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Fence detection in Amsterdam:
transparent object segmentation
in urban context

Jorrit Ypenga, Maarten Sukel and Hamed S. Alavi*

Faculty of Science, University of Amsterdam, Amsterdam, Netherlands

Introduction: Accessibility and safe movement in urban areas entail infrastructure

that minimizes the risks for pedestrians and bikers with diverse levels of abilities.

Recognizing and mapping unsafe areas can increase awareness among citizens

and inform city projects to improve their infrastructure. This contribution presents

an example in which the specific objective is to recognize the unprotected areas

around the canals in the city of Amsterdam.

Method: This is accomplished through running image processing algorithms on

11Kwaterside panoramas taken from the city of Amsterdam’s open data portal. We

created an annotated subset of 2K processed images for training and evaluation.

This dataset debuts a novel pixel-level annotation style using multiple lines. To

determine the best inference practice, we compared the IoU and robustness of

several existing segmentation frameworks.

Results: The best method achieves an IoU of 0.79. The outcome is superimposed

on the map of Amsterdam, showing the geospatial distribution of the low, middle,

and high fences around the canals.

Discussion: In addition to this specific application, we discuss the broader use

of the presented method for the problem of “transparent object detection” in an

urban context.
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1. Introduction

The ability for people to move safely is critical to a city’s economic and social

success (Abbar et al., 2018). An enormous amount of economic and engineering effort

has been devoted to enhancing the efficiency of the road- and public-transport networks

(Gakenheimer, 1999). However, less efficient means of transportation that compete for the

same public space, such as walking and cycling, have been suffering the consequences,

especially in Amsterdam, where bicycles outnumber the residents (Amsterdam Marketing

Press Office, 2015). In the city of Amsterdam, despite actively promoting soft mobility,

infrastructure is not up to par. The abundance of open water in and around the city center,

combined with unsatisfactory regulation, results in an inconsistent presence of barriers

separating the open water from accessible public space (Figure 1). This introduces a real

risk for multiple groups, such as visitors unfamiliar with the water-rich environment, or

citizens with reducedmobility or visual impairment. Different sources report anywhere from

10 to 20 deaths yearly (NOS Nieuws, 2017). Therefore, indexing the presence of barriers and

preserving public space accessibility would be of great benefit to the city and its citizens.

Public space scenery naturally exhibits different structural features relevant to the

safety of pedestrians and cyclists. An analysis of several engineering measures to reduce

vehicle-to-pedestrian accidents done in the U.S. and England showed that the presence

of barriers resulted in the most significant decrease (Retting et al., 2003) of all examined

measures. Placing and maintaining physical barriers is the responsibility of the city’s
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FIGURE 1

An accident in Amsterdam picturing a clear lack of fencing next to

open water (Nieuws, 2022). This absence of fencing has proven very

accident prone, with ∼10 deaths yearly (NOS Nieuws, 2017).

However, these numbers do not represent at-risk groups that

actively avoid the city center for safety reasons.

planning department, and traditionally, indexing, and inspecting

such structural features is done manually, which is a costly and

time-consuming process. Mapping these structural features around

public space can play a crucial role in increasing awareness and

preserving safe and accessible infrastructure for citizens.

The increasing availability of street-level imagery (Xu

et al., 2021) and city open data portals combined with recent

advancements in computer vision (Guo et al., 2018) has enabled

promising new data- and model-driven methods in urban science.

Numerous different deep learning approaches that aim to index

the complex notion of safety in an urban context have been

proposed (Sainju and Jiang, 2020; Bustos et al., 2021). However,

most research that combines annotated street-level imagery and

deep learning to quantify safety is conducted from a motor-vehicle

perspective, with a primary focus on advancing autonomous

driving technologies (Cordts et al., 2016; Neuhold et al., 2017).

This research leverages deep learning methods to obtain a general

understanding of road scenes. Annotated features whose successful

detection would improve motor-vehicle safety through collision

avoidance, e.g., other vehicles, traffic lights, etc., are often over-

represented. As a result, research focused on geospatial mapping

of the built environment generally includes feature annotations

specific to that research. These datasets are rarely open-source

(Biljecki and Ito, 2021).

Mapping a more concrete notion of safety for an urban

environment, such as mapping the presence of barriers separating

walking- and cycling areas from potential danger, introduces

a major technical challenge. Barriers in an urban environment

are largely transparent; to preserve the visibility of those

separated, and to prevent visual pollution of the often authentic

urban environment. Detecting or even segmenting such (partly)

transparent objects is a largely understudied challenge in computer

vision (Xie et al., 2020). It is a highly complex task, due to

transparent objects assuming diverse appearances inherited from

their background. This major difficulty is further amplified in

a noisy and diverse urban environment. However, transparent

object segmentation is best applied here, since transparent objects

generally occur in urban contexts.

To this end, we propose a data- and model-driven method that

can index the presence of fence-like barriers in an urban context.

The method uses street view imagery as the primary data source

and debuts a unique multi-line-based annotation style catering

to partly transparent objects. By combining street view imagery

with geographical features, ourmethod identifies regions of interest

visually and geographically. To determine the presence of objects,

we use a relatively small subset of problem-specific annotated

training data to train existing segmentation pipelines to segment

fence-like barriers from their background. The predicted masks

allow for additional post-processing for an even more detailed

analysis. To assess the viability of the proposed method, we use

street-view imagery of the city of Amsterdam. Specifically, by

applying this method to water-side panoramic images of canals we

could detect the fences along the canals, determine which canals are

protected, and produce a safetymap for the city of Amsterdam. This

particular focus on safety and inclusivity in mobility was a direct

response to the concerns raised by the city of Amsterdam, with

whom our research team collaborated closely throughout the study.

As a result, the key contribution of this paper lies in addressing the

specific problem of safe and inclusive mobility, with the ultimate

goal of creating a safer environment for all residents and visitors.

The main outcome of our research, the color-coded safety rate

map superimposed on the city map, has been shared with the

municipality of Amsterdam and is intended for public availability.

By providing this valuable information, we aim to contribute to the

city’s efforts in enhancing safety and promoting inclusivity in its

canal network.

In Section 2, we briefly review related work in the domains of

urban analytics and object detection. In Section 3, we describe the

main objective of our work. Section 4 describes the properties of the

data used in this research. In Section 5, we describe the proposed

method and its evaluation. In Section 6, we summarize the results

of conducted experiments. In Section 7, we discuss our findings and

identify limitations with our approach. Finally, Section 8 concludes

the paper.

2. Related work

Our work draws from related works in urban science and object

detection. In this section, we briefly review these domains with a

focus on street view imagery and transparent objects.

Street view images have become a very popular resource for

urban analytics (Xu et al., 2021), due to their wide coverage,

availability, homogeneous quality, human perspective, and rich

metadata (Kang et al., 2020). As such, it has often been used

to replace field visits with virtual audits (Badland et al., 2010).

Recently, advances in computer vision have removed the need

for audits entirely and enabled the automatic transformation of

street view imagery into new geospatial data. Maintaining spatial

infrastructure this way is the most common application domain in

research using street view images (Xu et al., 2021). A substantial

amount of work is focused on extracting smaller urban features,

often omitted from spatial datasets, such as traffic lights, light

poles, and bike racks (Xu et al., 2021). Most of these studies are
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solely focused on mapping features and do not discuss further

implications. Feature mapping research also generally focuses on

a specific location, as appearances may be significantly different

across different geographies. Another challenge is accurate geo-

localization of objects in images. However, previous research

has shown that using additional data, such as aerial imagery,

can improve results (Srivastava et al., 2019). Our work follows

this recommendation by combining additional location data with

model predictions. Furthermore, we try to generalize our findings

to an assessment of accessibility.

Not all feature mapping research using street view images

is solely focused on detection. Another popular application is

to derive a variety of indicators of environmental characteristics

that can be analyzed to assess their association with the impact

on wellbeing, safety, and mobility. Results can then be used to

inform policymakers to address issues and improve structural

factors. Popular wellbeing indicators include greenness exposure

and walkability, their proportion was found to be associated with

citizen wellbeing on a neighborhood level (Nguyen et al., 2018).

Research regarding mobility and walkability is very diverse in

examining physical features. Curiously, features such as fences and

barriers and their impact on safety are rarely mapped in literature,

especially in urban contexts. One related work uses deep learning

to map roadside crash barriers (Sainju and Jiang, 2020), where they

achieved promising results. However, their proposed method only

classifies on an image level. Furthermore, roadside barriers share

limited characteristics with urban fencing since they cover long

strips of roads and have a uniform appearance.

The more general task of object detection is now most

commonly performed by leveraging deep learning techniques, their

ability to learn robust features from video input varying in quality

and presentation have made them the most researched method

in the field. Initial deep learning solutions, such as RCNN, were

comprised of two stages: a non-convolutional stage that identifies

regions of interest and a subsequent convolutional stage that

classifies them (Girshick et al., 2014). More recently, the field has

moved to fully convolutional methods, in which the extraction of

regions of interest is also convolutional (Dai et al., 2016). This shift

paved the way for encoder-decoder segmentation models such as

U-Net, where input is first reduced to key features by the encoder

and then upsampled to obtain an even more precise pixel-level

score map (Ronneberger et al., 2015). While object detection is

a challenging task already, doing so in an urban environment

introduces even more noise and thus difficulty.

A common occurrence in the urban environment are

transparent or semi-transparent objects, objects of which the

appearance is largely comprised of background noise. The detection

of these transparent objects remains understudied but is generally

tackled by enhancing existing data or methods. For example,

Lai and Fuh (2015) enhance a traditional RCNN by leveraging

visual effects specific to fully transparent objects, such as reflection

and color, to limit proposed regions. While Xu et al. (2019)

try to overcome transparency-induced noise by using light-

field images. Leveraging the unique properties of transparent

objects directly, using deep learning, was first proposed by Chen

et al. (2018), their encoder-decoder structure showed promising

results on synthetic and real data. Several other segmentation

methods for transparent object detection were further explored

by Xie et al. (2020). They created their own extensively

annotated transparent object dataset for evaluation; Trans10K.

Their proposed method demonstrates the importance of exploiting

boundaries inherent to transparent objects by outperforming

numerous established segmentation methods. However, their

annotation specifically excludes nontransparent segments from

partly transparent objects; information that could help better

reveal boundaries. Contrary to their work, our annotations

specifically exclude the transparent regions of semi-transparent

objects by annotating only their nontransparent segments and

boundaries.

As a sub-challenge of transparent object detection, research

with regards to fence recognition or segmentation specifically is

also scarce. Current research does not treat fences as individual

objects but as undesired foreground, and existing segmentation

efforts are mainly focused on extracting the fence-like occlusion

and restoring the desired background. De-fencing can be achieved

automatically using naive methods as shown by Yi et al. (2016),

while Jonna et al. (2016) demonstrate that a deep learning approach

using CNN-SVM is also feasible. However, data used for de-

fencing training and evaluation is very problem-specific; fences

occlude the entire image, exhibit a consistent pattern and present

high foreground-background contrast. These conditions are very

forgiving compared to those present in our problem: fences

in an urban environment have diverse appearances and blend

into their background, making them harder to segment using

naive methods.

3. Objectives

Traditionally, transparent objects are not handled well by

regular detection and segmentation models due to the unique

properties that transparency introduces (Xu et al., 2019). In

literature, transparent objects are most often described as objects

that borrow a large portion of their texture from their background

(Xu et al., 2019; Xie et al., 2020). As a result, transparent

objects have a similar appearance to their surroundings, making

them hard to detect or segment. This property required a

more specific research direction: transparent object detection,

which is a sub-field of object detection that focuses on solving

this background texture challenge through data- and model-

driven methods.

The main objective of this work is to establish a generalizable

data-driven pipeline for transparent structural feature mapping

in urban context using regular segmentation models. The

proposed pipeline is multi-modal and consists of a detection

and geospatial stage. It is important that the resulting feature

map is readable by the general public and policy makers.

A critical part of creating such a feature map and method

generalizability is the need for accurate data-driven object

detection. We use the city of Amsterdam case as an example

of transparent object detection and mapping, and to verify our

pipeline. To deal with the transparency problem, we introduce

a novel annotation style that labels only the solid parts of the

transparent object.
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FIGURE 2

A visualization of the data and its geographic distribution. The data spans a radius centered on the city center. Every blue dot represents a single

8,000 × 4,000 panorama.

4. Data

The initial image data is a subset of ∼11 K waterside

panorama pictures sampled from a radius around the city center

of Amsterdam. Each image provides a 360◦ view and is shot from

the water surface by boat. The images measure 8,000 × 4,000

pixels (width, height) and are provided in full color. Each panorama

has its geographic location attached, expressed in longitude and

latitude. The maximum distance between subsequent panorama

images amounts to ∼5 m, providing an unprecedented spatial

resolution. Some areas exhibit an even higher spatial density

due to a second pass by boat but in reverse. Other image-

specific metadata, such as camera orientation and timestamps,

are also included. All images were extracted using the city’s open

data portal API (Gemeente Amsterdam Onderzoek, 2022a). We

refer to Figure 2 for an example of the panoramas and their

geographic distribution.

For the background of the geographic plots shown in

this work and geospatial post-processing, several Geographical

Information Systems (GIS) were queried. The Netherlands

provides an open GIS API named Publieke Dienstverlening

op de Kaart (PDOK) (Kadaster, 2022) which allows users

to query different topography spanning the entire country.

Furthermore, PDOK allows users to download selected areas

in standard GIS formats. For this work, we extracted all

Basisregistratie Grootschalige Topografie (BGT) (van Binnenlandse

Zaken en Koninkrijksrelaties, 2021) layers focused on the

city of Amsterdam in Geography Markup Language (GML)

format. The layers used for the plots are bgt_voetpad

and bgt_waterdelen, which provide polygons of walkways

and open water. Additionally, for some visualizations and the

subset splits in the training data, topography of Amsterdam

neighborhoods is used. This data is provided by the city’s open

geodata portal (Gemeente Amsterdam Onderzoek, 2022b) in
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GeoJSON format. All topography is converted to the WGS84

coordinate system (epsg.io, 2007).

5. Method

In this section, we discuss the proposed multi-modal

approach. It consists of four main components: region of

interest extraction, data annotation, a segmentation model, and a

mapping stage. The first region extraction component processes

the raw data so that it can be used as model input. Then,

extracted regions are used to create annotated pixels masks for

training. The segmentation model then classifies input pixels

as either fence or background. Finally, in the post-processing

stage, we interpret the segmentation results and transform them

into properties that are usable by policy makers. All code is

published on GitHub.1

5.1. Regions of interest extraction

The raw panoramas measure too large for model input and

contain a lot of redundant visual information, which warrants an

additional processing step. The 360◦ view provides the opportunity

to focus on the left- and right-side viewpoints of the boat. This is

achieved by converting the provided camera heading to a viewpoint

and then composing two additional viewpoints perpendicular to

the heading viewpoint. The resulting viewpoints are converted to

1,024× 512 windows, centered on the intersection of the respective

viewpoint and a fixed horizon at a height of 2,000 pixels. We choose

a larger width to preserve as much quality visual information from

the viewpoint as possible. An overview of the pre-processing is

shown in Figure 3.We ignore other camera orientation parameters,

such as roll and pitch, because they do not vary significantly (σ 2
r ≈

0.43◦, σ 2
p ≈ 0.08◦) and any minimal effects are mitigated by data

augmentation during training.

By extracting the regions of interest for every panorama, the

360◦ view is lost, rendering the initially provided location as an

inadequate geographical representation of the resulting regions.

To obtain a better geographical notion for the left and right

regions, we use the property that the reported camera heading

corresponds to the front of the boat. The panorama metadata

does not include any information regarding the direction of the

boat, but because the data has such high spatial density, it can be

estimated using the location of the succeeding panorama. After

calculating the direction vector, we can estimate the two vectors

corresponding to the left and right viewpoint by finding the two

perpendicular vectors.

It is worth noting that the regions are extracted from

360◦ panoramic images, resulting in heavy distortion in any

viewpoints other than the two perpendicular ones. As a result,

these two regions consistently exhibit the highest quality, rendering

an assessment of regional quality unnecessary. Nevertheless,

introducing minimal random shifts in viewpoints and generating

additional regions could enhance data augmentation, which we

identify as a potential avenue for future work.

1 github.com/amsterdam-internships/fence-detection

5.2. Creating the training data

To train our segmentation models we require a dataset

tailored to the segmentation problem. We obtained images for

annotation by running the ROI-extraction algorithm on all

provided panoramas, resulting in ∼22 K 1,024 × 512 frames. We

sampled images for our dataset in two separate batches of 1 K

images. The first batch was randomly selected, but only included

∼400 fences to annotate. Since pixel-level annotations already

result in plenty of negative samples, the second batch was manually

selected from the remaining 21 K to only include fences, resulting

in a dataset of 2 K 1,024× 512 images containing 1,414 fences.

For annotation, we opted for a novel multi-line style

annotation, whereas such objects would traditionally be annotated

using polygons. As opposed to Xie et al. (2020), we specifically try

to exclude the transparent regions of a fence in our annotations

and focus only on the solid parts. A multi-line annotation should

accommodate this and is more precise than a box-like polygon

and faster than fitted multi-polygon. An example of a multi-line

annotation is shown in Figure 6. However, a consequence of this

annotation, is that the line width of the annotations can be varied.

Optimally, line width would be fixed specific to an individual object,

but this would have to be done manually. Instead, we leave this

as a hyperparameter to be optimized. All annotation is performed

in CVAT (Sekachev, 2020) and compliant with COCO (Lin et al.,

2014) annotation standards.

To perform running- and general evaluation, the 2 K annotated

images are split into train, test, and validation sets using

neighborhood data. A concern with street view images is the

high visual correlation introduced by high spatial density, a

neighborhood-based split avoids this correlation between training

and evaluation. To perform the split, a neighborhood is assigned

to every image based on its location. Then, neighborhoods are

randomly selected until an approximate 1,700/150/150 split is

achieved, resulting in 1,682 training images, 155 validation images,

and 163 test images. We refer to Figure 4 for further details.

5.3. Model evaluation

We evaluate the tested models in multiple respects, such as

accuracy, precision, recall, and complexity. The standard accuracy

evaluation for segmentation that is widely adopted by benchmarks,

is the Jaccard Index or Intersection over Union (IoU):

IoU = J(A,B) =
|A ∩ B|

|A ∪ B|
(1)

where A and B denote the ground truth and predicted masks.

However, IoU is purely based on overlap and is traditionally used

with filled polygons. This, combined with our annotations being

relatively imprecise and imbalanced on a pixel level, does not give a

satisfactory indication of localization. Therefore, we propose blob-

IoU, which introduces clustering and filling steps to transform the

ground truth and predicted local masks to polygons or “blobs,”

before calculating the IoU.

Since we expect to interpret the segmentation results on an

image level for the feature map, we also report evaluation results
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FIGURE 3

An overview of the region of interest extraction process. Through a combination of location data and camera metadata, it is possible to extract and

locate two focused 1,024 × 512 windows from a single panorama.

when using image-level labels instead of pixel-level labels. Since

evaluating image-level performance on a segmentation dataset with

imbalanced image-level labels (see Figure 4) might give a warped

perspective of performance, we also report the pixel-level results for

the same metrics in brackets. Combined, the image- and pixel-level

evaluation, should capture trends better. We evaluate our models

on accuracy, recall, precision, and F1-score. Additionally, we also

list the number of trainable parameters for each model. Best results

per column are denoted in bold.

5.4. Model selection

For our experiments, we consider several segmentation

methods in the literature. All models follow the encoder-decoder

structure and allow for different convolutional neural networks

(CNN) as encoder or decoder. When referring to segmentation

models, we specifically refer to the decoder model that functions

as classification head. We first establish a baseline using U-

Net (Ronneberger et al., 2015), an encoder-decoder structure

that features connections between encoder and decoder layers,

which minimize loss of information between the contracting and

classification stages. U-Net was shown to be effective in tasks

featuring imbalanced annotations similar to ours (Ronneberger

et al., 2015; Zhang et al., 2018). We train the baseline models on

annotations with a line width of three pixels.

While establishing a baseline, we experiment with two different

approaches to combat overfitting; we introduce additional data

augmentation and make use of transfer learning by using encoders

pre-trained on ImageNet (Deng et al., 2009). The effects on baseline

performance of both approaches are shown in Table 1. Since the

combination of transfer learning and augmentation yields the best

improvement, we use both methods for all further experiments.

Before any further training, we need to establish the optimal

line width of the multi-line annotation that strikes a balance

between the number of additional positive pixels introduced and

the number of false-positive pixels labeled. To find this optimum,
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FIGURE 4

The geospatial distribution of the training data per neighborhood. The legend shows number of images containing fences out of the total number of

images in the subset.

TABLE 1 ResNet-18 + U-Net baseline performance on validation (top) and test (bottom) sets using 3px wide annotations.

Augmentation Pretrained IoU Blob-IoU Accuracy (px) Recall (px) Precision (px) F1-score (px)

0.245 0.373 0.77 (0.68) 1.00 (0.38) 0.76 (0.98) 0.86 (0.54)

X 0.400 0.628 0.88 (0.77) 1.00 (0.55) 0.86 (0.99) 0.93 (0.70)

X X 0.430 0.681 0.92 (0.79) 1.00 (0.58) 0.90 (0.99) 0.95 (0.73)

Augmentation Pretrained IoU Blob-IoU Accuracy (px) Recall (px) Precision (px) F1-score (px)

0.249 0.329 0.80 (0.75) 1.00 (0.44) 0.80 (0.97) 0.89 (0.61)

X 0.427 0.575 0.89 (0.80) 1.00 (0.56) 0.88 (0.99) 0.93 (0.71)

X X 0.482 0.631 0.90 (0.84) 0.99 (0.64) 0.90 (0.99) 0.94 (0.77)

The results show clear improvements in IoU when using a pretrained encoder and data augmentation. Bold values are best in class/column.

we train baselines using annotations with the line width varying

between 3 and 20 pixels. The IoU and blob-IoU scores per

annotation width are displayed in Figure 5.

After establishing the optimal line width, we perform an

ablation study comparing our multi-line annotations to traditional

polygon-like bounding box annotations. To obtain polygon

annotations, the multi-line annotations are clustered before their

outline is used to draw and fill the polygon annotations. Annotation

performance on the evaluation and test sets is shown in Table 2. For

this experiment, we only report blob-IoU, since it is the same as

standard IoU for polygon-like annotations.

Using the optimal width, we consider several other methods:

methods featuring parallel layer connections similar to U-Net, such

as LinkNet (Chaurasia and Culurciello, 2017), MA-Net (Fan et al.,

2020), and U-Net++ (Zhou et al., 2018), methods based on pyramid

structures; FPN (Lin et al., 2017) and PAN (Li et al., 2018), and

dilation-based methods, such as DeepLabV3 (Chen et al., 2017).

For encoders, we experiment with two established general-purpose

CNNs: ResNet (He et al., 2016) and EfficientNet (Tan and Le,

2019). The experiments are structured as follows: we first find

the best decoder when using a fixed encoder. The criteria used to

determine the best decoder are the results on the validation set.
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FIGURE 5

Reported mean IoU vs. mean blob-IoU over varying line widths for annotations. The blob-IoU score peaks at an annotation line width of 11 pixels for

both the test and validation subsets.

TABLE 2 Ablation study results on validation (top) and test (bottom) sets using 11 px wide annotations.

Encoder Decoder Polygons Blob-IoU* Accuracy (px) Recall (px) Precision (px) F1-score (px)

ResNet-18 U-Net 0.700 0.90 (0.85) 0.99 (0.71) 0.88 (0.99) 0.93 (0.82)

ResNet-18 U-Net X 0.717 0.88 (0.91) 0.97 (0.84) 0.87 (0.98) 0.92 (0.91)

Encoder Decoder Polygons Blob-IoU* Accuracy (px) Recall (px) Precision (px) F1-score (px)

ResNet-18 U-Net 0.709 0.93 (0.87) 0.99 (0.73) 0.93 (0.98) 0.96 (0.83)

ResNet-18 U-Net X 0.648 0.88 (0.89) 0.97 (0.77) 0.89 (0.97) 0.93 (0.86)

While traditional annotation yields marginally better IoU on the validation set, the results on the test set show that multi-line annotation generalizes better. Bold values are best in class/column.

Then, we examine the effects of encoder depth when using the best

decoder. All model implementations were used in PyTorch using

the Segmentation Models library (Yakubovskiy, 2020).

5.5. Training details

For all experiments, we use Dice loss, a loss function shown

to be effective in dealing with strong class imbalances (Milletari

et al., 2016). For optimization, we use Adam optimizer (Kingma

and Ba, 2014) with a learning rate fixed at 8 × 10−5. All training

was conducted in the cloud on an NVIDIA Tesla T4 16 GB GPU

over 30 epochs inmixed precision. Batch size was varied between 32

and 4 for different encoder-decoder combinations, where a bigger

batch size was used for less complex models and vice versa. Figure 6

illustrates the training pipeline.

5.6. Creating the feature map

To obtain the feature map of Amsterdam, we run the best

model (EfficientNet-b6 + U-Net++) on the full preprocessed

dataset of 22 K extracted 1,024 × 512 regions. To estimate fence

height in pixels, we sample the x coordinates with corresponding

maximum y coordinates and interpolate between them. Then,

after sampling from the interpolated x coordinates, we find their

corresponding minimum y coordinates, calculate the differences,

and average over them. Note that the y-axis is inverted when

sampling from image data as a matrix. Before plotting, all height

predictions are binned in three equal-sized bins representing low,

middle, and high fence heights. To obtain the prediction location,

the panoramas are sorted on timestamp before calculating the boat’s

direction vector using the next position in time. The left and right

vectors are obtained by finding the two vectors perpendicular to the

direction. Predicted locations are displayed at a fixed distance from

the boat. The full inference pipeline is documented in Figure 7. The

resulting feature map is shown in Figure 8.

6. Results

The results of enhancing the ResNet-18 + U-Net baseline with

transfer learning and data augmentation, listed in Table 1, show

that the combination of pre-training and data augmentation is

superior on both validation and test sets, listing a 20 and 30%

improvement in IoU and blob-IoU, respectively. An interesting

result is the extremely high label recall of 1.0, which is likely a result

of the baselines being undertrained. Note that the pixel recall is

much lower, and does increase.

The IoU and blob-IoU scores for different annotation widths

(Figure 5) suggest that the optimal annotation width is 11 pixels.
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FIGURE 6

The training pipeline formulated for a single iteration of a single sample. The training pipeline takes (A, C) as inputs, and augments them both, before

feeding them through the segmentation model consisting of an encoder and decoder network. Then, Dice loss is computed for (A, B), and network

weights are adjusted accordingly.

While the IoU scores show a gradually flattening upward trend,

the blob-IoU scores show a clear peak at 11 pixels for both the

evaluation and test sets. The upward trend continues after the steep

drop in blob-IoU, but narrower annotations are always preferred

since the chance of falsely annotating background pixels is lower.

Additionally, while pixel-level performance may keep increasing

when using wider annotations, image-level performance would

surely suffer.

After establishing the optimal line width at 11 pixels, we

perform an ablation study comparing our multi-line annotations

to traditional polygon-like bounding box annotations. While

the polygon annotations are slightly superior in IoU on the

validation set, they are inferior when considering image-level

performance. Note that pixel-level performance is still superior

since polygon-like annotations are much denser (∼2.3×). When

accounting for this difference, these results are to be expected.
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FIGURE 7

A schematic overview of the full inference process. The method takes three di�erent data sources as input: panorama images, their geolocation, and

Amsterdam topography. The panoramas are converted to fence heights in pixels through region extraction and fence segmentation. The geolocation

is used to obtain a viewpoint corresponding to the resulting fence predictions. Finally, the results are plotted on the Amsterdam topography.

FIGURE 8

Map of Amsterdam showing the geospatial distribution of the three fence classes: low, middle, and high. The fence heights in pixels corresponding

to these classes are reported in the legend. The general distribution of fence heights (excluding zeros) is shown in the bottom-right corner.

When looking at the test set, multi-line annotations show

an improvement of 6% in IoU, while also being the best

in all image-level metrics. It is worth noting that, while the

image-level metrics may suggest that a multi-line annotation

generalizes better to unseen data, the opposite IoU result in

the validation set could be an indication of a small-sized

dataset, and thus further investigation is needed to make a

final conclusion in terms of viability of multi-line annotation

compared with the polygon-like box annotation method for

real-world applications.

We report the results of different decoder models using a

fixed ResNet-18 encoder in Table 3. All decoders show comparable

performance on the evaluation set, with different models excelling

in different metrics. We do identify U-Net++ as the best performer

since it achieves the best scores in IoU, blob-IoU, and F1-score.

However, performance on the test set is more uniform: 5 out

of 7 models report similar F1-scores. This suggests that any of

the tested decoders will generalize well, with subtle trade-offs in

specific performance. Furthermore, the results suggest that decoder

complexity does not strongly affect model performance, decoders
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TABLE 3 ResNet-18 (11.2 M params) + decoder performance on validation (top) and test (bottom) sets using 11 px wide annotations.

Encoder No. of params IoU Blob-IoU Accuracy (px) Recall (px) Precision (px) F1-score (px)

DeepLabV3 4.7 0.587 0.711 0.90 (0.87) 0.98 (0.75) 0.89 (0.99) 0.94 (0.85)

FPN 1.9 0.585 0.711 0.91 (0.86) 0.96 (0.72) 0.92 (0.99) 0.94 (0.83)

LinkNet 0.5 0.590 0.666 0.86 (0.87) 0.99 (0.74) 0.84 (0.99) 0.91 (0.85)

MA-Net 11.5 0.595 0.699 0.90 (0.85) 0.96 (0.70) 0.91 (0.99) 0.93 (0.82)

PAN 0.2 0.573 0.682 0.90 (0.87) 1.00 (0.75) 0.88 (0.99) 0.93 (0.85)

U-Net 3.2 0.586 0.700 0.90 (0.85) 0.99 (0.71) 0.88 (0.99) 0.93 (0.82)

U-Net++ 4.8 0.601 0.714 0.90 (0.86) 0.96 (0.72) 0.91 (0.99) 0.94 (0.84)

Decoder No. of params IoU Blob-IoU Accuracy (px) Recall (px) Precision (px) F1-score (px)

DeepLabV3 4.7 0.605 0.692 0.93 (0.87) 0.99 (0.71) 0.92 (0.98) 0.96 (0.82)

FPN 1.9 0.633 0.696 0.94 (0.86) 0.96 (0.70) 0.96 (0.98) 0.96 (0.82)

LinkNet 0.5 0.545 0.626 0.87 (0.86) 0.99 (0.70) 0.86 (0.98) 0.92 (0.82)

MA-Net 11.5 0.621 0.690 0.94 (0.85) 0.98 (0.68) 0.95 (0.99) 0.96 (0.80)

PAN 0.2 0.581 0.653 0.91 (0.87) 0.99 (0.71) 0.91 (0.98) 0.95 (0.82)

U-Net 3.2 0.611 0.709 0.93 (0.87) 0.99 (0.73) 0.93 (0.98) 0.96 (0.83)

U-Net++ 4.8 0.617 0.693 0.94 (0.86) 0.98 (0.69) 0.94 (0.98) 0.96 (0.81)

Overall, results indicate that all decoders perform similar on both sets. While more complex decoders do perform better, performance improvements are minimal when considering their

increased complexity. Bold values are best in class/column.

TABLE 4 Encoder + U-Net++ performance on validation (top) and test (bottom) sets using 11 px wide annotations.

Encoder No. of params IoU Blob-IoU Accuracy (px) Recall (px) Precision (px) F1-score (px)

EfficientNet-b0 4 M + 2.6 M 0.628 0.690 0.88 (0.90) 1.00 (0.80) 0.85 (0.99) 0.92 (0.89)

EfficientNet-b1 6.5 M + 2.6 M 0.628 0.719 0.91 (0.90) 0.97 (0.81) 0.91 (0.99) 0.94 (0.89)

EfficientNet-b2 7.7 M + 2.7 M 0.632 0.739 0.90 (0.91) 0.98 (0.82) 0.89 (0.99) 0.94 (0.90)

EfficientNet-b3 10.7 M + 2.9 M 0.637 0.738 0.93 (0.89) 0.98 (0.78) 0.92 (0.99) 0.95 (0.87)

EfficientNet-b4 17.5 M + 3.3 M 0.644 0.764 0.92 (0.89) 0.97 (0.79) 0.92 (0.99) 0.95 (0.88)

EfficientNet-b5 28.3 M + 3.6 M 0.662 0.766 0.91 (0.91) 0.99 (0.82) 0.90 (0.99) 0.94 (0.90)

EfficientNet-b6 40.7 M + 3.9 M 0.628 0.789 0.94 (0.87) 0.96 (0.74) 0.96 (0.99) 0.96 (0.84)

Encoder No. of params IoU Blob-IoU Accuracy (px) Recall (px) Precision (px) F1-score (px)

EfficientNet-b0 4 M + 2.6 M 0.575 0.665 0.87 (0.89) 1.00 (0.77) 0.86 (0.98) 0.92 (0.87)

EfficientNet-b1 6.5 M + 2.6 M 0.636 0.718 0.93 (0.88) 0.98 (0.75) 0.94 (0.98) 0.96 (0.85)

EfficientNet-b2 7.7 M + 2.7 M 0.660 0.731 0.93 (0.90) 0.98 (0.78) 0.93 (0.98) 0.95 (0.87)

EfficientNet-b3 10.7 M + 2.9 M 0.660 0.740 0.93 (0.88) 0.96 (0.73) 0.95 (0.99) 0.95 (0.84)

EfficientNet-b4 17.5 M + 3.3 M 0.668 0.748 0.94 (0.88) 0.96 (0.74) 0.96 (0.98) 0.96 (0.85)

EfficientNet-b5 28.3 M + 3.6 M 0.664 0.769 0.92 (0.91) 0.98 (0.80) 0.92 (0.98) 0.95 (0.88)

EfficientNet-b6 40.7 M + 3.9 M 0.710 0.795 0.96 (0.89) 0.97 (0.76) 0.98 (0.99) 0.97 (0.86)

The results demonstrate that increasing encoder complexity increases model performance. Bold values are best in class/column.

with complexity in the range of 2–11.5 M trainable parameters

perform similarly in all metrics.

Concerning the effects of encoder depth, we test increasingly

larger encoders in combination with a fixed decoder and list

the results in Table 4. We chose U-Net++ since it was a clear

best performer in the decisive scores on the validation set.

Contrary to the decoder experiments, the results show a clear

pattern: a larger encoder increases segmentation and classification

performance. However, there seems to be no clear difference in

the pixel level classification metrics, suggesting no clear benefit to

a larger encoder in that respect. We also observe that label recall

decreases as encoder depth increases. However, here we see that

label precision increases as recall decreases, as opposed to our

baseline experiments.

We cannot subject our inference results shown in Figure 8 to

a quantitative analysis other than the image-level results reported
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in Tables 3, 4 since there is no already existing data available on

the geospatial distribution of fences in Amsterdam. However, the

results match our understanding of the environment and local

knowledge. The bulk of the fencing being concentrated in the

city center is in line with our expectations, as these are the most

populated and visited areas, which would require sufficient fencing.

The areas containing no fences being spread over the outskirts is

also within our expectations, as these are often larger bodies of

water in a less built and thus less visited environment. Furthermore,

the distribution of fence heights, reported in the bottom-right

corner, does not raise any technical concerns with the pipeline

or height estimation since most fences are under a reasonable—

compared to the height of the image—200 pixels in height, with

very few outliers.

7. Discussion

In this section, we first discuss the interpretation of the

resulting feature map. Then we discuss the viability of the proposed

method, focusing on the individual stages and experiments. Finally,

we discuss how our method scales and generalizes to other

transparent objects.

7.1. Feature map interpretation

A big concern with our findings is interpreting them in

an urban context concerning safety and accessibility. While the

results show that fence segmentation performs well in isolation,

it is impossible to mark positive predictions as protected and

safe areas in the current approach. This is because an urban

environment contains many fences that do not necessarily function

as barriers separating public space from open water. Examples

include boat railings and balconies, but also fencing present only

in the background of an image. The proposed method can not

distinguish between fences that function as safety barriers and

fences that serve other purposes without introducing additional

data or post-processing. However, due to the high precision of

all methods, negative predictions (“None”) are very likely to be

true. Locating these areas without fencing—especially in the city

center—is still useful to policymakers, even without any further

indications of safety.

7.2. Limitations

We acknowledge several limitations with the proposed

method and the evaluation and selection process of the different

segmentation models. First, the proposed region extraction

algorithm is overly reliant on correct metadata. During the

manual inspection, we found several consecutive instances of

erroneous metadata. Especially the most crucial metadata for

region extraction, the camera orientation, is sometimes reported

incorrectly. An error at this stage is propagated through the entire

method since the rest of the method is based on the viewpoints

corresponding to the extracted regions being perpendicular to the

direction of the boat. As a result, the predictions will not necessarily

match their estimated locations on the feature map, but will instead

be shifted by the degree of error in the reported camera orientation.

Second, we only test different pixel widths using the initial

baseline. While we can conclude that wider annotations (>3 px)

will increase model performance in general, it is not unlikely that

different models will show peaks at different widths. The encoder

and decoder selection processes suffer from the same limitation.

Again, from the significant performance increases, we can conclude

that in general, a larger encoder will increase model performance.

However, different decoders will reap different benefits from deeper

encoders and vice-versa. Therefore, it cannot be said that the

combination of Efficient Net-b6 andU-Net++ is necessarily the best

segmentation model. Such a conclusion would require testing more

combinations. Finally, in the current implementation, the ranges

of fence classes (low, middle, and high) are determined based on

the distribution of total fence heights. A future improvement of

the method could be achieved by taking into consideration other

parameters, e.g., by considering the distance from the camera to the

canal-side to be able to estimate the actual fence height. In addition,

the impact of less influential hyperparameters such as batch size,

image size, and image augmentation pipeline could be assessed to

enrich the performance evaluation of the applied method.

7.3. Broader application

The application of the proposed method is not necessarily

limited to fence detection, multiple objects that could be detected

using street view images fit the definition of a transparent

object, such as windows. And, despite the discussed limitations,

our method does achieve seemingly accurate transparent feature

mapping. Since the pipeline relies mostly on deep learning,

the method is highly scalable and generalizable. Even more so,

because we use an abundant data source in street view images as

input. Furthermore, the only dependency that determines what

transparent object is detected, is the annotated data, for which

we showed that annotation restricted to the tangible parts of

a transparent object generalizes better while remaining efficient

due to the usage of multi-lines. A strategy that would easily fit

transparent objects similar to fences. In the end, we only used 1,700

training samples to achieve a 0.79 test IoU. An interesting future

research direction would be to study method performance when

using even less training data. Based on these considerations, we

highly recommend segmentation for transparent feature mapping,

due to its ability to learn precise annotations effectively with

minimal training requirements.

8. Conclusion

This paper presents an example of urban feature mapping in

which the specific objective is to recognize fences next to open

water in the city of Amsterdam. We examine a new take on

the transparent object detection paradigm, by annotating only

tangible parts of transparent objects using multi-lines. This more

precise style of annotation generalizes better to unseen data when

compared to traditional methods. By running and evaluating

several state-of-the-art segmentation models on 22K preprocessed
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panoramas, we show that fence detection in isolation is feasible

on an image- and pixel-level, achieving state-of-the-art results.

Mapping the fence heights on the city of Amsterdam produces

a feature map that aligns with our local knowledge. However,

directly interpreting these results in urban context concerning

safety without additional post-processing is not feasible, and would

require further work.
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