
often attributable to perturbations in conformational and
functional properties of three-dimensional structures (Wang and
Moult, 2001; Iqbal et al., 2020), which can contribute to our
understanding of the underlying molecular pathology. Several
studies have thus incorporated features that leverage structural
properties (Venselaar et al., 2010; Capriotti and Altman, 2011;
Ittisoponpisan et al., 2019; Laskowski et al., 2020), protein
dynamics (Ponzoni et al., 2020), protein-protein interaction
networks (Yates et al., 2014), and protein structural stability
(Ancien et al., 2018), to improve pathogenicity predictions on
top of what can be achieved with sequence conservations. In the
absence of experimental structural information, context-dependent
sequence-based models have the potential to accurately capture
intra-protein 3D contacts, i.e., via evolutionarily coupled residues
(Morcos et al., 2011; Marks et al., 2012; Hopf et al., 2014). Utility of
such models has shown reasonable improvement in distinguishing
pathogenic missense variants from benign ones (Feinauer and
Weigt, 2017; Hopf et al., 2017). A complete list of available
resources and tools for variant effect prediction and their
benchmark evaluation studies has been published elsewhere (Liu
et al., 2011; Livesey and Marsh, 2022). Despite the significant
advances, the challenge of distinguishing pathogenic variants
from benign ones remains elusive with most methods exhibiting
a wide spectrum of performances on different test datasets (Niroula
and Vihinen, 2019; Livesey and Marsh, 2020).

Most knowledge-driven approaches that employ machine learning
(ML) classifiers rely on various handcrafted features to predict variant
effects, which could be time-consuming and laborious. This is
compounded by heterogeneity in feature attributes that can pose
challenges in data integration (Bagley and Altman, 1995). Deep
learning accelerated approaches can help overcome such limitations.
CNNs have gained prominence in the last decade due to their ability to
automatically capture patterns from input data as well as the
hierarchical representations therein (Krizhevsky et al., 2012),
enabling them to capture relationships between different features.
This aspect is particularly useful for analyzing high dimensional data
such as protein structures.

Recent efforts have demonstrated the use of 3D-CNNs in exploiting
protein structure data for several applications including the prediction of
amino acids compatible with protein microenvironments (Torng and
Altman, 2017; Pun et al., 2022), identification of novel gain-of-function
mutations (Shroff et al., 2020), and the prediction of mutation-induced
changes in protein stability (Li et al., 2020). We introduce DeepRank-

Mut, a configurable 3D-CNN framework that predicts pathogenicity of
missense variants using wildtype structural microenvironment
surrounding the variants in 3D space. The base framework is derived
from its parent DeepRank that distinguishes and ranks biologically
relevant protein-protein interactions from those that arise due to
crystallographic artifacts (Renaud et al., 2021). The underlying
premise of our approach is that the functional outcome of any
missense variant is often reflected in the properties of amino acids in
the variant neighborhood, in addition to the properties of the variant
amino acid itself. Our approach is similar to the method devised by
Torng and Altman (2017), which, given a site, predicts the amino acids
compatible with that specified site based on the surrounding protein
microenvironment. In contrast, we train our model explicitly to learn
label-specific (benign or pathogenic) features/patterns in the variant
neighborhood. Given a missense variant, we first obtain the associated
3D protein structure, either from the protein itself or from a homolog,
and calculate features including surface geometry, empirical energies,
and atomic densities, in addition to the sequence conservation scores for
the mutated site as well as the residues in its neighborhood. These
features aremapped onto 3D grids parameterized using properties of the
constituent atoms, followed by data augmentation to enrich the input
dataset. We then use the power of 3D-CNNs to automatically discern
spatially proximal features within these representations.

DeepRank-Mut achieves a performance comparable to
techniques that efficiently combine sequence and structure-based
features. We analyze the contribution of each of the features to the
model’s predictive ability, as well as how the neighborhood
contributes to the performance. To better understand predictor
accuracy, we explore underlying mechanisms of pathogenic
mutations and show that the features identify autosomal recessive
mutations better than autosomal dominant mutations. We discuss
the overall generalizability of our method and provide avenues for
better 3D-based missense variant prioritization.

2 Methods

2.1 Datasets

A total of 193,714 missense variants (164,574 benign,
29,140 disease-causing) were collected from ClinVar (Landrum
et al., 2018), gnomAD (Karczewski et al., 2020) and Dutch genome
diagnostic laboratories (VKGL, 2019), which could be linked to protein
structures, either directly or through homology with a sequence identity
cut-off of 40%. This cutoff was selected based on previous research that
suggests that a 40% identity corresponds to a good likelihood of
functional equivalence (Pearson, 2013). Missense variants were
mapped onto protein structures using 3DM systems as a guide
(Kuipers et al., 2010). Independent test datasets were obtained from
studies based on BRCA1 (Findlay et al., 2018), Gunning et al. (2021)
and the InSIGHT database (Thompson et al., 2014). This resulted in a
total of 217,679 missense variants that could reliably be mapped onto
57,551 structures; 25,856 structures were mapped to 40,369 pathogenic
variants, and 31,695 structures weremapped to 177,310 benign variants.
It should be noted that, at this stage, the structures are mapped
regardless of the experimental method used for their determination.
Missense variants from ClinVar were incorporated if they had a review
status of at least one star, excluding those with conflicting
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interpretations. “Benign” and “Likely benign” ClinVar variants were
included and categorized as benign, while “Pathogenic” and “Likely
pathogenic” variants were incorporated and classified as pathogenic.
The gnomAD variants with a minor allele frequency higher than 0.1%
were selected and labeled as benign.

Our in-house database, HSSP (Touw et al., 2015) was consulted
to obtain structure-based sequence alignments. Position-specific
scoring matrices (PSSMs) were constructed for the alignments
using PSI-BLAST (Altschul et al., 1997) with single iteration.
Each of the PSSMs were then mapped back onto their respective
structures using the PSSMGen package (https://github.com/
DeepRank/PSSMGen).

2.2 Data pre-processing

2.2.1 Feature calculation and voxelization of the
neighborhood

We use protein crystal structures of resolution better than 3Å in
our study, as these provide details at the atomic level with high
certainty (Zardecki et al., 2022). Consequently, variants that are

mapped to structures solved using methods other than X-ray
crystallography, such as NMR or cryo-EM, are excluded. For ease
in data handling, we mapped each missense variant to a maximum
of three crystal structures of the most similar sequences. For each
variant mapped to a crystal structure, we first extract the local
neighborhood with a radius of 10Å around the variant, which
typically serves as a distance beyond which the strength of long-
range non-bonded interaction energies gradually weakens (Pincus
and Scheraga, 1977). We include residues whose atoms fall within
this radius to obtain residue-based features. This is followed by
calculation of atomic features such as densities and charges for the
wildtype amino acid and the residues in its microenvironment.
Pairwise Coulomb and van der Waals potentials are calculated
between atoms of the wildtype residue and the residues in the
neighborhood. For a given atom, these features are defined as the
sum of all pairwise potentials between the atom and its contact
atoms. Bonded pairs, i.e., pairs of atoms separated by up to 2 bonds
are excluded from this measure. The atomic densities, charges and
non-bonded energies are based on the OPLS force field (Jorgensen
and Tirado-Rives, 1988), calculated in the same manner as in the
parent DeepRank (Renaud et al., 2021) (see Supplementary

FIGURE 1
A schematic of the DeepRank-Mut framework. (A) The first step includes extraction of the variant environment, where residues within a radius of 10Å
(diameter of 20Å) around the variant are drawn. As an example case, the crystal structure of phosphoglucomutase (PDB: 1C4G) with the missense variant
Asn37 is depicted. This is followed by the feature calculation step where structural properties and PSSM scores are computed for the variant site and the
residues in its environment. All features are localized on atoms as illustrated in (B). For simplicity, one structural property (charge), localized on
atoms, is shown. A 3D grid of size 20 × 20× 20 is centered at theCα atomof the residue at variant site, discretized into voxels of 1Å. (C) Each of the features
calculated are normalized using standardization and then mapped onto the grid using a Gaussian function. For simplicity, the Gaussian mapping of one
feature, i.e., charge for all atomswithin a 20Å box is depicted. In principle, a total of 31 calculated features aremapped to the 3D grid for a given variant. (D)
This 3D gridwithmapped features of shape (20, 20, 20, 31) serves as an input for the 3D-CNNnetwork. The final classification score takes a value between
0 and 1 for each class (benign and pathogenic).
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Methods). Solvent accessible surface area (SASA) is calculated using
FreeSASA (v2.0.3) (Mitternacht, 2016). Water molecules in protein
structures, when present, are not included in the analysis. In
addition to the PSSM obtained for the wildtype and variant
amino acids, we also include the PSSM profile for the residues in
the variant microenvironment. Such residue-based feature values are
assigned to the residue’s constituent atoms. All feature values are
localized on atoms, to be subsequently mapped on a 3D grid (see
Figure 1); only those atoms that lie within 10Å radius of the variant
are considered. At this stage, it should be noted that some structures
in the PDB database may contain missing residues that fall within
the variant environment radius, leading to errors in the feature
mapping step. Such molecules are thus, excluded from the dataset.

We construct a 3D grid of size 20Å × 20Å × 20Å centered at the Cα
atom of the amino acid at the variant site. This 20Å box is divided into
voxels of 1Å, parameterized with 31 physicochemical property channels
(Table 1). The properties are mapped on a 3D grid using Gaussian
functions to approximate atom connectivity, as demonstrated previously
in the parent DeepRank framework (Renaud et al., 2021). The
contribution (wk) of an atom k to a given grid point is determined
based on Gaussian distance dependence, i.e., the contribution decreases
with increasing distance between the atom and the grid point. This is
given by the equation:

wk r( ) � vk exp r − rk‖ ‖2 /2σ2( ) (1)

where vk is the feature value, r denotes position of the grid point and
rk denotes atomic coordinates (x, y, z). The standard deviation σ

denotes the van der Waals radius of the associated atom.
The feature maps are stacked to create a tensor of shape (20, 20,

20, 31) that then serves as an input to the neural network. We also
normalize features of the input data using standardization prior to
training. To optimize for speed and efficient handling of large
volumes of data, we developed a distributed data preprocessing
framework with GPU support, which enabled faster preprocessing
times and scalability during numerous iterations of experiments (see
Supplementary Methods, Supplementary Figure S1).

2.2.2 Data augmentation
Prior to the training step, we enrich each of the input 3D grids

using data augmentation where a given grid is randomly rotated
around its center, and features are mapped onto the grid
subsequently. Such a strategy has been shown to improve the
performance of CNNs (Shorten and Khoshgoftaar, 2019). For the
current study, we used 5 augmentations based on hyper parameter
tuning experiments (Supplementary Figure S3). We did not
experiment with a higher number of augmentations due to the
infeasible computational costs involved.

2.3 Network architecture

The network used in our study includes a sequential organization
of three 3D convolutional layers, alternating with one 3D max pooling
layer followed by two fully connected layers (Figure 1). We include
batch normalization layers, in addition to dropout layers between the
fully connected layers to regularize the model. Details of the
architecture are provided in Table 2 and the complete schema is
provided in Supplementary Figure S2. Each 3D convolution layer
comprises a set of learnable filters that traverse the input space (depth,
height and width) with a stride of 1, capturing local spatial patterns in
the variant environment. The output from convolution operations,
i.e., the computed feature maps are transformed by a rectified linear
activation function (ReLU), which allows the network to identify and
extract meaningful spatial features. This is followed by dimension
reduction using max pooling operation and a final 3D convolutional
layer with ReLU. The transformed output is then flattened to a one-
dimensional vector that serves as an input to two fully connected
layers. The two final layers integrate the features and apply a set of
weights that are optimized during the training step to map extracted
features to target classes. The output is then passed through the
softmax function which provides the final classification score, a
probability estimate between 0 and 1, each for benign and
pathogenic classes.

2.4 Training

We performed 10-fold cross validation experiments while
ensuring that the missense variants in the training and validation
sets are from different proteins, to avoid type 1 circularity in
predictions (Heijl et al., 2020). The test dataset included missense
variants independent from the 10-fold training and validation sets.
Most genetic variation is neutral, and it is therefore rather common to
observe a higher number of benign variants than pathogenic variants
in the training data, which has the potential to bias training and
performance. We thus constructed balanced subsets of randomly
sampled benign and pathogenic missense variants for each of the 10-
fold runs. For efficient memory handling, we employed training in
mini-batches of 256 variant instances which amounted to
~1,200 mini-batches per epoch. An epoch refers to a single pass
through the complete training data during which the model weights
are adjusted to minimize the error between predicted and true label
for each input. With the input dataset, one epoch in our approach
referred to one pass throughmore than 280,000 variant instances. We
used the AdamW optimizer (Loshchilov and Hutter, 2019) with a

TABLE 1 List of features calculated for the residue at the mutation site and the
residues in its neighborhood.

Features Number of channels

Atomic densities (C, N, O, S) 4

Atomic charges 1

Solvent accessibility 1

Coulomb potential 1

van der Waals potential 1

Wildtype score: PSSM 1

Variant score: PSSM 1

Information content (PSSM) 1

PSSM profile 20

Total 31

All features, including residue-level features such as sequence conservation scores, are

localized on atoms. The two sequence-based features (wildtype and variant probability) are

mapped to the atoms of a given wildtype residue.
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learning rate of 0.001 and weight decay of 0.005 to train our model for
10 epochs.We used cross entropy loss during training, which attempts
to minimize the differences in probability distributions between
predicted and ground truth labels by adjusting weights. A dropout
rate of 0.5 was used to regularize the model. The hyperparameters
including number of convolutional layers, number of max pooling
layers, grid size, were optimized based on performance on validation
set across 10 folds, starting from default parameters of the parent
DeepRank.

2.5 Evaluation metrics

Two metrics, Matthews Correlation Coefficient (MCC) and
accuracy, were used to evaluate the performance of DeepRank-
Mut. The primary metric used was MCC, as it offers a reliable
statistical measure by taking all four categories-true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) into
account, proportional to the size of the binary classes (Eq. 2). The
usefulness of MCC over accuracy or F1 scores for binary classification
has been demonstrated previously (Chicco and Jurman, 2020).

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√

(2)
For comparative evaluation with popular state-of-the-art variant

effect predictors, we used precomputed pathogenicity prediction scores
of 8 algorithms from dbNSFP v4.3 database (Liu et al., 2020; 2011),
including SIFT4G (Vaser et al., 2016), PolyPhen2 (Adzhubei et al.,
2010), MutationTaster (Schwarz et al., 2014), MutationAssessor
(Reva et al., 2011), FATHMM (Shihab et al., 2013), VEST4
(Carter et al., 2013), PROVEAN (Choi and Chan, 2015) and

MutPred (Li et al., 2009), as well as prediction scores from Helix
(Vroling and Heijl, 2021). Where available, we used “converted
rankscores” from dbNSFP to ensure that a higher score always
indicated higher likelihood of pathogenicity. We excluded meta
predictors from this comparison, as well as those that combine
annotations from other tools, to account for methods that rely on
first principles to predict functional effects of missense variants.

3 Results

3.1 Overview of the datasets and
DeepRank-Mut

Training, validation, and test sets are often generated using a simple
random split. However, this can result in over fitting and misleading
results due to data leakage between the training and evaluation sets
(Heijl et al., 2020). Data splitting at the level of proteins or genes, where
training sets never include any data samples from proteins that occur in
the validation or test set is used tomitigate this.We split our dataset into
10 pairs of training and test sets, each containing 90% and 10% of the
full dataset, respectively, allowing 10-fold cross validation on the full
dataset. Independent test sets were gathered from three studies, as
described in methods, to aid in the final assessment of the tool’s
performance. These test sets have been selected as they not only
cover genes in-depth (Thompson et al., 2014; Findlay et al., 2018)
but are also aimed at benchmarking pathogenicity predictors
specifically (Gunning et al., 2021).

After splitting the data, the balanced subsets of randomly
sampled benign and pathogenic variants, each mapped to at most
three structures, comprised a total of ~50,000 instances in the
training set, ~4,700 instances in validation and 6,571 in the test

TABLE 2 Network architecture used in DeepRank-Mut.

Layer Size Output shape

Batch normalization layer 1 Input 20 × 20 × 20 × 31

3D convolutional layer 1 20 × 20 × 20, 31 filters, kernel size = 2, stride = 1 19 × 19 × 19 × 31

Batch normalization layer 2 19 × 19 × 19 × 31

3D convolutional layer 2 19 × 19 × 19, 64 filters, kernel size = 2, stride = 1 18 × 18 × 18 × 64

Batch normalization layer 3 18 × 18 × 18 × 64

3D max pooling layer Stride = 2 9 × 9 × 9 × 64

3D convolutional layer 3 9 × 9 × 9, 64 filters, kernel size = 3, stride = 1 7 × 7 × 7 × 64

Batch normalization layer 4 7 × 7 × 7 × 64

Flatten 7 × 7 × 7 × 64 21,952

Batch normalization layer 5 21,952

Fully connected layer 1 21,952 × 100 neurons 100 neurons

Dropout (p = 0.5)

Fully connected layer 2 100 × 100 neurons 100 neurons

Dropout (p = 0.5)

Softmax 100 × 2 2 scores (benign, pathogenic)
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set, per fold. The test set was kept identical across all cross-validation
folds for an unbiased evaluation of the model.

DeepRank-Mut retains its modularity in implementing data pre-
processing steps and training the deep neural network, similar to its
parent DeepRank (Renaud et al., 2021). It allows for flexibility in tasks
including feature calculations, setting the grid size and grid resolution,
data augmentation, as well as optimizing hyperparameters of the neural
network. The base requirements of DeepRank-Mut include a dataset of
variants with labels (benign or pathogenic), a dataset of variant-
structure maps where each variant is linked to a 3D structure
(either experimentally determined or evolutionarily related), a
dataset of 3D structures and an optional dataset of PSSM profiles
derived for each structure. As detailed in the methods, the framework
computes physicochemical properties of the amino acid at the variant
site as well as its environment within a radius of 10Å, followed by
voxelization to encode the atomic neighborhood of residues (Figures
1A, B). Our approach relies on leveraging local properties of sites
characteristic of benign or pathogenic variants, as pathogenic variants
generally tend to occur in regions important for structural/functional
integrity of the protein (Iqbal et al., 2020), like its hydrophobic core.We
thus compute a total of 31 features (Table 1), encompassing structural
and sequence-based properties, for the residue at the variant site and
residues spatially proximal to it. The computed features aremapped to a
3D grid where each voxel is parameterized with the feature channels
(Figure 1C), which is then followed by data augmentation. As a given
variant environment can differ in orientation within or across proteins,
the data augmentation step accounts for rotational invariance, thereby
improving the model’s robustness to variations in input data
(Supplementary Figure S3). From our dataset of structures and
missense variants, we generated ~300,000 augmented grids per fold
dataset, which were used as input to 3D-CNN (Figure 1D). Each
augmented 3D grid is treated as a separate variant instance, thus our
model outputs 6 predictions per missense variant (origin grid
+5 augmented grids) which are averaged to give one final
classification score.

3.2 Overall performance

Our approach achieved a mean accuracy of 0.77 and an average
MCC score of 0.52 across the test datasets, with an average
sensitivity (true positive rate) of 0.75 and an average specificity
(true negative rate) of 0.78 (Figure 2; Table 3).

3.2.1 Impact of individual features and the variant
environment on the performance

To investigate the contribution of neighborhood in the predictor
accuracies, we compared the performance of our 3D-CNN model
trained on all features to those trained separately on-a) PSSM features,
b) structural features, c) variant site-specific PSSMs (Figure 3A). The
model trained on PSSM features included PSSMs for the residues in
the 3D neighborhood as well as the scores for wildtype and variant
amino acids, while the model trained on variant site-specific PSSMs
was devoid of the neighborhood profile. As illustrated in the figure, the
features derived from the neighborhood, in the 3D context, seemingly
hold more information than the site-specific features. This aspect was
also observed during hyperparameter tuning experiments, where a
range of different sizes of 3D grids were tested to find the optimal grid

size. Models with smaller variant neighborhoods (grid sizes = 7Å, 8Å)
performed poorly on validation sets as compared to the models with
grid size of 15Å and 20Å (Supplementary Figure S4). It has been
reported earlier that the atomic details do not provide significant
information for local protein environments beyond a 20Å cutoff
(Bagley and Altman, 1995). An optimal grid size of 20Å was thus
chosen for all experiments. Additionally, we investigated the apparent
contribution of individual structural features in prediction accuracies,
as illustrated in Figure 3B. We note that solvent accessibility of
residues has the most predictive capacity amongst all structural
features. Residues buried in the hydrophobic core of the protein
are often associated with pathogenicity, while solvent-exposed
missense variants are often found to be enriched in populations, as
also exemplified by Iqbal et al. (2020).

Additionally, we also performed leave-one-feature-out analysis to
assess redundancy in our feature selection. Figure 3C illustrates
similarity in ROC curves of models trained without pairwise
potentials (Coulomb + van der Waals), atomic charges and atomic
densities. The contributions of these features in prediction accuracies
are similar as also noted in Figure 3B, suggesting redundancies in
features employed. Subsequently, we tested our model’s performance
by excluding seemingly redundant features, such as atomic densities
and charges from the feature set (Figure 3D). Although minimal, the
contribution of each of the structural features holds value in the
overall performance. Significantly, solvent accessibility and PSSMs
show considerable impact on the model’s performance.

3.2.2 Comparison with state-of-the-art resources
We used precomputed pathogenicity scores of 8 algorithms from

dbNSFP database as well as scores from theHelix for the test dataset used
in the study. In the case of PolyPhen2, we used scores from theHumVar-
trained models as recommended by the authors for the purpose of
distinguishing variants with drastic functional effects from benign ones
(Adzhubei et al., 2013). Figure 4 illustrates the ROC curves drawn from
these scores along with those from DeepRank-Mut for the variant
predictions available for each algorithm. While the performance of
our approach is seemingly comparable to other widely-used resources
that incorporate sequence conservation and structural features, such as
MutPred (Li et al., 2009) and PolyPhen2 (Adzhubei et al., 2010), it must
be noted that the available variant predictions for these tools constitute
62% and 72% of the total test set, respectively (n in Figure 4,
Supplementary Table S1). Both these ML-based tools incorporate
several handcrafted features, aside from sequence conservation,
including secondary structural assignments, normalized B-factors, and
various annotations of functional sites; the only overlapping features with
DeepRank-Mut being SASA and sequence conservation. Helix, built on
proprietary structure-based sequence alignments (Kuipers et al., 2010;
Vroling and Heijl, 2021), and VEST4, a variant prioritization tool that
explores enrichment of functional variants across disease exomes (Carter
et al., 2013), were notably the top performers.

3.3 3D-CNNs appear less powered to
identify outcome of solvent-exposed
variants

We examined our model’s predictive ability by analyzing
missense variants in the test-set that were consistently predicted
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incorrectly across all 10 folds. We explored the aspects that
promoted incorrect classification. A total of 2,883 missense
variants were found to be incorrectly classified across the
cross-validation experiments, of which more than half (1,732)
consisted of misclassified pathogenic variants. We computed
relative solvent accessibilities (RSA) for each variant residue,
by dividing their absolute solvent accessibilities in Å2 by their
maximum allowed solvent accessibilities obtained from Rost and
Sander (Rost and Sander, 1994). Residues were categorized as
solvent-exposed if the RSA values were >20% and buried if below
20%. Using these a substantial proportion of the misclassified
pathogenic variants was found to be solvent-exposed
(Supplementary Table S2).

We constructed 2 × 2 contingency tables based on the correct
and incorrect classifications with respect to solvent accessibility of
the associated variants. Figure 5 illustrates the role of solvent
accessibility in the predicted outcomes. The misclassified variants
pertained to solvent-exposed pathogenic variants and buried benign
variants (Figure 5A, odds ratio = 0.27). That we are relatively
successful in predicting pathogenicity in buried variants is
consistent with the notion of buried enrichment of pathogenic
variants (Iqbal et al., 2020; Savojardo et al., 2020). The
distribution of raw atom-level solvent accessibility values across
benign and pathogenic classes calculated in our approach is
illustrated in Supplementary Figure S9. Two reasons for the
quality of the predictions could be postulated: a) considering the
contribution of SASA in the model’s performance, it is likely that the
model is unable to generalize on missense variants that fall outside
the purview of typical SASA distribution observed in benign and
pathogenic variants, or b) the 3D input grids for solvent-exposed
missense variants are sparsely populated which leads to a lack of
discernible patterns/features for the model to learn from.

We created separate training subsets of buried and solvent-
exposed variants to understand 3D-CNN’s generalizability to either
subset. We observed that the predictions on pathogenic variants
improved with the model trained on buried missense variants alone,
however, this model misclassified much of the benign variants,
whereas the model trained on solvent-exposed variants alone
showed a performance comparable to that of the full model
trained on all variants (Figure 5B; Supplementary Figure S5). It is
possible that the presence of a large proportion of solvent-exposed
variants in our training data may have impacted the performance
(Supplementary Figure S9). Furthermore, to assess whether sparsity
of 3D grids of solvent-exposed variants affected the model’s
performance, we calculated the ratio of solvent (void) voxels to
atom-contained (non-void) voxels in the 3D grids in test dataset and
compared the distribution of these ratios against the corresponding

FIGURE 2
Overall performance of DeepRank-Mut. (A) The performancemetrics of DeepRank-Mut on test sets across 10 folds are depicted as boxplots for true
positive rate (TPR), false positive rate (FPR), accuracy and MCC. (B) Confusion matrix depicting the average of TP, FP, FN, and TN across 10 folds.

TABLE 3 Details of the performance metrics of DeepRank-Mut on test sets
across 10 folds.

Fold TPR FPR Accuracy MCC

1 0.613 0.142 0.78 0.49

2 0.765 0.241 0.76 0.52

3 0.70 0.124 0.79 0.59

4 0.768 0.258 0.76 0.51

5 0.777 0.24 0.77 0.52

6 0.787 0.188 0.80 0.60

7 0.713 0.235 0.74 0.48

8 0.777 0.191 0.79 0.58

9 0.758 0.326 0.72 0.43

10 0.716 0.186 0.76 0.53

Average 0.737 0.213 0.77 0.52

Frontiers in Molecular Biosciences frontiersin.org07

Ramakrishnan et al. 10.3389/fmolb.2023.1204157

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1204157


pathogenic and benign prediction scores. We find no correlation for
pathogenic variants (Pearson’s r = −0.09), while we find that the
presence of void voxels is weakly indicative of correct classifications
for benign variants (Pearson’s r = −0.24) (Supplementary Figure
S10). This overall suggests that grid sparsity has weak effect on the
correct classification of benign variants, whereas the incorrect

classifications of solvent-exposed pathogenic variants is possibly
due to other reasons, such as lack of function-specific features, and/
or incomplete knowledge of their interaction partners.

Since data augmentation and feature normalization strategies,
typically used to circumvent lack of generalizability and potential
biases, are already incorporated in our approach we experimented

FIGURE 3
Contribution of the variant neighborhood and features to themodel’s predictive ability. (A) Receiver operating characteristic (ROC) curves are drawn
from scores generated by the complete model (red) and by models separately trained only on the PSSM profile of residues in the neighborhood (green),
only on the structural features from the neighborhood (cyan) and PSSM of mutation site alone (purple). The AUC values obtained illustrate the value of
using 3D neighborhood information in the predictions. (B) ROC curves are drawn using scores generated by models separately trained on the
individual structural features. (C) ROC curves for leave-one-feature-out analysis are drawn using scores from models trained without a specific feature.
Model trained without PSSMs (beige) and the model trained on structural features from neighborhood (cyan) in the first panel (A) are identical. (D) ROC
curves are drawn for scores from models where redundant features are removed. For consistency the model trained on all 31 features is included in all
panels. Total n = 6,571 instances, 3,804 pathogenic and 2,767 benign.
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FIGURE 4
Comparison with other state-of-the-art resources. ROC curves drawn from scores generated by various pathogenicity predictors, including
DeepRank-Mut, are shown based on the test variants available for each predictor in dbNSFP.

FIGURE 5
Association of solvent accessibility of variants in prediction outcomes. (A) Bar charts for correctly classified andmisclassified variants with respect to
their solvent accessibility are shown. (B) The performance metrics on test data in terms of TP, FP, FN, TN are depicted as bar charts for models trained on
all variants (full model), on only buried variants (buried model) and on solvent-exposed variants alone (solvent-exposed model). The proportion of true
positives, i.e., pathogenic variants in the model trained on buried variants is notably high.
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with inclusion of other structural features: secondary structural
content and normalized B-factors. The premise behind use of
secondary structural content was based on the report by Abrusán
and Marsh (Abrusán and Marsh, 2016), who showed differences in
the ability of alpha helices and beta strands to tolerate mutations.
Secondary structural assignments for protein structures were
obtained from our in-house database (DSSP v.3.1.4) (Kabsch and

Sander, 1983), and were stored as one-hot encoded features in 3D
grids. B-factors or temperature factors are obtained from X-ray
crystallography experiments that indicate atomic flexibility in the
protein’s crystalline state, and are known to correlate with flexible
regions of the protein. Based on the earlier reports of active/
functional sites associated with lower B-factors as compared to
non-functional residues (Sun et al., 2019), we used normalized
B-factors as a feature to potentially capture such differences.
However, the two additional features did not serve as strong
determinants of pathogenicity (Supplementary Figure S6). The
relatively low quality of predictions for solvent-exposed
pathogenic variants and buried benign variants could be due to
lack of function-specific features.

3.4 Success of pathogenicity prediction
depends on underlying disease mechanisms

We further investigated DeepRank-Mut’s generalizability
with respect to mutation mechanisms. Most available
pathogenicity predictors do not make a distinction between
different types of mutation mechanisms such as loss-of-
function (LoF) or gain-of-function (GoF), that are often
linked to mode of inheritance. LoFs are function-disrupting
mutations that usually cause damage to protein structures and
are straightforward to comprehend and identify, as they are
generally not tolerated at sites of high structural and/or
functional importance, and lead to degradation of the protein.
In contrast, GoFs exhibit milder effects on protein stability while
giving rise to altered protein functions that lead to diseases
(Gerasimavicius et al., 2022). In terms of mode of inheritance,
autosomal recessive (AR) diseases are predominantly linked to
LoFs, while autosomal dominant (AD) diseases manifest through
mechanisms such as GoFs, dominant-negative mutations (DN)

FIGURE 6
Impact of underlying disease mechanisms on pathogenicity
predictions. Performance of DeepRank-Mut on two datasets that are
divided based on mode of inheritance. ROC curves are drawn for
scores generated from the model tested on variants with AD
inheritance (n = 585), and from the model tested on variants with AR
inheritance (n = 77). The AUC values are markedly different between
the two datasets as depicted. It must be noted that the predictions are
made for those variants that could be mapped to protein crystal
structures.

FIGURE 7
Association ofmissense variants across predictions on different test datasets with solvent accessibility. The bar plot shows the proportion of surface-
exposed and buried missense variants in each of the binary outcomes for each of the datasets. “All” denotes all input variants, AD denotes mutations with
autosomal dominant inheritance, and AR denotesmutations with AR inheritance. The log-odds ratio is calculated for each case to determine the strength
of association between the binary feature (buried or surface-exposed) and the binary outcome (benign or pathogenic).
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as well as through LoFs, i.e., haploin sufficiency (Veitia et al.,
2018).

To understand how DeepRank-Mut generalizes on distinct modes
of inheritance of pathogenic variants, we split our test datasets into
variants with AD inheritance (n = 1,363; 550 benign, 813 pathogenic)
and variants with AR inheritance (n= 563; 244 benign, 319 pathogenic),
based on information obtained from ClinVar (Landrum et al., 2018).
Only a smaller subset could be mapped to crystal structures:
585 structures mapped to 515 AD variants, and 77 structures
mapped to 132 variants. We did not filter the AD dataset further to
segregate mutations into haploinsufficient genes (LoFs) and non-LoFs
(GoFs, DNs), due to lack of detailed annotations of non-LoFs in
ClinVar. However, it is worth noting that mutations in the AD
dataset could consist of higher proportion of LoFs than non-LoFs
due to smallermutational target for non-LoFs, i.e., fewermutations alter
protein function than disrupt it. Figure 6 illustrates a marked difference
in the model’s performance between the two datasets, suggesting
dependence on underlying effects of the variant on the protein. It is
apparent from the figure that our model is able to generalize AR
mutations (LoFs) better than AD mutations (LoFs and non-LoFs).
Details on the pathogenicity predictions obtained for AD and AR
datasets, are provided in Supplementary Table S3. To further examine
our relative success in correctly classifying buried pathogenic variants
and AR variants we analyzed the distribution of solvent accessibility in
the AD and AR datasets. Interestingly, the typical distribution of
solvent-exposed benign variants and buried pathogenic variants was
found to be more pronounced in AR datasets than in the AD datasets
(Figure 7), explaining the relative success of our model in distinguishing
LoF mutations from benign (Supplementary Figure S7, MCC = 0.67).

4 Discussion

Numerous efforts in the last decade have aided in the general
understanding of effects of disease-causing mutations on the
biophysical characteristics of proteins-including protein stability,
dynamics, and protein-protein interactions (Kucukkal et al., 2015;
Iqbal et al., 2020). It has been observed that pathogenic mutations
are often associated with changes in local hydrogen-bonding
network, electrostatic interactions, and overall side-chain
geometry (Kucukkal et al., 2015). Although this knowledge has
helped in the advancement of variant effect predictors that integrate
various information on top of sequence-based features, the accurate
prediction of a functional outcome of a missense variant is often
fraught with challenges that we partly bring forth in this study.

We describe DeepRank-Mut, a structure-guided approach that
leverages properties in the local variant neighborhood and uses 3D-
CNNs to draw relationships between the spatially proximal features to
distinguish pathogenic missense variants from benign. Our approach is
robust to rotational variations, as we account for different orientations
of a given variant environment through data augmentation steps. We
did not experiment with larger augmentations due to large
computational costs incurred. The performance of DeepRank-Mut
was found to be comparable with other widely used predictors, such
as PolyPhen2 which employs classical ML algorithm and relies on
handcrafted features. Our investigations into the generalizability of our
model revealed aspects that could be of interest to those who adopt deep
learning techniques in structure-based variant effect predictions.

We find that the evolutionary information (PSSM profile) of
the variant neighborhood captures patterns in the 3D structural
context of variant sites better than the individual structural
properties themselves. In contrast, inclusion of variant site-
specific conservation scores alone, devoid of the 3D context,
render the 3D-CNN model myopic thereby affecting the overall
predictive ability. This finding is of considerable significance as it
shows that the model potentially draws context dependence in
terms of evolutionarily coupled residues. Pairs of residues under
structural and functional constraints can exhibit strong inter-
residue correlations, and thus coevolve (de Juan et al., 2013).
Such a property has been shown to be useful in capturing
effects of genetic variations (Hopf et al., 2017). Without
explicitly modeling such inter-residue correlations, the
performance of our model trained only on the PSSM profile of
the neighborhood illustrates the utility of 3D-CNNs in capturing
complex relationships between residues. This is further
strengthened by the leave-one-feature-out analysis, where
exclusion of seemingly redundant features from the model
affected its performance.

Solvent accessible surface area was identified as the second most
important feature that contributed to the predictor accuracies.
Considering earlier reports on the enrichment of solvent-exposed
missense variants in populations and enrichment of pathogenic
variants in the hydrophobic core of proteins (Iqbal et al., 2020;
Savojardo et al., 2020), we sought to explore their distribution in
missense variants which were consistently misclassified across our
datasets. We note that a significant proportion of misclassified
pathogenic variants were found to be solvent-exposed, which
raises the question whether our model loses generalizability
while prioritizing buried pathogenic variants. Our experiments
with models separately trained on buried and solvent-exposed
missense variants yielded interesting results. The buried model
could correctly identify pathogenic variants, even those that are
solvent-exposed, while misclassifying a significant proportion of
benign variants. The solvent-exposed model, on the other hand,
showed similar performance in comparison to the original full
model trained on all variants. These findings necessitate
incorporating function-specific features or use of other suitable
representations of protein structures, such as graphs, to
adequately capture the underlying differences within
pathogenic missense variants. Achieving high classification
scores on solvent-exposed variants do pose a challenge, yet
may be overcome with the following strategies: a) ensemble
learning, combining multiple models trained on different
feature sets related to solvent-exposed variants, such as ligand
binding sites or phosphorylation sites; b) active learning,
iteratively selecting the most informative solvent-exposed
variants for labeling and training the model; or c) self-
supervised learning, training the model to predict masked
residues. Moreover, it is also possible that the solvent-exposed
pathogenic variant site is a part of a larger assembly or participates
in protein-protein interactions, an aspect not considered in this
study. Use of full protein complex structures for pathogenic
variants, wherever applicable, or features that indicate their
role in function could help improve classifications
(Gerasimavicius et al., 2022). Overall, we find that the two
main features: evolutionary information of residues in the
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variant neighborhood and solvent accessibilities sufficiently
capture most of the important traits around variant sites.

Consideration of disease mechanisms appears to be crucial in
the quality of pathogenicity predictions, as exemplified in our
study. Our approach could generalize on mutations linked to AR
inheritance better than the mutations linked to AD inheritance,
corroborating results from an earlier study by Gerasimavicius et al.
(2022). This finding is primarily due to the underlying mechanisms
of mutations where protein destabilizing LoFs, often associated
with AR diseases, are more straightforward to identify than non-
LoFs which tend to have milder impacts on protein stability.
Moreover, distribution of solvent accessibility of variants was
suggestive of notable differences in the proportion of buried
and solvent-exposed pathogenic variants, across the datasets.
The overall performance of AR datasets over AD dataset is
potentially due to two plausible reasons: a) feature
representations are sufficiently able to distinguish LoFs from
benign, and not non-LoFs from benign and b) limited amount
of data on variants with non-LoF mechanisms. Both these
postulates hold true considering the damaging effects on
protein structure caused by LoFs that are relatively
straightforward to discern (Gerasimavicius et al., 2022), and
considering the total size of missense variants with non-LoF
mechanisms (GoF and DN) mapped onto protein structures
(n = 972), which is insufficient for training using deep neural
networks. Since we did not segregate the AD dataset further into
non-LoFs (GoFs, DNs) and LoFs, i.e., mutations in
haploinsufficient genes, it is not apparent how the PSSM profile
of residues in a variant environment and their solvent accessibility
impact the predictions made. Nevertheless, our analysis
underscores the necessity of incorporating features related to
non-LoFs in improving pathogenicity predictions. This can be
achieved through scrutiny and inclusion of gene-level and protein-
level features specific to each of the mutation mechanisms in
question, as documented by Sevim Bayrak et al. (2021). In
addition, proteins in both AD and AR datasets reportedly show
significant differences in functional class prevalence
(Gerasimavicius et al., 2022), necessitating function-specific
analysis to delineate characteristics of the disease mechanisms
of mutations (Iqbal et al., 2020).

Our current method does not include explicit modeling of
mutations into the protein structure, nor inclusion of protein
dynamics, an inherent property linked to protein function.
Indeed, inclusion of such details can aid in the recognition of the
extent of mutation-induced changes in intra-protein structural
contacts, as well as changes in thermodynamic stability
(Rodrigues et al., 2018). In combination with other relevant
features, these may provide considerable insights into
understanding different effects across different mutation types,
even with limited protein structural data. While we acknowledge
the limitations of training our model on static protein
microenvironments, we understand that more features may not
necessarily imply better performance with neural networks. With
suitable representations of protein structures (graphs) and
information on protein dynamics it is important to address
fundamental problems, such as predicting functional sites
(Chiang et al., 2022) or predicting structurally important sites to
further our understanding of model-driven approaches. This can

help gauge utility of protein dynamics-informed or physics-
informed graph representations in predicting variant pathogenicity.

To summarize, we have described a structure-guided
approach to predict functional outcomes of missense variants
using 3D-CNNs. We analyze and demonstrate the contribution of
different features on the predictive ability of the neural network.
Of particular note is the influence of evolutionary information of
the variant neighborhood and their solvent accessibilities in
determining variant pathogenicity. We further provide detailed
assessment of our model’s generalizability on distinct
mechanisms of mutations, which presents a complex but
critical challenge in improving pathogenicity predictions. Our
analysis presents lessons to consider when using model-driven
approaches to address questions in structure-guided predictions
of variant pathogenicity.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
dirrected to the corresponding author. The source code and
documentation of DeepRank-Mut are available at https://github.
com/DeepRank/DeepRank-Mut/.

Author contributions

MH, LX, and BV conceived the project. CB and GR designed
the algorithm from its parent. GR, CB, RvH, and JH implemented
and evaluated the algorithm. BV and SH compiled and pruned
datasets of missense variants and 3D structures. GR performed
the analyses, interpretation of data and wrote the manuscript. All
authors contributed to the article and approved the submitted
version.

Funding

This research was supported by the Europees Fonds voor
Regionale Ontwikkeling (EFRO) (R0005582). LX acknowledges
support from Hypatia Fellowship from RadboudUMC
(Rv819.52706). The work was carried out on the National
Computer Facilities (NWO-2021.047).

Acknowledgments

The authors acknowledge Dario Marzella for his inputs on grid
feature visualizations. The authors also acknowledge Dr. Peter-Bram
t’Hoen, Dr. Hanka Vensalaar, Daniel Rademaker and the reviewers
for their useful suggestions.

Conflict of interest

Authors SH and BV were employed by Bio-Prodict. Authors
RvH and JH were employed by Vartion.

Frontiers in Molecular Biosciences frontiersin.org12

Ramakrishnan et al. 10.3389/fmolb.2023.1204157

https://github.com/DeepRank/DeepRank-Mut/
https://github.com/DeepRank/DeepRank-Mut/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1204157


The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2023.1204157/
full#supplementary-material

References

Abrusán, G., andMarsh, J. A. (2016). Alpha helices are more robust to mutations than
beta strands. PLOS Comput. Biol. 12, e1005242. doi:10.1371/journal.pcbi.1005242

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P.,
et al. (2010). A method and server for predicting damaging missense mutations. Nat.
Methods 7, 248–249. doi:10.1038/nmeth0410-248

Adzhubei, I., Jordan, D. M., and Sunyaev, S. R. (2013). Predicting functional effect of
human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 7, Unit7.20.
doi:10.1002/0471142905.hg0720s76

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.
(1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Res. 25, 3389–3402. doi:10.1093/nar/25.17.3389

Ancien, F., Pucci, F., Godfroid, M., and Rooman, M. (2018). Prediction and
interpretation of deleterious coding variants in terms of protein structural stability.
Sci. Rep. 8, 4480. doi:10.1038/s41598-018-22531-2

Bagley, S. C., and Altman, R. B. (1995). Characterizing the
microenvironment surrounding protein sites. Protein Sci. 4, 622–635.
doi:10.1002/pro.5560040404

Capriotti, E., and Altman, R. B. (2011). Improving the prediction of disease-related
variants using protein three-dimensional structure. BMC Bioinforma. 12, S3. doi:10.
1186/1471-2105-12-S4-S3

Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., and Karchin, R. (2013).
Identifying mendelian disease genes with the variant effect scoring tool. BMC Genomics
14, S3. doi:10.1186/1471-2164-14-S3-S3

Chiang, Y., Hui, W.-H., and Chang, S.-W. (2022). Encoding protein dynamic
information in graph representation for functional residue identification. Cell
Rep. Phys. Sci. 3, 100975. doi:10.1016/j.xcrp.2022.100975

Chicco, D., and Jurman, G. (2020). The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC
Genomics 21, 6. doi:10.1186/s12864-019-6413-7

Choi, Y., and Chan, A. P. (2015). PROVEAN web server: A tool to predict the
functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747.
doi:10.1093/bioinformatics/btv195

de Juan, D., Pazos, F., and Valencia, A. (2013). Emerging methods in protein co-
evolution. Nat. Rev. Genet. 14, 249–261. doi:10.1038/nrg3414

Feinauer, C., and Weigt, M. (2017). Context-aware prediction of pathogenicity of
missense mutations involved in human disease. Arxiv. doi:10.48550/arXiv.1701.07246

Findlay, G. M., Daza, R. M., Martin, B., Zhang, M. D., Leith, A. P., Gasperini, M., et al.
(2018). Accurate classification of BRCA1 variants with saturation genome editing.
Nature 562, 217–222. doi:10.1038/s41586-018-0461-z

Gerasimavicius, L., Livesey, B. J., and Marsh, J. A. (2022). Loss-of-function, gain-of-
function and dominant-negative mutations have profoundly different effects on protein
structure. Nat. Commun. 13, 3895. doi:10.1038/s41467-022-31686-6

Gunning, A. C., Fryer, V., Fasham, J., Crosby, A. H., Ellard, S., Baple, E. L., et al.
(2021). Assessing performance of pathogenicity predictors using clinically relevant
variant datasets. J. Med. Genet. 58, 547–555. doi:10.1136/jmedgenet-2020-107003

Heijl, S., Vroling, B., van den Bergh, T., and Joosten, H.-J. (2020). Mind the gap:
Preventing circularity in missense variant prediction. Biorxiv. doi:10.1101/2020.05.06.
080424

Hopf, T. A., Schärfe, C. P. I., Rodrigues, J. P. G. L. M., Green, A. G., Kohlbacher, O.,
Sander, C., et al. (2014). Sequence co-evolution gives 3D contacts and structures of
protein complexes. Elife 3, e03430. doi:10.7554/eLife.03430

Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schärfe, C. P. I., Springer, M., Sander, C.,
et al. (2017). Mutation effects predicted from sequence co-variation.Nat. Biotechnol. 35,
128–135. doi:10.1038/nbt.3769

Iqbal, S., Pérez-Palma, E., Jespersen, J. B., May, P., Hoksza, D., Heyne, H. O., et al.
(2020). Comprehensive characterization of amino acid positions in protein structures

reveals molecular effect of missense variants. Proc. Natl. Acad. Sci. U. S. A. 117,
28201–28211. doi:10.1073/pnas.2002660117

Ittisoponpisan, S., Islam, S. A., Khanna, T., Alhuzimi, E., David, A., and Sternberg, M. J. E.
(2019). Can predicted protein 3D structures provide reliable insights into whether missense
variants are disease associated? J. Mol. Biol. 431, 2197–2212. doi:10.1016/j.jmb.2019.04.009

Jorgensen, W. L., and Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid
simulations] potential functions for proteins, energy minimizations for crystals of cyclic
peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666. doi:10.1021/ja00214a001

Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: Pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.
doi:10.1002/bip.360221211

Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q.,
et al. (2020). The mutational constraint spectrum quantified from variation in
141,456 humans. Nature 581, 434–443. doi:10.1038/s41586-020-2308-7

Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., and Shendure, J.
(2014). A general framework for estimating the relative pathogenicity of human genetic
variants. Nat. Genet. 46, 310–315. doi:10.1038/ng.2892

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Advances in neural information processing
systems (Curran Associates, Inc).

Kryukov, G. V., Pennacchio, L. A., and Sunyaev, S. R. (2007). Most rare missense
alleles are deleterious in humans: Implications for complex disease and association
studies. Am. J. Hum. Genet. 80, 727–739. doi:10.1086/513473

Kucukkal, T. G., Petukh, M., Li, L., and Alexov, E. (2015). Structural and physico-
chemical effects of disease and non-disease nsSNPs on proteins. Curr. Opin. Struct. Biol.
32, 18–24. doi:10.1016/j.sbi.2015.01.003

Kuipers, R. K., Joosten, H.-J., van Berkel, W. J. H., Leferink, N. G. H., Rooijen, E.,
Ittmann, E., et al. (2010). 3DM: Systematic analysis of heterogeneous superfamily data
to discover protein functionalities. Proteins Struct. Funct. Bioinforma. 78, 2101–2113.
doi:10.1002/prot.22725

Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., et al.
(2018). ClinVar: Improving access to variant interpretations and supporting evidence.
Nucleic Acids Res. 46, D1062–D1067. doi:10.1093/nar/gkx1153

Laskowski, R. A., Stephenson, J. D., Sillitoe, I., Orengo, C. A., and Thornton, J. M. (2020).
VarSite: Disease variants and protein structure.Protein Sci. 29, 111–119. doi:10.1002/pro.3746

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., et al.
Exome Aggregation Consortium (2016). Analysis of protein-coding genetic variation in
60,706 humans. Nature 536, 285–291. doi:10.1038/nature19057

Li, B., Krishnan, V. G., Mort, M. E., Xin, F., Kamati, K. K., Cooper, D. N., et al. (2009).
Automated inference of molecular mechanisms of disease from amino acid
substitutions. Bioinformatics 25, 2744–2750. doi:10.1093/bioinformatics/btp528

Li, B., Yang, Y. T., Capra, J. A., and Gerstein, M. B. (2020). Predicting changes in
protein thermodynamic stability upon point mutation with deep 3D convolutional
neural networks. PLoS Comput. Biol. 16, e1008291. doi:10.1371/journal.pcbi.1008291

Liu, X., Jian, X., and Boerwinkle, E. (2011). dbNSFP: A lightweight database of human
nonsynonymous SNPs and their functional predictions. Hum. Mutat. 32, 894–899.
doi:10.1002/humu.21517

Liu, X., Li, C., Mou, C., Dong, Y., and Tu, Y. (2020). dbNSFP v4: a comprehensive database
of transcript-specific functional predictions and annotations for human nonsynonymous and
splice-site SNVs. Genome Med. 12, 103. doi:10.1186/s13073-020-00803-9

Livesey, B. J., and Marsh, J. A. (2020). Using deep mutational scanning to benchmark
variant effect predictors and identify disease mutations. Mol. Syst. Biol. 16, e9380.
doi:10.15252/msb.20199380

Livesey, B. J., and Marsh, J. A. (2022). Interpreting protein variant effects with
computational predictors and deep mutational scanning. Dis. Models Mech. 15,
dmm049510. doi:10.1242/dmm.049510

Frontiers in Molecular Biosciences frontiersin.org13

Ramakrishnan et al. 10.3389/fmolb.2023.1204157

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1204157/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1204157/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.1005242
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1002/0471142905.hg0720s76
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1038/s41598-018-22531-2
https://doi.org/10.1002/pro.5560040404
https://doi.org/10.1186/1471-2105-12-S4-S3
https://doi.org/10.1186/1471-2105-12-S4-S3
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1016/j.xcrp.2022.100975
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1093/bioinformatics/btv195
https://doi.org/10.1038/nrg3414
https://doi.org/10.48550/arXiv.1701.07246
https://doi.org/10.1038/s41586-018-0461-z
https://doi.org/10.1038/s41467-022-31686-6
https://doi.org/10.1136/jmedgenet-2020-107003
https://doi.org/10.1101/2020.05.06.080424
https://doi.org/10.1101/2020.05.06.080424
https://doi.org/10.7554/eLife.03430
https://doi.org/10.1038/nbt.3769
https://doi.org/10.1073/pnas.2002660117
https://doi.org/10.1016/j.jmb.2019.04.009
https://doi.org/10.1021/ja00214a001
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/ng.2892
https://doi.org/10.1086/513473
https://doi.org/10.1016/j.sbi.2015.01.003
https://doi.org/10.1002/prot.22725
https://doi.org/10.1093/nar/gkx1153
https://doi.org/10.1002/pro.3746
https://doi.org/10.1038/nature19057
https://doi.org/10.1093/bioinformatics/btp528
https://doi.org/10.1371/journal.pcbi.1008291
https://doi.org/10.1002/humu.21517
https://doi.org/10.1186/s13073-020-00803-9
https://doi.org/10.15252/msb.20199380
https://doi.org/10.1242/dmm.049510
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1204157


Loshchilov, I., and Hutter, F. (2019). Decoupled weight decay regularization. Arxiv.
doi:10.48550/arXiv.1711.05101

Marks, D. S., Hopf, T. A., and Sander, C. (2012). Protein structure prediction from
sequence variation. Nat. Biotechnol. 30, 1072–1080. doi:10.1038/nbt.2419

Mitternacht, S. (2016). FreeSASA: An open source C library for solvent accessible
surface area calculations. F1000Res 5, 189. doi:10.12688/f1000research.7931.1

Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., Sander, C., et al. (2011).
Direct-coupling analysis of residue coevolution captures native contacts across many
protein families. Proc. Natl. Acad. Sci. U. S. A. 108, E1293–E1301. doi:10.1073/pnas.
1111471108

Ng, P. C., and Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect
protein function. Nucleic Acids Res. 31, 3812–3814. doi:10.1093/nar/gkg509

Niroula, A., and Vihinen, M. (2019). How good are pathogenicity predictors in
detecting benign variants? PLOS Comput. Biol. 15, e1006481. doi:10.1371/journal.pcbi.
1006481

Pearson, W. R. (2013). An introduction to sequence similarity (“Homology”)
searching. Curr. Protoc. Bioinforma. 0 3, 3.1.1, 3.1.8. doi:10.1002/0471250953.bi0301s42

Pincus, M. R., and Scheraga, H. A. (1977). An approximate treatment of long-range
interactions in proteins. J. Phys. Chem. 81, 1579–1583. doi:10.1021/j100531a013

Ponzoni, L., Peñaherrera, D. A., Oltvai, Z. N., and Bahar, I. (2020). Rhapsody:
Predicting the pathogenicity of humanmissense variants. Bioinformatics 36, 3084–3092.
doi:10.1093/bioinformatics/btaa127

Pun, M. N., Ivanov, A., Bellamy, Q., Montague, Z., LaMont, C., Bradley, P., et al.
(2022). Learning the shape of protein micro-environments with a holographic
convolutional neural network. Arxiv. doi:10.1101/2022.10.31.514614

Renaud, N., Geng, C., Georgievska, S., Ambrosetti, F., Ridder, L., Marzella, D. F., et al.
(2021). DeepRank: A deep learning framework for data mining 3D protein-protein
interfaces. Nat. Commun. 12, 7068. doi:10.1038/s41467-021-27396-0

Reva, B., Antipin, Y., and Sander, C. (2011). Predicting the functional impact of
protein mutations: Application to cancer genomics. Nucleic Acids Res. 39, e118. doi:10.
1093/nar/gkr407

Rodrigues, C. H., Pires, D. E., and Ascher, D. B. (2018). DynaMut: Predicting the
impact of mutations on protein conformation, flexibility and stability.Nucleic Acids Res.
46, W350–W355. doi:10.1093/nar/gky300

Rost, B., and Sander, C. (1994). Conservation and prediction of solvent accessibility in
protein families. Proteins 20, 216–226. doi:10.1002/prot.340200303

Savojardo, C., Manfredi, M., Martelli, P. L., and Casadio, R. (2020). Solvent
accessibility of residues undergoing pathogenic variations in humans: From protein
structures to protein sequences. Front. Mol. Biosci. 7, 626363. doi:10.3389/fmolb.2020.
626363

Schwarz, J. M., Cooper, D. N., Schuelke, M., and Seelow, D. (2014). MutationTaster2:
Mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362. doi:10.
1038/nmeth.2890

Sevim Bayrak, C., Stein, D., Jain, A., Chaudhary, K., Nadkarni, G. N., Van Vleck, T. T.,
et al. (2021). Identification of discriminative gene-level and protein-level features

associated with pathogenic gain-of-function and loss-of-function variants. Am.
J. Hum. Genet. 108, 2301–2318. doi:10.1016/j.ajhg.2021.10.007

Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G. L. A., Edwards, K. J.,
et al. (2013). Predicting the functional, molecular, and phenotypic consequences of
amino acid substitutions using hidden Markov models. Hum. Mutat. 34, 57–65. doi:10.
1002/humu.22225

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big Data 6, 60. doi:10.1186/s40537-019-0197-0

Shroff, R., Cole, A. W., Diaz, D. J., Morrow, B. R., Donnell, I., Annapareddy, A.,
et al. (2020). Discovery of novel gain-of-function mutations guided by structure-
based deep learning. ACS Synth. Biol. 9, 2927–2935. doi:10.1021/acssynbio.
0c00345

Sun, Z., Liu, Q., Qu, G., Feng, Y., and Reetz, M. T. (2019). Utility of B-factors in
protein science: Interpreting rigidity, flexibility, and internal motion and
engineering thermostability. Chem. Rev. 119, 1626–1665. doi:10.1021/acs.
chemrev.8b00290

Thompson, B. A., Spurdle, A. B., Plazzer, J.-P., Greenblatt, M. S., Akagi, K., Al-Mulla,
F., et al. (2014). Application of a 5-tiered scheme for standardized classification of
2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database.
Nat. Genet. 46, 107–115. doi:10.1038/ng.2854

Torng, W., and Altman, R. B. (2017). 3D deep convolutional neural networks for
amino acid environment similarity analysis. BMC Bioinforma. 18, 302. doi:10.1186/
s12859-017-1702-0

Touw, W. G., Baakman, C., Black, J., te Beek, T. A. H., Krieger, E., Joosten, R. P., et al.
(2015). A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43,
D364–D368. doi:10.1093/nar/gku1028

Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M., and Ng, P. C. (2016). SIFT missense
predictions for genomes. Nat. Protoc. 11, 1–9. doi:10.1038/nprot.2015.123

Veitia, R. A., Caburet, S., and Birchler, J. A. (2018). Mechanisms of mendelian
dominance. Clin. Genet. 93, 419–428. doi:10.1111/cge.13107

Venselaar, H., Te Beek, T. A. H., Kuipers, R. K. P., Hekkelman, M. L., and Vriend, G.
(2010). Protein structure analysis of mutations causing inheritable diseases. An
e-Science approach with life scientist friendly interfaces. BMC Bioinforma. 11, 548.
doi:10.1186/1471-2105-11-548

VKGL (2019). Vereniging klinisch genetische laboratoriumdiagnostiek - home. URL:
https://www.vkgl.nl/nl/ (accessed October 3, 2019).

Vroling, B., and Heijl, S. (2021). White paper: The Helix pathogenicity prediction
platform. Arxiv. doi:10.48550/arXiv.2104.01033

Wang, Z., and Moult, J. (2001). SNPs, protein structure, and disease.Hum. Mutat. 17,
263–270. doi:10.1002/humu.22

Yates, C. M., Filippis, I., Kelley, L. A., and Sternberg, M. J. E. (2014). SuSPect:
Enhanced prediction of single amino acid variant (SAV) phenotype using network
features. J. Mol. Biol. 426, 2692–2701. doi:10.1016/j.jmb.2014.04.026

Zardecki, C., Dutta, S., Goodsell, D. S., Lowe, R., Voigt, M., and Burley, S. K. (2022).
PDB-101: Educational resources supporting molecular explorations through biology
and medicine. Protein Sci. 31, 129–140. doi:10.1002/pro.4200

Frontiers in Molecular Biosciences frontiersin.org14

Ramakrishnan et al. 10.3389/fmolb.2023.1204157

https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.1038/nbt.2419
https://doi.org/10.12688/f1000research.7931.1
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1371/journal.pcbi.1006481
https://doi.org/10.1371/journal.pcbi.1006481
https://doi.org/10.1002/0471250953.bi0301s42
https://doi.org/10.1021/j100531a013
https://doi.org/10.1093/bioinformatics/btaa127
https://doi.org/10.1101/2022.10.31.514614
https://doi.org/10.1038/s41467-021-27396-0
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1093/nar/gky300
https://doi.org/10.1002/prot.340200303
https://doi.org/10.3389/fmolb.2020.626363
https://doi.org/10.3389/fmolb.2020.626363
https://doi.org/10.1038/nmeth.2890
https://doi.org/10.1038/nmeth.2890
https://doi.org/10.1016/j.ajhg.2021.10.007
https://doi.org/10.1002/humu.22225
https://doi.org/10.1002/humu.22225
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1021/acssynbio.0c00345
https://doi.org/10.1021/acssynbio.0c00345
https://doi.org/10.1021/acs.chemrev.8b00290
https://doi.org/10.1021/acs.chemrev.8b00290
https://doi.org/10.1038/ng.2854
https://doi.org/10.1186/s12859-017-1702-0
https://doi.org/10.1186/s12859-017-1702-0
https://doi.org/10.1093/nar/gku1028
https://doi.org/10.1038/nprot.2015.123
https://doi.org/10.1111/cge.13107
https://doi.org/10.1186/1471-2105-11-548
https://www.vkgl.nl/nl/
https://doi.org/10.48550/arXiv.2104.01033
https://doi.org/10.1002/humu.22
https://doi.org/10.1016/j.jmb.2014.04.026
https://doi.org/10.1002/pro.4200
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1204157

	Understanding structure-guided variant effect predictions using 3D convolutional neural networks
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Data pre-processing
	2.2.1 Feature calculation and voxelization of the neighborhood
	2.2.2 Data augmentation

	2.3 Network architecture
	2.4 Training
	2.5 Evaluation metrics

	3 Results
	3.1 Overview of the datasets and DeepRank-Mut
	3.2 Overall performance
	3.2.1 Impact of individual features and the variant environment on the performance
	3.2.2 Comparison with state-of-the-art resources

	3.3 3D-CNNs appear less powered to identify outcome of solvent-exposed variants
	3.4 Success of pathogenicity prediction depends on underlying disease mechanisms

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


