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Copper is an essential trace element that acts as a cofactor in various enzyme

active sites in the human body. It participates in numerous life activities, including

lipid metabolism, energy metabolism, and neurotransmitter synthesis. The

proposal of “Cuproptosis” has made copper metabolism-related pathways a

research hotspot in the field of tumor therapy, which has attracted great

attention. This review discusses the biological processes of copper uptake,

transport, and storage in human cells. It highlights the mechanisms by which

copper metabolism affects hepatocellular carcinogenesis and metastasis,

including autophagy, apoptosis, vascular invasion, cuproptosis, and ferroptosis.

Additionally, it summarizes the current clinical applications of copper

metabolism-related drugs in antitumor therapy.
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1 Introduction

Primary liver cancer is a prevalent malignant tumor that ranks as the third most

common cause of cancer-related deaths worldwide, and is particularly frequent in East Asia

and Southeast Asia (1). Hepatocellular carcinoma (HCC) is the most common type of

primary liver cancer, accounting for 75%-85% of cases. Finding new breakthroughs in

treatment has been the key to research on HCC, as HCC has a 5-year survival of less than

15% (2). Copper is a widespread metallic element in nature. With the interdisciplinary

development, the pathways of copper metabolism in human body are gradually discovered.

The redox properties of copper are both beneficial and potentially toxic to cells, which are

increasingly found to be involved in cell proliferation and death pathways in a rising

number of studies (3). The metallic signal of copper is strongly associated with tumor

progression, especially HCC, where the liver is the main organ for copper storage (4). Key

enzymes and genes related to copper metabolism have become important directions in the

treatment of HCC, while the exploration of copper in the diagnosis, treatment, prognosis

and survival analysis of HCC has become a current research topic.
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This review aims to provide an overview of the normal

physiological metabolic processes of copper, a summary of the

mechanisms of copper metabolism involved in the progression of

HCC, and a discussion of recent research advances in the treatment

of HCC through the regulation of copper homeostasis.
2 Copper metabolic process in
human body

2.1 Copper absorption

Copper, which is an essential cofactor, is widely found in living

organisms in nature. Diets high in copper, such as offal, shellfish,

seeds, legumes, vegetables and whole grain cereals, are the main

ways in which the body obtains copper, and industrial products

may also be an important source of copper in the human body (5).

The intestinal epithelium is responsible for the absorption of dietary

copper, which is removed through the liver if the level is high in the

body and secreted by the bile into the gastrointestinal tract and

excreted in the feces. To keep free copper at a low level, copper ions

in the body mainly attach to certain proteins or other molecules to

ensure normal biochemical processes (6). Since its unstable redox

potential, copper homeostasis is essential for cell survival.

Copper is absorbed in the small intestine, with the duodenum

serving as its primary absorption site and having an absorption

efficiency of up to 60% (7). Copper in the diet is usually present in

the form of Cu2+, but only Cu+ can be absorbed and reused. This

process is mainly involved by the prostate metal reductase six

transmembrane epithelial antigen of the prostate (STEAP) and

duodenal cytochrome b (DCYTB) (8, 9). Cu+ is taken up into the

cell mediated by copper transporters 1 (CTR1) on the apical side of

the enterocyte. Cells can also take minor amounts of Cu2+ up, but

the underlying mechanism is not clear. The low affinity copper

transporter receptor 2 (CTR2), divalent metal transporter1

(DMT1), and sodium-dependent amino-acid transporters may

explain this mechanism as alternative copper uptake pathways (10).
2.2 Copper transportation

There are two membrane-bound copper-transporting

adenosine triphosphatases (ATPases) exist in human cells,

ATP7A and ATP7B, both of which play an important role in the

digestive tract. ATP7A may promote the efflux of Cu+ from the

intestinal epithelium and transport to the circulation (11, 12).

ATP7B is primarily responsible for the storage of Cu+ in

intracellular vesicles to maintain the copper balance required for

normal homeostasis of the intestinal epithelial (13).

Ceruloplasmin (CP) is the main carrier involved in copper

transport, and each CP can bind six Cu+ (14). In addition, albumin

and histidine are also involved in the transport of copper. Copper is

secreted by intestinal epithelial cells into the portal vein circulation

and bound with these copper-carrying protein. When Cu+ is

transported to the liver, they would be mediated by CTR1 into

hepatocytes. In the cytoplasm, Cu+ would be isolated by glutathione
Frontiers in Oncology 02
(GSH) and stored in metallothioneins (MTs) (11). Both have a high

affinity for copper and are rich in thiol groups, which helps to

maintain a low quantity of free copper. Usually, liver is one of the

main organs storing Cu+, with MT1 and MT2 being the main

storage sites for Cu+. But a new study shows that MT3, which is

highly expressed in the central nervous system, is one of the major

players in copper homeostasis (15).

In addition, a portion of the Cu+ will bind to the copper

chaperones and transported to specific organelles to participate in

related physiological process. In mitochondria, Cu+ is involved in

the respiratory chain and redox pathways by binding to cytochrome

c oxidase (CCO). For example, the copper chaperones (COX17,

COX19 and COX23) are responsible for transporting Cu+ to the

mitochondria, and then which is delivered to CCO by the

mitochondrial inner membrane proteins Sco1, Sco2 and COX11.

Antioxidant protein 1 (ATOX1) would transport Cu+ to the

Trans-Golgi Network (TGN) and promote the synthesis of copper

enzymes such as lysyl oxidase, tyrosinase and copper cyanobactin

(16). Except for the liver, ATP7A are expressed in most tissues (16).

However, ATP7B are only present in hepatocytes, which pump Cu+

from the cytoplasm into the TGN. When excess copper enters the

hepatocyte, endolysosomal vesicles containing ATP7B would

transport them to bile duct and drain the excess Cu+ into the bile

(17). Therefore, mutations in ATP7A and ATP7B predispose to

disorders of copper metabolism, allowing Cu+ to accumulate in cells,

which leads to the onset of Menkes’ disease and Wilson disease (18).

In addition, Copper Chaperone (CCS) would also transport Cu+

to superoxide dismutase (SOD) to alleviate oxidative stress and

maintain copper homeostasis (19, 20). In the nucleus, Cu+ can be

combined with transcription factors and drive gene expression (21).

The process of copper absorption and transport in the human body

is shown in Figure 1.
3 Association between copper
metabolism and HCC

3.1 Strong association between high
copper level and the prevalence of HCC

The role of copper in biological processes has been a hot topic of

research for this century. Numerous factors regulate and maintain

the body’s intake, transport, and secretion of copper in a dynamic

equilibrium. Aberrant copper metabolism or copper-induced cell

death can lead to a variety of diseases when copper homeostasis is

disrupted in the body. Low level of Cu can impair the function of

metal-binding enzymes, while too high level can lead to abnormal

cellular functions (4). A number of studies have shown that tumor

tissues require higher level of copper to meet the high metabolic

demands compared to healthy tissues (22). Elevated copper levels

have now been found to be associated with a multitude of

malignancies according to research, including breast cancer (23),

colorectal cancer (24), lung cancer (25), and gallbladder cancer (26).

Copper ions were absorbed through the intestine, arriving in the

liver from the portal vein with serum proteins as carriers, and enter

the hepatocytes via CTR1, where large amount of copper was stored
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in the hepatocytes in combination with MT1 and MT2 (27). The

liver is the center of Cu storage and transport as a core player in the

regulation of systemic Cu homeostasis. The liver cells will be the

first to be impacted when there is an abnormality in the copper

metabolism. Therefore, Cu is closely associated with the

development of liver disease. Wilson disease, as we know it, has a

defect in copper processing resulting in high copper level and toxic

effects on liver cells (28). Mitochondrial damage induced by copper

overload results in other liver lesions in more than half of Wilson

disease patients (29). Cirrhosis, the end-stage of many liver diseases,

is an essential risk factor for HCC, which also exhibits abnormal

accumulation of copper and abnormal distribution of other trace

metal elements (30). Both European and Asian cohort studies have

shown that elevated copper levels in humans are associated with a

high risk of morbidity and a poor prognosis of HCC (31, 32).

Cuproptosis-related genes have potential for constructing a

prognostic model for HCC (33).

3.2 Disorders of copper metabolism play a
major role in the development of
hepatocellular carcinoma

3.2.1 Autophagy
Autophagy is a highly regulated cellular mechanism that aimed

at bioenergetic recovery through intracellular destruction and
Frontiers in Oncology 03
breakdown of dysfunctional cytoplasmic components and

recycling of energy (34). Autophagy is a double-edged sword. On

the one hand, autophagy can suppress tumors by reducing reactive

oxygen species (ROS) and removing damaged organelles and toxic

substances from cells. On the other hand, autophagy inhibits tumor

cell apoptosis and provides metabolic support to accelerate the

growth of HCC cells. High level of Cu+ generates large amounts of

ROS during oxidation, which is important for the onset of

autophagy (35). Unc-51-like kinase 1 (ULK1/2) is an important

initiator of autophagy and is involved in the formation of

autophagic vesicles as well as the regulation of the autophagic

process. Tsang et al. (36) found that ULK1/2 had a strong affinity

for copper. Copper-dependent ULK1/2 activation stimulated

autophagic flux, and low intracellular copper (CTR1 depletion,

ATP7A overexpression, or copper chelator use) resulted in a

decrease of autophagy. In addition, excess copper can also

increase autophagic flux by activating the expression of

autophagy-related gene 5 (ATG5) (37), Beclin-1 (BECN1) (37)

and AMPK-mTOR (38) pathways, as well as accelerate

autophagic vesicle formation by mediating TFEB (39)

transcription factors. The autophagic targets and pathways

associated with copper metabolism in HCC are shown in

Figure 2A. It is notable that the accumulation of copper and the

activation of autophagy in Wilson disease as well as in HCC occur

simultaneously (40–42).
FIGURE 1

The process of copper absorption and transport in the human body. Cu2+ is restored to Cu+ by STEAP and DCYTB in the small intestine. Cu+ is
taken up into the cell mediated by CTR1. ATP7B is primarily responsible for the storage of Cu+, and ATP7A may promote the efflux of Cu+ from the
intestinal epithelium and transport to the circulation. When Cu+ is transported to the liver, they would be mediated by CTR1 into hepatocytes. Cu+

would be isolated by GSH and stored in MTs. In mitochondria, Cu+ is involved in the respiratory chain and redox pathways by binding to CCO.
ATOX1 would transport Cu+ to the TGN and promote the synthesis of copper enzymes. When excess copper enters the hepatocyte, endolysosomal
vesicles containing ATP7B would excrete Cu+ into the bile. In addition, CCS would also transport Cu+ to SOD to alleviate oxidative stress. In the
nucleus, Cu+ can be combined with transcription factors and drive gene expression.
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3.2.2 Apoptosis
Apoptosis is a programmed death process that is essential in

normal development, tissue repair and immune modulation in the

human body (43). The Fenton reaction is one of the most common

reactions for copper-catalyzed ROS production, whereby high

concentrations of copper-induced ROS lead to mitochondrial

dysfunction with accelerated apoptosis (44). Moreover, the

oxidation of hydroxyl radicals generated by the Fenton reaction

can break down the DNA helix structure, resulting in damage to

DNA (45). Mitra et al. (46) found that copper-treated spleen and

thymus produced different apoptotic pathways. Recent studies (47)

have revealed that mitogen-activated protein kinase kinase 1

(MEK1) in the MAPK-ERK pathway also has a high-affinity

copper binding site. High concentrations of Cu+ stimulate MEK1-

dependent phosphorylation of ERK1/2, and the use of copper

chelators can target MEK and inhibit tumor proliferation (48).

Excessive copper production in the liver induces ROS and

mitochondrial transmembrane potential changes that activate the

intrinsic pathway of p53 cell apoptosis (49). With the activation of

P53, cytochrome C (Cyt C) induces caspase9 to initiate the cascade

activation of downstream caspase3, which triggers apoptosis (50,

51). Cyt C, Apoptotic protease-activating factor 1 (Apaf-1) and

caspase 9 could also combine to form an “apoptosome”, an

apoptotic pathway that induces hepatocyte death (50, 52). The

proteasome is a multi-enzyme complex consisting of a 20S core and
Frontiers in Oncology 04
two 19S regulatory particles (53). It has been shown that

proteasome can induce Cyt C into cytoplasm and activate caspase

cascade reaction to induce apoptosis, while copper complexes show

strong inhibitory ability against proteasome, which may become a

new target for tumor therapy (54, 55). It is worth noting that Cu

activates the IL6/Jack/STAT3 signaling pathway after catalytic

EGFR phosphorylation and is involved in the induction of IFNg-
mediated upregulation of PD-L1 expression (56). An overload of Cu

leads to immunosuppression, which not only leads to the

development of HCC, but is an important issue in the treatment

of HCC. The apoptotic targets and pathways associated with copper

metabolism in HCC are shown in Figure 2B.

3.2.3 Vascular invasion
Vascular invasion is an important mode of tumor progression as

well as metastasis. Notably, copper is a key point in the angiogenic

signaling cascade, and copper overload stimulates tumor neovascular

growth and invasion, while copper deficiency hinders neointimal

formation (57). It was found that copper could activate the EGFR/

ERK/c-fos transduction pathway to induce vascular endothelial

growth factor (VEGF) expression in hepatoma cells to promote

tumor angiogenesis (58). In a further way, copper can also promote

the synthesis of FGF-1 through ATOX1 and superoxide dismutase 1

(SOD1) to affect vascular endothelial function, while increasing the

invasive and metastatic capacity of tumor cells by activating lysyl
A

B

C

FIGURE 2

Targets and pathways of autophagy, apoptosis and vascular invasion associated with copper metabolism in HCC. (A) Copper impacts the autophagic
pathway of HCC by affecting the formation of phagophore, autophagosome, and lysosome. (B) Copper directly affects the apoptotic pathway of
HCC by generating ROS, forming apoptosome, and activating the apoptotic cascade response, and indirectly affects the apoptotic pathway of HCC
by regulating ERK1/2 and PD-L1. (C) Copper affects vascular invasion by affecting endothelial cells as well as HCC metastasis.
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oxidase (LOX) (59–61). Copper can even induce the expression of

HIF-1a to promote rapid adaptation of tumor cells to hypoxic

conditions when the microenvironment is not suitable for tumor

growth (62). Copper has a significant facilitating impact in HCC

metastasis and angiogenesis, and copper chelators can be used as

targeted agents to limit HCC vascular invasion (63). The targets and

pathways of vascular invasion associated with copper metabolism in

HCC are shown in Figure 2C.

3.2.4 Cuproptosis
As early as the 1980s, Halliwell et al. discovered that copper could

lead to cell death (64). The mechanism and specific form of copper-

induced cell death has long been obscure. In the past, copper ion

carriers including disulfiram (DSF) and elesclomol (ES) were

considered to have the ability to cause cell death. ES-Cu can bind

to ferredoxin 1 (FDX1) and lead to inhibition of Fe-S clusters or act

directly on mitochondrial membranes (65), which leads to

polarization of the mitochondrial membrane potential and cell

death via a ROS-mediated mechanism (66). Similarly, DSF/Cu was

also considered to act on the mitochondrial respiratory chain, leading

to elevated ROS levels (67). It has only recently been elucidated that

cell death induced by copper ion carriers is a copper-induced cell

death, independent of the known patterns of cell death. Cuproptosis

is a regulated mode of cell death that is distinct from apoptosis and

ferroptosis (68). The accumulation of intracellular copper ions acts

on the lipid acylation of proteins in the tricarboxylic acid cycle

(TCA), triggering proteotoxic stress and inducing cell death (69).

Ferredoxin 1 (FDX1), an upstream regulator of protein lipid

acylation, has been found to be a key regulator of cuproptosis with

significant association with HCC staging and prognosis (70). In

contrast to the general population, HCC patients have a much

lower level of FDX1 expression, while the low expression of FDX1

suggests a poor prognosis, tumor cells acquire a survival advantage

over healthy cells by resisting cuproptosis. In addition, it was found

(71) that the cuproptosis-related gene LIPT1 may promote the

proliferation and metastasis of HCC, which is a new potential
Frontiers in Oncology 05
therapeutic target for HCC. It is worth noting that cuproptosis may

be an elemental factor in the development of HCC, but experimental

studies on cuproptosis are still in their infancy, and most studies have

only demonstrated the association of cuproptosis with the prognosis

of HCC based on bioinformatic analysis of public databases such as

TCGA, ICGC and GEO, so more studies are needed to support this

point of view (72–76). The functions of cuproptosis characteristic

genes in HCC are shown in Table 1.

3.2.5 Ferroptosis
Ferroptosis is a recently identified form of cell death

characterized by iron accumulation and lipid peroxidation that has

emerged as an effective therapeutic target for tumor suppression. We

are well known for the fact that sorafenib can inhibit the progression

of HCC by inducing ferroptosis (77). However, copper and iron

which are common trace elements in human body, the association

between copper metabolism and ferroptosis has been rarely reported.

GPX4 is a key gene associated with ferroptosis. Exogenous copper

promotes GPX4 ubiquitination by directly binding to GPX4 protein

cysteines C107 and C148, accelerating GPX4 aggregate formation,

and Tax1-binding protein 1 (TAX1BP1) is involved in the

transformation breakdown of GPX4, leading to lipid peroxide

accumulation and inducing ferroptosis (78). The plasma

ceruloplasmin-ferroportin transport system is an active mode of

intracellular iron transport in hepatocytes. Shang et al. (79)

discovered that high copper level disrupted Cu-Fe homeostasis and

that overexpression of CP inhibited ferroptosis induced by erastin

and RSL3 in HCC cells. Despite the fact that ionizing radiation can

slow tumor cell development by increasing ferroptosis, which is

beneficial for patients with advanced HCC that cannot be surgically

removed, the efficacy of radiation is hampered by radioresistance (80,

81). Notably, copper metabolism MURR1 domain 10 (COMMD10)

is a critical protein in the regulation of radioresistance in HCC, which

causes copper aggregation, thereby upregulating the expression of CP

and SLC7A11 target genes, reducing lipid peroxidation levels, and

inhibiting ferroptosis in HCC (82). Excessive accumulation of free
TABLE 1 Functions of validated cuproptosis genes in HCC.

Gene Full name Subcellular
locations

Function Ref

FDX1 Ferredoxin 1 Mitochondrion
matrix

Locates upstream of lipoic acid pathway, reducing Cu2+ to Cu+ (70, 77,
78)

LIPT1 Lipoyltransferase 1 Mitochondrion Modulation of the lipoic acid pathway, involved in the lipid acylation of DLAT (71)

CDKN2A Cyclin-dependent kinase
inhibitor 2A

Nucleus and
Cytosol

Induces cell cycle arrest in G1 and G2 phases, its mutation is the common molecular
anomalies in HCC

(79, 80)

GLS Glutaminase kidney isoform Mitochondrion
Cytoplasm and
cytosol

Catalyzes the catabolism of glutamine (81–84)

DLAT Dihydrolipoamide
acetyltransferase

Mitochondrion
matrix

Mediates the conversion of pyruvate to acetyl-CoA, involved in glycolysis (85)

PDHB pyruvate dehydrogenase Β Mitochondrion
matrix

Mediates the conversion of pyruvate to acetyl-CoA, induced metabolic
reprogramming of TCA cycle

(86)

MTF1 Metal regulatory transcription
factor 1

Nucleus and
Cytoplasm

Zinc-dependent transcriptional regulator for metal ions adaption (87)
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intracellular copper causes cell death, and a similar result occurs

when the intracellular copper content is depleted. Copper depletion-

mediated metabolic reprogramming leads to mitochondrial

perturbations and significant changes in lipids and lipid-like

molecules (including increased levels of arachidonic and

epinephrine acids), with high levels of ROS and lipid peroxidation

strongly inducing ferroptosis (83). Interestingly, DSF/Cu which is

combined with copper is an FDA approved clinical anti-alcoholic

drug, and Ren et al. found that DSF/Cu can activate ferroptosis and

synergize with sorafenib in the fight against HCC (84). There is a

direct link between ferroptosis and copper, with copper acting as a

crucial factor in the regulation of ferroptosis (Figure 3).
4 Anti-tumor therapy to regulate
copper homeostasis

With the in-depth study of copper metabolism, the effects of

copper on human health are becoming clear. How to safely,

effectively and rationally use drugs to regulate copper homeostasis

to treat diseases has attracted people’s attention. Previous

treatments for inherited copper dysregulation diseases (such as

Wilson disease, Menkes disease) provide reference for this. In terms

of tumors, there are two main ways to regulate copper homeostasis:

one is to chelate copper in tumor cells through copper chelates to

inhibit copper proliferation; the other is using copper ionophores to

increase the copper in tumor tissue to promote cuproptosis.
Frontiers in Oncology 06
4.1 Copper chelators

Copper chelators are commonly used to treat Wilson disease

patients to lower their elevated copper in the blood. In the

subsequent research, it was observed that anti-angiogenic agents

can limit tumor growth and that copper restriction can reduce the

levels of angiogenic factors to inhibit the angiogenesis of blood

vessels (85, 86). Copper chelating agents have aroused people’s

interest in the field of cancer. Researches have shown that copper

can affect tumor angiogenesis by affecting HIF-1 (87); participat in

tumor proliferation through the transcription factor ATOX1 (21),

CCO (88) and MEK1 (89); regulate the Mediator of Cell Mobility

protein (MEMO) (90), the Secreted Protein Acidic and Rich in

Cysteine (SPARC) (91, 92), the copper binding enzymes LOX (93),

to influence tumor spreading. Additionally, it has been documented

that copper chelation can also promote ubiquitin mediated

degradation of the immune checkpoint PD-L1, such that tumor

cells cannot protect themselves from antitumor immune responses

by overexpressing PD-L1 (56).Therefore, copper chelators may act

on tumors through these pathways. At present, the inhibitory effect

of copper chelators on tumor angiogenesis has received much

attention. A crucial aspect of HCC is its abundant arterial blood

supply. It is ideal for treatment with copper chelators due to this

property. We believe that copper chelators have a bright future in

the treatment of HCC.

Common copper chelators include tetrathiomolybdate (TM)

and trientine. TM is a selective copper chelator which could deplete
FIGURE 3

Association of copper metabolism with ferroptosis in HCC. Cu+ regulates the level of ferroptosis in HCC by activating GPX4 or promoting its
ubiquitination. CP inhibits ferroptosis by directly inhibiting the iron death inducers Erastin and RSL3.
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copper in tumor cells and reduce its bioavailability. TM can inhibit

angiogenesis and reduce blood supply to tumor tissues by

supressing transcription factors (NF-kB) and reduce tumor

proliferative activity by inhibiting mitochondrial CCO function to

reduce ATP production (88, 94). In addition, Davis et al. (95)

suggested that TM could reduce the expression of glucose

transporter 1 (GLUT1) and other glycolytic genes induced by

hypoxia in HCC cells to decrease glucose utilization and limit

energy acquisition. This shows that TM can limit the production

of ATP in tumor cells through mitochondrial tricarboxylic acid

cycle and glycolysis. The mechanism of TM for the treatment of

HCC is shown in Figure 4. The safety of TM has also been

recognized. In a phase II clinical trial, TM was well tolerated (96).

Trientine is commonly used in patients who are intolerant to other

copper chelators due to severe side effects such as myelosuppression

and autoimmune diseases. KADOWAKI et al. (97) suggested that

trientine induces tumor apoptosis by activating P38 mitogen-

activated protein kinase, which is involved in multiple pathways

to inhibit the growth of HCC and other tumors (98–101). A study

using trientine in a mouse model of HCC xenotransplantation

showed that trientine could limit tumor growth by inhibiting the

growth of HCC endothelial cells and blood vessels, and promote the

induction of tumor apoptosis (102). It is safer compared to copper

chelator D-pen with lower incidence of serious side effects (103).

Therefore, we believe that trientine has potential for clinical use in

the treatment of HCC.
4.2 Copper ionophores

In contrast to copper chelators which deplete copper

bioavailability in tumor tissue to inhibit cuproplasia with the aim

of achieving antitumor effects, copper ionophores increase the

intracellular concentration of copper ions in tumor cells.

Excessive intracellular copper ion concentration has cytotoxicity

as it can lead to the production of a large amount of ROS (104).
Frontiers in Oncology 07
Additionally, copper ions directly attach to the lipoylated parts of

the tricarboxylic acid (TCA) cycle, causing lipoylated protein to

aggregate and Fe-S cluster protein to disappear (69). This causes

protein toxicity stress, which kills or restricts tumor growth.

Currently, common copper ionophores are elesclomol(ES) and

disulfiram(DSF). ES is an injectable, small molecule drug that binds

to copper ions in the blood. Tumor cells can effectively absorb this

complex. When Cu2+ of this complex enters the mitochondria of

cells, it is reduced to Cu+ by mitochondrial protein FDX1. Cu+ will

react with molecular oxygen to produce superoxide, which will be

disproportionated to generate H2O2. H2O2 can further react with

Cu+ to produce more destructive and highly reactive hydroxyl

radicals, destroying mitochondria, and restricting the division and

proliferation of tumor cells (105). Moreover, ES can also

downregulate GSH (106), which is an important component of

the intracellular antioxidant system and contributes to the clearance

of intracellular ROS (107). Without a doubt, its decrease leads to the

rise in intracellular ROS. Additionally, Tsvetkov et al. (65, 69)

argued that ES has anti-tumor properties that go beyond merely its

capacity to generate ROS in tumor cells. ES was discovered to be

able to bind to FDX1, which results in the the aggregation of

lipoylated mitochondrial enzymes and a loss of Fe–S proteins,

leading to cuprotosis. Since this process requires the involvement

of oxygen molecules, this drug is mainly suitable for cancers that are

energized by oxidative phosphorylation of mitochondria. Under

hypoxic conditions, the energy metabolism of tumors is mainly

generated through glycolysis in the cytoplasm rather than the

mitochondria, which is often accompanied by increased levels of

the lactate dehydrogenase (LDH). At this time, the activity of ES is

low. HCC cells have been reported to have a characteristic of

significantly increased mitochondrial metabolism (108). This

provides a theoretical basis for the use of ES in the treatment of

HCC. Another study on carboplatin-resistant HCC cells also

showed this feature (109). In terms of safety, ES has few reported

side effects in humans and is well tolerated by patients. It was found

that while ES was present at concentrations that significantly
FIGURE 4

The mechanism of TM for the treatment of HCC. TM can inhibit angiogenesis and reduce vascular invasion of HCC by inhibiting transcription factors
(NF-kB). In addition, it can also reduce the vascular invasion of HCC by inhibiting the tricarboxylic acid cycle and reducing the energy supply of
tumor tissue by glycolysis.
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inhibited tumor cells, it did not enrich for copper ions in human

peripheral blood mononuclear cells (105). This also suggests that

the risk of side effects from taking this drug is low. The mechanism

of elesclomol for the treatment of HCC is shown in Figure 5.

DSF was used to treat alcohol dependence by inhibiting

acetaldehyde dehydrogenase (ALDH). In the 1970s, researchers

began seeking clinical evidence of the anti-cancer effects of DSF

(110). DSF has anticancer action that is reliant on metal ions and

promotes apoptosis while decreasing angiogenesis. In acidic

conditions, DSF would be reduced to diethyl dithiocarbamate

(DDTC), which may then be coupled with Cu2+ to create DDTC-

Cu2+ complexes. There are a number of possible mechanisms of

action for DSF and DDTC-Cu2+, including the generation of ROS

(111), obstruction of the ubiquitin pathway (112), activation of the

MAPK pathway (113), and irreversible inhibition of ALDH (114).

In addition, a study by Li et al. (115) demonstrated that DSF in

combination with copper could effectively inhibit the metastasis of

HCC, suggesting that DSF in combination with copper could

restrain the process of epithelial-mesenchymal transition (EMT)

and the metastasis of HCC by limiting NF-kB and TGF-Β signaling.

Concerning security, DSF has been approved by FDA for

application, and its safety is generally acceptable. Current trial

phase and validated targets information on copper chelators and

copper ionophore for HCC are shown in Table 2.
4.3 Copper related imaging

The demand of tumor cells for copper ions and the transport of

copper ions by CTR1 on the surface cause high copper concentration

in tumor tissues. This makes copper complexes have the potential to

act as tracers. The radioisotope 64Cu has been used for in vivo tumor

imaging and therapy. 64Cu has a half-life of 12.7 hours and is suitable

for imaging small molecules as well as large molecules such as

antibodies and peptides. Its relatively short half-life does not add a
Frontiers in Oncology 08
radiation burden to patients after imaging studies, which is a

advantage that can be applied to positron emission tomography

(PET) imaging. Currently, 64CuCl2 has performed well in PET

imaging of HCC in animal models (130).

In addition, copper-based nanoparticles have been applied in

both photodynamic therapy PDT and photothermal therapy PTT.

Huang et al. (131) used copper-cysteamine nanoparticles as

photosensitizers for HCC and achieved good therapeutic results.

It is notable that the homeostasis of copper ions in the human body

is essential, and either its deficiency or its excess can cause human

diseases. The long-term use of copper binding compounds,

including copper chelators and copper ionophores, may disturb

the homeostasis of essential metals, thus resulting in severe side

effects. Although copper conjugates exhibit certain selectivity

toward tumor cells, their therapeutic window still needs to be

enlarged for safer applications. There is a need to develop more

rational strategies and new therapeutic modalities to increase

targeting to tumor cells, improve efficacy against tumors, as well

as mitigate side effects.
5 Conclusion

With the development of cross-cutting disciplines, the pathways

of copper metabolism involved in human activities have been

elucidated. Copper is absorbed in the small intestine and stored

by vital organs such as the liver. Copper is essential for the

regulation of the physiological functions of the liver. Excess

copper would be excreted via the biliary tract when copper levels

in the body are high. However, the state of cuproplasia is commonly

seen in the microenvironment of HCC. Copper overload accelerates

the progression of HCC through immunosuppression, vascular

invasion, cuproptosis and ferroptosis. Current therapies on

copper metabolism in HCC include copper chelators, copper

ionophores, etc., all of which have a good safety profile.
FIGURE 5

The mechanism of ES for the treatment of HCC. In mitochondria, the complex of ES and Cu2+ binds to FDX1, while Cu2+is reduced to Cu+ by FDX1.
Cu+ combines with O2 to generate ROS. FDX1 also promotes the lipoylation of DLAT. The reduced Cu+ binds to lipoylated DLAT to promote its
oligomerization, ultimately causing the occurrence of cuproptosis. Additionally, Cu+ prevents FDX1 from stimulating the synthesis of Fe-S.
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Currently, copper metabolism research is in a preliminary stage and

this therapy is not explicitly recommended in the guidelines despite

clear therapeutic effects, so further clinical studies are still

urgently needed.
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Type Copper regulator Abbreviation Molecular formula Trial Phase Related targets Refs

chelator Tetrathiomolybdate TM MoS4 Animal model NF-kB (86,
116)

Cell and animal models MEK1/2 (48,
117)

Cell model IL-1 (118,
119)

Cell model FGF1 (118,
119)

Animal model, Phase II trial VEGF (120–
122)

Cell and animal models,
Phase II trial

LOX (116,
123)

Animal model CCO (88)

Phase II trial IL-6 (121,
122)

Phase II trial IL-8 (121,
122)

Phase II trial bFGF (121)

chelator Trientine TETA C6H18N4 Cell model IL-8 (124)

Animal model CD31 (102)

Cell model P38 MAPK (97)

chelator D-penicillamine DPA C5H11NO2S Animal model LOX (125)

chelator Choline tetrathiomolybdate ATN-224 [(CH3)3NCH2CH2OH]2
[MoS4]

Cell model SOD1 (126)

chelator Tetraethylenepentamine
pentahydrochloride

TEPA C8H23N5·5HCl Cell model PD-L1 (56)

Cell model HIF-1 (87)

ionophore Elesclomol ES C19H20N4O2S2 Cell model GSH (106)

Cell and animal models FDX1 (65, 69)

ionophore Disulfiram DSF C10H20N2S4 Cell model ALDH (127)

Cell model ubiquitin protein
pathway

(112)

Animal model NF-kB (115,
128)

Cell model P38 MAPK (113)

ionophore Clioquinol CQ C9H5ClINO Cell model Proteasome (129)
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