
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Benjamin Costas,
University of Porto, Portugal

REVIEWED BY

Marina Machado,
University of Porto, Portugal
Francisco Javier Moyano,
University of Almeria, Spain
Mansour Torfi Mozanzadeh,
South Iran Aquaculture Research Center,
Iran

*CORRESPONDENCE

Rafael Opazo

ropazo@inta.uchile.cl

RECEIVED 04 May 2023

ACCEPTED 16 June 2023
PUBLISHED 05 July 2023

CITATION

Carneiro GRA, Opazo C, Do Santos GRC,
Pereira HMG, Monnerat G and Opazo R
(2023) Influence of lactic-acid bacteria
feed supplementation on free amino acid
levels in serum and feces of rainbow trout
(Oncorhynchus mykiss, Walbaum 1792).
Front. Mar. Sci. 10:1216488.
doi: 10.3389/fmars.2023.1216488

COPYRIGHT

© 2023 Carneiro, Opazo, Do Santos, Pereira,
Monnerat and Opazo. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 05 July 2023

DOI 10.3389/fmars.2023.1216488
Influence of lactic-acid bacteria
feed supplementation on free
amino acid levels in serum and
feces of rainbow trout
(Oncorhynchus mykiss,
Walbaum 1792)

Gabriel R. A. Carneiro1, Constanza Opazo2,
Gustavo Ramalho Cardoso Do Santos1,
Henrique Marcelo Gualberto Pereira1, Gustavo Monnerat3,4

and Rafael Opazo2*

1Brazilian Doping Control Laboratory (LBCD - Laboratório de Apoio Desenvolvimento Tecnológico
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Introduction: The influence of intestinal microbiota, particularly lactic-acid

bacteria, on digestion and nutrient metabolic activities has been extensively

studied. In this research, we investigated the effects of supplementing the feed of

rainbow trout (O. mykiss) with P. acidilactici or L. lactis probiotics. A Control group

without probiotic supplementation was also included. The study aimed to evaluate

growth, feed conversion indices, free amino acid levels in serum and feces, and the

relative gene expression of amino acid solute carrier transporters (SLC).

Methods: Rainbow trout weighing 73.9±10 g were fed with a basal commercial

diet supplemented with mono-strains of P. acidilactici or L. lactis at a dosage of 5

x 108 CFU per gram of feed for 60 days. The trout were reared in 100-liter tanks

with independent closed recirculation systems, with a water replacement rate of

80% of the total volume daily and a controlled temperature of 15 ± 0.3 °C. The

proximate composition of the basal diet consisted of crude protein (49.8%), fat

(32.1%), fiber (1.31%), ash (13%), andmoisture (8.3%) on a drymatter basis. The diet

was provided at a rate of 2% of bodyweight per day.

Results: No significant differences (p > 0.05) were observed in growth and feed

conversion indices between the experimental groups. However, significant

differences in free amino acid levels in feces and serum samples (p ≤ 0.05) were

observed. The P. acidilactici group exhibited significantly higher levels of

glutamate, lysine, proline, and tyrosine in feces samples, and higher levels of

arginine, iso/leucine, phenylalanine, proline, serine, threonine, and valine in serum

samples compared to the Control group. Additionally, the supplemented probiotic

groups showed significant downregulation (p ≤ 0.05) of theslc6a19 and slc7a9

genes, which encode transporters for neutral and cationic amino acids.
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Discussion: The autochthonous rainbow trout strain, P. acidilactici,

demonstrated more pronounced effects on amino acid levels in feces and

serum compared to the non-autochthonous L. lactis strain. However, the

increased amino acid levels, particularly in the serum, resulting from P.

acidilactici supplementation, did not lead to improved trout growth or feed

conversion. Nonetheless, lactic-acid bacteria supplementation induced

measurable metabolic effects, as evidenced by elevated levels of specific

amino acids in the serum and feces.

Future research should focus on evaluating these probiotic effects using

specialized diets and considering the observed metabolic effects in this study.
KEYWORDS

probiotics, amino acids, Pediococcus acidilactici, Lactococcus lactis, SLC genes,
Oncorhynchus mykiss
1 Introduction

Cell proteins have structural, enzymatic, and signaling

functions in organisms and represent 16–21% of the fish mass

(Ahmed et al., 2022; Alberts et al., 2022). Given these critical

functions, an exogenous supply of protein in animals is necessary.

Aquaculture fish species have a specific protein requirement that

must be supplied through aquafeeds (National Research, 2011a;

Teles et al., 2020). Salmonid species in particular, such as rainbow

trout (Oncorhynchus mykiss), require 35–50% wet matter protein in

aquafeeds (National Research, 2011a; Teles et al., 2020), a much

higher requirement compared to pigs and poultry (estimated at 19–

24% wet matter) (Bowen, 1987).

Proteins are composed of chains of a-amino acids (a-AAs)
linked by peptide bonds (Wu, 2013). a-AAs are organic molecules

that contain an amino group and a carboxylic group attached to the

same carbon; however, they have different side chains (R groups)

that give different chemical properties and ionic states (Wu, 2013).

a-AAs that have identification codons in nucleic acids (DNA-RNA)

are classified as proteinogenic or primary (Ahluwalia et al., 2022;

Alberts et al., 2022). There are 20 classic primary a-AAs (excluding
selenocysteine and pyrrolysine), which in turn can be classified

concerning their nutritional importance as essential or non-

essential (Wu, 2013; Ahluwalia et al., 2022). Essential a-AAs
cannot be synthesized de novo by fish or their synthesis rate is

slower than the protein synthesis rate, thereby they have to supply

by diet (National Research, 2011a; Mai et al., 2022). For rainbow

trout, the essential a-AAs are arginine, lysine, leucine, isoleucine,

valine, threonine, phenylalanine, tyrosine, methionine, cysteine,

tryptophan, and histidine (Ogino, 1980). Thus, the non-essential

a-AAs for rainbow trout are glycine, alanine, proline, serine,

asparagine, glutamine, glutamic acid, and aspartic acid. Hence,

animal protein requirements are a-AA requirements, not only in

quantity but also proportion, especially to the essential a-AAs
(National Research, 2011a).
02
A wide variety of protein ingredients of animal or vegetable

origin are used in aquafeed formulations (Hardy and Brezas, 2022).

In salmonid fish, these ingredients’ proteins must be digested into

basic units (i.e., a-AAs or tri-di peptides) for enterocyte absorption
mainly in the proximal intestine (Dabrowski and Dabrowska, 1981;

Bakke et al., 2010; Debnath and Saikia, 2021). This digestion is

mediated by a broad enzyme complex secreted in different segments

of the digestive tract (Bakke et al., 2010).

The intestinal absorption of a-AAs or tri-di peptides itself is
mediated by transporters belonging to the superfamily of genes that

code for solute carrier proteins (SLCs) (Poncet and Taylor, 2013;

Zhang et al., 2019; Pizzagalli et al., 2021). Currently, 458 SLCs

classified into 65 gene families have been described in humans

(Pizzagalli et al., 2021); successively, 338 SLCs classified into 50

families have been described in fish (Verri et al., 2012). Each SLC

can transport different a-AAs but is generally associated with the

same ionic state (neutral, cationic, or anionic). Nevertheless, each

transporter has a different a-AA specificity within each ionic state

(Bröer, 2008; Gauthier-Coles et al., 2021). Tri-di peptides also have

specific transporters, the best-known being PepT1, which has been

found in fish (Verri et al., 2010). After a-AAs and oligopeptides are

absorbed, they pass through the blood capillaries of the intestinal

villi, which later form the portal system that carries these nutrients

to the liver (Karlsson et al., 2006).

The salmon industry has had to replace ingredients such as

fishmeal, which is considered a “gold standard” ingredient for the

formulation of aquafeeds (Turchini et al., 2019), with other

ingredients, some of which are of vegetable origin, such as

soybean meal. However, these alternative ingredients have lower

nutrient digestibility, including proteins (Glencross et al., 2004;

Sørensen et al., 2021). Considering the replacement of these

ingredients, the apparent digestibility of dry matter in these diets

is approximately 63% (Sørensen et al., 2021), with a significant

amount of protein organic matter eliminated as waste in the water

(Buschmann et al., 1996; Wang et al., 2013). Organic matter
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released into the water becomes a stressor in aquatic ecosystems,

which increases the risk of aquatic ecosystem eutrophication

(Streicher et al., 2021). In addition to the environmental impact,

it is appropriate to consider that the organic matter wasted in the

water are nutrients that represent a fish farming economic loss (Hua

et al., 2019).

Among the factors that could contribute to nutrient digestion,

absorption, and metabolization in mammals and fish, the

microbiota has been frequently discussed (Ray et al., 2012;

Portune et al., 2016; Chapagain et al., 2019; Debnath and Saikia,

2021). Researchers have especially described lactic-acid bacteria

within the microbiota of salmonid fish (Ringø and Gatesoupe, 1998;

Merrifield et al., 2010; Navarrete et al., 2010; Opazo et al., 2016;

Villasante et al., 2019), this bacterial group has attractive qualities

for probiotic use in aquaculture (Amenyogbe et al., 2020; Ringø

et al., 2020; De Fátima Marques De Mesquita et al., 2021; Sumon

et al., 2022). Probiotics in aquaculture have been proposed based on

two main objectives: i) to stimulate the immune system or secretion

of bacteriocins to prevent diseases (Pérez-Sánchez et al., 2011;

Ramos et al., 2015; Araújo et al., 2016; Al-Hisnawi et al., 2019)

and ii) to improve the growth or feed conversion performance in

fish farming (Giannenas et al., 2015; Akbari Nargesi et al., 2020; Ali

et al., 2020; Yeganeh et al., 2021).

The present study evaluated the effects of dietary

supplementation with mono-strains of Pedicoccus acidilacticiti or

Lactococcus lactis on rainbow trout (O. mykkis) for 60 days. This

study examined various productive parameters including weight

gain, length gain, specific growth rate (SGR), Fulton’s condition

factor (K), feed conversion ratio (FCR), and protein efficiency ratio

(PER). Additionally, the study analyzed the levels of free amino

acids in both feces and serum. Furthermore, the expression of genes

encoding amino acid transporters in the proximal intestinal tissue,

such as slc6a19, slc7a9, slc15a1, and slc36a1, was evaluated at the

intestinal level. It is noteworthy that the P. acilacticity strain was

isolate from rainbow trout intestine, making it autochthonous,

while the L. lactis strain had non-autochthonous origins.
2 Material and methods

2.1 Study design and rainbow
trout management

Fifty-four rainbow trout (Oncorhynchus mykiss) with an

average weight of 73.9 ± 10.3 g were obtained from a Rio Blanco

trout farm located in the Andes district of Chile’s V region. The

specimens were transported to the Instituto de Nutrición y

Tecnologıá de los Alimentos (INTA) of the Universidad de Chile,

as authorized by the Chilean National Fisheries and Aquaculture

Service (Sernapesca) under movement health certificate no. 262119.

Initially, the trout were randomly distributed to nine 100-liter

fiberglass experimental tanks (six fish per tank). The trout were

acclimatized for 7 days to the experimental conditions without any

manipulation. On day 8, an EM4305 microchip (Star, Shanghai,

China) was implanted in each specimen in the subcutaneous area

under the dorsal fin for tracking purposes. Subsequently, the trout
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were kept for another 7 days without any further manipulation. The

tanks were divided into three experimental groups of 18 specimens

each. Group 1 received a supplement of Pediococcus acidilactici

(GenBank: OP806385) and Group 2 a supplement of Lactococcus

lactis (GenBank: OP806386), each for 60 days. Both probiotic

strains were mixed and administered with aquafeed at doses of

5 × 108 CFU g-1. The study also included a control group that did

not receive probiotic supplementation (Control Group). The study

mortality was 5.5%, which corresponded to one fish from each

experimental group; hence, the final number of trout per

experimental group was 17 (n = 17).

Each tank featured an independent recirculation system

containing one filter and heat exchanger to prevent the exchange

of water, feces, and probiotic strains among the three groups’ water

systems. The water was regulated at a temperature of 15 ± 0.3°C.

Daily, 80% of the system water was changed to maintain an

ammonium level below 1 ppm. The tank water’s pH, oxygen, and

ammonia levels were evaluated three times per week. The tanks’

room provided a photoperiod of 14 h light/10 h dark.

The trout were fed a PW250_A80 aquafeed (Biomar, Chile) at a

rate of 2% of the specimens’ average body weight. Supplementary

Table 1 presents the chemical proximal analysis of the extruded

commercial aquafeed. Aquafeed crude protein level of aquafeed was

analyzed using the Kjeldahl method (AOAC Offical Method 976.05,

2023), to estimate the protein efficiency ratio (PER). The daily food

rations were divided into three equivalent portions administered

every 3 hours per day. In cases of trout from a specific tank showing

lower appetite, the portion of feed was reduced, and this difference

was subtracted from the total daily ration to record feed

consumption per tank in detail. The weight and length of each

trout were obtained before the start of probiotic supplementation

(T0), after 30 days of probiotic supplementation (T30), and after 60

days of probiotic supplementation (T60). Due to the chip implanted

in each fish, it was possible to assess these measurements

individually throughout the study.

At the end of the supplementation period, six specimens from

each experimental group were randomly selected, the euthanasia

was performed using 30 mg L-1 tricaine methanesulfonate (Virbac,

Chile) for 10 min. Blood, feces, and proximal intestine tissue

samples were obtained from the trout, which had been fasting for

12 h prior. Approximately 1 mL of blood was collected via puncture

of the caudal vein and incubated for 30 min at 25°C for clotting,

then centrifuged (Thermo Scientific, USA) at 2,000 × g for 10 min.

The resulting blood serum was collected and transferred to a clean

1.5-mL polypropylene tube. The proximal intestine samples were

obtained via dissection; Supplementary Figure 1 shows the specific

proximal intestinal segment used for feces and tissue sampling.

Proximal intestine tissue was first cleaned with sterile saline serum

(NaCl 8.0 g, KCl 0.2 g, Na2HPO4 1.44 g, KH2PO4 0.24 g, and water

q.s. 1 L), then placed in polypropylene tubes with RNAlater™

(Thermo Scientific, USA). Each fecal sample for amino acid analysis

was collected in a 1.5 mL sterile polypropylene tube. Additionally,

approximately 800 mg of each fecal sample was placed in a sterile

2.0 mL polypropylene tube and weighed. Next, 800 μL of sterile

saline solution (previously described) was added. The feces were

resuspended by pipetting and serially diluted four times at a factor
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of 10 in saline solution. Dilutions of 10-2, 10-3, and 10-4 were plated

in triplicate on MRS agar medium and incubated for 48 h at 20°C.

The number of colony-forming units (CFU) per plate was counted.

All samples of serum, tissue, or fecal for amino acid assessment were

stored at -80°C until analysis.

The trout handling procedures and euthanasia were approved

by the Comité Institucional de Cuidado y Uso de Animales of the

Universidad de Chile (protocol certificate no. 19323-INT-UCH).

All fish management procedures were carried out under the

precepts and bioethical aspects associated with the management

and care proposed by the Guide for the Care and Use of Laboratory

Animals (National Research, 2011b).
2.2 Indices of trout growth and feed
conversion performance

Through the data collected during the experiment, the following

growth and feed conversion indices were calculated:

Weight gain (g) = Wf (g) – Wi (g)

Standard length gain (cm) = Lf (cm) - Li (cm)

SGR = Ln   (  Wf   (g))−  Ln   (Wi   (g))  
Experimental   period   in   days x 100 (Hopkins, 1992)

Fulton ’s condition factor (K) =   Whole   fish  weight   (g)
(standard   length   (cm))3

x 100

(Froese, 2006)

FCR = Total   feed   intake   (g)
Weight   gain   (g) (Charles Bai et al., 2022)

PER = Weigh   gain   (g)
Total   protein   intake   (g) (Charles Bai et al., 2022)

where Wf is the final wet weight in grams, Wi is the initial wet

weight in grams, Lf is the final standard length in centimeters, and

Li is the initial standard length in centimeters.
2.3 Probiotics strain origins and probiotic
supplement formulation

The Pediococcus acidilactici probiotic strain (GenBank:

OP806385) was previously isolated from the proximal intestine of

rainbow trout (Oncorhynchus mykiss) while the Lactococcus lactis

strain (GenBank: OP806386) was isolated from goat milk (Capra

hircus). Both strains were isolated using an MRS agar medium

(Merck, Germany) and incubated at 20°C (Memmert, USA). The

strains were preserved in Cryobank™ cryovials (Copan innovation,

USA) in a -80°C freezer.

The probiotic cultures were performed in a 250-mL Erlenmeyer

flask containing 120 ml MRS broth medium (Merck, Germany) that

was incubated at 20°C for 24 h in a shaking incubator (LabTech,

Korea). The probiotic strain cultures were counted (number of

bacteria cells/CFU per mL of culture medium) using an optical

microscope (Motic, Xiamen China) and Neubauer improved

chamber (Hirschmann, Germany).

Probiotics were supplemented in aquafeed at a rate of 5 × 108

CFU g-1, a mixture that was prepared weekly during the study. The

volume needed for each culture batch was calculated based on the

count (explained previously) and in consideration of the total grams

administered to each experimental group per week. Before mixing

between feed and probiotics, each MRS batch was centrifuged

(Thermo Scientific, USA) at 5000 × g for 10 min, and then the
Frontiers in Marine Science 04
supernatant was resuspended in a volume of sterile physiological

serum, which corresponded to approximately 4% (mL g-1).

Probiotic strains were supplied to the experimental aquafeed via

spraying with 3% vegetable oil added as a coating. The Control

Group feed received 4% physiological serum (without lactic-acid

bacteria) and 3% vegetable oil. During their period of use, probiotic-

supplemented feeds and the control feed were kept refrigerated at

5°C.
2.4 Free amino acid levels in trout feces
and blood serum

2.4.1 Feces and blood serum sample preparation
for amino acid analysis

Amino acids from 100-μL feces or serum samples (n = 6) were

isolated using cold methanol (1:6 v/v aqueous/organic solvent)

(Erben et al., 2021; Roper et al., 2022); this analysis was carried

out on blind. The samples were then kept at -30°C for 15 min and

centrifuged at 14,000 × g for 10 min at 4°C. The supernatants were

collected and dried using a SpeedVac (Thermo Scientific, USA). The

resulting metabolites were resuspended in a solution of labeled a-
AAs (13C, 15N labeled at 1 nmol/mL; Cambridge Isotope

Laboratories, USA) (Monnerat et al., 2019).

2.4.2 Flow injection analysis high-resolution
mass spectrometry

The a-AAs were analyzed in quadruplicate using a Thermo Q

Exactive Plus mass spectrometer (Thermo Scientific, USA) via

direct flow injection analysis. The mobile phase used was ACN/

H2O/MeOH (2:1:1 v/v/v) at a flow rate of 50 μL min-1. The mass

spectrometer was operated in Target-SIM data acquisition in

positive mode. The spray voltage was set at 3.5 kV, capillary

temperature at 280°C, and gas temperature at 150°C. The full

scan was performed at a resolution of 70,000, AGC target of 5E5,

isolation window of 1.0m/z, maximum IT of 25 ms, and acquisition

time of 2 min. The data obtained were processed using TraceFinder

software (Thermo Scientific, USA). The intensity ratios of light to

heavy a-AAs were calculated for each of their intensity value (L/H

intensity) (Monnerat et al., 2019).
2.5 Analysis of the amino acid solute
transporters’ gene relative expression

The total RNA from the trout proximal intestinal tissue samples

(n = 6) was obtained using TRIzol™ (Invitrogen, USA) according to

the manufacturer’s protocol. Quantification and quality of the total

RNA were assessed via fluorometry using Qubit™ 4.0 (Thermo

Scientific, USA) according to the manufacturer’s protocol.

Reverse transcription was performed with 1 μg total RNA using

the ImProm-II™ Reverse Transcription System kit (Promega,

USA) according to the manufacturer’s protocol. Four amino acids

SLC transporter genes (slc6a19, slc709, slc15a1, and slc36a1) of

rainbow trout were selected for relative gene expression (see

Supplementary Table 2). Three genes eef1a1a (elongation factor 1
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alpha 1a), rps20 (ribosomal protein S20), and ubb (ubiquitin B)

were evaluated for use as reference genes, with eef1a1a ultimately

selected as the reference gene.

Quantitative polymerase chain reaction was performed with 2

μL cDNA for each sample using the FastStart™ Essential DNA

Green Master kit (Roche, USA) according to the manufacturer’s

protocol in an AriaMx™ (Agilent, USA) Real-time PCR. The

amplification program included 10 min of preincubation at 95°C,

then 45 cycles of 10 s at 95°C, 15 s at 62°C, and 10 s at 72°C to finish

with a melting analysis.

The relative gene expression ratio for each sample was

calculated using the function proposed by Pfaffl (2001). The

efficiency of the amplification curve was calculated using LinReg

software (Brankatschk et al., 2012). Because Pfaffl’s formula uses the

experimental control group (Cpref) as part of the calculation

function, the Control Group samples were duplicated from the

RNA isolation to include this group in the statistical analysis and

establish instrumental variation in the relative gene expression

analysis. For each relative gene expression ratio, the natural

logarithm was calculated to better visualize the upregulation

versus downregulation of the gene expression among the

experimental groups.
2.6 Statistical analysis

Normal distributions associated with parameters, growth

indices, and feed conversion performance (n = 17) were analyzed

using the Shapiro–Wilk test (Mishra et al., 2019). As the indices of

Fulton’s condition factor (K) and FCR did not fit a normal

distribution, they were analyzed using the non-parametric

Kruskal-Wallis (H) test; hence, the other indices were analyzed

using one-way ANOVA (F) (Hoffman, 2019). A p-value of ≤ 0.05

was considered significant for both tests. The post hoc analysis for

the parametric tests was Tukey’s HSD (HSD) and for the non-

parametric tests, Dunn’s test (Z) (Kao and Green, 2008). In the post

hoc test, the contrasts were considered significant with p adjusted to

≤ 0.1.

The Kruskal-Wallis (H) test was used to compare amino acid

levels in the feces and blood serum samples among the experimental

groups (n = 6) (Hoffman, 2019). In addition, the post hoc analysis

featured Dunn’s test (Kao and Green, 2008) with significance levels

of p ≤ 0.05 and p adjusted (p-adj.) to ≤ 0.1. The same statistical

protocol was used to analyze the relative gene expression ratios

among the experimental groups (n = 6). All statistical analyses were

performed using the R statistical program (R. Core Team, 2021).
3 Results

3.1 Rainbow trout growth and
performance indices

As a starting point for this study, it is appropriate to evaluate

whether intervention with probiotics in the aquafeed could

modulate the presence of lactic acid bacteria in the proximal
Frontiers in Marine Science 05
intestine of trout. At the end of the supplementation period of 60

days, it was possible to isolate viable lactic-acid bacteria colonies

only in the Petri dishes of experimental groups suplemented with P.

acidilactici or L. lactis, which had an average count of 1.43 x 105

CFU g-1, and 1.19 x 104 CFU g-1, respectively. No colony forming

units (CFU) were found in the dilutions analyzed in the Control

group. The observed CFU per gram was approximately half the

CFU per gram of the supplemented aquafeed. However, the

administration method allowed viable lactic-acid bacteria colonies

to be obtained from trout foregut feces.

The comparison of weight gain, length gain, and SGR

distributions was not statistically significant between the

experimental groups after 60 days of acid-lactic bacteria

supplementation p > 0.05 (see Figures 1A–C). However, for the

first 30 days of probiotic supplementation, significant differences in

length gain distribution were observed between the experimental

groups (F(2,48) = 4.33, p = 0.018). Post hoc analysis showed a

significant group contrast between the Control Group and Group

2 (HSD = 0.61, p-adj. = 0.014); Figure 1B. The basic statistical

analysis and ANOVA test analyses for these indices are shown in

Supplementary Table 3.

The differences in the associated FCR and PER distributions

were not statistically significant between the experimental groups p

> 0.05. The comparison of K distributions between experimental

groups was not statistically significant at any of the data collection

times, p > 0.05. The basic statistical analysis and significant test

analyses for these indices are shown in Supplementary Table 4.

Nevertheless, the K comparison between data collection times

was statistically significant within each experimental group

(Control: H(2) = 28.28, p = 7.23e-07; Group 1: H(2) = 29.53, p =

3.87e-07; Group 2: H(2) = 2.41, p = 2.41e-08). The post hoc analysis

showed significant contrasts between T0 and T30 as well as T0 and

T60, whereas that of T30 and T60 was not significant (see

Supplementary Table 5).
3.2 The free amino acid concentration
in rainbow trout feces and blood
serum samples

The rainbow trout feces contained 17 a-AAs, of which eight are

classified as essential (arginine, lysine, threonine, phenylalanine,

iso/leucine, tryptophan, methionine, and valine) and nine as non-

essential (asparagine, glutamine, serine, tyrosine, alanine, cystine,

glycine, and proline). The basic statistical analysis of feces a-AA
levels (nmol mL-1, wet basis) per experimental group are shown in

Table 1. The a-AAs with the six highest concentrations in feces

were phenylalanine (551 ± 500.0 nmol mL-1), iso/leucine (454.7 ±

176.2 nmol mL-1), tyrosine (348 ± 420.0 nmol mL-1), alanine (217.3

± 90.4 nmol mL-1), glutamine (179.2 ± 78.6 nmol mL-1), and

methionine (149.5 ± 54.2 nmol mL-1).

The comparison of the total sum of each amino acid level (nmol

mL-1) in the feces samples did not show statistical significance

between the experimental groups (H(2) = 0.36, p = 0.8). Among the

17 a-AAs identified in these samples, four exhibited statistically

significant differences (p< 0.05) between the experimental groups:
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glutamate, lysine, proline, and tyrosine (see Table 1). Figure 2

depicts the post hoc analysis of a-AA levels in the feces samples.

A significant contrast for glutamate emerged between Group 1 and

Group 2 (Z = 2.51, p = 0.01, p-adj. = 0.035; Figure 2A); that for

lysine was between Group 1 and the Control Group (Z = 2.55, p =

0.01, p-adj. = 0.02) and Group 2 and the Control Group (Z = 3.24,

p = 0.001, p-adj. = 0.0035; Figure 2B); the significant contrast for

proline was between Group 1 and Group 2 (Z = 2.99, p = 0.002, p-
Frontiers in Marine Science 06
adj. = 0.008; Figure 2C); and the significant contrast for tyrosine

emerged between Group 1 and the Control Group (Z = 3.0, p =

0.0027, p-adj. = 0.008; Figure 2D).

The same 17 a-AAs identified in the feces samples were also

identified in the rainbow trout blood serum samples. The basic

statistical analysis of serum a-AA levels (nmol mL-1) for each

experimental group is shown in Table 2. The a-AAs with the six

highest concentrations in serum were phenylalanine (92.7 ± 21.4
B

C

A

FIGURE 1

Box plots of the (A) weight gain, (B) length gain, and (C) SGR, of rainbow trout (O. mykiss) supplemented with P. acidilactici (Group 1) or L. lactis
(Group 2) at a dosage of 5 x 108 CFU g-1 for either 30 or 60 days. The Control Group did not receive any probiotic supplements. The lines indicate
statistically significant differences between the experimental groups, as determined by Tukey test. The distribution differences were considered
significant at p< 0.05 and p-adjusted ≤ 0.1.
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TABLE 1 Basic statistical analysis of free amino acid feces levels (nmol mL-1) of rainbow trout after receiving mono-strain probiotic supplementation
for 60 days.

Amino acid Groups n1 mean sd2 Median6 q25 q75 Kruskal-Wallis test (H)

Alanine

Control 24 210.17 47.25 220.30 187.62 248.44

Group 1 24 239.14 92.92 205.24 165.39 315.43 H(2) = 5.09, p = 0.07

Group 2 24 202.62 116.77 134.30 119.36 301.69

Arginine

Control 24 42.64 9.28 43.53 41.92 46.69

Group 1 24 43.02 9.28 43.26 34.09 50.47 H(2) = 1.18, p = 0.55

Group 2 24 42.45 13.14 39.19 33.53 47.89

Asparagine

Control 24 18.22 4.60 18.42 15.63 20.54

Group 1 24 17.35 5.48 17.25 13.62 19.56 H(2) = 2.51, p = 0.28

Group 2 24 16.14 6.34 14.46 11.11 20.42

Cysteine

Control 24 0.14 0.08 0.12 0.09 0.15

Group 1 24 0.10 0.02 0.10 0.08 0.11 H(2) = 5.54, p = 0.06

Group 2 24 0.11 0.02 0.11 0.10 0.13

Glutamate

Control 24 36.06 21.10 30.77ab 24.62 36.94

Group 1 24 34.88 9.88 34.42a 27.86 42.53 H(2) = 6.45, p = 0.03

Group 2 24 27.74 11.30 24.43b 19.37 32.70

Glutamine

Control 24 175.50 52.84 175.43 140.25 221.24

Group 1 24 192.45 69.61 193.63 135.85 233.77 H(2) = 2.16, p = 0.33

Group 2 24 169.67 105.69 131.27 94.32 266.74

Glycine

Control 24 9.47 9.41 6.88 4.32 9.60

Group 1 24 6.40 3.81 5.47 4.58 7.80 H(2) = 2.00, p = 0.36

Group 2 24 7.12 6.78 4.53 3.33 9.79

Iso/Leucine

Control 24 409.98 85.52 439.52 368.80 468.28

Group 1 24 515.95 160.59 511.23 363.30 651.12 H(2) = 2.52, p = 0.28

Group 2 24 438.44 237.84 341.44 254.65 727.36

Lysine

Control 24 51.46 20.16 46.10a 40.07 59.99

Group 1 24 80.17 34.89 74.19b 45.70 115.58 H(2) = 11.6, p = 0.002

Group 2 24 91.42 46.70 86.41b 47.80 132.51

Methionine

Control 24 139.36 37.87 144.21 118.80 161.23

Group 1 24 161.07 49.15 154.34 119.31 203.70 H(2) = 2.02, p = 0.36

Group 2 24 148.08 70.67 125.05 86.51 209.84

Phenylalanine

Control 24 207.82 64.61 214.33 184.49 255.02

Group 1 24 645.37 514.66 475.40 194.60 1058.68 H(2) = 3.99, p = 0.13

Group 2 24 799.91 944.88 257.64 116.94 1419.22

Proline

Control 24 55.96 24.23 48.56ab 39.32 71.76

Group 1 24 68.68 27.96 57.56a 48.79 81.49 H(2) = 9.12, p = 0.01

Group 2 24 47.92 21.71 39.42b 35.78 67.90

Serine
Control 24 92.56 30.57 87.16 78.97 107.79

Group 1 24 77.98 30.37 70.02 51.02 95.36 H(2) = 4.61, p = 0.09

(Continued)
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nmol mL-1), valine (70.1 ± 18.7 nmol mL-1), methionine (57.9 ±

13.4 nmol mL-1), alanine (54.4 ± 10.9 nmol mL-1), iso/leucine (40.8

± 9.1 nmol mL-1), and threonine (25.5 ± 7.5 nmol mL-1).

Comparison of the total sum of each amino acid level (nmol

mL-1) in the serum was statistically significant between the

experimental groups (H(2) = 6.35, p = 0.04). A significant contrast

in the post hoc analysis emerged between Group 1 and the Control

Group (Z = 2.43, p = 0.001, p-adj. = 0.04).

Of the 17 a-AAs identified in the serum, eight showed

statistically significant differences between the experimental

groups: proline, arginine, iso/leucine, phenylalanine, serine,

threonine, and valine (see Table 2).

Proline was the only a-AA that showed statistically significant

differences between the experimental groups in both the feces and

blood serum matrices. Post hoc analysis of serum proline levels

showed that the significant contrasts were between Group 1 and the

Control Group (Z = 4.31, p = 0.0000016, p-adj. = 0.00004) and

Group 1 and Group 2 (Z = 2.89, p = 0.0036, p-adj. =

0.007; Figure 2C).

Figure 3 shows the post hoc analysis of all serum a-AA levels

between experimental groups, save proline. The significant

contrasts for arginine were between Group 1 and the Control

Group (Z = 3.23, p = 0.0012, p-adj. = 0.003) and Group 1 and

Group 2 (Z = 2.24, p = 0.025, p-adj. = 0.05; Figure 3A); the

significant contrasts for iso/leucine were between Group 1 and

the Control Group (Z = 2.63, p = 0.008, p-adj. = 0.017) and Group 1

and Group 2 (Z = 2.75, p = 0.0059, p-adj. = 0.018; Figure 3B); the

significant contrasts for phenylalanine were between Group 1 and

the Control Group (Z = 3.91, p = 0.00009, p-adj. = 0.0003) and

Group 1 and Group 2 (Z = 3.04, p = 0.0023, p-adj. = 0.005;
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Figure 3C); the significant contrasts for serine were between

Group 1 and the Control Group (Z = 2.98, p = 0.0028, p-adj. =

0.008) and Group 1 and Group 2 (Z = 2.01, p = 0.044, p-adj. = 0.09;

Figure 3D); the significant contrasts for threonine were between

Group 1 and the Control Group (Z = 2.76, p = 0.0057, p-adj. = 0.01)

and Group 1 and Group 2 (Z = 3.88, p = 0.0001, p-adj. = 0.0003;

Figure 3E); and the significant contrasts for valine were between

Group 1 and the Control Group (Z = 4.1, p = 0.00004, p-adj. =

0.0001), Group 2 and the Control Group (Z = 1.73, p = 0.08, p-adj. =

0.08), and Group 1 and Group 2 (Z = 2.37, p = 0.017, p-adj. =

0.035; Figure 3F).
3.3 Experimental groups’ relative
expression of amino acid SLC
transporter genes

From the trout proximal intestine tissue samples, the relative

expressions of the four genes that encode a-AA transporters (SLCs)

were assessed. These were the slc6a19 gene that encodes B0AT1

transporter, the slc7a9 gene that encodes b0,+ transporter, the

slc15a1 gene that encodes PepT1 transporter, and the slc36a1

gene that encodes PAT1 transporter.

Figure 4 shows the relative expressions of the a-AA SLC

transporter genes. The relative gene expressions of slc6a19 (H(2) =

8.25, p = 0.016) and slc7a9 (H(2) = 8.4, p = 0.014) were statistically

significant; however, the other two genes did not present statistically

significant differences (slc15a1: H(2) = 2.4, p = 0.29; slc6a19: H(2) =

2.56, p = 0.27). Post hoc analysis showed that the contrasts with

significant differences for slc6a19 were between the Control Group
TABLE 1 Continued

Amino acid Groups n1 mean sd2 Median6 q25 q75 Kruskal-Wallis test (H)

Group 2 24 75.60 40.61 54.81 48.41 96.91

Threonine

Control 24 65.57 20.81 60.07 53.44 81.70

Group 1 24 64.25 18.39 66.65 51.78 76.79 H(2) = 3.23, p = 0.19

Group 2 24 57.63 26.40 45.50 37.50 80.16

Tryptophan

Control 24 51.13 14.33 48.78 39.79 62.50

Group 1 24 61.46 19.25 59.82 44.24 77.65 H(2) = 2.88, p = 0.23

Group 2 24 57.55 24.89 52.27 34.47 82.65

Tyrosine

Control 24 114.73 43.40 112.79a 98.72 127.75

Group 1 24 536.98 565.99 243.08b 124.98 1074.89 H(2) = 9.26, p = 0.009

Group 2 24 392.56 357.35 276.40ab 71.43 692.55

Valine

Control 24 132.51 34.66 124.42 115.58 158.67

Group 1 24 163.06 51.34 156.04 117.85 201.25 H(2) = 3.47, p = 0.17

Group 2 24 143.92 74.10 106.74 81.68 215.55
1 n=24: corresponds to 6 biological replicates of trout feces with 4 technical replicates.
2 sd: standard deviation.
3 Group 1 received a P. acidilactici supplementation of 5 × 108 CFU g-1
4 Group 2 received a L. lactis supplementation of 5 × 108 CFU g-1
5 Control did not receive probiotic supplementation.
6 Superscript letters indicate significant differences between experimental groups by post hoc test.
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and Group 1 (Z = 2.0, p = 0.04, p-adj. = 0.09) and the Control Group

and Group 2 (Z = 2.78, p = 0.005, p-adj. = 0.01; Figure 4A). To

slc7a9, there were significant contrasts between the Control Group

and Group 1 (Z = 1.95, p = 0.05, p-adj. = 0.1) and the Control Group

and Group 2 (Z = 2.84, p = 0.0045, p-adj. = 0.01; Figure 4B).

Finally, the results obtained for the total sum of a-AA levels of

the serum or feces samples were integrated with the relative

expressions of slc6a19 and slc7a9 through correlation analysis.

The relative expression of both SLC genes has a significant

moderate negative correlation with the total sum of serum a-AA
levels, -0.51 (p = 0.03) for slc6a19 and -0.47 (p = 0.04) for slc7a9.

However, the relative expression of both SLC genes versus the total

sum of feces a-AA levels correlation, was not significant (p > 0.05).
4 Discussion

In the post hoc analysis contrast between the Control Group and

Group 2 presented significant differences in length gain, but only in

the first 30 days. This difference could be explained by the Control

Group’s compensatory growth (Morgan and Metcalfe, 2001; Ali
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et al., 2003), as a lower average standard length was observed in this

group at the beginning of the study. However, the comparison of

length and length gain was not statistically significant between the

experimental groups at the end of the study.

The comparison of Fulton’s condition factor (K) between data

collection times was significant for the contrast between T0 and

T30, but not for T30 and T60. Because the condition factor

evaluates the relationship between weight and length (Froese,

2006), the observed increase in K indicates that the rainbow trout

belonging to the three groups presented greater weight gain about

length gain during the first 30 days.

Different studies have evaluated the potential of different

bacterial strains as probiotic supplements for rainbow trout and

other fish species (Amenyogbe et al., 2020; Ringø et al., 2020; De

Fátima Marques De Mesquita et al., 2021). Mono-strain P.

acidilactici supplementation has been assessed in a large number

of studies, wherein researchers also found no significant differences

between the experimental groups’ growth rates or feed conversions

(Aubin et al., 2005; Hoseinifar et al., 2017; Villumsen et al., 2020;

Rasmussen et al., 2022). However, Ali et al. (2020) reported a

significant increase in SGR and a significant decrease in FCR in
B

C D

A

FIGURE 2

Box plots of the (A) glutamate, (B) lysine, (C) proline, and (D) tyrosine feces and serum levels (nmol mL-1) of rainbow trout (O. mykiss) after a P.
acidilactici (Group 1) or L. lactis (Group 2) supplementation of 5x108 CFU g-1 for 60 days. The Control Group did not receive a probiotic supplement.
The lines show statistically significant differences between the experimental groups, as derived via Dunn’s test. The distribution differences were
considered significant at p< 0.05 and p-adjusted ≤ 0.1.
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TABLE 2 Basic statistical analysis of free amino acid blood serum levels (nmol mL-1) of rainbow trout after receiving mono-strain probiotic
supplementation for 60 days.

Amino acid Groups n1 mean sd2 Median6 q25 q75 Kruskal-Wallis test (H)

Alanine

Control 24 52.31 7.62 52.83 47.86 57.78

Group 1 24 57.30 10.24 57.62 48.13 63.72 H(2) = 5.27, p = 0.07

Group 2 24 52.84 13.89 48.25 44.62 51.97

Arginine

Control 24 10.11 1.74 10.02a 9.06 11.76

Group 1 24 12.03 1.81 12.37b 11.30 13.41 H(2) = 10.96, p = 0.004

Group 2 24 10.70 2.51 10.31a 8.51 12.78

Asparagine

Control 24 2.36 0.66 2.15 1.84 2.63

Group 1 24 2.61 0.98 2.49 2.15 3.19 H(2) = 1.36, p = 0.5

Group 2 24 2.54 0.76 2.54 1.88 3.01

Cysteine

Control 24 0.91 0.27 0.85 0.74 1.04

Group 1 24 0.91 0.38 0.78 0.65 1.15 H(2) = 3.63, p = 0.16

Group 2 24 1.22 0.62 1.10 0.73 1.63

Glutamate

Control 24 4.59 1.81 3.77 3.32 5.47

Group 1 24 5.83 2.29 5.44 3.78 7.66 H(2) = 4.14, p = 0.12

Group 2 24 4.92 1.78 4.43 3.55 6.31

Glutamine

Control 24 13.72 3.15 12.98 11.92 14.56

Group 1 24 15.87 3.97 14.92 12.77 18.68 H(2) = 4.81, p = 0.09

Group 2 24 13.79 2.00 13.70 12.63 14.50

Glycine

Control 24 10.83 5.87 8.53 7.67 11.98

Group 1 24 17.07 25.36 10.76 6.92 17.83 H(2) = 1.31, p = 0.51

Group 2 24 13.93 9.54 11.77 7.33 16.33

Iso/Leucine

Control 24 38.03 6.09 36.58a 34.05 40.46

Group 1 24 46.82 11.39 46.64b 39.00 53.18 H(2) = 9.66, p = 0.007

Group 2 24 37.65 6.06 35.68a 34.02 37.24

Lysine

Control 24 19.59 5.87 17.79 15.52 22.08

Group 1 24 18.48 5.42 18.21 15.98 21.53 H(2) = 0.56, p = 0.75

Group 2 24 17.40 5.21 17.96 15.06 20.31

Methionine

Control 24 57.50 9.41 58.83 53.63 62.27

Group 1 24 62.99 18.85 61.03 46.52 70.98 H(2) = 5.08, p = 0.75

Group 2 24 53.28 8.28 51.39 48.23 56.38

Phenylalanine

Control 24 81.39 23.00 74.25a 67.19 104.92

Group 1 24 107.68 15.48 105.29b 96.82 118.11 H(2) = 16.86, p = 0.0002

Group 2 24 89.05 16.44 89.70a 80.01 102.70

Proline

Control 24 14.09 2.40 14.58 11.56 16.14

Group 1 24 19.22 3.64 20.30 14.94 21.04 H(2) = 19.29, p = 0.0006

Group 2 24 15.50 3.01 15.85 12.09 18.25

Serine
Control 24 13.01 3.24 13.23a 10.97 15.19

Group 1 24 17.18 4.93 15.84b 14.22 20.82 H(2) = 9.23, p = 0.009

(Continued)
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rainbow trout supplemented with 1 x 1010 CFU g-1 P. acidilactici for

45 days. Other studies have proposed the use of multi-strain

probiotic supplements, including P. acidilactici, such as Akbari

Nargesi et al. (2020), who reported no significant differences

between the experimental groups for SGR; nevertheless, a

significant decrease in FCR was associated with the highest

probiotic supplementation of 3 x 109 UFC g-1, though lower

levels did not exhibit significant differences.

Although L. lactis has been described as a normal part of the

rainbow trout microbiota (Navarrete et al., 2010), few studies have

evaluated this bacterium as a probiotic supplement to improve trout

farming performance. Although, Yeganeh et al. (2021) assessed L. lactis

supplementation at a level of 1x109 CFU g-1, but found no significant

differences in SGR or FCR between the experimental groups.

The PER results associated with the supplementation of lactic-

acid bacteria have been contradictory. Using diets with 52% or 57%

crude protein, Rasmussen et al. (2022) described a significant

decrease in PER in rainbow trout after supplementation with P.

acidilactici. In contrast, Ali et al. (2020) used a diet with 40% crude

protein and found a significant increase in PER in rainbow trout

supplemented with P. acidilactici.

Amino acid levels in feces and serum offish are mainly modulated

by diet (Harper et al., 1970; Yamamoto et al., 1998; Mundheim et al.,

2004; Larsen et al., 2012), nevertheless the intestinal microbiota also

can influence the fecal metabolism of nutrients (Asakura et al., 2014;

Lin et al., 2017). This situation presents a problem when comparing

the results of different studies given the diversity of ingredients among

diet formulations. Despite this problem, similar to Dabrowski and

Dabrowska (1981), in this study, iso/leucine was one of the most

prominent a-AAs in the feces samples. In blood serum samples, the
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influence of feed ingredients could be less direct because the liver and

gut metabolism of amino acids can also influence their levels in the

blood (Karlsson et al., 2006; Wu, 2013). In Schlisio and Nicolai (1978),

four of the six highest concentrations of a-AAs in serum samples were

consistent with our results (alanine, valine, threonine, and leucine);

however, phenylalanine was one of the a-AAs with the lowest levels in
this study.

Regarding the relative expression of the SLC genes, slc6a19 and

slc7a9 genes showed downregulation in the groups supplemented

with lactic-acid bacteria probiotics, besides that, the slc15a1 and

slc36a1 gene did not present significant differences between the

experimental groups. Although the slc6a19 gene encodes a sodium-

dependent transporter, B0AT1 (symporter type), and the slc7a9

gene encodes a non-sodium transporter, b0,+ (antiporter type)

(Gauthier-Coles et al., 2021), both present a similar specificity for

transporting neutral and cationic a-AAs (Chairoungdua et al.,

1999; Böhmer et al., 2005; Gauthier-Coles et al., 2021). Hence,

considering that anionic a-AAs are generally only glutamic acid

and aspartic acid (Bröer, 2008), it was observed that probiotic

supplementation modulates serum levels of certain amino acids.

This modulation was potentially linked to the downregulation of

genes encoding SLC transporters with a wide range of substrate

specificities, such as slc7a9 and slc6a19. In contrast, the expression

of slc36a1, an SLC transporter with limited substrate specificity, did

not exhibit any variations between the experimental groups.

The probiotic supplementation downregulated SLC genes that

encoded transporters with wide substrate specificity. On the other

hand, the slc36a1 gene encodes a proton-coupled amino acid

transporter, PAT1, which transports only neutral a-AAs,
specifically glycine, proline, hydroxyproline, and alanine
TABLE 2 Continued

Amino acid Groups n1 mean sd2 Median6 q25 q75 Kruskal-Wallis test (H)

Group 2 24 14.26 4.13 14.46a 10.95 16.46

Threonine

Control 24 23.80 4.60 23.64a 20.19 25.90

Group 1 24 30.88 9.12 27.42b 25.51 38.55 H(2) = 15.95, p = 0.0003

Group 2 24 21.85 4.83 21.31a 18.90 24.47

Tryptophan

Control 24 5.29 0.98 5.13 4.74 6.02

Group 1 24 6.31 1.88 6.13 4.82 7.31 H(2) = 4.06, p = 0.13

Group 2 24 5.42 1.31 5.67 4.72 6.00

Tyrosine

Control 24 7.39 1.60 7.88 6.20 8.34

Group 1 24 8.66 2.13 8.12 7.03 10.23 H(2) = 4.30, p = 0.11

Group 2 24 8.35 1.49 8.68 7.60 9.34

Valine

Control 24 60.61 10.21 60.23a 50.94 69.87

Group 1 24 83.00 22.01 78.15b 72.25 96.32 H(2) = 16.07, p = 0.0002

Group 2 24 66.88 14.89 63.32c 53.21 78.45
1 n=24: corresponds to 6 biological replicates of trout feces with 4 technical replicates.
2 sd: standard deviation.
3 Group 1 received a P. acidilactici supplementation of 5 × 108 CFU g-1
4 Group 2 received a L. lactis supplementation of 5 × 108 CFU g-1
5 Control did not receive probiotic supplementation.
6 Superscript letters indicate significant differences between experimental groups by post hoc test.
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(Thwaites et al., 1995; Anderson et al., 2004). Likewise, the slc15a1

gene encodes the proton-coupled amino acid transporter PepT1,

which transports tri-di peptides (Verri et al., 2010). In concordance

with our results slc15a1 gene did not show a relative expression

difference between experimental groups in other dietary amino acid

modulation studies (Jando et al., 2017; Wei et al., 2020).

In vitro and in vivo studies have established that starvation

induces the upregulation of different a-AA SLC transporters in

mammals and fish (Hatzoglou et al., 2004; Hellsten et al., 2017;

Nitzan et al., 2017). Gazzola et al. (1981)has referred to this

response as the “adaptive regulation of amino acid transporters

transcription.” In this study, the specimens fasted for 12 h upon

euthanasia; hence, it is feasible that the transcriptional regulation of

the SLCs in the trout was more strongly associated with a-AA
levels. However, the total sum of a-AAs in the feces samples was not
Frontiers in Marine Science 12
significant among the experimental groups, whereas the total

comparison between the serum samples was significant, but only

for Group 1 and the Control Group. Nevertheless, increased serum

a-AA levels were moderated negatively correlated with the relative

intestinal expression of slc6a19 and slc7a9; hence, an increase of the

serum a-AA levels could be associated with the downregulation of

slc6a19 and slc7a9 in proximal intestinal tissue. Further research is

necessary to confirm this relationship.

The present study compared the probiotic effects of an

autochthonous P. acidilactici strain supplement with those of a

non-autochthonous L. lactis strain supplement. When comparing

the concentration of amino acids in feces and blood serum samples,

the autochthonous strain yielded significantly positive differences,

confirming that probiotics should ideally be isolated from the

microbiota of the target species. This result could be associated
B
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FIGURE 3

Box plots of the (A) arginine, (B) iso/leucine, (C) phenylalanine, (D) serine, (E) threonine, and (F) valine feces and serum levels (nmol mL-1) of rainbow
trout (O. mykiss) after a P. acidilactici (Group 1) or L. lactis (Group 2) supplementation of 5x108 CFU g-1 for 60 days. The Control Group did not
receive probiotic supplementation. The lines show statistically significant differences between experimental groups, as derived via Dunn’s test. The
distribution differences were considered significant at p< 0.05 and p-adjusted ≤ 0.1.
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with the fact that, despite both strains being administered at the

same supplementation doses of 5 x 108 CFU g-1, the P. acidilacticiti

strain exhibited counts almost 10 times higher than the L. lactis

strain in feces. Additionally, P. acidilactici induced positive effects

mainly associated with the increase of serum a-AA levels in Group

1 as compared to the Control Group that did not receive probiotic

supplementation. However, these effects did not create significant

improvements in growth or feed conversions.

This outcome can be further understood by assessing other

research that defines the crude protein requirement for rainbow

trout, such as Oliva-Teles (1989); Kim et al. (1991); Zeitoun et al.
Frontiers in Marine Science 13
(1973), and Mahmud et al. (1996). These studies’ researchers

assessed diets formulated with increasing levels of wet or dry

matter crude protein (approximately 25–60%. In general, the best

PER performance was associated with diets containing 35–40%

crude wet matter protein, also diets formulated with more than 40%

crude protein did not have significant improvement in growth

indices. The diet used in this study was formulated with 45% crude

protein (as wet matter), which provided approximately 5% more

crude protein than the rainbow trout requirements. This could

explain the absence of improvement in growth or feed conversion

indices as a result of the high availability of a-AA levels in feces or
B

C D

A

FIGURE 4

Bar plot of the relative gene expression of SLC transporters in the proximal intestine of rainbow trout (O. mykiss) after a P. acidilactici (Group 1) or L.
lactis (Group 2) supplementation of 5x108 CFU g-1 for 60 days. (A) slc6a19 gene (B0AT1), (B) slc7a9 gene (b0,+), (C) slc15a1 gene (Pept1), and (D)
slc36a1 gene (PAT1) with bar expressed mean ± standard error of the mean (n = 6). The lines show statistically significant differences between
experimental groups, as derived via Dunn’s test. The distribution differences were considered significant at p< 0.05 and p-adjusted ≤ 0.1.
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serum associated with P. acidilacticiti supplementation, due to a

permanent higher amino acid dietary contribution, which could

cancel the increased amino acid levels in the serum produced

by probiotics.

Understanding the effects of lactic acid bacteria as a probiotic

supplement to enhance rainbow trout breeding opens an

opportunity for future studies associated with diets specifically

formulated for probiotic supplementation. Such diets should be

formulated with lower crude protein requirements and even reduce

the proportion of some essential and non-essential a-AAs.
5 Conclusions

Unlike L. lactis, P. acidilactici supplementation for 60 days

significantly increased serum total a-AA levels (nmol mL-1) and

specific serum levels (nmol mL-1) of proline, arginine, iso/leucine,

phenylalanine, serine, threonine, and valine in rainbow trout

(Oncorhynchus mykiss). P. acidilactici supplementation for 60

days also significantly increased the levels (nmol mL-1) of

glutamate, lysine, proline, and tyrosine in rainbow trout feces.

The autochthonous rainbow trout P. acidilactici showed better

activity in improving certain a-AA levels (nmol mL-1) in the blood

serum and feces trout samples compared to the non-autochthonous

L. lactis. This improved activity could be associated with the fact

that P. acidilactici maintains higher viable cell counts (UFC g-1)

than the L. lactis strain in feces after diet supplementation. When

considering whether probiotics are a viable alternative to nutritional

additives that offer benefits to the salmon industry, this study

demonstrates that probiotic supplementation does indeed have

beneficial effects on the increase of certain amino acids in the

serum (nmol mL-1), including four essential amino acids (iso/

leucine, phenylalanine, threonine, and valine). However, our

results did not allow us to quantify the actual productive and

commercial impacts of probiotic supplementation, which is

necessary for promoting their use in the salmon industry.

Nonetheless, by comprehending the nutritional effects of

probiotics, it is possible to propose new research that utilizes diets

specifically formulated for probiotic supplementation with the aim

of visualizing the productive impacts in the salmon industry.
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