Detour Global Domination for Degree Splitting Graphs of Some Graphs

C. Jayasekaran*
S.V. Ashwin Prakash ${ }^{\dagger}$

Abstract

In this paper, we introduced the new concept detour global domination number for degree splitting graph of standard graphs. A set S is called a detour global dominating set of $G=(V, E)$ if S is both detour and global dominating set of G. The detour global domination number is the minimum cardinality of a detour global dominating set in G. Let $V(G)$ be $S_{1} \cup S_{2} \cup \cdots \cup S_{t} \cup T$, where S_{i} is the set having at least two vertices of same degree and $T=V(G)-\cup S_{i}$, where $1 \leq i \leq t$. The degree splitting graph $D S(G)$ is obtained from G by adding vertices $w_{1}, w_{2}, \cdots, w_{t}$ and joining w_{i} to each vertex of S_{i} for $i=1,2, \cdots, t$. In this article we recollect the concept of degree splitting graph of a graph and we produced some results based on the detour global domination number for degree splitting graph of path graph, cycle graph, star graph, bistar graph, complete bipartite graph and complete graph. Keywords: Detour set, Dominating set, Detour Domination, Global Domination, Detour Global Domination, Degree Splitting graphs.

2020 AMS subject classifications: 05C12, 05C69. ${ }^{1}$

[^0]
C. Jayasekaran, S.V. Ashwin Prakash

1 Introduction

By a graph $G=(V, E)$ we mean a finite, connected, undirected graph with neither loops nor multiple edges. The order $|V|$ and size $|E|$ of G are denoted by p and q respectively. For graph theoretic terminology we refer to West[1]. For vertices x and y in a connected graph G, the detour distance $D(x, y)$ is the length of a longest $x-y$ path in $G[2]$. An $x-y$ path of length $D(x, y)$ is called an $x-y$ detour. The closed interval $I_{D}[x, y]$ consists of all vertices lying on some $x-y$ detour of G. For $S \subseteq V, I_{D}[S]=\cup_{x, y \in S} I_{D}[x, y]$. A set S of vertices is a detour set if $I_{D}[S]=V$, and the minimum cardinality of a detour set is the detour number $d n(G)$. A detour set of cardinality $d n(G)$ is called a minimum detour set [3].

A set $S \subseteq V(G)$ in a graph G is a dominating set of G if for every vertex v in $V-S$, there exists a vertex $u \in S$ such that v is adjacent to u. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G[4]$. The complement \bar{G} of a graph G also has $V(G)$ as its point set, but two points are adjacent in \bar{G} if and only if they are not adjacent in G. A set $S \subseteq V(G)$ is called a global dominating set of G if it is a dominating set of both G and $\bar{G}[5]$.

A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called an end vertex or a pendant vertex. A vertex that is adjacent to a pendant vertex is called a support vertex.

Definition 1.1. Let $G=(V, E)$ be a connected graph with atleast two vertices. A set $S \subseteq V(G)$ is said to be a detour global dominating set of G if S is both detour and global dominating set of G. The detour global domination number, denoted by $\bar{\gamma}_{d}(G)$ is the minimum cardinality of a detour global dominating set of G and the detour global dominating set with cardinality $\overline{\gamma_{d}}(G)$ is called the $\overline{\gamma_{d}}$-set of G or $\overline{\gamma_{d}}(G)$-set.[6]

In [7], R. Ponraj and S. Somasundaram have initiated a study on degree spliting graph $D S(G)$ of a graph G which is defined as follows:

Definition 1.2. Let $G=(V, E)$ be a graph with $V(G)=S_{1} \cup S_{2} \cup \cdots \cup S_{t} \cup T$, where S_{i} is the set having at least two vertices of same degree and $T=V(G)$ $\cup S_{i}$, where $1 \leq i \leq t$. The degree splitting graph $D S(G)$ is obtained from G by adding vertices $w_{1}, w_{2}, \cdots, w_{t}$ and joining w_{i} to each vertex of S_{i} for $i=$ $1,2, \cdots, t$.

Example 1.1. In Figure 1.1, a graph G and its degree splitting graph $D S(G)$ are shown.

Here, $S_{1}=\left\{v_{1}, v_{7}, v_{8}\right\}, S_{2}=\left\{v_{2}, v_{6}\right\}, S_{3}=\left\{v_{4}, v_{5}\right\}$ and $T=\left\{v_{3}\right\}$.
Remark 1.1. If $V(G)=\cup S_{i}, 1 \leq i \leq t$, then $T=\phi$.

2 Some basic results

In this section, we recall some basic results of detour global domination number of a graph which will be used throughout the paper.

Theorem 2.1. [6] Every isolated vertex of G belongs to every detour global dominating set of G.

Theorem 2.2. [6] Every full vertex of a connected graph G of order p belongs to every detour global dominating set of G.

Theorem 2.3. [6] For the path graph $P_{p},(p \geq 4), \bar{\gamma}_{d}\left(P_{p}\right)=\gamma_{d}\left(P_{p}\right)=\left\lceil\frac{p+2}{3}\right\rceil$.
Theorem 2.4. [6] For any star graph $K_{1, n-1},(n \geq 2), \bar{\gamma}_{d}\left(K_{1, n-1}\right)=n$.
Theorem 2.5. [6] For any bistar graph $B_{m, n}, m, n \geq 1, \overline{\gamma_{d}}\left(B_{m, n}\right)=m+n$.
Theorem 2.6. [6] For $m, n \geq 2, \bar{\gamma}_{d}\left(K_{m, n}\right)=2$.

3 Degree Splitting graphs of known graphs and their Detour Global Domination number

Let us find detour global domination number of degree splitting graph $D S(G)$ of the graphs path, cycle, star, bistar, complete bipartite and complete graph.

Theorem 3.1. For any integer $n \geq 3, \overline{\gamma_{d}}\left(D S\left(P_{n}\right)\right)=2$.
Proof. Let $v_{1} v_{2} \cdots v_{n}$ be the path P_{n} with partitions $S_{1}=\left\{v_{2}, v_{3}, \cdots, v_{n-1}\right\}$ and $S_{2}=\left\{v_{1}, v_{n}\right\}$. To obtain $D S\left(P_{3}\right)$ from P_{3} we add x, which corresponds to S_{2} also P_{3} is isomorphic to C_{4} and to obtain $D S\left(P_{n}\right)$ for $n \geq 4$ we add x_{1} and x_{2}, which corresponds to S_{1} and S_{2}, respectively. As a result, $V\left(D S\left(P_{3}\right)\right)=\left\{x, v_{1}, v_{2}, v_{3}\right\}$ and $V\left(D S\left(P_{n}\right)\right)=\left\{x_{1}, x_{2}, v_{1}, v_{2}, \cdots, v_{n}\right\}$, where $\left|V\left(D S\left(P_{n}\right)\right)\right|=n+2$ for $n \geq 4$.

Consider $I_{D}\left[x, v_{1}\right]$ for $n=3$, which has only one $x-v_{1}$ detour path of length 3 that contains all the vertices of $D S\left(P_{3}\right)$. As a result, $S=\left\{x, v_{1}\right\}$ is a minimum cardinality detour set. Also, x dominates S_{2} and v_{2} is dominated by v_{1}. Thus, S is a minimum detour dominating set of $D S\left(P_{3}\right)$. Moreover in $\overline{D S\left(P_{3}\right)}, x$ dominates v_{2} and v_{3} is dominated by v_{1}. Hence, S is a minimum detour global dominating set of $D S\left(P_{3}\right)$ and so $\overline{\gamma_{d}}\left(D S\left(P_{3}\right)\right)=2$.

Consider $I_{D}\left[x_{1}, x_{2}\right]$ for $n \geq 4$, which has two distinct $x_{1}-x_{2}$ detour path of length n that contains all the vertices of $D S\left(P_{n}\right)$. As a result, $S=\left\{x_{1}, x_{2}\right\}$ is a minimum cardinality detour set. Also, x_{1} dominates S_{2} and x_{2} dominates
S_{1}. Thus, S is a detour dominating set of $D S\left(P_{n}\right)$. Moreover in $\overline{D S\left(P_{n}\right)}, x_{1}$ dominates S_{1} and x_{2} dominates S_{2} and hence S is a detour global dominating set $D S\left(P_{n}\right)$. Hence, we conclude that for $n \geq 3, \overline{\gamma_{d}}\left(D S\left(P_{n}\right)=2\right.$.

Theorem 3.2. For any integer $n \geq 3, \overline{\gamma_{d}}\left(D S\left(C_{n}\right)\right)=3$.
Proof. Let $v_{1} v_{2} \cdots v_{n}$ be the cycle C_{n}. To obtain $D S\left(C_{n}\right)$ for $n \geq 3$ we add a vertex x which is adjacent to every vertices in C_{n}. As a result, $V\left(D S\left(C_{n}\right)\right)=$ $\left\{x, v_{1}, v_{2}, \cdots, v_{n}\right\}$, where $\left|V\left(D S\left(C_{n}\right)\right)\right|=n+1$ for $n \geq 3$. Clearly, $D S\left(C_{n}\right)$ is isomorphic to the wheel graph W_{n}.

Since, $D S\left(C_{n}\right)$ is a connected graph, then $\overline{\gamma_{d}}\left(D S\left(C_{n}\right)\right) \geq 2$. Consider the set $S=\left\{x, v_{i}\right\}$, where $1 \leq i \leq n$. Clearly, the $x-v_{i}$ detour path of $D S\left(C_{n}\right)$ contains all the vertices of $D S\left(C_{n}\right)$ and also, x dominates every vertices of C_{n}. Hence, S is a minimum detour dominating set of $D S\left(C_{n}\right)$. But in $\overline{D S\left(C_{n}\right)}$, the neighbours of v_{i} are not dominated by any vertices of S. So, choose v_{i+1} from

C. Jayasekaran, S.V. Ashwin Prakash

$\overline{D S\left(C_{n}\right)}$ then v_{i}, v_{i+1} and x dominates every vertices from $\overline{D S\left(C_{n}\right)}$. Therefore, $S_{1}=S \cup\left\{v_{i+1}\right\}=\left\{v, v_{i}, v_{i+1}\right\}$ is a minimum detour global dominating set of $D S\left(C_{n}\right)$ and hence $\bar{\gamma}_{d}\left(D S\left(C_{n}\right)\right)=3$.

Theorem 3.3. For any integer $n \geq 2, \bar{\gamma}_{d}\left(D S\left(K_{1, n}\right)\right)=2$.
Proof. Let $v_{1}, v_{2}, \cdots, v_{n-1}$ are the end vertices and v is the full vertex of the star $K_{1, n-1}$ and x be the corresponding vertex which is added to obtain the graph $D S\left(K_{1, n}\right)$. Then $V\left(D S\left(K_{1, n}\right)\right)=\left\{v, v_{1}, v_{2}, \cdots, v_{n}, x\right\}$. Clearly, $\mid V\left(D S\left(K_{1, n-1}\right) \mid=\right.$ $n+2$.

Since, $D S\left(K_{1, n}\right)$ is connected, then $2 \leq \overline{\gamma_{d}}\left(D S\left(K_{1, n}\right)\right) \leq n+1$. Consider $S=\left\{v, v_{i}\right\}$ for some $i, 1 \leq i \leq n$. Then there are $n-$ detour path which travels between v and v_{i} that includes all the vertices of $D S\left(K_{1, n}\right)$. Therefore, $S=$ $\left\{v, v_{i}\right\}$ is a detour set of minimum cardinality. Moreover, v dominates every v_{i} and v itself in $D S\left(K_{1, n}\right)$ and v_{i} dominates x in $D S\left(K_{1, n}\right)$ for $1 \leq i \leq n$. Now consider in $\overline{D S\left(K_{1, n}\right)}$ where v dominates x and v_{i} dominates all other v_{j} for $1 \leq$ $j \neq i \leq n$. This concludes that S is a minimum detour global dominating set of $D S\left(K_{1, n}\right)$ and hence $\overline{\gamma_{d}}\left(D S\left(K_{1, n}\right)\right)=2$.

Theorem 3.4. For the bistar graph $B_{m, n}, \overline{\gamma_{d}}\left(D S\left(B_{m, n}\right)=2\right.$.

Proof. Consider the bistar graph $B_{m, n}$ with $V\left(B_{m, n}\right)=\left\{u, v, u_{i}, v_{j} / 1 \leq i \leq\right.$ $m ; 1 \leq j \leq n\}$. Here, u_{i} and v_{j} are the vertices adjacent with u and v respectively. Let x_{1} and x_{2} be the corresponding vertices which are added to obtain $D S\left(B_{m, n}\right)$. Then $V\left(D S\left(B_{m, n}\right)\right)=\left\{u, v, u_{i}, v_{j}, x_{1}, x_{2} / 1 \leq i \leq m ; 1 \leq j \leq n\right\}$ and so $\mid V\left(S^{\prime}\left(B_{m, n}\right) \mid=m+n+4\right.$.

Fiaure 3.4
Since G is a connected graph, $\bar{\gamma}_{d}\left(D S\left(B_{m, n}\right)\right) \geq 2$. Consider $I_{D}\left[x_{1}, x_{2}\right]$ which has $m+n$ transversal detour path of length four between x_{1} and x_{2} which include all the vertices of $D S\left(B_{m, n}\right)$. Therefore, $S=\left\{x_{1}, x_{2}\right\}$ is a detour set of minimum cardinality. Also, x_{1} dominates u and v and x_{2} dominates all u_{i} and v_{j} for $1 \leq$ $i \leq n$ and $1 \leq j \leq n$ in $D S\left(B_{m, n}\right)$. It follows that S is a detour dominating set of $D S\left(B_{m, n}\right)$. Moreover, in $\overline{D S\left(B_{m, n}\right)}, x_{2}$ dominates x_{1}, u and $v ; x_{1}$ dominates $u_{1}, u_{2}, \cdots, u_{m}, v_{1}, v_{2}, \cdots, v_{m}$. Clearly, S is a minimum detour global dominating set of $D S\left(B_{m, n}\right)$ and hence $\overline{\gamma_{d}}\left(D S\left(B_{m, n}\right)\right)=2$.

Theorem 3.5. For any integer $m, n \geq 2, \overline{\gamma_{d}}\left(D S\left(K_{m, n}\right)\right)= \begin{cases}3 & \text { if } m=n \\ 2 & \text { if } m \neq n\end{cases}$
Proof. Consider $K_{m, n}$ with $V\left(K_{m, n}\right)=\left\{u_{i}, v_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ with partition $V_{1}=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ and $V_{2}=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$. Now we consider the following two cases.
Case (1) $m=n$

C. Jayasekaran, S.V. Ashwin Prakash

In this case each vertex is of same degree and so let x be the added vertex which is adjacent to every u_{i} and $v_{j}, 1 \leq i \leq m$ and $1 \leq j \leq n$. Thus, we obtain the graph $D S\left(K_{m, n}\right)$. Then $V\left(D S\left(K_{m, n}\right)\right)=\left\{u_{i}, v_{j}, x / 1 \leq i \leq m ; 1 \leq j \leq n\right\}$ and so $\left|V\left(D S\left(K_{m, n}\right)\right)\right|=m+n+1$.

Figure 3.5

Consider the set $S=\left\{v_{i}, u_{j}\right\}$ for some i, j where $1 \leq i \leq m$ and $1 \leq$ $j \leq n$. Then $I_{D}\left[v_{i}, u_{j}\right]=V\left(D S\left(K_{m, n}\right)\right)$ and also v_{i} dominates every u_{j} and x; u_{j} dominates every v_{i}. Hence, $S=\left\{v_{i}, u_{j}\right\}$ is a minimum detour dominating set. Now consider $\overline{D S\left(K_{m, n}\right)}$, where x is an isolated vertex and not dominated by any vertex of S. This shows that S is not a detour global dominating set of $D S\left(K_{m, n}\right)$. Hence, we include x in S such that $S=\left\{u_{i}, v_{j}, x\right\}$ is a detour global dominating set of $D S\left(K_{m, n}\right)$ for $1 \leq i \leq m ; 1 \leq j \leq n$. Therefore, for $m=n$, $\bar{\gamma}_{d}\left(D S\left(K_{m, n}\right)\right)=3$.
Case (2) $m \neq n$

In this case each vertex u_{i} is of same degree and each vertex v_{j} is of same degree where $\operatorname{deg}\left(u_{i}\right) \neq \operatorname{deg}\left(v_{j}\right), 1 \leq i \leq m ; 1 \leq j \leq n$ so let x_{1} and x_{2} be the added vertex where x_{1} is adjacent to every u_{i} and x_{2} is adjacent to every v_{j}. Thus, we obtain the graph $D S\left(K_{m, n}\right)$. Then $V\left(D S\left(K_{m, n}\right)\right)=\left\{u_{i}, v_{j}, x_{1}, x_{2} / 1 \leq i \leq\right.$ $m ; 1 \leq j \leq n\}$ and so $\left|V\left(D S\left(K_{m, n}\right)\right)\right|=m+n+2$.

Consider the set $S=\left\{x_{1}, x_{2}\right\}$, where $I_{D}\left[x_{1}, x_{2}\right]=V\left(D S\left(K_{m, n}\right)\right)$ and also x_{1} dominates every v_{i} and x_{2} dominates every u_{j}. Hence, $S=\left\{x_{1}, x_{2}\right\}$ is a minimum detour dominating set. Now consider $\overline{D S\left(K_{m, n}\right)}$, where x_{1} dominates every u_{i} for $1 \leq i \leq n$ and x_{2} dominates every v_{j} for $1 \leq j \leq n$. Clearly, $S=\left\{x_{1}, x_{2}\right\}$ is a minimum detour global dominating set and so for $m \neq n$, $\bar{\gamma}_{d}\left(D S\left(K_{m, n}\right)\right)=2$.

Theorem 3.6. For any integer $n \geq 2, \overline{\gamma_{d}}\left(D S\left(K_{n}\right)\right)=n$.
Proof. Here, $D S\left(K_{n}\right)$ is isomorphic to K_{n+1}. We know that all the vertices are isolated vertices in the complement graph of $D S\left(K_{n}\right)$. Therefore, the detour global dominating set must contain all the vertices of $D S\left(K_{n}\right)$ and so, for $n \geq 2$, $\overline{\gamma_{d}}\left(D S\left(K_{n}\right)\right)=n$.

4 Conclusion

Inspired by the global dominating set and detour set we introduce the detour global dominating set for degree splitting graph. We have determined the detour global domination number for degree splitting graph of path graph, cycle graph, star graph, bistar graph, complete bipartite graph and complete graph. Furthermore our results are also justified with suitable examples. The detour global domination number can also be obtained for many more graphs.

C. Jayasekaran, S.V. Ashwin Prakash

Acknowledgements

The authors express their gratitude to the management- Ratio Mathematica for their constant support towards the successful completion of this work. We wish to thank the anonymous reviewers for the valuable suggestions and comments.

References

[1] D.B. West. Introduction to Graph Theory. Prentice-Hall, Upper Saddle River, NJ, 2001.
[2] F. Harary F. Buckley. Distance in Graphs. Addison-Wesley,Redwood City, 1990.
[3] P. Zang G. Chartrand, N. Johns. Detour number of a graph. Util. Math., 64, 2003.
[4] P.J. Slater T.W. Haynes, S.T. Hedetniemi. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York, 1998.
[5] E. Sampath Kumar. The global domination number of a graph. Journal of Mathematical and Physical Sciences, 23(5), 1989.
[6] S.V. Ashwin Prakash C. Jayasekaran. Detour global domination number of some graphs. Malaya Journal of Matematik, S(1), 2020.
[7] S. Somasundaram R. Ponraj. On the degree splitting graph of a graph. National Academy Science Letters, 27(7-8), 2004.

[^0]: *Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India; jayacpkc@gmail.com.
 ${ }^{\dagger}$ Research Scholar, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil 629003, Tamil Nadu, India; ashwinprakash00@gmail.com. Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India.
 ${ }^{1}$ Received on October 10, 2022. Accepted on May 1, 2023. Published online on May 10, 2023. DOI: 10.23755/rm.v39i0.871. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

