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A five-collagen-based risk model
in lung adenocarcinoma:
prognostic significance and
immune landscape

Lingjun Dong †, Linhai Fu †, Ting Zhu, Yuanlin Wu, Zhupeng Li,
Jianyi Ding, Jiandong Zhang, Xiang Wang,
Junjun Zhao and Guangmao Yu*

Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
As part of the tumor microenvironment (TME), collagen plays a significant role in

cancer fibrosis formation. However, the collagen family expression profile and

clinical features in lung adenocarcinoma (LUAD) are poorly understood. The

objective of the present work was to investigate the expression pattern of genes

from the collagen family in LUAD and to develop a predictive signature based on

collagen family. The Cancer Genome Atlas (TCGA) samples were used as the

training set, and five additional cohort samples obtained from the Gene

Expression Omnibus (GEO) database were used as the validation set. A

predictive model based on five collagen genes, including COL1A1, COL4A3,

COL5A1, COL11A1, and COL22A1, was created by analyzing samples from the

TCGA cohort using LASSO Cox analysis and univariate/multivariable Cox

regression. Using Collagen-Risk scores, LUAD patients were then divided into

high- and low-risk groups. KM survival analysis showed that collagen signature

presented a robust prognostic power. GO and KEGG analyses confirmed that

collagen signature was associated with extracellular matrix organization, ECM-

receptor interaction, PI3K-Akts and AGE-RAGE signaling activation. High-risk

patients exhibited a considerable activation of the p53 pathway and cell cycle,

according to GSEA analysis. The Collage-Risk model showed unique features in

immune cell infiltration and tumor-associated macrophage (TAM) polarization of

the TME. Additionally, we deeply revealed the association of collagen signature

with immune checkpoints (ICPs), tumor mutation burden (TMB), and tumor

purity. We first constructed a reliable prognostic model based on TME principal

component—collagen, which would enable clinicians to treat patients with LUAD

more individually.
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LUAD, the extracellular matrix, collagen, tumor microenvironment, tumor-
associated macrophages
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1 Introduction

Non-small cell lung cancer (NSCLC), which accounts for 80–

85% of lung cancer occurrences worldwide, is the most common

type of malignancy. 2,206,771 new cases of lung cancer were

reported worldwide in 2020, making up 11.4% of all new cancer

cases and placing lung cancer in second place globally (1, 2). There

were 1796,144 new cases of lung cancer-related deaths, which is the

highest number ever and accounts for 18% of all new cancer

mortality cases (1, 2). The most common histological subtype of

NSCLC, lung adenocarcinoma (LUAD), is followed by lung

squamous cell carcinoma (LUSC), and LUAD accounts for more

than 40% of NSCLC cases (3). Despite the use of cutting-edge

technologies, strategies and therapies for lung cancer, only 17% of

lung cancer patients survive for five years (4). Therefore, we

urgently need to develop a precise way to forecast patients’

survival. The sensitivity of SCC, CEA and Cyfra 21-1, the most

commonly used tumor marker, is only 20% to 50% (5), while other

biomarkers, including ctDNA, EGFR, ALK and PD-L1, are fairly

prevalent, they are not yet widely utilized in clinical practice (6).

The advancement of sequencing technology has enabled

bioinformatics analysis to pinpoint changes in gene expression,

expanding the spectrum of potential methods for gauging the

prognosis of LUAD patients. Therefore, in order to gain new

insights into early illness diagnosis and the creation of customized

therapy regimens, we set out to investigate the molecular signature

that influences the onset and progression of LUAD.

The extracellular matrix (ECM) are scaffolds for tissues and

organs (7). Many scholars wrongly believe that ECM is the

“inanimate” or “static” portion of an organism. Our knowledge of

the composition, structure, and function of the ECM has been

considerably improved by recent fundamental research (8, 9).

Collagen is the most ubiquitous protein in the human body and

one of the most significant components of the ECM (10). There are

currently 28 different varieties of the collagen family, and each

collagen molecule has a basic structure that is either three

homologous or heterologous trimer helix domain (11, 12). The

amino acid GLY-X-Y repetitions, where X and Y are usually proline

and 4-hydroxyproline, are the basic building block of triple-helical

sequences. Depending on the changes in its structure and function,

collagen can be categorized into a number of different types,

including fibril-forming collagen, fibril-associated collagen,

network-forming collagen, and membrane-anchored collagen

(11–13).

Collagen protein serves as a scaffold of tumor microenvironment

(TME). It impacts the TME, regulates ECM remodeling, and

encourages tumor invasion, angiogenesis and migration by

regulating collagen degradation and re-deposition (14). Tumor

invasion and metastasis are caused by collagen loss in tumor tissue.

For instance, in moderately differentiated colon cancer samples,

collagen XV was nearly completely gone from the basement

membrane. In human breast cancer, type XV and XIX collagen are

gradually eliminated when ductal carcinoma in situ progresses to

invasive carcinoma (15, 16). Collagen is an essential biomaterial for

tumor angiogenesis. Numerous studies have shown that inhibiting
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collagen metabolism has an antiangiogenic effect and that the

appropriate synthesis and deposition of collagen in the BM is

required for vascular survival and development (14). However, the

clinical characteristics and expression profile of the collagen family in

LUAD are still unknown.

To address the thorny problems, we thoroughly examined the

clinical characteristics and expression profile of the collagen family

in LUAD. We thoroughly investigated the expression pattern and

landscape of collagen family in LUAD to establish a Collagen-Risk

model, which confirmed that can be used as an accurate and reliable

biomarker. In addition, we obtained five GEO data sets as validation

sets for the five collagen-based prognostic model for LUAD. Next,

we performed functional analysis, immune infiltration analysis and

immune check point analysis to provide new insights into the

prognosis and immunotherapy of LUAD. Finally, a nomogram was

developed to predict an individual overall survival (OS) based on

the combination of the signatures of the five collagen genes and

clinical features. In conclusion, our research may help with LUAD

patient diagnosis and prognosis.
2 Materials and methods

2.1 Data sources

Standardized gene expression profiles of the TCGA-LUAD

project were extracted from GDC data portal (https://portal.gdc.

cancer.gov/)via perl language, including 598 lung tissue samples (59

normal cases and 529 LUAD cases). A total of 523 LUAD patients’

clinical observation data was available in TCGA database, which

was served as a training set. Clinical observation information about

the patients was gathered, including information on their survival

time, survival status, age, gender, T pathological stage,

N pathological stage, M pathological stage, and pathological

stage. As validation sets, we downloaded five separate LUAD

genomic profiles from the NCBI GEO database (https://

www.ncbi.nlm.nih.gov/geo/): GSE13213, GSE31210, GSE72094,

GSE30219, and GSE11969. GSE13213, GSE31210, GSE72094,

GSE30219, and GSE11969 contain 117, 226, 442, 85, and 158

cases, respectively. Table S1 shows the six cohorts’ basic

clinical characteristics.
2.2 Identification of five collagens and
generation of risk model

44 collagen family proteins were identified by the TCGA

transcriptome and included in this research. 5542 differently

expressed genes (DEGs) and 26 genes from the collagen family were

found to be differentially expressed between normal and tumor tissues

by using the ‘edge R’ package and setting the criteria to P< 0.01 and |

log2(fold change) | > 1. Six collagen family proteins were discovered to

be related to the prognosis of LUAD when the expression of collagen

family proteins was examined using univariate Cox regression analysis

to ascertain its correlation with OS in LUAD. Then, we used the
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https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fonc.2023.1180723
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2023.1180723
‘glmnet’ package to conduct a least absolute shrinkage and selection

operator (LASSO) Cox regression model to integrate survival time,

survival status, and six collagen genes’ expression data, and figured out

five collagen family proteins (COL1A1, COL4A3, COL5A1, COL11A1,

and COL22A1) which were considered to be crucial in LUAD.

Through the modeling procedure outlined above, a five-collagens-

based risk model was created, which entailed taking into consideration

the expression of core genes as well as the associated risk coefficient.

The model was defined in the equation: risk score = 0.03691

3204*COL1A1 + −0.094058955*COL4A3 + 0.005018018*COL5A1 +

0.011288384*COL11A1 + 0.08146509*COL22A1. Patients with LUAD

were divided into high-risk and low-risk groups using the median

risk score.
2.3 Survival analysis and the independent
prognostic value of collagen-risk model

In this study, we used the ‘survival’ package, integrating gene

expression data, patient survival time, patient survival status, and

risk score, to evaluate the prognostic importance of each gene and

risk model via the COXmethod. We initially conducted a univariate

Cox Analysis of risk score to explore its association with prognosis

in order to determine the independent prognostic validity of the

collagen-risk model in LUAD and to investigate the relation of risk

score with prognosis. All variables were then gathered to conduct a

multivariable Cox analysis to assess whether risk score has

independent prognostic value in predicting outcomes. ROC

analysis was carried out to obtain AUC using the ‘pROC’

package. Specifically, we obtained patient follow-up time and

collagen-risk score, and the ROC analysis was analyzed at 1-, 3-,

5-year time points, and the AUC and confidence interval were

evaluated to obtain the final AUC values. The GSE13213,

GSE31210, GSE72094, GSE30219, and GSE11969 datasets with

OS and clinical information were used for external validation.

The GSE31210 and GSE30219 datasets include recurrence-free

survival (RFS) time, and we also analyzed the prognostic value of

the collagen-risk model on RFS.
2.4 KEGG and GO enrichment analysis of
collagen-risk model correlated genes

The GO annotation of the genes in the ‘org.Hs.eg.db’ package

was used as the background set for the gene set functional

enrichment study. The enrichment analysis was carried out using

the ‘clusterProfiler’ package to acquire the findings of functional

enrichment. The minimum gene set size was 5, the maximum gene

set size was 5000, and statistical significance was defined as a P value

of less than 0.05 and an FDR of less than 0.25.
2.5 GSEA analysis

We downloaded the Gene Set Enrichment Analysis (GSEA)

software (version 3.0) from the GSEA website (http://
Frontiers in Oncology 03
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“c2.cp.kegg.v7.4.symbols.gmt” subset from the Molecular

Signatures Database to evaluate important pathways and

molecular processes. The minimum and maximum gene sets were

chosen at 5 and 5000, respectively, based on gene expression

profiling and phenotypic grouping. 1000 resamples were used,

and a P value of less than 0.05 and an FDR of less than 0.25 were

deemed statistically significant.
2.6 Immune signature of
collagen-risk model

In the present work, ‘Cibersort’ and ‘estimate’ package were

used to estimate the abundance of immune cell infiltration, stromal

score, immune score, and tumor purity for different risk groups.

CIBERSORT is based on linear support vector regression to

estimate the relative levels of 22 immune cells in different risk

group, using standardized gene expression data to estimate immune

cell infiltration (17). ESTIMATE is an algorithm for estimating the

fraction of immune and stromal cells in tumor samples based on

gene expression characteristics (18).
2.7 Tumor mutation status of
collagen signature

Somatic mutation information of LUAD samples was

downloaded from the Genomic Data Commons Data Portal

(https://Portal.gdc.cancer.gov/). Tumor Mutation burden (TMB)

is defined as the total number of mutations detected per million

bases. By using the ‘maftool’ package, we determined the TMB for

each LUAD sample and analyzed the significantly mutated genes

across different risk groups, and also the interaction of

mutated genes.
2.8 Generation collagen signature-based
prognostic signature

We used the ‘rms’ package to integrate the data of patient

survival time, patient survival status and seven clinical

characteristics, including age, gender, tumor stage, T, M, N stage,

and risk score of TCGA-LUAD samples, and established a

nomogram by COX method (19). Meanwhile, a calibration chart

comparing the predicted 1-, 3-, and 5-year survival probability and

the actual situation was constructed to evaluate the consistency of

the prognostic nomogram.
2.9 Sample collection

Lung samples were obtained from patients whose postoperative

pathology was confirmed as LUAD and underwent cancer resection

(Shaoxing People’s Hospital, Shaoxing, Zhejiang). Normal control

tissue was obtained from lung tissue 5 cm beyond the edge of the
frontiersin.org
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cancerous tissue, and normal and cancerous tissues were eventually

transferred to a -80 degree refrigerator for storage. All specimens

were collected according to guidelines approved by the institutional

review board at the Shaoxing People’s Hospital. The study complied

with the ethical guidelines of the Declaration of Helsinki and was

approved by the ethics committee of the Shaoxing People’s

Hospital. Informed consent was obtained from each participant.
2.10 Quantitative real-time polymerase
chain reaction

The mRNA expression levels of COL1A1, COL4A3, COL5A1,

COL11A1, and COL22A1 were examined in lung cancer tissues and

normal lung tissues. The primer sequences used for PCR are detailed

in Table S2. Collected tissue specimens were homogenized with a

homogenizer and total RNA was obtained from all tissues by using

the SteadyPure Universal RNA Extraction Kit (Accurate Biology,

AG21017, China) according to the manufacturer’s instructions. The

Evo M-MLVMix Kit with gDNA Clean for qPCR (Accurate Biology,

AG11728, China) was used to reverse-transcribe 20 uL RNA into the

cDNA. Relative expression of genes was quantified by the Universal

SYBR Green Premix Pro Taq HS qPCR Kit (Accurate Biology,

AG11701, China). The PCR amplification was carried out by the

Applied Biosystems (USA). The 2-DDCt method was used to calculate

the relative expression levels.
2.11 Statistical analysis

All data were analyzed using R software. The Kaplan-Meier

method and log-rank test were used to evaluate the OS between

high- and the low-risk group. Nonparametric tests (log-rank test)

were used to compare differences in ICPs, immune cell abundance,

immune score, stromal score, tumor purity, and TMB between

high- and low-risk groups. Continuous variables were analyzed by

Wilcoxon test. Cox proportional hazards regression model was used

to calculate the independent prognostic factors. P <0.05 was deemed

statistically significant for all statistical analyses.
3 Results

3.1 Construction of collagen-risk model

A total of 598 LUAD samples’ expression profile was downloaded

from the TCGA database in order to identify collagen family proteins

associated with prognosis and to find out the essential factors affecting

the initiation and progress of LUAD. The criteria for this study was an

FDR < 0.01, and | log2(fold change) | > 1. 44 collagen family proteins

were enrolled in the TCGA-LUAD transcriptome data. According to the

screening criteria, a total of 5542 genes, including 26 collagen family

members, were significantly differently expressed in LUAD patients. The

expression patterns and features of 26 DEGs in the collagen family are

depicted in volcano plots and heat maps, with 5 collagen family genes

downregulated and 21 collagen family genes upregulated, respectively
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(Figures 1A, B). Six of the 26 DEGs in the collagen family, according to

univariate Cox regression analysis, were substantially associated with OS

(Figure 1C). By using LASSO-Cox regression analysis, these genes were

then further examined. The 5 most important genes, COL1A1,

COL4A3, COL5A1, COL11A1, and COL22A1, were figured out

through a lasso analysis (Figures 1D, E). COL4A3 and COL22A1

were shown to be independent prognostic risk variables according to

the multivariate Cox analysis result (P < 0.05) (Figure 1F). Therefore, the

final risk model was: Collagen-Risk score = 0.0369132

04*COL1A1−0.094058955*COL4A3 + 0.005018018*COL5A1 +

0.011288384*COL11A1 + 0.08146509*COL22A1.
3.2 The characteristic and prediction
significance of the collagen-risk model

On the basis of the median value of the risk score values, all LUAD

patientswerecategorized intohigh-and low-riskgroups.Scatterplotswere

used to display the distribution of risk scores as well as the relationship

betweenrisk scores andsurvival status, and theyrevealed that thehigh-risk

group experienced a higher death rate (Figure 2A). In LUAD, Figure 2B

compares the expressionoffivegenes fromthe collagen family in thehigh-

and low-riskgroups.WhileCOL4A3expressionwashigher in the low-risk

group, that of COL5A1, COL1A1, COL1A2, and COL22A was

upregulated in the high-risk group. OS was compared between high-risk

and low-risk groups using the K-M survival analysis. According to the

findings, the prognosis for patients in the high-risk group was worse

(P=0.0019) (Figure 2C). In order to better explore the prognostic

significance of Collagen-Risk score in different pathological stages of

LUAD. We divided LUAD into early stage and advanced stage, with

stage I and II as early stage and stage III and IV as advanced stage. In the

early stages, we discovered that the Collagen-Risk score was a reliable

indicator of OS, and that patients in the high-risk group had noticeably

worse prognoses than those in the low-risk group. (p = 0.01) (Figure 2D).

In another subgroup analysis, patients in the high-risk group had shorter

OS than low-risk group in advanced stage, but the difference was not

statistically significant (P=0.05) (Figure 2E).
3.3 Survival analysis of collagen-risk model

First, we analyzed the distribution of collagen risk score in

patients with different clinical characteristics, including gender,

pathological stage, and TNM stage. We discovered that patients

with higher N stage and pathological stage had higher risk score (N

1 vs N 0, p < 0.05; N 2-3 vs N 0, p < 0.05; Stage II vs Stage I, p < 0.01;

Stage III/IV vs Stage I, p < 0.01). There was no significant difference

in risk score between male and female patients, or between patients

in M or T stages (P > 0.05) (Figure 3A).

Secondly, patients in the five GEO datasets were divided into

high-risk and low-risk groups according to the median of Collagen-

Risk score. We evaluated the performance of Collagen-Risk score in

predicting OS using five GEO cohorts as external validation sets. As

with the TCGA cohort survival analysis, patients in the low-risk group

had longer survival in the validation datasets (P=0.0051, GSE11969;

P<0.001,GSE72094; P=0.0062,GSE12313;P=0.02,GSE31210;P=0.02,
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GSE30219) (Figures 3B-F). RFS was significantly reduced in high-risk

group than low-risk group, which indicated that Collagen-Risk score

was an excellent predictor of RFS in LUAD patients (Figures S1A, B).

Next, to further prove the superiority of this model in predicting the

prognosis of lung cancer, ROC curve was used to assess ability of

Collagen-Risk model, and AUC ranged from 0.60 to 0.74 in six data

sets (Figures 3G-L). In general, the timedependentAUCindicated that

in the TCGA and GEO datasets, the Collagen-Risk score had a

considerable value in predicting OS in patients with LUAD

(Figure S1C).
3.4 Diagnostic value of collagen-risk model
in LUAD

The collagen risk model’s predictive power for prognosis was

investigated using univariate and multivariate Cox regression
Frontiers in Oncology 05
analyses. We evaluated the prognostic significance of Collagen-

Risk model by univariate and multivariate Cox regression analyses

in the TCGA and Geo datasets. The results of univariate Cox

regression analysis showed that Collagen-Risk scores were

significantly associated with OS in both TCGA LUAD cohort and

the 5 GEO cohorts (TCGA, HR=2.115, 95%CI=1.602-2.792,

P<0.001; GSE11969, HR=2.432, 95%CI=1.376-4.300, P=0.002;

GSE13213, HR=2.514, 95%CI=1.413-4.471, P=0.002; GSE30219,

HR=2.541, 95%CI=1.488-4.342, P<0.001; GSE31210, HR=2.174,

95%CI=1.6922.901, P<0.001; GSE372094, HR=2.022, 95%

CI=1.536-2.663, P<0.001) (Figure 4A). Multivariate Cox

regression analysis proved the Collagen-Risk scores to be a

significant predictor for OS in both TCGA LUAD cohort and the

four GEO cohorts (P<0.001, HR=2.49, 95%CI=1.618-3.822, TCGA;

P=0.013, HR=2.134, 95%CI=1.174-3.880, GSE11969; P=0.014,

HR=2.339, 95%CI=1.188-4.604, GSE13213; P=0.002, HR=2.479,

95%CI=1.411-4.356, GSE30219; P<0.001, HR=2.347, 95%
A B

D E F

C

FIGURE 1

Identification of prognostic collagen family genes and construction of Collagen-Risk model in TCGA-LUAD. (A) The volcano plot presented the
differentially expressed collagen family genes comparing normal tissues in LUAD. (B) Heatmap showed 26 DEGs of collagen family. (C) Univariate
cox regression analysis for selecting alternative genes associated with OS of LUAD patients. The venn diagram showed the number of genes that
cross between the DEGs and the collagen family genes. (D) LASSON coefficient profiles of prognostic collagen family genes. (E) Ten-fold cross-
validated LASSON regression was used to identify five prognostic genes with minimum Lambda. (F) Forest plots for multivariate Cox regression
analysis of five prognostic genes. *P < 0.05; **P < 0.01.
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CI=1.709-3.223, GSE72094) (Figure 4A). Meanwhile, we analyzed

the prognostic value of clinical characteristics included in different

datasets through univariate and multivariate Cox regression

analysis. In the testing set of the TCGA dataset, age, N stage, and

risk score were found to be independent factor of prognosis. In the

validation dataset, age and risk score were consistently identified as

independent predictors of prognosis in both univariate and

multivariate analyses. (Figures S2A, B). In addition, univariate

and multivariate Cox regression analysis demonstrated that

Collagen-Risk scores were an independent prognostic factor for

RFS (Figure S1D). A meta-analysis was conducted to determine the

association and prognostic significance of the Collagen-Risk score

with the OS and RFS of LUAD patients by analyzing the prognostic

outcomes of the TCGA and 5 GEO cohorts. It was confirmed by

overall HR, that Collagen-Risk score was a risk factor for OS in

LUAD patients (overall HR = 2.05, 95% CI = 1.68-2.49, P < 0.001)

(Figure 4B). Likewise, Collagen-Risk score was a risk factor that

affects RFS in two GEO cohorts (overall HR = 3.10, 95% CI = 1.96-

4.91, P < 0.001) (Figure S1F).

The results of univariate and multivariate Cox analyses revealed

that Collagen-Risk score was strongly associated with OS and RFS of

LUAD patients. Then, a nomogram, combining Collagen-Risk score

with clinical characteristics such as age, gender, T stage, N stage, M
Frontiers in Oncology 06
stage, and tumor stage, was constructed to predict the 1-, 3-, and 5-year

survival probabilities of patients (Figure 4C). The nomogram’s

calibration curves showed that the predicted survival rates are closely

related to the actual survival rates at 1, 3, and 5 years (Figures 4D-F).
3.5 Biological mechanism related to
collagen-risk model

We had demonstrated that Collagen-Risk model was an

important prognostic factor in LUAD patients, and we would

further investigate the mechanisms of its impact on prognosis. A

Pearson correlation analysis was used to screen out collagen

signature related genes (Pearson | R| > 0.5, p < 0.05). The results

indicated that 59 genes were significantly associated with the

Collagen-Risk model, with 31 genes having a positive correlation

and 28 genes having a negative correlation (Figure 5A). These

collagen signature correlated genes were then put to the teste for

enrichment of GO and KEGG pathway. GO- biological process

(BP) analysis of these genes showed enrichment mainly in the

extracellular matrix organization, skeletal and cardiovascular

system development, cardiovascular system development

(Figure 5B, Table S3). Changes in cell composition (CC) were
A

B

D

E

C

FIGURE 2

The Characteristic and Prediction Significance of the Collagen-Risk Model. (A) The distribution of Collagen-Risk score and survival status in TCGA-
LUAD cohort. (B) Heatmap of the five identified collagen genes. (C) K-M survival plot showed the OS of total LUAD patients in high- and low-risk
groups. (D) K-M survival plot showed the OS of early stage LUAD patients in high- and low-risk groups. Early-stage patients included stage I and II,
n=369. (E) K-M survival plot showed the OS of advanced stage LUAD patients in high- and low-risk groups. Advanced stage patients included stage
III and IV, n=103.
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mainly concentrated in collagen trimer, extracellular region and

extracellular matrix (Figure 5C, Table S3). Changes in molecular

function (MF) were focused on protein binding, receptor and

protease activity, and extracellular matrix structure (Figure 5D,

Table S3). The analysis of KEGG signaling pathway showed that the

genes were mainly involved in ECM-receptor interaction, cancer

pathway, PI3K-Akts and AGE-RAGE signaling (Figure 5E, Table

S4). Transcriptome data from TCGA-LUAD patients were used to

identified Collagen-Risk score-associated signal transduction

pathways by GSEA analysis. The KEGG analysis showed that

CELL_CYCLE and p53_SIGNALING_PATHWAY was enriched

in high-risk group (Figure 5F, Table S5). The hallmark analysis

indicated that EPITHELIAL_MESENCHYMAL_TRANSITION,

UNFOLDED_PROTEIN_RESPONSE, G2M_CHECKPOINT,

MITOTIC_SPINDLE, GLYCOLYSIS, MTORC1_SIGNALING,
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E2F_TARGETS, HYPOXIA, and ANGIOGENESIS were mainly

enriched in the high-risk group (Figure 5G, Table S6).
3.6 The relationship between collagen
signature and immune signature

In this study, the abundance of 22 infiltrating immune cells in LUAD

patients was calculated using CIBERSORT algorithm, and the content of

T cells CD4 naive and T cells Gamma Delta was 0 in all samples.

Meanwhile, P < 0.05 from the CIBERSORT results indicated that the

immune infiltration analysis of the samples was credible, and 333 LUAD

samples were left after eliminating the unqualified (Figures 6A, B). As

shown in Figure 6C, the B cells memory, plasma cell, T cells CD4

memory resting, T cells CD4 memory activated, T cells regulatory
B

C D E

F
G H

I J K L

A

FIGURE 3

Survival analysis of Collagen-Risk model. (A) Difference analysis of distribution of Collagen-Risk scores in different gender, T, N, M, and tumor stage.
Wilcoxon test was used to compare the statistical differences between the two groups, and Kruskal-Wallis test was used to compare the statistical
differences among patients in three groups. (B-F) Validation of the prognostic value of Collagen-Risk model in five independent GEO datasets. (G-L)
The time-dependent ROC curves of the Collagen-Risk signature in TCGA and GEO datasets.
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(Tregs), Monocytes, Macrophages (M0), Macrophages (M1),

Macrophages (M2), Dendritic cells resting and Mast cells resting were

significantly different between low- and high-risk group (Figure 6C).

Furthermore, we also used the ESTIMATE algorithm to calculate the

immunescore, stromal score, estimate score, and tumorpurity for each

sample. We found a positive correlation between stromal score,

estimate score and Collagen-Risk score with Pearson coefficients of

0.26 and 0.13, respectively. However, tumor purity and Collagen-Risk

score were negative correlated, and Pearson coefficients was -0.14

(Figures 6D, F, H, J). Immune score and stromal score were higher in

high-risk group, while tumor purity was lower (Figures 6E, G, I, K).

The notion of the TME is new to the field of cancer research (20).

ECM, fibroblasts linked to malignancy, vascular epithelial cells, and

immune cells that have infiltrated make up the classic TME. Polarized

macrophages, including the M1 andM2 subtypes, are among the several
Frontiers in Oncology 08
infiltrating immune cells that have been revealed in recent years to play

important roles in tumor proliferation, invasion, and metastasis (21–23).

Macrophages are incredibly pliable and form subcohorte in a particular

TME, which is primarily divided into M1 and M2 types, with particular

molecular and functional properties. M1 is essential for encouraging

tumor growth, invasion, metastasis, and creating a suppressive immune

milieu because it kills tumor cells and thwarts pathogen penetration. M2

has a direct impact on the survival, growth, stemness, invasion,

angiogenesis, and immunosuppression of tumor cells (23, 24). We

investigated in depth the correlation between collage signature and

TAM infiltration. The levels of macrophage permeability between the

high-risk and low-risk groups show a clear difference in Figure 6C. Next,

wediscoveredaconnectionbetweenTAMinfiltration intheTCGAcohort

and Collagen-Risk score. M0 and M1 macrophage infiltration was

positively connected with the risk score, while M2 macrophage
A B

D

E F

C

FIGURE 4

Diagnostic value of Collagen-Risk model in LUAD. (A) Forest plot of Cox analysis in TCGA and GEO datasets. For multivariate Cox regression analysis
in TCGA dataset, HR value of Collagen-Risk model was adjusted by age, gender, TNM stage, and tumor stage. For multivariate Cox regression
analysis in GSE11969 dataset, HR value of Collagen-Risk model was adjusted by age, gender, TN stage, and smoking history. For multivariate Cox
regression analysis in GSE13213 dataset, HR value of Collagen-Risk model was adjusted by age, gender, TN stage, smoking history, EGFR status, and
P53 status. For multivariate Cox regression analysis in GSE30219 dataset, HR value of Collagen-Risk model was adjusted by age, gender, and T stage.
For multivariate Cox regression analysis in GSE31210 dataset, HR value of Collagen-Risk model was adjusted by age, gender, tumor stage, and
smoking history. For multivariate Cox regression analysis in GSE72094 dataset, HR value of Collagen-Risk model was adjusted by age, gender, race,
tumor stage, and smoking history. (B) A meta-analysis of verification result of five independent GEO datasets. (C) A nomogram based on age,
gender, tumor stage, T, M, N stage and risk score. Gender, 1: Male, 2: Female. (D) Calibration curves showing the accuracy of nomogram predicting
1-year OS. (E) Calibration curves showing the accuracy of nomogram predicting 3-year OS. (F) Calibration curves showing the accuracy of
nomogram predicting 5-year OS.
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infiltration was negatively correlated (Figures 6L, M). The biomarkers of

M1 included IL1A, Il1b, IL6, NOS2, TLR2, TLR4, CD80 and CD86. The

biomarkers of M2 included CSF1R, MRC1, PPARG, ARG1, CD163,

CLEC10A, RETNLB, PDCD1LG2 and CLEC7A (22). The link between

the collagen-risk score and the M1 and M2 biomarkers was then

examined. The M1 markers–IL1A, IL6, and NOS, as well as the M2

markers–RETNLB and PDCD1LG2, were all positively connected with

the collagen-risk score, and TLR2 was negatively correlated with the

Collagen-Risk score (Figure S3). Therefore, collagen signature may have

predictive value for macrophage infiltration and typing.

Cancer-associated fibroblasts (CAFs) are the main components

of the tumor stroma. CAFs act on tumor cells in multiple ways, such

as aberrantly secreting ECM or remodeling ECM, secreting cytokines

to cause metabolic reprogramming, promoting angiogenesis, and so
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on (25). Recent research has found that the effects of CAFs on tumor

cells are diverse. Biomarkers (FAP, POSTN, PDGFRa/b, FSP-1,
CD90, Palladin, OPN, AEBP1, TNC, CD10, and GPR77) represent

cancer-promoting CAFs (26). These cells can promote tumor

development by metabolic effects, thus promoting angiogenesis and

immune suppression. However, Meflin+ CAF and CD146+ CAF are

closely associated with better pathological histological features and

prognosis of patients. Therefore, we investigated the relationship

between these biomarkers and the collagen risk signature. The results

of correlation analysis showed that risk score was positively correlated

with both cancer-promoting and cancer-restraining CAFs

biomarkers, suggesting that the activity of CAFs in high-risk

patients was higher than that in low-risk patients, further

confirming the importance of CAFs in tumor progression (Figure
A B

D

E F G

C

FIGURE 5

Biological mechanism related to Collagen-Risk model. (A) Heatmap of 59 Collagen-Risk model-associated genes in LUAD (Pearson | R| > 0.5, p <
0.05). GO (B–D) and KEGG (E) analysis of Collagen-Risk model correlated genes. (F) The KEGG pathway enrichment analysis based on GSEA. (G) The
hallmark analysis based on GSEA.
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S4). However, further basic research is needed to explain the

mechanisms involved in this relationship.
3.7 The relationship between collagen
signature and immunotherapy-related
biomarkers and TMB

In recent years, tumor immunotherapy has been a hot spot in the

field of cancer research and treatment, and has shown some promising

and encouraging achievements (27, 28). The preliminary results of

several clinical studies on immunotherapy for NSCLC suggested that

immunotherapy could bring better survival benefit for patients with

NSCLC (29–31). Subsequently, we investigated the correlationbetween

expression of 35 immune checkpoints and Collagen-Risk score (32).
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The results suggested that theCollagen-Risk scorehada strongpositive

correlation with CD70, CD200, PDCD1LG2, SIGLEC15, TNFRSF8,

TNFRSF9, and TNFSF4, and had a strong negative correlation with

TNFRSF14 and TNFSF15 (Figures 7A-I). Wilcoxon test confirmed

that above 9 immune checkpoints were significantly different between

low- and high-risk group (Figure 7J).

Each LUAD patient’s mutation profile was examined. Top 30

most significantly altered genes throughout the complete genome

included TP53, TTN, MUC16, CSMD3, RYR2, LRP1B, USH2A,

ZFHX4, KRAS, FLG, SPTA1, XIRP2, NAV3, ZNF536, CSMD1,

FAT3, ANK2, DAMTS12, COL11A1, PCDH15, MUC17, RYR3,

PCLO, TNR, APOB, KEAP1, RR1L1, DNAH9, PTPRD, CDH10

(Figure 7K). After that, we calculated the TMB for each sample and

discovered that the high-risk score group had a considerably higher

TMB (Figure 7L).
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FIGURE 6

The relationship between Collagen-Risk score and immune signature. (A) Immune and stromal cell infiltration patterns in the low- and high-risk
patients. (B) The proportions of 20 immune cells in LUAD patients. (C) Differences in immune cell infiltration between high- and low-risk groups.
Analysis of differences between the two groups was performed by the Wilcoxon test. *P < 0.05; ***P < 0.001; ns not significant. (D, F, H, J)
Association between stromal score, immune score, estimate score, tumor purity, and Collagen-Risk score. (E, G, I, K) Comparison of stromal score,
immune score, estimate score, and tumor purity in high- and low-risk group. (L-N) The Collagen-Risk score and the infiltration levels of
macrophage are estimated by Cibersort.
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3.8 Experimental data validation of
prognostic genes

To verify these results, we examined the transcript levels of five

collagen family proteins in human LUAD specimens. We collected

a total of 30 cases each of normal and LUAD tissues. The results

showed that the expression of the five collagen family proteins was

much higher in most tumors than in normal tissues (Figure 8).
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4 Discussion

One of the most prevalent malignant tumors, LUAD seriously

affects people’s health worldwide (33). The rapid development of

high-throughput sequencing technology has helped us discover

more and more prognostic markers and immunotherapy targets

(34, 35). Even though we have made considerable efforts to improve

the treatment of LUAD, the mortality rate is still very high (36).
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FIGURE 7

The relationship between Collagen-Risk score and immunotherapy-related biomarkers and TMB. (A-I) Association between CD70, CD200,
PDCD1LG2, SIGLEC15, TNFRSF8, TNFRSF9, TNFSF4, and Collagen-Risk score. (J) Comparison of identified immune checkpoints in high- and low-
risk group. ***P < 0.001. (K) The mutation profile of top30 genes in low- and high-risk groups. (L) Comparison of total mutation counts in the low-
and the high-risk groups.
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Over the past few decades, scholars have come to realize the

importance of ECM. In addition, ECM has become a biomarker

and therapeutic target for cancer prediction, diagnosis and

prognosis (37). However, there are still no biomarkers associated

with ECM that accurately reflect the TME and prognosis of LUAD.

Therefore, we firstly propose a risk model based on t collagen

signature to predict the prognosis of LUAD. This study investigated

the TCGA-LUAD data set and five GEO data sets to establish and

validate the accuracy and specificity of Collagen-Risk model. In

addition, Collagen-Risk score was associated with a number of

important clinical features. Cox univariate and multivariate

analyses demonstrated that Collagen-Risk score was an

independent risk factor for the prognosis of LUAD. Subsequently,
Frontiers in Oncology 12
based on the TCGA data set, we found that immune cell subtypes,

immune infiltration levels, TAM and ICP were strongly associated

with the five-collagen-based signature. Through signal pathway

analysis, we found that the strong prognostic ability of this

Collagen-Risk model was attributed to unique extracellular matrix

organization, protein binding, ECM-receptor interaction, cancer

pathway, PI3K-Akts and AGE-RAGE signaling in the different risk

groups. Finally, we integrated the collagen signature and clinical

parameters to build a nomogram. The calibration curves

demonstrate that at 3 and 5 years, the actual OS and nomogram-

predicted OS were closely matched.

The fact that Collagen signatures exhibit strong predictive power

may be because these members themselves (COL1A1, COL4A3,
FIGURE 8

Biological verification of the expression of 5 collagen family genes in LUAD by quantitative real-time polymerase chain reaction. The difference of
COL1A1, COL4A3, COL5A1, COL11A1 and COL22A1 mRNA expression between normal and LUAD tissues.
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COL5A1, COL11A1, COL22A1) have been reported to predict tumor

prognosis. COL1A1 has been reported to be closely associated with the

prognosis of patients with lung adenocarcinoma, lung squamous

carcinoma and esophageal cancer (38–40). Additionally, COL11A1

was shown to be significantly expressed in both NSCLC and lung

adenocarcinoma, and it has been shown to encourage the growth,

migration, and invasion of NSCLC cell lines in vitro (41–43). The

amount of plasma COL11A1 can aid with lung cancer diagnosis and

prognosis (43). Researchers showed that COL4A3 was a significant

predictive factor in a clinical trial involving 58 patients with advanced

NSCLC and that patients with low COL4A3-expressing tumors had

considerably longer median OS than those with high COL4A3-

expressing tumors (44). According to Liu et al., COL5A1 was

discovered to be substantially expressed in patients with lung

adenocarcinoma who had short survival times and recurrences.

COL5A1 knockdown in metastatic human adenocarcinoma cells

also hindered cell growth and invasion and brought on apoptosis (45).

Collagen, a significant part of the extracellular matrix, was

traditionally believed to play a passive role in the development of

tumors. In this study, collagen signature was correlated with TAM

infiltration and cell type. However, it is not clear how ECM

regulates TAM infiltration (46). Recent studies have shown that

collagen degradation products have chemotactic effects on immune

cell infiltration (47–49). The COL6 ETP peptide was found to

promote tumor inflammation by increasing macrophage

recruitment and upregulating inflammatory factors such as IL-6

and TNF-a (47). Madeleine et al. found that collagen entered TAMs

via mannose receptor endocytosis and was subsequently degraded

by lysosomes, resulting in macrophage phenotype reprogramming

and intratumoral fibrosis in pancreatic cancer (48). In a study that

mimicked TAM differentiation in tumors in vitro, high collagen

density in tumors was found to directly affect the transcriptional

profile of macrophages, leading to the acquisition of an

immunosuppressive phenotype by macrophages. This phenotype

suppressed tumor-infiltrating T cell activity and thus reduced the

efficacy of immunotherapy (49). Therefore, collagen metabolism

and remodeling may affect tumor immune cell infiltration.

Many researchers recognize that the interaction between TMB and

ECM is important. CAF are host cells that secrete collagen (50).

Mutations in CAF or tumor cells directly or indirectly alter the

collagen secretion profile. GSEA analysis showed that the P53

signaling pathway was activated in the high-risk group, which

suggested that mutations in the P53 might play a role in the

development of LUAD with a high-risk collagen profile. Mutation of

the P53 gene in cancer cells can cause changes in the composition and

structure of extracellular collagen. P53 inactivation increases collagen

deposition, structural remodeling and local tumor invasion (51). P53

deletion or mutation in cancer cells, or inhibition of JAK2 or STAT3

activation, reduced fibrotic reaction and the number of pancreatic

stellate cells in the pancreatic cancer stroma (52). The secretomes of

lung cancer CAFs are altered by epigenetic silencing of the p53 gene,

specifically the matrix components secreted, which modifies the

behavior of adjacent cancer cells to facilitate invasion (53). In addition,

the specific mutation of P53 gene in pancreatic cancer cells can guide

local CAF reprogramming and tumormatrix remodeling, and establish

of an environment permissive to invasion and metastasis (54).
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In addition, we found that the higher risk score was positively

correlated with the expression of almost all CAFs markers (Figure

S4), implying that both collagen-risk signature and CAFs markers

may be involved in the formation of the ECM and development.

The collagen-risk signature is an assessment indicator based on the

expression pattern of 5 collagen in LUAD. These results therefore

suggest that there may be a close link between the ECM and the

characteristics of the cancers themselves, with important

implications for a deeper understanding of LUAD development

and for providing new targets for tumor therapy.

The study still has some limitations. First, our study confirms that

Collagen-Risk score can be a valid independent prognostic factor.

However, this conclusion is based on 6 retrospective data sets, and

future prospective studies are needed to confirm the validity of this

conclusion. As this study analyses transcriptomic data from different

populations, different testing platforms, there are inevitably some

biases in this study. Second, the clinical data we extracted from the

TCGA and GEO databases are incomplete. For example, we were

unable to successfully extract smoking status and analyze the

correlation between smoking status and collagen signature. Finally,

we performed laboratory validation using recently collected tumor

tissue andnormal tissue fromour institution, however,wewere unable

to collect survival information and clinical data on these samples for

validation of our prognostic model.

In summary, we identified a reliable prognostic collagen

signature based on TCGA database. We present for the first time

theprognosticmodel basedon collagen familymembers anddescribe

in detail the relationship between the collagen signature and the

tumor microenvironment, which may provide prognostic

information for immunotherapy in patients with LUAD. These

significant new discoveries will enable clinicians to treat LUAD

patients more individually.
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