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Hsf transcription factor gene
family in peanut (Arachis
hypogaea L.): genome-wide
characterization and expression
analysis under drought and
salt stresses
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Zhiyuan Li2, Yifei Mou1, Quanxi Sun1, Juan Wang1,
Cuiling Yuan1, Chunjuan Li1, Ping Cong2* and Shihua Shan1*

1Shandong Peanut Research Institute, Qingdao, China, 2Tobacco Research Institute, Chinese
Academy of Agricultural Sciences, Qingdao, China, 3Kunming Branch of Yunnan Provincial Tobacco
Company, Kunming, China
Heat shock transcription factors (Hsfs) play important roles in plant

developmental regulations and various stress responses. In present study, 46

Hsf genes in peanut (AhHsf) were identified and analyzed. The 46 AhHsf genes

were classed into three groups (A, B, and C) and 14 subgroups (A1-A9, B1-B4, and

C1) together with their Arabidopsis homologs according to phylogenetic

analyses, and 46 AhHsf genes unequally located on 17 chromosomes. Gene

structure and protein motif analysis revealed that members from the same

subgroup possessed similar exon/intron and motif organization, further

supporting the results of phylogenetic analyses. Gene duplication events were

found in peanut Hsf gene family via syntenic analysis, which were important in

Hsf gene family expansion in peanut. The expression of AhHsf genes were

detected in different tissues using published data, implying that AhHsf genes

may differ in function. In addition, several AhHsf genes (AhHsf5, AhHsf11,

AhHsf20, AhHsf24, AhHsf30, AhHsf35) were induced by drought and salt

stresses. Furthermore, the stress-induced member AhHsf20 was found to be

located in nucleus. Notably, overexpression of AhHsf20 was able to enhance salt

tolerance. These results from this study may provide valuable information for

further functional analysis of peanut Hsf genes.
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1 Introduction

The growth and development of plants is significantly constrained

by abiotic stresses, such as salt, drought, cold and heat. These abiotic

stresses have a negative effect on the quality and yield of crops

(Umezawa et al., 2006). In order to cope with environmental

stresses, plants form various regulatory mechanisms in the course of

long-term evolution (Shinozaki et al., 2003). With the global warming,

the effect of heat stress on plants has been paid more and more

attention. The heat shock response (HSR), as a universal protection

mechanism, was activated when faced with heat stress and other

stimulating factors (Schoffl et al., 1998). Meanwhile, the heat shock

proteins (HSPs), as molecular chaperone, accumulated rapidly to

protect the plant from heat stress by maintaining protein

homeostasis and repairing damaged proteins under HSR (Wang

et al., 2004; Zhang et al., 2013). Furthermore, expression of HSP

genes is mainly regulated by the Hsfs on a transcriptional level,

which can combine with heat shock elements (HSEs:5’-

nGAAnnTTCn-3’) in HSP gene promoters (Bienz and Pelham, 1987;

Lin et al., 2011). The heat shock transcription factors (Hsfs) are the

terminal component of the signal transduction chain, which can

mediate the activation of the response to heat stress and/or other

stress-stimulated genes (Nover et al., 2001).

Previous studies have reported that the Hsfs have several conserved

domains, including DNA binding domain (DBD), oligomerization

domain (OD), nuclear localization signal (NLS), nuclear export signal

(NES), C-terminal activation domain (CTAD), and repressor domain

(RD) (Nover et al., 2001; Kotak et al., 2004; Guo et al., 2008). Among

them, DBD is the most conserved domain in Hsf proteins, which is

characterized by its hydrophobic core containing a typical helix-turn-

helix conserved motif. It is essential for recognizing and binding to the

conserved motif of the heat shock element (HSE) in the promoter of

the target genes (von Koskull-Doring et al., 2007; Huang et al., 2015).

OD (HR-A/B) is composed of two hydrophobic seven peptide repeat

regions, and the domain can promote Hsf effectively bind to the HSE in

HSP promoter by forming a specific structure (Scharf et al., 2012).

CTAD is the least conserved region in Hsf protein sequence, which

contains a short peptide AHA motif and is a necessary condition for

Hsfs transcriptional activity (Doring et al., 2000). According to the

number of amino acid residues connected between HR-A/B, plant Hsf

protein families can be divided into three groups: A, B, and C. The

number of amino acid residues insertion between HR-A/B is 21 and 7

in group A and group C Hsfs, respectively, whereas group B Hsfs have

no amino acid insertion between HR-A/B (Scharf et al., 2012). It is

worth noting that only group A Hsfs contain the C-terminal activation

motifs (AHA motifs).

To date, a large number of heat shock transcription factors have

been identified in different plants, including 21 genes inArabidopsis, 25

in rice (Guo et al., 2008), 27 in potato (Tang et al., 2016), 24 in tomato

(Yang et al., 2016), 82 in wheat (Duan et al., 2019), 25 in maize (Lin

et al., 2011), and 38 in soybean (Li et al., 2014). In plants, the class A

Hsfs consist of majority of the Hsf proteins. Members of class A play

important roles in regulating plant response to abiotic stresses (Scharf

et al., 2012). In Arabidopsis, the expression levels of most heat-stress

response genes are regulated by AtHsfA1 (AtHsfA1a, AtHsfA1b,

AtHsfA1d and AtHsfA1e). The expression of HS-responsive genes,
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including transcription factors and molecular chaperones, was

significantly decreased in hsfa1a/b/d triple mutants. Moreover, the

hsfa1a/b/d/e quadruple mutant exhibited growth retardation and more

sensitive to temperature compared with wide type (Lohmann et al.,

2004; Nishizawa-Yokoi et al., 2011; Yoshida et al., 2011). In subgroup

A1, AtHsfA1b and AtHsfA1d were reported to enhance drought and

heat tolerance, respectively (Bechtold et al., 2013; Higashi et al., 2013).

AtHsfA2 in subgroup A2 and AtHsfA3 in subgroup A3 have been

reported to function in heat tolerance and AtHsfA2 also enhances

anoxia tolerance (Schramm et al., 2006; Charng et al., 2007; Banti et al.,

2010; Chen et al., 2010; Friedrich et al., 2021). Meanwhile,

overexpression of AtHsfA3 in Arabidopsis increased galactinol level

and oxidative stress tolerance (Song et al., 2016). Besides, AtHsfA6b in

subgroup A6 was highly induced by salt and drought conditions, and

positively regulated Arabidopsis tolerance to ABA-mediated salt,

drought, and heat stresses (Huang et al., 2016).

In addition, Hsf members have been reported to be involved in

plant growth and development. For example, in subgroup A9,

AtHsfA9 was proved to sever as a seed-specific transcription

factor showing to function in regulating expression of heat stress

protein-encoding genes during seed development of Arabidopsis

(Kotak et al., 2007). AtHsfB2a from subgroup B2, was proven to be

involved in regulating gametophyte development of Arabidopsis

(Wunderlich et al., 2014). Besides, AtHsfB4-overexpressing

transgenic lines displayed short root length phenotype compared

with wild type, indicating AtHsfB4 in subgroup B4 was involved in

the negative regulation of root development (Begum et al., 2013).

Peanut (Arachis hypogaea L.) is an important economic and oil

crop in the world, suppling oils and proteins for the human

nutrition. The production of peanut was affected by several

abiotic stresses, including extreme temperatures, high salinity, and

drought, during the growing stage. Utilization of resistant varieties

is the most cost-efficient measure to control these stresses. With the

availability of the peanut genome database, studies of a number of

peanut gene families have been reported, but our understanding of

the peanutHsf gene family is very limited. Here, a total of 46 peanut

Hsf genes were identified from the peanut. Comprehensive analyses

on the gene structures, cis-acting element composition,

chromosome distribution, phylogenetic relationships, and

expression patterns were performed. The results of which

suggested that the peanut Hsf members might play important

roles in peanut development and in response to stresses.
2 Materials and methods

2.1 Identification and phylogenetic analysis
of peanut Hsf proteins

The peanut genome data and the Arabidopsis genome data were

downloaded from the Peanut Base (https://www.peanutbase.org/)

and TAIR (https://www.arabidopsis.org/), respectively. Arabidopsis

Hsf full-length protein sequences were used as queries to perform

BLASTP program against the peanut genome database with an E-

value of 0.0001. The resulting sequences were then subjected to

Pfam (El-Gebali et al., 2019) and SMART (Letunic and Bork, 2018)
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analyses to detect the presence of the Hsf-type DBD and OD

domain. The ProtParam (Wilkins et al., 1999) was used to

calculate Mw (molecular weight) and theoretical pI (isoelectric

point) of the putative Hsf proteins from peanut.

MAFFT (Katoh et al., 2019) under the default parameters was

applied in protein sequences alignment analyses of newly identified

peanut Hsf members and previously reported Arabidopsis Hsf

members. A neighbor-joining (NJ) tree was constructed by

MEGA 11 with the following parameters: Poisson correction,

1000 bootstrap values, and pairwise deletion (Tamura et al., 2021).
2.2 Gene structure and
cis-regulatory elements

The structure of peanut Hsf genes was analyzed using the gene

structure display server (Hu et al., 2015) by comparing the coding

sequence (CDS) and genomic sequence obtained from the peanut

genome database. The 2000-bp sequences upstream of peanut Hsf

genes were obtained from peanut genome database as the promoter

(Wang et al., 2021). And then the cis-regulatory elements of these

promoters were identified by PlantCARE (Lescot et al., 2002).
2.3 Protein domain and motif analysis

The typical functional structure domains of peanut Hsf protein

were analyzed by Pfam and SMART. The nuclear localization signal

(NLS) prediction was done by using the online tool (Nguyen Ba

et al., 2009). MEME tools (Bailey et al., 2009) was applied to identify

conserved motifs of the AhHsfs full-length proteins.
2.4 Chromosomal localization and
duplication event analysis

The chromosomal location image of peanut Hsf genes was

generated by TBtools (Chen et al., 2020), according to the data

obtained from the peanut genome database. The tandem and

segmental duplications were identified by using MCScanX

program (Wang et al., 2012) and the results were visualized by

Circos (Krzywinski et al., 2009). The syntenic analysis of the

orthologous genes obtained from peanut and other three plant

species were investigated by TBtools (Chen et al., 2020).

Subsequently, the synonymous substitution (Ks) and non-

synonymous substitution (Ka) rates were calculated using DnaSP

5.0 software (Librado and Rozas, 2009).
2.5 Growth and stress treatments of
peanut plants

The peanut cultivar HY9312 plants were used to analyze the

expression of AhHsf genes in this study. The peanut seeds were

germinated on MS medium in a light incubator at 25 °C for two

weeks. The seedlings were then transferred to 20% PEG 6000 and 200
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mMNaCl for drought and salt stresses, respectively. After treatments

of 0, 6, 24, and 48 h, the leaves were harvested for RNA extraction and

qRT-PCR analysis. The samples were frozen in liquid nitrogen

immediately and then transferred to -80 °C for RNA extraction.

Three biological replicates were used for each sample.
2.6 RNA extraction and qRT-PCR analysis

Total RNA was extracted by Trizol Reagent according to the

manufacturer’s instructions. RNA quality and concentration were

tested by using a Nanodrop 2000 spectrophotometer (Thermo

Fisher Scientific, Wilmington, DE, United States). The synthesis

of fist-strand cDNA by using the PrimeScript ™ RT reagent Kit

(TaKaRa, Shiga, Japan) with Oligo (dT) primers. The qRT-PCR was

performed on an ABI7500 Real-Time PCR System (Applied

Biosystems, Foster City, CA, United States) with 2 µL template

cDNA. The peanut Actin11 gene was adopted as the internal control

(Li et al., 2021). The relative primer sequences were listed in

Supplementary Table 1. All reactions were performed with three

biological replications and the resulting data were analyzed by using

the 2 −DDCT method (Livak and Schmittgen, 2001).
2.7 Subcellular localization

The coding regions (without stop codon) of AhHsf20 were

amplified from the cDNA of peanut leaves and inserted into the

pCHF3-cGFP vector by Infusion (Invitrogen), generating the

AhHsf20-GFP fusion fragment under control of the CaMV-35S

promoter. The 35S::AhHsf20-GFP plasmid was introduced into

Agrobacterium competent cell GV3101 for transient expression in

the leaf of Nicotiana benthamiana. After growth of three days in

light chamber, these leaves were subjected to 4,6-diamidino-2-

phenylindole (DAPI) staining to confirm the position of the

nucleus. The fluorescence signals were monitored by using the

confocal microscope (TCS-SP8 Leica, Wetzlar, Germany), as

previously reported (Li et al., 2019).
2.8 Overexpression analysis

The coding sequence of AhHsf20 was inserted into the SacI-

digested pCHF3 vector by Infusion (Clontech) to produce 35S::

AhHsf20, which was then transformed into Agrobacterium

tumefaciens GV3101 and used to transform Arabidopsis Col-0

plants by the floral dip method (Zhang et al., 2006). T3

homozygous seedlings were used for further analyses. The

sterilized wild-type and transgenic Arabidopsis seeds were evenly

sown on 1/2 MS media. The seeds were stratified at 4 °C in darkness

for two days, and then transferred to culture room (23 °C,

continuous light). Wild-type and transgenic Arabidopsis seedlings

growing normally for seven days were transferred to 1/2 MS media

containing 100 and 150 mM NaCl. The primary root lengths were

measured after seven days of upright growth in 1/2 MS media.

Three biological replicates.
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2.9 Statistical analysis

The GraphPad Prism 8 (t test) was used to analyze significant

differences (P < 0.05, P < 0.01, P < 0.001). All data were obtained

from three replicates.
3 Results

3.1 Identification of Hsf genes in peanut

To identify Hsf genes in peanut, the BLASTP search was

performed using the Pfam Hsf-type DBD domain (PF00447) as

query. After deleting redundant genes, we identified a total of 46 Hsf

family proteins in peanut, designating the newly identified peanut

Hsf genes AhHsf1 to AhHsf46 according to their position on

chromosome. The Chr5, Chr13, and Chr15 contained the largest

number of AhHsf genes, with six genes. There was followed by

Chr3, which had five AhHsf genes. The Chr6 and Chr16 contained

four AhHsf genes, respectively. The Chr8, Chr9, Chr17, and Chr19

contained two AhHsf genes, respectively. Additionally, Chr1, Chr2,

Chr7, Chr10, Chr11, Chr12, and Chr20 contained only one AhHsf

gene (Supplementary Table 2). The lengths of the predicted AhHsf

proteins ranged from 207 amino acids (AhHsf29) to 599 amino

acids (AhHsf44). The molecular weights (Mw) of Hsf proteins

ranged from 23.6 (AhHsf29) to 66.7 (AhHsf44) kDa, and the

theoretical isoelectric points (pI) ranged from 4.82 (AhHsf8 and

AhHsf32) to 8.81 (AhHsf4) (Supplementary Table 2).
3.2 Phylogenetic analysis and classification
of peanut Hsf genes

In order to further study the evolutionary relationship among

the peanut Hsf proteins, we constructed a neighbor-joining

phylogenetic tree from alignments of 46 peanut Hsf proteins and

21 Arabidopsis Hsf proteins (Figure 1). The results showed that all

the Hsf proteins from peanut and Arabidopsis were divided into

three groups: A, B, and C. Furthermore, 28 AhHsfs in group A were

divided into nine subgroups comprising A1-A9; 16 AhHsfs in group

B were divided into four subgroups comprising B1, B2, B3, and B4;

and 2 AhHsfs in group C were divided into C1 subgroup. The A1

and B4 subgroups contained the largest number of AhHsf members

with six members. There were followed by subgroup A2, A4, A5, B2,

and B3 subgroups, all of which had four members of the AhHsf

family. Then subgroup A3, A6, A7, A8, A9, B1, and C1 subgroups

all contained two members of the AhHsf family (Figure 1).
3.3 Conserved domains analysis of peanut
Hsf proteins

We identified five typical conserved domains in peanut Hsf

proteins, including DBD, OD, NLS, AHA, and NES domains

(Supplementary Table 3). All of the AhHsf proteins possessed a
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highly conserved section, DBD domain, which contained three a-
helices and four b-sheets (a1-b1-b2-a2-a3-b3-b4) in N-terminal

region (Supplementary Figure 1A). Adjacent to the DBD domain is

the HR-A/B domain, which is characterized by a coiled-coil

structure in C-terminal region of the AhHsf proteins. We found

that group A and group C Hsfs have different amounts of amino

acid residues are respectively inserted between the HR-A and HR-B,

whereas it is not found in the group B Hsfs (Supplementary

Figure 1B). We also found that most of AhHsf proteins have NLS

and NES domain, which are essential for maintaining the changes

dynamically of Hsf proteins between nucleus and cytoplasm (Scharf

et al., 1998; Heerklotz et al., 2001). 32 AhHsf proteins have

NLS domain and NES was detected in 16 AhHsf members.

Notably, the AHA motifs exist only in class A Hsfs. Among of

them, seven AhHsf members (AhHsf8, AhHsf9, AhHsf23,

AhHsf25, AhHsf32, AhHsf33, and AhHsf46) contained two AHA

motif (Supplementary Table 3).
3.4 Gene structure and motif composition

We analyzed the gene structure of all the AhHsf genes by GSDS,

including introns and exons. The results showed that all AhHsf

genes contained introns, but the number and length of introns were

different (Figure 2B). In group A, there were four introns in AhHsf3

gene, two introns in four AhHsf genes (AhHsf6, AhHsf16, AhHsf40,

and AhHsf44), only one intron in others. In group B and group C,

all AhHsf genes contained one intron. AhHsf genes had similar gene

structures in the same subgroup.

We used MEME to analyze the motif composition of AhHsf

proteins (Figure 2C). A total of 10 motifs (named motif 1-10),

ranging from 6 to 50 amino acids, were predicted based on the

feature of AhHsf protein sequences, and all sequences were listed in

Supplementary Figure 2. Motif 1, motif 2, and motif 4 correspond to

the DBD. Motif 3 and motif 5 correspond to the OD. Motif 10

correspond to the NLS. Motif 8 correspond to the NES.
3.5 Syntenic analysis

To further understand about the phylogeny of the peanut Hsf

family members, syntenic analysis was performed between the Hsf

genes of peanut and the Hsf genes of the other four plant species,

including Arabidopsis, soybean (Glycine max), tomato (Solanum

lycopersicum), and rice (Oryza sativa) (Figure 3). The results revealed

that 39, 38, 27, and eight AhHsf genes were synchronized with Hsf

genes in soybean, tomato, Arabidopsis, and rice, respectively. The

number of collinear pairs between peanut and other four plant

species (soybean, tomato, Arabidopsis, and rice), were 121, 52, 36,

and 14, respectively, suggesting that the genetic relationship between

peanut Hsf genes and soybean Hsf genes was close. Meanwhile, we

found that the AhHsf45 of peanut was associated with six, three, two,

and two Hsf genes in soybean, Arabidopsis, tomato, and rice,

respectively, suggesting that AhHsf45 may play an important role

during the evolution in peanut. Notably, a total of six Hsf genes
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B CA

FIGURE 2

The motif and gene structure organizations of AhHsf members. (A) The evolutionary tree peanut Hsf family members. (B) Gene structure of AhHsf
genes. (C) Protein motif of peanut Hsf members.
FIGURE 1

Phylogenetic analysis of peanut Hsf family members. The phylogenetic tree was generated from the alignment of peanut and Arabidopsis Hsf
proteins with 1000 bootstrap replicates using the neighbor-joining (NJ) method. The peanut Hsf members together with their Arabidopsis homologs
were classified into 14 subgroups.
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formed collinear pairs with Hsf genes from all of other four plants,

suggesting that these Hsf genes may have existed before the divergence

of these plant species. The detailed information of syntenic gene pairs is

provided in Supplementary Table 4.
3.6 Chromosomal distribution and
duplication events

In this study, 46 AhHsf genes were mapped on 17 peanut

chromosomes, and each of which contains different number of the

AhHsf genes (Figure 4A). The most peanut Hsf genes (six) were found

on Ah5, Ah13, and Ah15, while Ah1, Ah2, Ah7, Ah10, Ah11, Ah12,

and Ah20 only have one peanut Hsf gene. It has been reported that

when a chromosome region within 200 kb possesses two or more genes

of the same family, these genes are defined to be a gene cluster and

genes sharing an identity of more than 70% in a cluster are considered

to be tandem duplication genes (Holub, 2001). Homology analysis

showed that there were two tandem duplication pairs (AhHsf8/AhHsf9

and AhHsf32/AhHsf33) in peanut Hsf gene family (Figure 4A).

We used the MCScanX to analyze segmental duplication or

whole genome duplication of the AhHsf genes. In a total, 35

segmental duplication pairs were identified in 42 AhHsf genes

(Figure 4B). 23 pairs of segmental duplication occurred in group

A Hsf genes. 11 pairs of segmental duplication occurred in group B

Hsf genes. However, only one pair of segmental duplication

(AhHsf12/AhHsf36) occurred in group C Hsf genes. These results

suggested that the generation of some Hsf genes may be due to gene

duplication events. All of the tandem and segmental duplication

genes were listed in Supplementary Table 5.
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Ka/Ks refers to the ratio between non-synonymous and

synonymous substitutions, which can estimate whether the selective

pressure acts on the protein-coding gene. There are three selection roles

in evolutionary analysis, including the positive selection, neutral

selection, and purifying selection. All Ka/Ks ratios of the 35

segmental and two tandem duplication pairs were less than one,

suggesting that these Hsf genes may have undergone purifying

selective pressure in process of evolution (Supplementary Table 5).
3.7 Promoter analysis of peanut Hsf genes

In order to study the potential function of AhHsf genes in stress

responses, plantCARE was used to predict the cis-elements in

promoter regions (Figure 5). Four hormone-responsive elements

were identified in most AhHsf gene promoters, including ABRE,

GARE, TCA-element, and CGTCA-motif, which regulate the plant

responses to ABA, gibberellin, salicylic acid (SA), and methyl

jasmonate (MeJA), respectively. The result suggested that most

AhHsf genes may be involved in ABA-mediated and MeJA-

mediated stress responses. Notably, the AuxRR-core element of

regulating the plant responses to auxin was only detected in

promoter regions of certain AhHsf genes, including AhHsf2,

AhHsf3, AhHsf5, AhHsf12, and AhHsf25. Six stress-responsive

elements including anaerobic induction element (ARE), wound-

responsive element (WUN-motif), stress-responsive element (TC-

rich repeats), WRKY binding site (W-box), MYB binding site

(MBS), and low-temperature-responsive element (LTR) were also

detected in the promoter regions. These AhHsf genes may be

involved in responses to different stress conditions. Furthermore,
FIGURE 3

Synteny analysis of Hsf genes between peanut and four other plant species. The gray line in the background represented the collinear blocks
between peanut and four other plant species, while the red line exhibited the syntenic Hsf gene pairs.
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a cis-element related to flavonoid biosynthetic (MBSI) was found in

promoter regions of five AhHsf genes.
3.8 Expression patterns of peanut Hsf
genes in different tissues

To determine the expression patterns of the AhHsf genes in

different tissues, the corresponding transcriptome data with 22

tissues were accessed in the Peanut Base. It was found that the

expressions of the AhHsf genes were significant differences in

different tissues. As shown in Figure 6, AhHsf5 from group A was

highly expressed in the all-tested tissues, whereas the expression of

its homologue AhHsf30 was barely detectable. AhHsf1 and AhHsf24

were highly expressed in seed Pat. The expression levels of AhHsf23

and AhHsf46 in leaves were higher than other tissues. In group B,

AhHsf14 and AhHsf39 were highly expressed in root and nodule.

However, the expression of these two genes were lower in other

tissues. Additionally, in group C, the expression levels of AhHsf12

and AhHsf36 were similar in the all-tested tissues. The various

expression patterns suggested that AhHsf genes have different

functions in peanut growth and development.
3.9 Expression of peanut Hsf genes under
drought and salt stresses

To reveal peanut Hsf genes expression patterns under abiotic

stresses, we utilized transcriptome data after drought and salt

stresses from NCBI (Zhao et al., 2018; Zhang et al., 2020). As

shown in Figure 7, most peanutHsf genes exhibited several different

expression patterns. Some genes, such as AhHsf11, AhHsf24, and

AhHsf35, were upregulated under drought and salt stresses. Several

peanut Hsf genes showed conflicting expression patterns under the

two stress conditions. For instance, AhHsf1 was insensitive to salt
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stress, whereas it was significantly induced by drought stress.

Additionally, some genes did not show significant expression

changes after drought and salt stress treatments, such as AhHsf46.

The various expression patterns reflected the different roles of

peanut Hsf genes in abiotic stress-response pathways.
3.10 Validation of expression patterns by
qRT-PCR

qRT-PCR was used to verify the expression pattern of peanut

Hsf genes in response to abiotic stresses, including drought and salt.

According to the results, we found that several AhHsf genes were

induced by drought and salt stresses (Figure 8). For example, the

expression levels of AhHsf1, AhHsf20, and AhHsf24 were

continually up-regulated under drought stress, AhHsf4 and

AhHsf24 were continually up-regulated under salt stress.

Moreover, expression levels of AhHsf1/4/20/24/29/35/43 were

significantly increased (>10-fold) in drought stress condition.

AhHsf4, AhHsf20, and AhHsf29 were significantly increased (>7-

fold) in salt stress condition. Notably, seven AhHsf genes, including

AhHsf1, AhHsf4, AhHsf20, AhHsf24, AhHsf29, AhHsf35, and

AhHsf43, were induced under both drought and salt stresses.

These results suggested that peanut Hsf genes might be involved

in response to drought and salt stresses.
3.11 Subcellular localization of AhHsf20

In order to further explore the potential function of the AhHsf

genes. The stress-induced AhHsf20 gene was selected for subcellular

localization analysis (Figure 9). The coding region of AhHsf20

without the stop codon was fused to the GFP reporter gene under

control of the CaMV35S promoter. The Agrobacterium cultures

with the recombinant construct were used to inject the tobacco leaf
BA

FIGURE 4

Chromosomal distribution and duplication events. (A) In peanut, 46 AhHsf genes were mapped on 17 peanut chromosomes. The tandem duplication
pairs were featured by the red color. (B) The 35 putative segmental duplication pairs of AhHsf genes were investigated using MCScanX and linked by
the colored lines, respectively. The gray lines indicate all putative segmental duplication pairs in the peanut genome, while the AhHsf segmental
duplication pairs were linked by the red line.
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epidermal cells, using 35S::GFP vector as the control. Subsequently,

the signal of GFP protein was observed by confocal microscopy. It

can be seen from Figure 9 that AhHsf20 fusion protein was

specifically located in the nucleus, whereas the control group was

uniformly distributed throughout the whole cell. These results

showed that AhHsf20 protein was located in nucleus.
3.12 Interaction networks of AhHsf
in peanut

To explore the underlying mechanisms of action of AhHsf

members, interaction networks of AhHsfs in peanut were predict

using STRING online tool (https://cn.string-db.org/). We found

that protein-protein interaction occurred between 18 peanut Hsf

members (Supplementary Figure 3). There were four hub nodes in

the AhHsf protein interaction network, including AhHsf13,

AhHsf10, AhHsf2, and AhHsf18. Among them, AhHsf13 was

found to interact with ten other Hsf members, followed by

AhHsf2 (4), AhHsf10 (3), AhHsf18 (3). The results showed that

these interacting proteins might co-exert specific biological

functions in peanut.
Frontiers in Plant Science 08
3.13 Overexpression of AhHsf20 enhanced
salt tolerance in Arabidopsis

To further investigate the function of AhHsf20 in response to

abiotic stresses, we generated transgenic lines overexpressing AhHsf20

under the control of the 35S promoter in Arabidopsis Col-0 plants

(AhHsf20-OE). Two overexpression lines AhHsf20-OE1 and AhHsf20-

OE3 were selected for further studies (Figure 10B). Compared with

wild-type, AhHsf20-OE1 and AhHsf20-OE3 plants displayed a longer

root phenotype under 100 and 150 mM NaCl (Figures 10A, C). The

results revealed that the overexpression of AhHsf20 enhanced the salt

tolerance in transgenic Arabidopsis.
4 Discussion

It has been reported that Hsf genes are heat shock transcription

factors and play important roles in response to abiotic stresses and

plant development processes (von Koskull-Doring et al., 2007).

Cultivated peanut (Arachis hypogaea L.) is not only an important

economic crop but also an oil crop. Thus, identification and analysis

Hsf genes in peanut will be great significance on various stress
FIGURE 5

Regulatory elements in the promoter regions of AhHsf genes.
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responses. Previous study found that 16 and 17 Hsf genes were

identified from Arachis duranensis and A. ipaensis, respectively

(Wang et al., 2017). However, the Hsf gene family in cultivated

peanut has not been comprehensive analyses so far. There are only

21 Hsf genes in Arabidopsis (Guo et al., 2008). In the present study,

a total of 46 Hsf genes were identified from peanut, probably due to

peanut is an allopolytraploid. Consistent with the classification of

Hsf genes in other plant species including Arabidopsis, rice (Guo

et al., 2008), potato (Tang et al., 2016), and tomato (Yang et al.,

2016), peanut Hsf genes were also divided into three groups: A, B,

and C (Figure 1). There are 28 Hsf genes belong to group A (A1-

A9), 16 in group B (B1-B4), and two in group C (C1).

Conserved motif analysis suggested that all of 46 AhHsf proteins

contain two necessary domains (DBD and OD) and/or three specific

domains (NLS, AHA, and NES). The transcriptional activation

activities of Hsf from group A were worked by the AHA motif in

the C-terminal region (Doring et al., 2000). In the peanut Hsf family, 27

of 28 AhHsfA members with AHA motif (Supplementary Table 3),

suggesting that these AhHsf members may have self-transcriptional

activation activity, whereas the AhHsf16 from subgroup A2 without

AHA motif. It has been reported that HsfA members with no AHA

motif might be activated by forming hetero-polymers with other group

A Hsf (Scharf et al., 2012). Furthermore, the gene structures of peanut

Hsf genes are highly conserved within the same subgroup (Figure 2),

further supporting the result of evolutionary analysis.
FIGURE 6

The expression patterns of AhHsf genes in 22 tissues. The FPKM values of each AhHsf gene were normalized and clustered using TBtools.
FIGURE 7

Heatmap of AhHsf genes under drought and salt stresses. The FPKM
values of each AhHsf gene were normalized and clustered using
TBtools.
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B

A

FIGURE 8

The expression patterns of AhHsf genes under drought and salt conditions. (A) The expression pattern of selected AhHsf genes in response to
drought stress treatments, which was calculated as folds relative to the untreated control. (B) The expression pattern of selected AhHsf genes in
response to salt stress treatments, which was calculated as folds relative to the control. The data were means ± SD of three biological repeats.
*p < 0.05, **p < 0.01, ***p < 0.001 (t-tests).
FIGURE 9

The subcellular localization of AhHsf20 in tobacco epidermal cells. The AhHsf20-GFP fusion construct and GFP gene driven by the CaMV-35S
promoter were transiently expressed in tobacco, respectively. DAPI (dye 4,6-diamidino-2-phenylindole) staining indicted the nucleus.
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Segmental duplication and tandem duplication events contribute

to the expansion of the gene families in plant genomes (Vision et al.,

2000; Cannon et al., 2004). In this study, we found that the expansion

of the AhHsf genes in peanut is mainly caused by segmental

duplication, not tandem duplication. A total of 35 segmental and

two tandem duplication pairs were identified (Figure 4), with all the

Ka/Ks ratios of these duplication pairs were less than one

(Supplementary Table 5), suggesting that these duplicated peanut Hsf

genes might have undergone purifying selective pressure in process of

peanut evolution. In addition, duplicated peanutHsf genes belonged to

the same subgroup, such as AhHsf8/AhHsf9 in subgroup A1 and

AhHsf10/AhHsf34 in subgroup B1. Notably, AhHsf10 and AhHsf34, as

a segmental duplication pair, exhibited consistent organ/tissue

expression patterns (Figure 6).

Most of the Hsf transcription factors have been reported to be

involved in the regulation of Arabidopsis developmental processes.

For example, AtHsfA9 from subgroup A9 was reported to be

involved in regulation of seed development in Arabidopsis (Kotak

et al., 2007). A segmental duplication pair AhHsf1 and AhHsf24 was

clustered together with AtHsfA9 in subgroup A9, and these two

genes both highly expressed in seeds (Figure 6), suggesting that

AhHsf1 and AhHsf24 might also be involved in regulating seed

development. In addition, AtHsfB2a was shown to play important

role in regulating gametophyte development of Arabidopsis

(Wunderlich et al., 2014). Its homolog AhHsf13 showed high

expression level in stamen (Figures 3, 6), which suggested that

AtHsfB2a and AhHsf13 might have similar biological functions.
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Drought and salt stresses are the two major abiotic stresses

adversely affecting the growth development and yields of crops

(Suzuki et al., 2014). The plant cells will exhibit consistent changes in

water loss under drought or salt stress. Osmotic adjusting can enhance

water absorption to cope with salt and drought stresses, simultaneously

(Munns et al., 2020; Ozturk et al., 2021). For example, under salt and

drought stresses, a Chloride (Cl-)-tolerant species Pugionium cornutum

that can accumulate Cl- and enhance osmotic adjustment capacity to

improve growth (Cui et al., 2020). Notably, the accumulation of

osmotic substances can be realized by altering relative gene

expression levels. In tomato, transgenic SlWRKY8 plants exhibit

enhanced salt and drought tolerance, with higher osmotic substances

like proline (Gao et al., 2020). It is worth noting that a number of Hsf

members have been reported to be involved in response to plant

environment stresses. In subgroup A1, AtHsfA1b has been reported to

enhance drought resistance (Bechtold et al., 2013). Its peanut homologs

AhHsf3 and AhHsf28 were found to be induced by drought stress

(Figures 3, 7), implying that these AhHsf genes might be involved in

regulating drought stress response. Furthermore, AhHsf3 and AhHsf28

were predicted to have arisen from segmental duplication events

(Figure 4B). In subgroup A6, AtHsfA6b was demonstrated to induce

stress-responsible genes under salt or drought stresses via the ABA

dependent signaling pathway (Huang et al., 2016). AhHsf22 and

AhHsf45 were clustered together with AtHsfA6b in subgroup A6, and

both were induced by salt stress (Figure 7). Furthermore, the promoter

regions of AhHsf22 and AhHsf45 have one ABA-responsive element

(ABRE) respectively (Figure 5), suggesting that these peanut Hsf genes
B

A

C

FIGURE 10

Effects of salt stress treatments on the root growth of the AhHsf20 gene overexpressed in Arabidopsis. (A) Primary root lengths of the WT and
AhHsf20 overexpression lines under salt treatments in transgenic Arabidopsis. (B) The expression levels of AhHsf20 gene in WT and two
overexpression lines. The ratios of gene expression were calculated relative to the WT. (C) Quantification of the primary root lengths under normal
condition and 100 and 150 mM NaCl treatments. The data were retrieved from three biological replicates. WT, wild type. Data are the mean ± SD of
three biological repeats. **p < 0.01, ***p < 0.001 (t tests).
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might be involved in response to salt stress through the ABA signaling

pathway. Notably, salt and drought stress treatments can significantly

induce the expression ofAhHsf20 (Figures 7, 8), implying thatAhHsf20

may be involved in salt- and drought-stress responses. Further

experiments indicated that the overexpression of AhHsf20 can

enhance salt tolerance in transgenic Arabidopsis (Figure 10),

supporting the potential roles of more AhHsf proteins in

stress responses.
5 Conclusion

In this study, a systematic analysis of the peanut Hsf gene family

was performed, and a total of 46 AhHsf members were identified.

They were divided into three groups and 14 subgroups together

with their Arabidopsis homologs. Our analyses of Hsf genes of

peanut and Arabidopsis revealed their diversity in the number of

members, evolutionary relationship, gene structure, chromosome

locations, gene duplication, collinearity, tissue expression patterns

and expression patterns in response to salt and drought stresses.

The results indicate that the AhHsf genes may be important for

regulating peanut responses to abiotic stresses and development.

Notably, AhHsf20 was induced by salt and drought stresses and was

able to enhance salt tolerance in transgenic Arabidopsis. Overall,

these results from this study can help us to further examine the

specific functions of the AhHsf genes and provide some new genes

resource for peanut stress resistance breeding.
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