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Edwardsiellosis caused by Edwardsiella tarda resulted in significant economic

losses in aquaculture operations worldwide. This disease could infect a wide

range of hosts, including freshwater, brackish water, and marine aquatic animals.

Currently, antibiotics and vaccines are being used as prophylactic agents to

overcome Edwardsiellosis in aquaculture. However, application of antibiotics

has led to antibiotic resistance among pathogenic bacteria, and the antibiotic

residues pose a threat to public health. Meanwhile, the use of vaccines to combat

Edwardsiellosis requires intensive labor work and high costs. Thus, phytobiotics

were attempted to be used as antimicrobial agents to minimize the impact of

Edwardsiellosis in aquaculture. These phytobiotics may also provide farmers with

new options tomanage aquaculture species’ health. The impact of Edwardsiellosis

in aquaculture worldwide was elaborated on and highlighted in this review study,

as well as the recent application of phytobiotics in aquaculture and the status

of vaccines to combat Edwardsiellosis. This review also focuses on the potential

of phytobiotics in improving aquatic animal growth performance, enhancing

immune system function, and stimulating disease resistance.
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Introduction

Nowadays, food security is a major concern throughout the
world. Aquaculture can provide a reliable and affordable protein
source for human consumption (1). This statement was supported
by the data recorded that fish consumption per capita was 9 kg
annually in 1961. The value increased rapidly to 20.5 kg in 2018
(2). The aquaculture industry is gearing up to fulfill the increasing
demand for fish protein in the market. However, issues such as high
stocking density and water quality have led to disease outbreaks
(3), resulting in low production, poor growth performance, and
a high mortality rate. Additionally, these issues also result in
high operational costs and food insecurity and affect investors’
income (4). Fish mortality rates due to disease outbreaks as high as
50% reported in developing countries have led some fish farmers
to abandon their aquaculture operations. Based on the World
Bank report, the disease outbreak caused approximately USD 6
billion in economic losses annually (5). The outbreaks may be
due to pathogenic bacteria and stressful environmental conditions.
Consequently, fish farmers had no option but to continue using
antibiotics as a treatment against disease outbreaks (6).

Edwardsiella tarda was first reported in the literature by
a Japanese scientist in 1962. This Gram-negative anaerobic
facultative Brevibacterium infects a huge range of hosts, such as
aquatic animals, amphibians, reptiles, and mammals throughout
the world (7). E. tarda has infected various aquaculture species
and has led to a huge economic loss (8, 9). Hemolysin
is an important virulence factor of E. tarda that causes
septicemia in the host (10). Other virulence factors that are
responsible and involved in the infection process are catalase (11),
Translocation and Assembly Module (Tam) (12), DNA-binding
protein from starved cells (Dps) (13), undecaprenyl phosphate
gylcosyltransferase (WcaJ) (14), and superoxide dismutase (15).
The pathogenicity and virulence of E. tarda were reported
due to the presence of virulence genes in the bacterium,
namely, vibrioferrin synthesis (pvsA), sensor protein (qseC),
chondroitinase (cds1), AHL-synthase (edwI), and DNA Gyrase
(gyrB) (8, 16, 17).

The symptoms of Edwardsiellosis in infected fish species,
such as hybrid snakehead (Channa maculate ♀ × Channa argus

♂) and grass carp (Ctenopharyngodon idella), are exophthalmia,
hernia, internal organ damage (18), pigment loss, swollen anus, and
enlarged kidney (19). Other symptoms reported in the literature
are ascites and internal organ swelling (20). At present, antibiotics
are used to lessen the impact of Edwardsiellosis on aquaculture
species. However, the excessive use of antibiotics has led to
an increment in antibiotic resistance cases against pathogenic
E. tarda (21–24). For instance, E. tarda isolated from Siamese
crocodile was found to be highly resistant to erythromycin,
tetracycline, and oxytetracycline (25). Turbot farming in China
was reported to rely on antibiotics and chemicals to combat
Edwardsiellosis infection (26). In Korea, E. tarda isolated from
farmed marine fishes was reported to be resistant to various
antibiotics, such as streptomycin, cefaclor, lincomycin, penicillin,
erythromycin, and rifampin (27). The application of antibiotics
in aquaculture can control bacterial infection in the short term.
However, adverse effects of using antibiotics as treatment include

FIGURE 1

The impacts of antibiotics used in aquaculture.

bioaccumulation of the antibiotic residues in aquatic animal
tissues and organs, immunosuppression, and imbalance of gut
microbiota (Figure 1) (28). The plasmid in E. tarda was found
to carry antibiotic-resistance genes against multi-antibiotics (29).
The application of antibiotics in aquaculture has led to the
contamination of antibiotic residues in the human food chain
(24). Furthermore, over usage of antibiotics in aquaculture can
accelerate the emergence of multi-antibiotic-resistant pathogenic
bacteria that can adversely affect public health (30). Therefore,
there is a need to find alternative antimicrobial agents to control
Edwardsiellosis in aquaculture to reduce overreliance on chemicals
and antibiotics. This review discusses and summarizes the impact
of Edwardsiellosis due to E. tarda, the application of phytobiotics
in aquaculture, the status of the Edwardsiellosis vaccine, and
the roles of phytobiotics in improving growth performance,
enhancing the immune system, and stimulating disease resistance
against E. tarda.

Phytobiotics and their bioactive
compound roles

Phytobiotics are plant-based derivatives that have beneficial
effects on organisms. The bioactive compounds are responsible
for the biological activities of phytobiotics, such as alkaloids,
carotenoids, and phenolic compounds (31). The biological
activities of phytobiotics can be anti-inflammatory, antimicrobial,
antioxidant, and others. Generally, phytobiotics play an
important role in promoting the growth of gut microbiota,
increasing feed efficiency, and activating immune-related
genes to enhance the immune system of fish (31). For
example, Brown alga, Ecklonia cava, was found to promote
the growth of probiotic lactic acid bacteria (LAB) in zebrafish and
modulate the immune system of the fish against Edwardsiellosis
infection (32).
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FIGURE 2

Edwardsiellosis infection in olive flounder, Paralichthys olivaceus (9).

Impacts of edwardsiellosis due to E.

tarda in aquaculture

E. tarda is an important disease-causing bacterium in
aquaculture (33). This bacterium is under the genus of
Edwardsiella. There are another four pathogenic bacteria
under similar genera, namely, Edwardsiella. anguillarum (34),
Edwardsiella piscicida (35), Edwardsiella ictaluri, and Edwardsiella

hoshinae. E. tarda is a short rod-shaped Gram-negative bacterium
with a diameter of 1–3µm in length (36, 37). Based on the
phenotypes, E. tarda can be divided into two groups, namely,
typical and atypical (38). Typical and atypical groups are referred
to as motile and non-motile E. tarda, respectively. The bacterium
can be grouped into four serotypes (i.e., A, B, C, and D). The
serotype grouping is based on the agglutination of the bacterium
with specific antisera to identify variants of somatic (O) and flagella
(H) antigens. This bacterium is responsible for Edwardsiellosis
disease outbreaks in many fish farming. For instance, the
Edwardsiellosis outbreak was reported in carp species, such as
crucian carp in Japan (39) and grass carp in India (19, 40). Besides
carp, Edwardsiellosis also infected Japanese eels in Fujian Province
in China (41), giant mottled eels in China (42), and Japanese eels
in South Korea (43). Edwardsiellosis has caused high mortality of
hybrid snakeheads in China (18). Many cases of Edwardsiellosis
outbreaks were recorded in olive flounder (Figure 2) and Japanese
flounder farms in China (44–46). Furthermore, Edwardsiellosis has
infected Chinook salmon in the US (47), Sharpsnout seabreams in
Greece (48), Rainbow trout in Korea (49), Dabry sturgeon in China
(50), Yellow catfish in China (51), Black rockfish in China (52),
Chinese tongue sole (53) in China, Seahorse (54) in China, Siamese
crocodile in Hainan and China (25), and Chinese soft-shelled turtle
in China (55). E. tarda caused ascites disease in juvenile turbot
(Scophtalmus maximus), which led to high mortality (30–50%)
(56). In some cases, ascites in turbot have led to massive mortality,
as high as 90% (41). As a result, Edwardsiellosis poses a significant
threat to turbot farming, especially in producing seeds. Besides,
E. tarda is also responsible for gangrene in fish, red disease in
eels, emphysematous putrefactive disease in catfish (36), and fatal
septicemia in newly hatched farmed crocodiles (57, 58). In the

TABLE 1 The impacts of Edwardsiellosis on fish organs.

Fish organs Clinical signs

Scale/body Loss of pigmentation

Fin/skin Hemorrhage

Eyes Exophthalmia/opacity

Abdominal space Bloody ascites

Liver, spleen, and kidney Congestion

US, Edwardsiellosis is a major disease in farmed channel catfish,
Ictalurus punctatus, and farmed barramundi, Lates calcarifer (59).
Furthermore, Edwardsiellosis is a well-known disease in Egypt
during summer that has caused huge mortality in Nile tilapia (60).
The impact of Edwardsiellosis infection in fish organs is shown
in Table 1 (61). This disease can spread through contaminated
feed, water, or intestinal mucosa, and a poor environment, such
as the presence of high organic, poor water quality, and high
temperature can trigger Edwardsiellosis infection in fish (61).
Overall, Edwardsiellosis is an important disease in aquaculture that
has a huge economic impact. Edwardsiellosis-causing bacterium,
E. tarda, can adapt to a wide range of environments and infect
various hosts resulting in high mortality. Edwardsiellosis outbreak
devastates many fish farmers causing them to sometimes end the
farm’s operation. In addition, investors also lose their income and
many workers become jobless.

Application of phytobiotics in
aquaculture

Phytobiotics are referred to as any plant-based products that
have antimicrobial activity (31, 62) and antioxidant capacity, can
promote growth performance (63), enhance the immune system
(64), stimulate disease resistance, and mitigate stress. There are
some phytobiotics have been approved by the U.S. Food and
Drug Administration (FDA) to be used in animal production (65)
such as cottonseed meal and rice hull. However, both phytobiotics
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cannot be applied more than 20% in the feed formulation. Different
phytobiotics vary in their modes of action depending on the
bioactive component. Generally, phytobiotics can modulate gut
microbiota and change the membrane permeability of pathogenic
microorganisms. However, the effectiveness of phytobiotics can
be influenced by many factors, such as storage conditions, post-
harvesting processing, geographical locations, and plant species
(66, 67).

The potential of phytobiotics (e.g., essential oil, plant leaves,
flowers, and alcoholic extracts) usage in aquaculture was widely
documented (Table 2). Phytobiotics were used as feed additives
in aquaculture, and some were used as a solution and medicated
through bathing treatment. The exposure period of aquaculture
species to phytobiotics ranges from 14 to 60 days. Generally, the
modes of action of phytobiotics are to promote the growth of
gut microbiota, increase feed utilization efficiency, and activate
immune-related genes to produce antimicrobial production (68–
72) (Figure 3). Based on the phytobiotics’ mode of action, the
beneficial effects of phytobiotics on aquaculture species include
enhancing the immune system, increasing antioxidant activity,
improving growth performance, and stimulating disease resistance
of aquaculture species. Besides, phytobiotics can also be used as
alternate commercial antibiotics, acting as antimicrobial agents and
mitigating abiotic stress such as ammonia.

β-Glucan is a commercial polysaccharide that can be used
as an immunostimulant. It was reported to increase the binding
activity of receptors with natural killer cells and neutrophils (83).
Hence, β-glucan can enhance the immune system. Many studies
revealed that β-glucan could improve the immune system in
aquatic animals, such as Oreochromis niloticus (83), Litopenaeus
vannamei (90), Oncorhynchus mykiss (91), Lutjanus peru (92),
Cyprinus carpio (93), and Trachinotus ovatus (94). In addition,
a combination of probiotic Bacillus coagulans and β-glucan can
perform a synergistic effect to enhance the immune system of
O. niloticus (83). Dietary Miswak (Salvadora persica) leaf in
Nile tilapia, O. niloticus, was found to have beneficial effects,
such as growth performance improvement, immune system
enhancement, antioxidant increment, and Aeromonas hydrophila

disease resistance stimulation (84). The beneficial effects were
linked to the bioactive compounds present in the phytobiotic,
such as alkaloids comprising salvadorine, trimethylamine, tannins,
flavonoids, saponins, and sulfur (95). These bioactive compounds
have been stated to promote feed consumption, relieve stress,
and act as immunostimulants (84). Besides, dietary of Miswak
root was also reported to promote an immune system of
common carp (96) and tilapia (97). Nile tilapia, O. niloticus that
received brown seaweed Sargassum aquifolium in diet performed
significantly better in growth and health (85). Polysaccharides, the
bioactive compounds that were present in brown seaweed, were
responsible for the positive response in Nile tilapia, O. niloticus.
The polysaccharides can promote the growth of gut microbiota
(32) and activate gene-related antimicrobial production molecules
(98). Thus, dietary brown seaweed can promote feed utilization
efficiency and the health status of Nile tilapia.

The potential of microalga, Nannochloropsis oculata, as a
phytobiotic was revealed in the study of Abdelghany et al. (86).
Dietary N. oculata at doses of 5–15% of the diet was found to

promote the growth and health status of Nile tilapia, O. niloticus.
Microalgae are widely used in aquaculture as they are rich in
essential amino acids. Besides, they also carry bioactive compounds
such as essential vitamins and polysaccharides that can fortify
health status and promote growth performance (108). However, the
application of N. oculata as a feed additive at higher doses may lead
to disruption of nutrient digestion activity (109), and the presence
of complexed non-starched polysaccharides, such as pectins, gums,
cellulose, and hemicelluloses, can reduce nutrient absorption in
the fish digestive system (110). Therefore, N. oculata must use in
the optimal range to avoid adverse impacts on the fish. A diet of
rosemary (Rosmarinus officinalis) was found to relieve aflatoxin
B1-suppressed growth and feed utilization in Nile tilapia (89).
Rosemary is a well-known herb for its high antioxidant activity
(111). Polyphenol compounds are the main bioactive compounds
in rosemary that are responsible for their antioxidant property
(112). Carnosol and rosmanol are two bioactive compounds
that are present in rosemary. These bioactive compounds can
enhance nutrient digestibility and inhibit pathogenic bacteria in the
intestine (113).

Dietary Origanum vulgare essential oil at the dose of 0.5–1% of
the diet was reported to relieve oxidative stress due to the presence
of insecticide, cypermethrin, in common carp, C. carpio (87). The
bioactive compounds, which are present in the essential oil, such as
carvacrol, thymol, cymene, and terpinene, are able to increase the
antioxidative capacity of fish (80, 114). Besides, O. vulgare essential
oil was also reported to mitigate oxidative stress due to carbon
tetrachloride (115), gentamycin (116), and paraquat (117) in rats.
Thymol is another phytobiotic that was reported to have a positive
impact on aquaculture species. However, the application of thymol
alone showed no significant impact on the growth performance in
rainbow trout (118), channel catfish (119), and Nile tilapia (120).
However, thymol, in combination with other prophylactic agents,
was found to promote the growth performance of fish. For instance,
a dietary combination of thymol and carvacrol can help to promote
the growth performance of European sturgeons (121) and gilthead
seabreams (122). In addition, a dietary combination of chitosan
nanoparticles and thymol was found to promote the growth and
health status of Nile tilapia (88).

Phytobiotics vs. commercially
developed vaccines against
edwardsiellosis due to E. tarda

Several studies have shown the potential use of vaccines
in aquaculture against edwardsiellosis (Table 3). for instance,
Castro et al. (123) and Lan et al. (124) reported that an
effective edwardsiellosis vaccine has been developed for turbot,
Sauertylenchus maxinus. inactivated E. tarda vaccine also has
been shown to stimulate immune response effectively in zebrafish
(125), flounder (46, 126), turbot (127), tilapia, and Oreochromis

mossambicus (128), and japanese flounder, P. olivaceus (129).
the studies have used different immunogens, such as whole
cell, live cells extract, outer membrane protein (130), and
attenuated E. tarda, to stimulate the immune response in fish
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TABLE 2 Phytobiotics used in aquaculture.

Species Phytobiotics/Bioactive
compounds

Dose Duration E�ects References

Nile tilapia, O.
niloticus

Volatile oils of thyme, red thyme, and
pepper rosemary/terpenes, terpenoids

1.2 g/kg of feed 20 days Enhance immune system; Replace
antibiotic enrofloxacin; High
antioxidant activity; Stimulate disease
resistance against A. hydrophila

(28)

Nile tilapia, O.
niloticus

Bougainvillea glabra leaf/tannin,
alkaloids

4.5%/kg of
feed

30 days Improve growth performance; Stimulate
disease resistance against Enterococcus
faecalis

(73)

Striped catfish,
Pangasianodon

hypophthalmus

Milk thistle, Silybum
marianum/polysaccharides

0.1–0.3%/kg of
feed

60 days Improve growth performance; Enhance
immune system; Increase antioxidant
capacity

(74)

Caspian roach,
Rutilus caspicus

Essential oil of savory, Satureja
hortensis/terpenes, terpenoids

200 mg/kg of
feed

60 days Improve growth performance
Stimulate stress resistance against
salinity

(75)

African catfish,
Clarias gariepinus

(B.)

Leaf of clove basil, Ocimum

gratissimum/tannin, alkaloids
12 g/kg of feed 84 days Improve growth performance; Enhance

immune system; Increase antioxidant
capacity; Stimulate disease resistance
against Listeria monocytogenes

(76)

Nile tilapia, O.
niloticus

Probiotic (Bacillus subtilis+ Bacillus

licheniformis)+ Yucca schidigera

solution extract/Polysaccharides

5× 1010 cfu/g
+ 0.11 ml/m3

14 days Enhance immune system; Increase
antioxidant capacity; Stimulate stress
resistance against ammonia

(77)

Nile tilapia, O.
niloticus

Commercial seaweed liquid extract
(TrueAlgaeMax, TAM)/polysaccharides

50–200 ml/m3 70 days Improve growth performance; Enhance
immune system; Stimulate disease
resistance against A. hydrophila

(78)

Nile tilapia, O.
niloticus

Alcoholic extract of Artemisia

annua/tannin, alkaloids
0.1–0.5% per
kg of feed

30 days Improve growth performance; Enhance
immune system; Promote the growth of
beneficial gut microbiota

(79)

Common carp, C.
carpio L. fingerling

Oregano essential oil/terpenes,
terpenoids

5–20 g/kg of
feed

56 days Improve growth performance (80)

Great sturgeon,
Huso huso

Rosemary essential oil/terpenes,
terpenoids

0.01–2% per
kg of feed

56 days Improve growth performance (81)

Red drum,
Sciaenops ocellatus

Ocimum americanum essential
oil/terpenes, terpenoids

0.25–2g/kg of
feed

49 days Improve growth performance; Enhance
immune system

(82)

Nile tilapia, O.
niloticus

β-Glucan with/without probiotic B.
coagulans

β-Glucan – 0.1
g/kg of feed
B. coagulans –
1–2 g/kg of

fish

98 days Improve growth performance; Enhance
immune system; Increase antioxidant
capacity

(83)

Nile tilapia, O.
niloticus

Miswak (S. persica) leaf/salvadorine,
trimethylamine, tannins, flavonoids,
saponins, sulfur

2.5–10 g/kg of
feed

56 days Improve growth performance; Enhance
immune system; Increase antioxidant
capacity; Stimulate disease resistance to
A. hydrophila

(84)

Nile tilapia, O.
niloticus

Brown seaweed, S.
aquifolium/polysaccharides

50–200 g/kg of
feed

56 days Improve growth performance; Enhance
immune system; Increase antioxidant
capacity; promote the growth of gut
microbiota

(85)

Nile tilapia, O.
niloticus

N. oculata/essential vitamins and
polysaccharides

5-15% of diet 64 days Improve growth performance; Enhance
immune system; stimulate disease
resistance against Aeromonas veronii

(86)

Common carp, C.
carpio

O. vulgare essential oil 0.5–1% of diet 30 days Relieve oxidative stress due to
cypermethrin

(87)

Nile tilapia, O.
niloticus

Thymol Thymol+
chitosan nanoparticle

0.5 g/kg of diet
0.5 g/kg of diet
+ 5 g/kg of

diet

Promote feed utilization, antioxidant,
and health status

(88)

Nile tilapia, O.
Niloticus

Rosemary/carnosol and rosmanol 0.5% of diet Relieve suppression of aflatoxin on
growth and feed utilization

(89)
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FIGURE 3

Mode of action of phytobiotics.

against edwardsiellosis. although the application of vaccines can
control edwardsiellosis effectively, issues, such as cost, huge labor
requirements, and species-specific usage, have limited its use.
besides, the application of live vaccines has legal objections in many
countries. meanwhile, selective breeding has been proposed as a
method to improve the genetics of aquaculture species to counter
the disease resistance issue against E. tarda (13, 131, 132).

Phytobiotics have been shown to stimulate disease resistance
in various aquaculture species. For example, a recent study
by Ahmadifar et al. (68) has claimed that Cornelian cherry
(Cornus mas L.) fruit extract can stimulate disease resistance
in common carp, C. carpio, against A. hydrophila. Meanwhile,
studies found that phytobiotics can stimulate disease resistance
in aquatic animals (69–71). Sulfated polysaccharides from sponge
seaweed (72) and Astragalus (101) were found to enhance the
disease resistance of both freshwater and marine aquaculture
species against Edwardsiellosis (Table 2). Sulfated polysaccharides
are referred to as anionic polysaccharides that carry sulfates (133).
These sulfated polysaccharides have medicinal benefits, such as
antibacterial, antiviral, anti-inflammatory, and rich antioxidant
properties (134). Astragalus polysaccharides were also found to
improve growth performance, enhance the immune system, and
stimulate disease resistance to Edwardsiellosis in catla (Catla
catla). Astragalus polysaccharides are bioactive compounds that
are reported to possess rich antioxidant properties (135) and
can play important roles in activating the immune system (101).
Mitracarpus scaber leaf extract was reported to stimulate disease
resistance of African catfish against Edwardsiellosis (99). This
plant leaf extract possesses bioactive compounds, such as eugenol
and gallic acid. These bioactive compounds are able to modulate
gut microbiota, enhance feed utilization, and promote growth
performance (99). Green alga, Chaetomorpha aerea extract may
carry bioactive compounds that can play a role as an activator
for genes related to antimicrobial molecules production (98).

Therefore, this green alga extract was found to stimulate disease
resistance in Labeo rohita against Edwardsiellosis (98). Cassic acid
is a bioactive compound widely and commercially used in Chinese
herb medicinal (100). This compound can be found in the root and
leaf of plant species, such as Senna, Rheum, and Cassia (100). Cassic
acid hasmedicinal values like antibacterial, antifungal, and antiviral
properties and is rich in antioxidant properties (69, 136). These
medicinal values were responsible for the growth performance
improvement and disease resistance to Edwardsiellosis in African
catfish, C. gariepinus that received cassic acid as a feed additive
(69). Brown alga, E. cava was found to be used as a prebiotic in
promoting the growth of probiotic, LAB (32). Further study on
E. cava revealed that brown alga can be used as a feed additive
in zebrafish. It can improve the growth of zebrafish and stimulate
disease resistance to Edwardsiellosis (105). A recent report showed
that apple mangrove Sonneratia caseolaris extract could be used
feed additive in African catfish, C. gariepinus. The bioactive
compounds in the plant extract can enhance the appetite of the
fish, improve growth performance, and stimulate disease resistance
to Edwardsiellosis (102). Besides that, agricultural waste, a citrus
by-product, was claimed to help in improving the health status
of aquaculture species against Edwardsiellosis (103). For example,
essential oil from Citrus limon carries bioactive compounds, such
as flavonoid, coumarin, and limonene, that are responsible for
the antibacterial, antioxidant, and anticancer properties of the
essential oil (103). Bioactive compounds in the phytobiotics can
play an important role in activating the innate immune system
in aquatic animals (104). One of the innate immune systems
is serum lysozyme. Serum lysozyme catalyzes the pathogen cell
wall and phagocytosis activities against pathogens, such as viruses,
parasites, and bacteria, that invade the host (104). All phytobiotics
administered as a feed additive have been shown to improve the
health status of aquatic animals against Edwardsiellosis except for
nanoscale β-glucan (NSBG), which can also be used to fish larvae
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TABLE 3 Phytobiotics used to mitigate E. tarda impacts on aquatic animals.

Species Phytobiotics/bioactive
compounds

Dose Duration E�ects References

Rockfish, Sebastes
schlegelii

Sponge seaweed, Codium fragile, derived
sulfated polysaccharides/Sulfated
polysaccharides

0.1–1%/kg
feed

14–28 days Enhance immune system (72)

African catfish, C.
gariepinus

M. scaber leaves extract/eugenol and
gallic acid

6 g/kg of feed 56 days Improve growth performance; Enhance
immune system

(99)

L. rohita Green alga, C. aerea
extract/polysaccharides

50 mg/kg of
feed

28 days Stimulate disease resistance against
Edwardsiellosis

(98)

C. gariepinus Cassic acid 1–5 mg/kg
feed

30 days Improve growth performance; Stimulate
disease resistance against
Edwardsiellosis

(100)

Catla, C. catla Astragalus polysaccharides 200–300
mg/kg of feed

56 days Improve growth performance; Enhance
immune system; Stimulate disease
resistance against Edwardsiellosis

(101)

Zebrafish Enzymatic extract of the brown alga, E.
cava/polysaccharides

1%/kg of feed 21 days Act as prebiotic; Promote the growth of
probiotic in fish; Stimulate disease
resistance against Edwardsiellosis

(32)

C. gariepinus Methanol extract of apple mangrove, S.
caseolaris/tannin, alkaloids

1.59–3.17 g/kg
of feed

28 days Improve growth performance; Stimulate
disease resistance against
Edwardsiellosis

(102)

Mozambique
tilapia, O.
mossambicus

Citrus limon peels essential oil/terpenes,
terpenoids

0.5–1% of feed 60 days Improve growth performance; Enhance
immune system

(103)

Rock bream,
Oplegnathus

fasciatus

Leaves of Baical skullcap, Scutellaria
baicalensis+ probiotic Lactobacillus
sakei/tannin, alkaloids

1%+ 1%/kg
feed

42 days Enhance immune system; Stimulate
disease resistance against
Edwardsiellosis

(104)

Zebrafish larvae Nanoscale β-glucan from oat Bathing 100–
500µg/ml

3 days Enhance immune system; Stimulate
disease resistance against
Edwardsiellosis

(105)

Korean rockfish,
Sebastes schelgeli

Citrus by-product; fermented citrus
by-product/flavonoid, coumarin,
limonene

Equivalent to
100mg
ascorbic

acid/kg feed

91 days Improve growth performance; Stimulate
disease resistance against
Edwardsiellosis

(106)

Olive flounder, P.
olivaceus

Ethanolic lacquer tree, Rhus verniciflua
Stokes (RVS)/tannin, alkaloids

30–300 mg/kg
of feed

14–70 days Stimulate disease resistance against
Edwardsiellosis

(107)

via bathing treatment (105). In this context, NSBG acted as an
immunostimulant to enhance the innate immune system in the fish
larval before the larval adaptive immune systemwas well developed
(105). β-Glucan is a commercial feed additive that is abundant and
inexpensive. Therefore, this bioactive compound is widely used
in animal feed to enhance animal production. The duration of
phytobiotics served as a feed additive to aquatic animal range from
14 to 91 days. The benefits of phytobiotics used as feed additives are
not only to stimulate disease resistance to Edwardsiellosis but also
to improve growth performance and enhance the immune system
of aquatic animals. Administration of phytobiotics orally is the
most practical and non-stressful method, and can be used widely
in aquaculture.

The adverse impacts of using
phytobiotics in aquaculture

The application of phytobiotics in aquaculture was widely
reported in the literature. Phytobiotics have beneficial effects
on various aquatic animals, such as growth performance

improvement, immune system enhancement, and disease
resistance enhancement. Apart from their beneficial effects,
phytobiotics were reported to have adverse impacts. For
example, RVS has medicinal properties, such as anticancer
(137), antiviral (138), antibacterial, and antioxidant (139)
activities. This phytobiotic was reported to relieve the impacts
of Edwardsiellosis infection in olive flounder (P. olivaceus)
(33). In addition, the methanolic extract of RVS bark was also
found to be significantly effective against E. tarda and Vibrio

anguillarum (107). However, RVS possesses bioactive compounds
known as urushiol congeners that can cause adverse effects,
such as inflammation, blistering, and irritation (140). Thus,
the adverse impacts limit the use of RSV in treatment. On the
other hand, urushiol congeners were found absent in the RVS
lignum (139). Furthermore, RVS lignum performed the highest
antibacterial and antioxidant activities against E. tarda isolated
from fish (141). Hence, RVS lignum has a high potential to
be used as a phytobiotic in aquaculture. Some phytobiotics
have low toxicity and few side effects on aquatic animals. For
instance, Astragalus polysaccharides were widely used in Chinese
medicine practice (101). These bioactive compounds were also
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shown to be promising as feed additives in chicken (142) and
fish (101).

Conclusion and recommendation

Edwardsiellosis due to E. tarda is an important disease in
aquaculture that mainly affects carp fish, eels, flounder, turbot,
channel catfish, and many other aquaculture species. This disease
can devastate the whole fish farm and lead to huge economic
loss. Traditionally, antibiotics and vaccines were used to combat
Edwardsiellosis in aquaculture. However, antibiotics have an
adverse impact on microbial communities in aquaculture sites,
and their residues in aquaculture products can pose a threat to
public health. On the other hand, the application of vaccines is
expensive and requires high labor work. Therefore, these two issues
became major constraints to the usage of vaccines in combating
Edwardsiellosis in aquaculture. Therefore, phytobiotics can be
an alternative option to fish farmers as a prophylactic agent
against Edwardsiellosis in aquaculture. At present, phytobiotics are
evidenced to have a high potential in controlling Edwardsiellosis.
However, further studies should be carried out to investigate
the effectiveness of phytobiotics against Edwardsiellosis in more
important aquaculture species, such as eels, flounder, turbot, and
channel catfish. Currently, there is a lack of information in the
literature on the benefit of phytobiotics to the abovementioned
aquaculture species, and many potential phytobiotics are
waiting to be explored to relieve the impact of Edwardsiellosis
in aquaculture.
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