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Background: Almost all patients treated with androgen deprivation therapy (ADT)
eventually develop castration-resistant prostate cancer (CRPC). Our research aims
to elucidate the potential biomarkers andmolecular mechanisms that underlie the
transformation of primary prostate cancer into CRPC.

Methods: We collected three microarray datasets (GSE32269, GSE74367, and
GSE66187) from the Gene Expression Omnibus (GEO) database for CRPC.
Differentially expressed genes (DEGs) in CRPC were identified for further
analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and gene set enrichment analysis (GSEA). Weighted gene
coexpression network analysis (WGCNA) and two machine learning algorithms
were employed to identify potential biomarkers for CRPC. The diagnostic
efficiency of the selected biomarkers was evaluated based on gene expression
level and receiver operating characteristic (ROC) curve analyses. We conducted
virtual screening of drugs using AutoDock Vina. In vitro experiments were
performed using the Cell Counting Kit-8 (CCK-8) assay to evaluate the
inhibitory effects of the drugs on CRPC cell viability. Scratch and transwell
invasion assays were employed to assess the effects of the drugs on the
migration and invasion abilities of prostate cancer cells.

Results: Overall, a total of 719 DEGs, consisting of 513 upregulated and
206 downregulated genes, were identified. The biological functional
enrichment analysis indicated that DEGs were mainly enriched in pathways
related to the cell cycle and metabolism. CCNA2 and CKS2 were identified as
promising biomarkers using a combination of WGCNA, LASSO logistic regression,
SVM-RFE, and Venn diagram analyses. These potential biomarkers were further
validated and exhibited a strong predictive ability. The results of the virtual
screening revealed Aprepitant and Dolutegravir as the optimal targeted drugs
for CCNA2 and CKS2, respectively. In vitro experiments demonstrated that both
Aprepitant and Dolutegravir exerted significant inhibitory effects on CRPC cells
(p < 0.05), with Aprepitant displaying a superior inhibitory effect compared to
Dolutegravir.

Discussion: The expression of CCNA2 and CKS2 increases with the progression of
prostate cancer, which may be one of the driving factors for the progression of
prostate cancer and can serve as diagnostic biomarkers and therapeutic targets for
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CRPC. Additionally, Aprepitant andDolutegravir show potential as anti-tumor drugs
for CRPC.
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Introduction

Prostate cancer is the second most common cancer in men after
lung cancer, affecting millions of men worldwide, accounting for
7% of newly diagnosed cancers in men worldwide and 15% in
developed regions, and is one of the leading causes of cancer-related
deaths among men (Rebello et al., 2021). Most patients are initially
diagnosed with primary prostate cancer, and the 5-year survival
rate is over 95%. In contrast, for approximately 5% of men with
distant metastatic prostate cancer, the estimated 5-year survival rate
is only 28% (Siegel et al., 2019). Androgen deprivation therapy
(ADT) is the primary treatment option for patients with metastatic
disease and recurrent prostate cancer after local treatment. Patients’
initial response to castration therapy is often very favourable,
accompanied by a significant improvement in clinical symptoms
and a rapid resolution of biochemical reactions (Harris et al., 2009;
Marques et al., 2010). However, almost all patients treated with
ADT eventually develop castration-resistant prostate cancer
(CRPC), as evidenced by imaging progression or increased
prostate-specific antigen (PSA) despite castration levels of
testosterone (Davies et al., 2019). CRPC has a poor prognosis
with an average survival time of only 16–18 months from
progression (Sun et al., 2010). Initially, CRPC was only treated
with a limited regimen, such as docetaxel chemotherapy. After
2010, docetaxel, rivastigmine, and abiraterone acetate provided
patients with new options to prolong the survival time of CRPC
(Tannock et al., 2004; Kantoff et al., 2010; Pal et al., 2010; Paller and
Antonarakis, 2011). To date, the treatment of CRPC remains a
major clinical challenge. Rational combination therapy, genome-
driven therapy, and immunotherapy for patients are being tested
for this disease. Currently, there is a critical need to define
molecular biomarkers to select patients for treatment. Exploring
the molecular markers between primary prostate cancer and CRPC
will help diagnose the disease, better understand the mechanism of
primary prostate cancer transforming to CRPC, and provide new
targets for treating CRPC.

Weighted gene coexpression network analysis (WGCNA) is an
algorithm used to process gene expression correlations for
microarray data (Langfelder and Horvath, 2008). WGCNA found
clusters of highly related genes for clustering and associated modules
with phenotypes to obtain the modules most related to phenotypic
traits and finally obtained the hub genes in these modules. Machine
learning algorithms have shown great promise in studying the
potential relationships of high-dimensional data (Tshitoyan et al.,
2019). Recently, machine learning has been increasingly used to
analyse high-dimensional transcriptome data and identify
biologically significant feature genes, with promising results
(Bogard et al., 2019; Kachroo et al., 2019; Huang et al., 2020).
However, these techniques have not been applied to identify
potential biomarkers of CRPC.

In this study, we investigated the differentially expressed genes
(DEGs) between primary prostate cancer and CRPC and conducted
several functional enrichment analyses, including Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease
Ontology (DO), and Gene set enrichment analysis (GSEA).
Moreover, we utilized WGCNA and machine learning algorithms
such as Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression and Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) to identify potential biomarkers of CRPC.
We also evaluated the variation in immune cell infiltration between
primary prostate cancer and CRPC using the single-sample gene set
enrichment analysis (ssGSEA) algorithm, and investigated the
correlation between the identified biomarkers and immune cell
infiltration. Finally, we employed virtual screening methods to
discover potential antagonists that bind to the predicted active
site, and conducted preliminary studies on the mechanisms of
action of the drugs through in vitro experiments. In summary,
these results help us to understand the molecular mechanisms
underlying the progression of primary prostate cancer to CRPC
and further explore potential drugs for the treatment of CRPC.

Materials and methods

Collection and processing of microarray
data

Three microarray datasets of CRPC (GSE32269, GSE74367, and
GSE66187) were collected from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/).
GSE32269 was based on the platforms of GPL96 (Cai et al.,
2013), GSE74367 was based on the platforms of GPL15659
(Roudier et al., 2016), and GSE66187 was based on the platforms
of GPL15659 (Zhang et al., 2015). We combined the GSE32269 and
GSE74367 datasets, which included 33 primary prostate cancer
samples and 74 CRPC samples, into the training cohort and the
GSE66187 dataset, which included 24 primary prostate cancer
samples and 71 CRPC samples, into the testing cohort (Table 1).
All data were batch eliminated by the Surrogate Variable Analysis
(SVA) algorithm (Parker et al., 2014).

TABLE 1 Microarray data details in this study.

GEO series Primary prostate cancer CRPC Data type

GSE32269 22 29 Training

GSE74367 11 45 Training

GSE66187 24 71 Testing

GEO: gene expression omnibus; CRPC: castration-resistant prostate cancer.
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Identification of DEGs

Using the “limma” R package (Ritchie et al., 2015), the DEGs
between CRPC and primary prostate cancer in the training cohort
were detected (|log2fold change (FC)| > 2, and p < 0.001).
Subsequently, GO enrichment analysis was performed to
investigate the biological process (BP), molecular functions (MF),
and cellular components (CC). KEGG enrichment analysis was used
to explore the signalling pathways associated with DEGs. The
biological enrichment for GO and KEGG analyses was achieved
using the “Cluster Profiler” R package (p < 0.05, FDR<0.05). Finally,
GSEA was performed to investigate the DEG-enriched biological
pathways using an ordered gene expression matrix based on Pearson
correlation between genes.

WGCNA

We created a weighted gene coexpression network through the
expression matrix of DEGs to screen potential genes related to
CRPC based on the “WGCNA” R package (Langfelder and Horvath,
2008). First, we clustered all samples, deleted the samples with low
correlation, and calculated the Pearson correlation coefficient
between each pair of genes to evaluate the expression similarity
of genes and obtain the correlation matrix. Subsequently, we
transformed the adjacency matrix into a topological overlap
matrix (TOM) and performed hierarchical clustering to identify
the modules and calculate the feature genes. We then represented
the different branches of a gene module with a similar expression
profile with an appropriate colour, with the minimum number of
genes in the module set to 60. Finally, the genes in the modules with
the highest correlation were screened with gene importance >
0.5 and gene-module correlation > 0.8 as the threshold, and the
genes screened were considered vital genes.

Recognition of potential biomarkers in
CRPC based on the machine learning
algorithm

The LASSO logistic regression algorithm (Tibshirani, 1996) was
used to eliminate overfitting in modules based on the “glmnet” R
Package. SVM-RFE is an efficient feature selection algorithm that
iteratively removes the features with the lowest weights. In each
iteration, the current SVM-RFE model is evaluated by k-fold cross-
validation. Finally, the classifier model with the highest precision is
constructed, and the optimal variable is found (Lin et al., 2012). The
execution of the SVM-RFE algorithm was based on the “e1071” R
packet (Huang et al., 2014). Ultimately, the intersecting genes in the
two machine learning algorithms were considered diagnostic
biomarkers.

Evaluation of the effects of diagnostic
biomarkers

We assessed the ability of diagnostic biomarkers to
differentiate primary prostate cancer from CRPC through

gene expression and ROC curves. Boxplots were used to
demonstrate gene expression, and p < 0.05 indicated
significant differences in gene expression. A receiver
operating characteristic (ROC) curve was generated via the
area under the ROC curve (AUC) value to estimate the
predictive utility of identified biomarkers based on the
“pROC” package. The testing cohort data further verified the
difference in biomarker expression and prediction reliability.

Evaluation of immune cell infiltration

We evaluated the infiltration of 28 immune cells in primary
prostate cancer and CRPC and presented them with a heatmap and
violin plot based on ssGSEA. In addition, to explore the immune-
related mechanism of the biomarkers identified in CRPC
transformation, we further evaluated the correlation between
genes and immune cell infiltration.

Virtual screening and molecular docking of
drugs

We retrieved protein crystal structure files from the Protein
Data Bank (PDB) database (https://www.rcsb.org/) and
processed protein molecules by removing water molecules
and ligand files using the pymol software. Subsequently, we
used the getbox plugin to obtain the active pockets from the
protein structures and performed hydrogenation of protein files
in AutoDocktools software. The protein files were then
converted to pdbqt file format for subsequent virtual
screening. We downloaded US Food and Drug
Administration (FDA) approved small molecule drugs
(fda+for+sale) from the ZINC15 database (https://zinc15.
docking.org/) and split and converted the files using Open
Babel. We conducted virtual screening of small molecule
drugs using AutoDock vina, docking each drug molecule with
the protein five times (Trott and Olson, 2010). Finally, the online
tool Protein-Ligand Interaction Profiler (PLIP) (https://plip-
tool.biotec.tu-dresden.de/plip-web/plip/index) was employed
to analyze the interaction between the top 8 ligands with the
strongest affinity and proteins (Adasme et al., 2021). The results
were further visualized using pymol and ligplot software. Based
on the combined analysis of affinity and interaction, the small
molecule ligand with the highest binding capacity to the receptor
protein was selected.

Cell culture and drug treatment

In this study, DU145 and PC-3 cells were obtained from the
Chinese Cell Bank of the Shanghai Institute of Biochemistry and
Cell Biology (https://www.cellbank.org.cn/). Cells were cultured
in DMEM medium (Gibco, Life Technologies, China)
supplemented with 10% fetal bovine serum (SERANA,
Europe) and 1% penicillin-streptomycin (Beyotime, China).
The cells were seeded in culture flasks (Nest, China) and
maintained in a humidified incubator at 37°C and 5% CO2.
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Aprepitant was purchased from aladdin-ShangHai-China and
Dolutegravir was purchased fromMacklin-ShangHai-China. The
stock solutions of these drugs were prepared in sterile dimethyl
sulfoxide (DMSO), with a final concentration of DMSO in the
medium below 0.1% of the total volume.

Cell viability assay

DU145 and PC-3 cells were seeded at concentrations of 8 ×
103 and 4 × 103 cells/well in 96-well plates, with 100 μL complete
culture medium per well, and incubated for 24 h at 37°C in a
humidified incubator. Aprepitant concentrations were set at
0 μM (untreated group), 5 μM, 10 μM, 15 μM, 20 μM, 30 μM,
and 40 μM, while Dolutegravir concentrations were set at 0 μM

(untreated group), 10 μM, 20 μM, 40 μM, 80 μM, and 100 μM,
and cells were incubated for 24, 48, and 72 h. After drug
incubation, 10 μL of Cell Counting Kit-8 (CCK-8) solution
(Bioss, China) was added to each well, and the plates were
incubated at 37°C for 1 h. The absorbance at 450 nm was
measured using an enzyme-linked immunosorbent assay
(ELISA) reader.

Wound migration assay

DU145 cells were seeded in a 6-well culture plate at a
concentration of 2 × 106 cells/well and incubated overnight.
When the cell confluence reached 90%, the culture medium
was removed, and a scratch was made using a 200 μL pipette

FIGURE 1
Workflow diagram of this study.
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tip. The cells were washed with Phosphate-buffered saline (PBS)
and images were captured at a fixed position using a microscope
(X100). The culture medium was then replaced with serum-free
medium (control group) or serum-free medium containing

Aprepitant (20 μM) and Dolutegravir (80 μM) (treatment
group). The cells were incubated at 37°C for 24 h in a cell
culture incubator before images were captured again. The area
of the scratch was calculated using ImageJ software.

FIGURE 2
Identification of DEGs in the CRPC training cohort. (A) Volcano plot of the DEGs. (B) Heatmap of DEGs in the CRPC training cohort.
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Cell invasion assay

For the transwell invasion assay, we used 24-well transwell plates
with an 8 mm pore size (Corning, United States). The polycarbonate
membrane was coated with 8.1 mg/mL Matrigel matrix (Solarbio,
Beijing, China) and incubated at 37°C for 2 h to solidify the Matrigel
matrix. 2 × 104 cells were seeded in the upper chamber containing
200 µL of serum-free medium, while 600 µL of medium containing
10% FBS was added to the lower chamber. After incubation at 37°C
for 24 h in a cell culture incubator, the invasive cells were fixed with
4% paraformaldehyde and stained with 0.1% crystal violet. Images of
5 randomly selected fields were captured using a microscope (X200),
and the cells were counted using ImageJ software.

Statistical analysis

All statistical analyses were performed using R software
(version 4.1.2). A t-test was used for comparisons between

two groups, while a one-way ANOVA test was used for
comparisons involving three or more groups. Statistical
significance was con-sidered for *p < 0.05, **p < 0.01, and
***p < 0.001.

Results

Identification of differentially expressed
genes between primary prostate cancer and
CRPC

The flowchart of this study is shown in Figure 1. The detailed
information of the sample quantity in the microarray data is
shown in Table 1. By comparing CRPC with primary prostate
cancer samples, we identified a total of 719 DEGs, including
513 upregulated genes and 206 downregulated genes (|log2FC|
>2, p < 0.05), displayed in the volcano plot and heatmap
(Figures 2A,B).

FIGURE 3
GO, KEGG, and GSEA enrichment analyses. (A) GO enrichment analysis. (B) KEGG pathway enrichment analysis. (C, D) Five enriched signalling
pathways in primary prostate cancer and CRPC samples.
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GO, KEGG, and GSEA enrichment analyses

Enrichment analyses of GO, KEGG, and GSEA were
performed to study the biological function of DEGs. The GO
analysis indicated that these DEGs were mainly involved in
biological processes associated with organelle fission, spindles,
and tubulin binding (Figure 3A; Supplementary Table S1). In
addition, the KEGG enrichment analysis indicated that DEGs
were mainly enriched in the signalling pathways related to ECM
Receptor Interaction and Focal adhesion (Figure 3B;
Supplementary Table S2). Finally, the GSEA results showed
that signalling pathway-related pathways were enriched in
primary prostate cancer samples, while cell cycle-related
signalling pathways were enriched in CRPC samples (Figures
3C,D; Supplementary Table S3).

WGCNA

To further identify critical genes in CRPC, WGCNA was
performed using 719 DEGs. Cluster analysis of the samples
showed correlations among all samples, and the expression
matrix of DEGs in all 107 samples was used to construct a
weighted gene coexpression network. A soft threshold of 14
(R2 = 0.86) was set to construct the scale-free network
(Figures 4A,B). In addition, by combining the modules with

high correlation, three coexpression modules were screened
out in the weighted gene coexpression network, and the
minimum number of genes was set to 60 (Figure 4C). Then,
we calculated the Pearson correlation between the module
eigengene (ME) and CRPC for each module. The blue module
had the highest correlation and significance with CRPC (cor =
0.72, P = 2e-18) and was selected as the target module (Figures
4D,E). Finally, we obtained 219 target genes for subsequent
analysis by gene importance and module correlation as
screening criteria (importance > 0.5, correlation > 0.8)
(Figure 4F).

Identification of potential biomarkers of
CRPC by machine learning algorithms

To further identify potential biomarkers of CRPC from target
genes, we used two machine learning algorithms, LASSO logistic
regression and SVM-RFE. First, we screened the overfitted genes in
the modular genes using the LASSO regression algorithm, of which
13 genes (AZIN1, CCNA2, CKS2, COPS5, FXR1, HNRNPA1,
HSPD1, LDHA, MRPL13, NDUFAB1, PAGE4, RASA1,
TUBA1C) were identified as potential diagnostic biomarkers
(Figures 5A,B). Subsequently, through the SVM-RFE algorithm,
we obtained 8 genes (CKS2, PART1, CNN1, KCMF1, MAP4K4,
XPO1, PTTG1, and CCNA2) from DEGs as potential diagnostic

FIGURE 4
Identification of significant gene modules correlated with CRPC with WGCNA. (A,B) Analysis of the network topology for various soft-threshold
powers. (C)Cluster dendrogramof representative genemodules. (D)Correlation of eachMEwith CRPC. (E) The importance ofmodule genes in CRPC. (F)
Screening of key genes in the module with criteria (importance > 0.5, correlation > 0.8).
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biomarkers based on the training cohort data (Figure 5C). Finally,
we selected the intersecting genes of the two gene sets through the
Venn diagram and obtained two genes (CCNA2 and CKS2) as the
final diagnostic biomarkers (Figure 5D).

Assessment of the expression levels and
diagnostic capabilities of potential
biomarkers

The expression of CCNA2 and CKS2 in the training cohort
CRPC samples was significantly higher than that in the primary
prostate cancer samples (p < 0.001) (Figures 6A,B). The same
results were obtained for validation with testing cohort data
(Figures 6C,D). To evaluate the predictive performance of
diagnostic biomarkers, ROC analysis was performed. The
AUC values of CCNA2 and CKS2 in the training cohort were
found to be 0.995 and 1.000, respectively, showing reliable

predictive power (Figures 6E,F). Meanwhile, the AUC values
of CCNA2 and CKS2 in the testing cohort were 0.897 and 0.971,
respectively, and these results indicated that CCNA2 and
CKS2 are efficient diagnostic biomarkers (Figures 6G,H).

Immune cell infiltration analysis

With the ssGSEA method, we further analysed the difference in
immune cell infiltration between primary prostate cancer and CRPC
and explored the correlation between diagnostic biomarkers and
immune cell infiltration. Most immune cell infiltration was
significantly different in primary prostate cancer and CRPC, and
most immunocytes were more infiltrated in primary prostate cancer
than in CRPC (Figures 7A,B). Correlation analysis showed a
negative correlation between CKS2 and most immune cells, while
both CCNA2 and CKS2 were negatively correlated with NK cell
infiltration (Figure 7C).

FIGURE 5
Identification of diagnostic biomarkers. (A) Cross-validation for tuning the parameter selection in the LASSO regression. (B) LASSO regression of the
13 module genes. (C) SVM-RFE algorithm. (D) Identification of intersecting genes from the two machine learning algorithms by Venn diagram.
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Virtual screening

Based on our screening results, the top 8 drug molecules with the
strongest binding affinity to CCNA2 were identified as Differin,

Dihydroergotamine, Ergotamine, Dutasteride, Coreg, Aprepitant,
Nilotinib, and Abiraterone. The affinity between Aprepitant and
CCNA2 was −11.0 kcal/mol. Aprepitant interacted with
CCNA2 protein through one π-stacking, one salt bridge, and six

FIGURE 6
Verification of the identified biomarkers. (A–D) Box plots for the differential expression analysis in the CRPC training and testing cohorts. (E–H) ROC
curves evaluate the diagnostic ability in the CRPC training and testing cohorts.
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hydrogen bonds, demonstrating strong binding capacity (Figures
8A,B). In addition, we also identified the top 8 drugs with the lowest
binding energy for CKS2, namely, Ergotamine, Indocyanine Green,
Dolutegravir, Dihydroergotamine, Midostaurin, Glimepiride,
Trypan Blue free acid, and Dutasteride. Among these, the affinity
of Dolutegravir was −12.0 kcal/mol, and it interacted with
CKS2 through one π-stacking and five hydrogen bonds,
demonstrating strong binding capacity. (Figures 8C,D). Based on
a combination of our virtual screening and molecular docking
results, we selected drugs with the strongest protein affinity for
further experiments, as listed in the table below (Table 2). It is
noteworthy that although Trypan Blue free acid showed strong
affinity to CKS2, it is a hydrophilic compound that is not
membrane-permeable, meaning it cannot easily cross the lipid
bilayer of the cell membrane to react inside the cell. Therefore, it
is not suitable as our experimental object. Consequently, we will
employ Aprepitant and Dolutegravir for further experimentation.

Effects of Aprepitant andDolutegravir on the
viability of CRPC cells

The CCK-8 assay was employed to assess the impact of
Aprepitant and Dolutegravir on the activity of prostate cancer
cells, and to evaluate their dose-dependent antiproliferative

effects. The results indicate that both Aprepitant and
Dolutegravir have inhibitory effects on the activity of prostate
cancer cells, with Aprepitant showing a significantly superior
inhibition capacity to that of Dolutegravir (Figures 9A–D).
Specifically, Aprepitant exhibits robust inhibition of prostate
cancer cells in the short term (24 h), but its inhibitory effect
diminishes significantly over time (48–72 h) at low
concentrations. Conversely, Dolutegravir exhibits no significant
impact on the activity of prostate cancer cells in the short term
(24 h), but its effect gradually increases over time (48–72 h). For
subsequent cell migration and invasion experiments, we have
selected concentrations of 20 μM for Aprepitant and 80 μM for
Dolutegravir.

Migration and invasion

We conducted wound healing and transwell assays to
preliminarily evaluate the effects of Aprepitant and Dolutegravir
on the migration and invasion of prostate cancer cells. Compared to
the control group, the wound healing rate of DU145 cells treated
with 20 μM Aprepitant was significantly reduced after 24 h (p <
0.001) (Figures 9E,F). However, there was no significant difference
in the wound healing rate of cells treated with 80 μM Dolutegravir
compared to the control group (p > 0.05). The transwell assay

FIGURE 7
Immune cell infiltration analysis. (A,B) Heatmap and volcano plot for immune cell infiltration analysis. (C) Correlation of the identified biomarkers
CCNA2 and CKS2 with immune cell infiltration.

Frontiers in Genetics frontiersin.org10

Wang et al. 10.3389/fgene.2023.1184704

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1184704


yielded similar results, as the number of cells that transversed the
matrix gel was significantly reduced in DU145 and PC-3 cells treated
with 20 μM Aprepitant for 24 h (p < 0.001), while there was no
significant difference in the number of cells that crossed the matrix
gel in cells treated with 80 μMDolutegravir compared to the control
group (p > 0.05) (Figures 9G–I).

Discussion

Prostate cancer is the most common malignant tumor for men
in Western countries and poses a severe threat to men’s health,
especially in the elderly population (Siegel et al., 2019). Although
ADT initially responds well to treatment, almost all patients
eventually develop CRPC. In recent years, studies have found
mechanisms that promote the occurrence and progression of
CRPC, including androgen receptor (AR) aberrations,
phosphatase and tensin homolog (PTEN) losses, DNA repair

gene deletions, TP53 mutations, and RB transcriptional
corepressor 1 (RB1) losses (Grasso et al., 2012; Robinson et al.,
2015). However, the molecular mechanisms underlying CRPC
occurrence and progression are not fully understood, and
identifying novel biomarkers for CRPC diagnosis and treatment
is critical. Recently, the development of machine learning algorithms
has attracted researchers’ attention, and the analysis of sophisticated
computer algorithms can help researchers find the critical factors of
the problem from big messy data. In our study, we simultaneously
adopted WGCNA and two machine learning algorithms (LASSO
logistic regression and SVM-RFE) to identify two essential genes
(CCNA2 and CKS2) based on the GEO database, which can be used
as diagnostic biomarkers of CRPC. At the same time, we explored
the biological processes, pathways, and diseases in which DEGs were
enriched in primary prostate cancer and CRPC and discussed the
correlation between two diagnostic biomarkers and immune cell
infiltration. Finally, we employed Auto Dock Vina-based virtual
screening technology to predict inhibitors targeting CCNA2 and

FIGURE 8
Demonstration of Protein-Ligand Interaction. (A) Three-dimensional display of CCNA2 crystal structure and its interaction with Aprepitant. (B) Two-
dimensional display of the interaction between CCNA2 and Aprepitant. (C) Three-dimensional display of CKS2 crystal structure and its interaction with
Dolutegravir. (D) Two-dimensional display of the interaction between CKS2 and Dolutegravir.
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CKS2 from FDA-approved small-molecule drugs on themarket, and
conducted preliminary in vitro experiments to explore the drug’s
mechanism of action.

In our study, the GO enrichment analysis revealed that most
DEGs were enriched for cell cycle-related biological functions.
KEGG analysis showed that DEGs were associated with multiple
metabolic pathways. GSEA showed that primary prostate cancer
genes were mainly enriched in signalling-related pathways, while the
CRPC gene strongly correlated with cell cycle regulation. The results
of these enrichment analyses showed a significant difference
between the primary prostate and CRPC in the regulation of
substance metabolism and the cell cycle, which might be one of
the mechanisms underlying the transformation of CRPC.

We identified two diagnostic biomarkers (CCNA2 and CKS2)
through WGCNA and a machine learning algorithm. Through
validation with training and testing cohorts, we found that
CCNA2 and CKS2 significantly differed in expression levels
between primary prostate cancer and CRPC. ROC analysis
revealed that CCNA2 and CKS2 both showed strong prediction
ability and could be used as diagnostic biomarkers for CRPC.

Cyclin A2 (CCNA2) belongs to a highly conserved cyclin family
and promotes the G1/S and G2/M transitions by binding to and
interacting with cyclin-dependent kinases 1 (CDK1) and cyclin-
dependent kinases 2 (CDK2) (Pagano et al., 1992). CCNA2 is
involved in the proliferation, invasion, and differentiation of
normal and tumor cells. Yang et al. (2020) found that CCNA2 is
associated with prostate cancer cell proliferation, invasion,
metastasis, and the cell cycle (Yang et al., 2020). Gorlov et al.

(2010) found that CCNA2 may be one of the main drivers of
prostate cancer development (Gorlov et al., 2010). As the binding
partner of the catalytic subunits of cyclin-dependent kinases
(CDKs), CDC-28 protein kinase regulatory subunit 2 (CKS2)
plays a regulatory role in the cell cycle process. Numerous
studies have found that the abnormal expression of CKS2 is
closely related to the carcinogenesis of many cancers and the
enhancement of tumor proliferation, such as colorectal cancer
(Yu et al., 2015), gastric cancer (Kang et al., 2009), bladder
cancer (Chen et al., 2011), hepatocellular carcinoma (Ji et al.,
2018), and breast cancer (Liberal et al., 2012). Mechanistically,
CKS2 can support tumor cells in overriding the intra-S phase
checkpoint by binding to CDK2 and producing proliferation
advantages under stress conditions (Liberal et al., 2012).
CKS2 can also interact with the catalytic subunit bearing CDK1,
thereby activating the CDK1-Cyclin B complex (van Zon et al.,
2010). The latest research has found that CKS2 can enhance
mitochondrial DNA replication activity and tumor invasion by
forming a complex with single-stranded DNA binding protein 1
(SSBP1) (Jonsson et al., 2019). In addition, CKS2 was found to
directly induce the upregulation of cyclin A and cyclin B1 in some
solid tumors (Lv et al., 2013; Shen et al., 2013). Lan et al. (2008)
found that abnormal expression of CkS2 promotes tumorigenesis by
inhibiting programmed cell death in prostate cancer. Interestingly,
previous studies found that CCNA2 and CKS2 were highly
expressed in primary prostate cancer compared to normal
prostate cancer tissues. In our study, we further found that,
compared with primary prostate cancer, the expression levels of

TABLE 2 The affinity and interaction of the top 8 compounds from virtual screening results.

Target Number Ligand Chemical
formula

Pubchem
number

Zinc number Affinity
(kcal/mol)

Noncovalent
interactions

CCNA2 1 Differin C28H28O3 60164 ZINC000003784182 −11.8 0

2 Dihydroergotamine C33H37N5O5 10531 ZINC000003978005 −11.4 1 π-Cation, 2 H-bond

3 Ergotamine C33H35N5O5 8,223 ZINC000052955754 −11.1 1 π-Cation, 5 H-bond

4 Dutasteride C27H30F6N2O2 6918296 ZINC000003932831 −11.1 0

5 Coreg C24H26N2O4 185395 ZINC000001530579 −11.0 3 H-bond

6 Aprepitant C23H21F7N4O3 135413536 ZINC000027428713 −11.0 1 π-Stacking, 1 Salt Bridge,
6 H-bond

7 Nilotinib C28H22F3N7O 644241 ZINC000006716957 −10.9 1 Halogen Bond, 2 H-bond

8 Abiraterone C24H31NO 132971 ZINC000003797541 −10.8 4 H-bond

CKS2 1 Ergotamine C33H35N5O5 8,223 ZINC000052955754 −12.3 2 π-Stacking, 1 Salt Bridge

2 Indocyanine Green C43H49N2O6S2+ 19191 ZINC000008101127 −12.1 1 π-Cation, 2 Salt Bridge

3 Dolutegravir C20H19F2N3O5 54726191 ZINC000058581064 −12.0 1 π-Stacking, 5 H-bond

4 Dihydroergotamine C33H37N5O5 10531 ZINC000003978005 −11.8 3 π-Stacking

5 Midostaurin C35H30N4O4 9829523 ZINC000100013130 −11.7 3 π-Cation, 2 H-bond

6 Glimepiride C24H34N4O5S 3,476 ZINC000100070954 −11.5 1 π-Stacking, 2 H-bond

7 Trypan Blue free acid C34H28N6O14S4 6,297 ZINC000169289767 −11.4 1 π-Cation, 2 Salt Bridge,
7 H-bond

8 Dutasteride C27H30F6N2O2 6918296 ZINC000003932831 −11.2 1 Halogen Bonds, 2 H-bond
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CCNA2 and CKS2 in CRPC increased significantly. Prostate cancer
is considered a continuous progressive disease, and as the disease
progresses, CCNA2 and CKS2 increase. Therefore, we speculate that

CCNA2 and CKS2 may be critical factors for the deterioration of
prostate cancer, serving as new diagnostic biomarkers and
therapeutic targets for CRPC.

FIGURE 9
The effects of Aprepitant andDolutegravir on the activity,migration, and invasion ability of CRPC cells were evaluated. (A–D) The inhibitory effects of
corresponding concentrations of Aprepitant and Dolutegravir on the activity of DU145 and PC-3 cells. (E–F) DU145 cells were treated with 20 μM
Aprepitant or 80 μM Dolutegravir to assess their effect on cell migration. (G–I) DU145 and PC-3 cells were treated with 20 μM Aprepitant or 80 μM
Dolutegravir to observe the effect on cell invasion ability.
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In clinical practice, Aprepitant is commonly used to prevent
chemotherapy-induced nausea and vomiting and is believed to alter
cytochrome P450 activity (Patel et al., 2017). In recent years,
researchers have noticed that Aprepitant can act as a neurokinin-
1 receptor (NK-1R) antagonist to exert anti-tumor effects in various
cancers (Muñoz and Coveñas, 2020). Mechanistically, substance P
(SP) (after binding to the NK-1R) promotes mitogenesis in tumor
cells, while Aprepitant (after binding to the same receptor)
counteracts the SP-mediated mitogenesis and induces apoptotic
mechanisms in these cells (Muñoz and Coveñas, 2013; Munoz
et al., 2015). In addition to its use in preventing vomiting,
Aprepitant has been found to prevent postoperative tumor
recurrence and metastasis, thrombosis and thromboembolism,
and is considered a smart bullet against cancer, with a large
amount of preclinical and clinical data demonstrating its
potential as a broad-spectrum anti-tumor drug (Muñoz and
Coveñas, 2020). In prostate cancer, Ebrahimi et al. (2022) have
demonstrated through in vitro and in vivo experiments that
Aprepitant can inhibit cell proliferation and migration via the
SP/NK-1R pathway and significantly prolong the survival time of
mice (Ebrahimi et al., 2022). Interestingly, we found that Aprepitant
may also act as an inhibitor of CCNA2 to exert anticancer effects. In
our study, a machine learning algorithm predicted that CCNA2may
be one of the key driving factors for the transformation of primary
prostate cancer to CRPC, and virtual screening predicted that
Aprepitant and CCNA2 protein have strong binding ability.
Therefore, we have reason to suspect that CCNA2 may be one of
the targets of Aprepitant in inhibiting CRPC cells, together with the
SP/NK-1R pathway. In addition, we further validated through
in vitro experiments that Aprepitant has a significant inhibitory
effect on the proliferation, migration, and invasion of CRPC cells. In
conclusion, Aprepitant has the potential to be an anti-tumor drug
for CRPC.

Dolutegravir is a newly approved next-generation HIV-1
integrase strand transfer inhibitor used in combination with
other antiretroviral drugs for the treatment of HIV-1 infection in
adolescents and adults (McCormack, 2014). Mechanistically,
Dolutegravir exerts its antiviral activity by selectively targeting
the integrase enzyme within the pre-integration complex of HIV-
1. Specifically, it binds to two critical metal cations (Mg2+) located at
the catalytic active site of integrase, causing displacement of the 3’-
terminal deoxyadenosine of the viral cDNA strand. This binding
event prevents the transfer of viral cDNA into the host DNA,
thereby effectively inhibiting HIV-1 replication (Hare et al.,
2011). Recently, however, it has been reported that Dolutegravir
may have anticancer effects by inhibiting the expression of human
endogenous retrovirus type K (HERV-K) in various cancer cells (Li
et al., 2022). Our study has shown that Dolutegravir may also have
anticancer effects by specifically binding to the CKS2 target in CRPC
cells. Therefore, we posit that Dolutegravir is a promising candidate
for an anticancer drug in the treatment of CRPC.

There are still certain limitations in our study. Firstly, the
phenotype of prostate cancer can be further subdivided, but for
the purpose of this study, we only distinguished between primary
prostate cancer and CRPC. Secondly, additional databases and larger
sample sizes are needed to validate the study findings. The results of
this study were solely derived from the GEO database, and future
research should validate the two biomarkers via functional

experiments conducted in vivo and in vitro. Finally, the
inhibitory effects of Aprepitant and Dolutegravir on CRPC can
also be confirmed through other in vivo and in vitro experiments.
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