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Background: Circulating small RNAs (smRNAs) originate from diverse tissues 
and organs. Previous studies investigating smRNAs as potential biomarkers for 
Parkinson’s disease (PD) have yielded inconsistent results. We investigated whether 
smRNA profiles from neuronally-enriched serum exosomes and microvesicles 
are altered in PD patients and discriminate PD subjects from controls.

Methods: Demographic, clinical, and serum samples were obtained from 60 PD 
subjects and 40 age- and sex-matched controls. Exosomes and microvesicles 
were extracted and isolated using a validated neuronal membrane marker 
(CD171). Sequencing and bioinformatics analyses were used to identify 
differentially expressed smRNAs in PD and control samples. SmRNAs also were 
tested for association with clinical metrics. Logistic regression and random forest 
classification models evaluated the discriminative value of the smRNAs.

Results: In serum CD171 enriched exosomes and microvesicles, a panel of 29 
smRNAs was expressed differentially between PD and controls (false discovery rate 
(FDR) < 0.05). Among the smRNAs, 23 were upregulated and 6 were downregulated 
in PD patients. Pathway analysis revealed links to cellular proliferation regulation 
and signaling. Least absolute shrinkage and selection operator adjusted for the 
multicollinearity of these smRNAs and association tests to clinical parameters 
via linear regression did not yield significant results. Univariate logistic regression 
models showed that four smRNAs achieved an AUC ≥ 0.74 to discriminate PD 
subjects from controls. The random forest model had an AUC of 0.942 for the 29 
smRNA panel.

Conclusion: CD171-enriched exosomes and microvesicles contain the differential 
expression of smRNAs between PD and controls. Future studies are warranted to 
follow up on the findings and understand the scientific and clinical relevance.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder 
characterized clinically by motor dysfunction (Fearnley and Lees, 
1991) and pathologically by dopaminergic cell loss and Lewy 
inclusions in the substantia nigra (Fearnley and Lees, 1991). Despite 
effective symptomatic treatment, patients continue to experience 
progressive disability. There is a need to discover stable biomarkers to 
help diagnose disease and capture pathophysiological changes in 
live patients.

Exosomes and microvesicles are nanovesicles released into the 
extracellular environment by most cell types for intercellular 
communication (Raposo and Stoorvogel, 2013), and their molecular 
cargo is protected from enzymatic breakdown (Banack et al., 2020). 
The size of exosomes ranges from 40–200 nm, and the exosomes 
contain proteins and nucleic acids secreted from host cells to the 
surrounding or distant body parts (Trams et al., 1981; Yuan and Li, 
2019; Banack et al., 2020). Exosome isolation methods often include 
microvesicles that are between 200 nm and 1,000 nm (Raposo and 
Stoorvogel, 2013; Cao et al., 2017; Hill, 2019). Those microvesicles can 
be generated by −80°C storage that induces exosome fusion that yields 
vesicles >200 nm (Gelibter et  al., 2022). Nucleic acids found in 
exosomes and microvesicles include long noncoding RNA, messenger 
RNA, micro RNA, ribosomal RNA, ribosomal pseudogenes, and 
genomic DNA (Srivastava et al., 2015; Liu et al., 2020; Sproviero et al., 
2021). They can cross the blood–brain barrier (Alvarez-Erviti et al., 
2011) into peripheral blood, thus carrying molecular markers 
originating from the central nervous system (Kalluri and LeBleu, 
2020; Serpente et al., 2020). Small RNAs (smRNAs), including micro 
RNAs (miRNAs) and piwi-interacting RNAs (piRNAs), have been 
isolated from exosomes and microvesicles. SmRNAs (21–26 
nucleotides) can regulate post-transcriptional gene expression via 
silencing through homologous sequence interactions (Finnegan and 
Matzke, 2003). Thus, exosomes and microvesicles contain smRNAs 
and serve as reservoirs rich with disease-related information to inform 
pathophysiology and potential biomarker development.

Exosomes and microvesicles enable the transmission of 
biomolecules between cells, thus, they may play a role in spreading or 
modulating disease processes (Asai et al., 2015; D’Anca et al., 2019; 
Jiang et  al., 2019). Consistent with this idea, misfolded proteins 
associated with neurodegenerative diseases, such as α-synuclein 
(α-syn), tau, and amyloid β (Aβ), can be  transported through 
exosomes and microvesicles (Asai et  al., 2015; Jiang et  al., 2019). 
Additionally, miR-125, miR-210, miR-450b, and miR-669b from 
exosomes and microvesicles promote signaling pathways triggering 
manganese-dependent α-syn overexpression and deposition, the 
protein characteristic of PD pathogenesis (Danzer et  al., 2012; 
Harischandra et  al., 2018). Interestingly, exosomal miRNA-7 also 
reduces the expression of α-syn (Junn et al., 2009). Exosomes and 
microvesicles can enrich and stabilize miRNAs by preventing 
degradation by nucleases widely present in body fluids (Chen et al., 
2012; Wang and Zhang, 2020). Compared with the direct detection of 
biomarkers such as DJ-1, oxDJ-1, α-syn, and miRNA in the CSF or 
blood, exosome and microvesicle detection of these PD-related 
biomarkers has been reported to be more stable and reliable, and a 
better reflection of the PD disease state (Hartfield et al., 2012; Saito, 
2017). Differentially expressed exosomal miRNAs effectively predicted 
the PD phenotype via univariate linear regression models (Cao et al., 
2017). In another study, expression levels of serum exosomal miRNAs 

were increased significantly in PD patients and multivariate linear 
regression models predicted PD status better than univariate 
regression models (Barbagallo et al., 2020). Together, these studies 
suggest that these nucleic acids may play a major role in PD 
pathogenesis and potentially be biological markers of the disease.

Although past studies have attempted to identify circulating 
smRNAs as biomarkers of PD (Li and Le, 2020; van den Berg et al., 
2020; Nies et al., 2021), the findings have been inconsistent (Li and Le, 
2020). This might result from differences in smRNA expression 
profiling according to sample types such as whole blood (Vaz et al., 
2010), cell-free serum, or plasma (Tsujiura et al., 2010; Sheinerman 
et al., 2012). It is challenging to differentiate disease-specific smRNAs 
since they are derived from any organ in contact with blood (Cheng 
et  al., 2014). CD171 immunocapture of neuronal exosomes and 
microvesicles in blood plasma previously detected differences in α-syn 
[a hallmark of PD (Spillantini et al., 1997)] levels between PD and 
controls (Niu et al., 2020). The specific capture of CD171 exosomes 
and microvesicles from blood serum has been demonstrated for 
neurocognitive diseases such as Alzheimer’s (Fiandaca et al., 2015; 
Pace et al., 2019; Serpente et al., 2020), opiate addiction (Fiandaca 
et al., 2015; Kumar et al., 2021), and amyotrophic lateral sclerosis 
(Banack et al., 2020). Recent literature demonstrated that increased 
neuronal exosomes and microvesicles from saliva had been detected 
in PD patients via CD171 immunoprecipitation capture (Rani et al., 
2019). No study, however, has examined smRNA cargo in neuronal 
exosomes and microvesicles in blood serum from PD patients. In this 
study, we applied a previously published method to amplify smRNAs 
from neuronal-origin exosomes and microvesicles in serum using a 
highly expressed neuronal marker protein, CD171 (Shi et al., 2014; 
Banack et al., 2020; Jiang C. et al., 2020) (also known as L1CAM). 
We hypothesized that a panel of captured exosomal smRNAs would 
differ significantly between PD and control participants and 
discriminate PD subjects from controls.

2. Materials and methods

2.1. Subjects

We obtained demographic and clinical data from 40 control and 
60 PD subjects matched for age and sex who participated in the 
National Institute of Neurological Disorders and Stroke PD 
Biomarkers Program (NINDS PDBP). According to published clinical 
criteria, movement disorder specialists confirmed PD diagnosis 
(Jamalabadi et al., 2016). All subjects were free of major/unstable 
medical issues or neurological conditions other than PD. All subjects 
gave written informed consent. The study was conducted following 
the Declaration of Helsinki and reviewed and approved by the Penn 
State Hershey Institutional Review Board.

Demographic data were collected, including age, sex, education, 
smoking history, antiparkinsonian drug treatment, and clinical 
parameters. Education and smoking data were included because of 
their suggested protective roles in PD (Gorell et al., 1999; Kotagal 
et al., 2015). PD duration was obtained from the subject’s history, 
with onset defined as the first diagnosis by a medical professional. 
Motor symptoms were assessed using the Movement Disorders 
Society Unified PD Rating Scale motor subscale (MDS-UPDRS-III) 
and disease stage by Hoehn and Yahr (1967). Depression was 
evaluated using the Hamilton Depression Rating Scale (HDRS) 
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(Hamilton, 1960) and cognition by the Montreal Cognitive 
Assessment (MoCA) (Nasreddine et  al., 2005). The University of 
Pennsylvania Smell Identification Test (UPSIT) (Doty et al., 1984) 
assessed olfactory function. These clinical tests describing PD also 
reaffirm the diagnosis of the PD participants. Three pairs of 
discordant monozygotic twins (one has PD but his/her monozygotic 
sibling does not) were included in the study.

2.2. Blood sample collection and serum 
preparation

Blood samples were collected from subjects after an 8–12 h 
overnight fast. Within 30–60 min of the blood draw, samples were 
centrifuged at 1,500 x g for 15 min at 4°C. One mL aliquots of the 
supernatant were pipetted into cryovials on ice and then stored at 
−80°C. Samples were thawed and 100 μL was pipetted into a separate 
cryovial tube for the following assays.

For the study, we used blood serum over plasma to reduce the 
presence of proteins, lipids, and sugars in the final solution. Previous 
research has shown that clotting factors in plasma can contribute to 
the variability of exosome and microvesicle concentration (Muller 
et al., 2014).

2.3. Collection of neuronal origin 
exosomes and microvesicles

The exosomes and microvesicles were purified from the blood 
samples to separate free circulating smRNAs from smRNAs contained 
within the vesicles of interest (Otake et  al., 2019). ExoQuick™ 
Exosome Precipitation Solution kit (Systems Biosciences) was used to 
extract exosomes and microvesicles from the samples (Figure 1A). 
Serum (100 μL) was centrifuged at 3,000 × g for 15 min at room 
temperature to remove cells and cellular debris. The supernatant was 
transferred to a sterile vessel and 25.2 μL of ExoQuick™ Exosome 
Precipitation Solution was added, refrigerated at 4°C for 30 min, and 
centrifuged at 1,500 g for 30 min at 4°C. The supernatant was aspirated, 
leaving the exosomes and microvesicles as a white pellet. Another 
centrifugation at 1,500 × g for 5 min was done to remove traces of 
ExoQuick™ by aspiration. The exosome pellet was resuspended in 
100 μL phosphate-buffered saline.

The resuspended pellets were analyzed to confirm that the purified 
exosomes and microvesicles had the expected size and concentration 
measurements. To measure concentration and size, exosomes and 
microvesicles from 3 control and 3 PD subjects were characterized 
using Transmission Electron Microscopy (TEM) and NanoSight 
Tracking Analysis. The TEM measurements were used to confirm that 
the vesicles in the buffer had an expected size of 40–200 nm 
(Tomlinson et al., 2015) and microvesicles ranging from 200–1,000 nm. 
Only three from each group were randomly selected due to time and 
cost. Our result aligns with the expected range (100–400 nm) of the 
vesicle size distribution via ExoQuick™ (Caradec et al., 2014).

Exosomes and microvesicles with neuronal origins were extracted 
from the solution by capturing exosomes and microvesicles expressing 
the neuron-specific marker, CD171 [L1 cell adhesion molecule 
(Fiandaca et al., 2015)]. A biotinylated anti-human CD171 antibody 
(eBio5G3, Affymetrix) was used to bind vesicles expressing CD171. 

Then streptavidin-conjugated magnetic beads (#10608D, Thermo 
Fisher Scientific) were added to the solution to bind to the CD171 
antibody. Neuronal exosomes and microvesicles bound to anti-CD171 
and streptavidin beads were pulled down magnetically. The captured 
neuronally derived exosomes and microvesicles were lysed with 
IGEPAL® CA-630 (Sigma-Aldrich) to free the smRNAs into solution; 
IGEPAL® was added to 1% of the final concentration. These exosomal 
neuronally derived smRNAs were used for sequencing 
library preparation.

2.4. SmRNA-sequencing (RNA-Seq)

SmRNA sequencing libraries were generated using the CleanTag® 
Small RNA Library Prep Kit (TriLink Biotechnologies) for 
downstream smRNA expression analysis (Tomlinson et  al., 2015; 
Olivares et  al., 2020). Individually barcoded libraries were mixed 
equimolarly and subjected to sequencing with technical duplicates on 
an Illumina NovaSeq  6000. We  used Pearson’s product–moment 
correlation to evaluate technical replicates to indicate that the read 
counts between each sequencing run on the NovaSeq 6000 run were 
consistent (Otake et al., 2019; Supplementary Figure S1).

2.5. Quantity filtering and read alignment 
of smRNA sequencing reads

Before expression analysis, we quality-filtered and aligned the 
smRNA sequencing reads. FASTX-Toolkit (Gordon and Hannon, 
2010) was used for quality filtering and adapter clipping from the raw 
sequences. Oasis 2.0 suite was then used to align and count raw reads 
of all expressed smRNAs (Rahman et al., 2018). Subjects whose total 
read count fell into the lowest quartile of all read counts were removed. 
The first quartile (5,045 reads) was used as a cut-off threshold. This 
process removed 27 samples, 15 PD and 12 controls. The final dataset 
consisted of 28 controls and 45 PD cases. The PD samples were filtered 
to include smRNAs with at least five non-zero reads. We used the 
Degust web-based RNA sequencing data visualization tool to create 
an expression matrix and multidimensional scaling (MDS) plot.1 The 
resulting expression data matrix contained 108 smRNAs and n = 73 
subjects visualized into an MDS plot (Powell et al., 2019).

2.6. Differential smRNA expression analysis 
and smRNA clinical correlations

Differential expression analysis was performed to detect how PD 
patients’ neuronal exosomal smRNAs may be  perturbed by the 
disease. We  also explored how anti-PD drugs can affect smRNA 
expression in PD participants. The analysis used quasi-likelihood 
functionality in edgeR (Chen et al., 2014), available in the Degust tool 
(Powell et al., 2019) to identify differences between PD and control 
cases. These differentially expressed smRNAs were clustered according 
to log2 of counts per read (CPM) and plotted in a heatmap using the 

1 https://github.com/drpowell/degust
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ComplexHeatmap R package (Gu, 2021). p-values were controlled for 
multiple comparisons using false discovery rate (FDR); FDR < 0.05 
was considered significant.

We tested the association between smRNA expression and clinical 
parameters (i.e., age at visit, disease duration, smoking, Hoehn and Yahr 
Stage, HDRS, total MDS-UPDRS-III, MoCA, and education) using least 
absolute shrinkage and selection operator (LASSO) followed by linear 
regression. The multicollinearity of smRNAs (Barbagallo et al., 2020; 
Quintanilha et al., 2021) was adjusted using feature selection via LASSO 
[Scikit-learn (Pedregosa et al., 2011), Python package] for each clinical 
parameter to reduce false positives and the number of statistical tests. For 
each clinical parameter, the optimal LASSO penalty value (lambda) was 
determined with 5-fold cross-validation with a 60 and 40% random split 
between training and testing; this aided in avoiding a lambda value from 
an overfit linear model. The set of smRNA predictor variables that did not 
have their coefficients reduced to 0 by LASSO was selected for each 
clinical outcome. This set of smRNAs for each outcome was tested for 
association with linear regression and multiple test corrected with 
Bonferroni adjustment.

2.7. Detection of expected PD marker, 
miR-26b-5p

Quantitative real-time polymerase chain reaction (qRT-PCR) was 
performed on one of the differentially expressed smRNAs to confirm 

that the RNA-Seq results contained an expected PD marker. The 
miR-26b-5p is an important marker strongly discriminating between 
PD and control groups and has been patented for PD diagnosis (Keller 
et al., 2015; Mushtaq et al., 2016; Fyfe, 2020). This assay used five PD 
and five control subjects selected randomly. The smRNA Illumina 
libraries were used as sample input, and qRT-PCR conditions were: 
95°C for 10 min, 40 cycles of 15 s of denaturation at 95°C, and 30 s of 
annealing/elongation at 55°C using a QuantStudio 12 K Flex Real-
Time PCR System (Thermo Fisher Scientific). The forward primer 
sequence was TCAAGTAATTCAGGATAGGT, and the reverse 
primer sequence was GAGTTCCTTGGCACCCGA. Mean fold gene 
expression was calculated with the 2-ΔCT method (Livak and 
Schmittgen, 2001).

2.8. Logistic regression and random forest 
classification of PD using a smRNA panel as 
predictors

Logistic regression (LR) and random forest (RF) classification 
models were created to identify smRNAs predictive of the PD 
phenotype. The LR and RF classification methods used the smRNA 
read counts as filtered, aligned, and normalized predictors. For the 
LR and RF models, 60% of the samples were selected randomly for 
training and 40% for testing. Univariate LR models were created 
with the glm2 package (EBSCOhost, 2022) for R to determine which 

FIGURE 1

Validation of exosomes isolated from serum sample via bioanalyzer, transmission electron microscopy (TEM), and nanoparticle Tracking Analysis (NTA). 
(A) Schematic of the study design. (B) Morphological characterization of exosomes isolated from serum samples by transmission electron microscopy. 
Bar, 200 nm. (C) Bioanalyzer report of smRNA fragment length distribution. (D) Graph generated by NanoSight showing concentration and average 
size of the vesicles after ExoQuick precipitation showing exosomes collected in the 100–400 nm range.
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smRNA reads predicted PD. Given this analysis’s small sample size, 
including non-prognostic covariates can decrease power and inflate 
false-positive rates (Raab et al., 2000; Bursac et al., 2008; Kahan et al., 
2014). We considered demographic variables (age, sex, education, 
and smoking) as covariates if they met the following criteria: (Raab 
et al., 2000; Bursac et al., 2008; Kahan et al., 2014) (1) unbalanced 
values between groups and (2) not significantly related to the PD 
outcome with univariate association tests. The pROC package (Robin 
et al., 2011) for R was used to determine the area under the receiver 
operating characteristic curves (AUC) for this smRNA panel in the 
LR and RF models; RF-based classification was performed with 
5-fold cross-validation using the randomForest R package (Liaw and 
Wiener, 2002). The RF model used 29 smRNA predictors that were 
significantly differentially expressed. The importance of the 
predictors relative to each other in the RF model was determined by 
calculating the Mean Decrease in Gini to reflect how well a variable 
discriminated PD and control subjects: a larger MeanDecreaseGini 
value suggests the variable plays a greater role in the classification 
process (Louppe et al., 2013).

2.9. Database search for smRNA function 
and regulation pathways

Pathway analysis describes how these smRNAs function in the 
context of genes and proteins. The statistically significant differentially 
expressed smRNAs were used as input for pathway analysis. The 
functional regulatory networks were evaluated using an Ingenuity 
Pathway Analysis (Krämer et al., 2014) (IPA) (QIAGEN Inc.) with a 
miRNA Target Filter.

3. Results

3.1. Demographic and clinical 
characteristics of study participants

Demographic and clinical characteristics were tested for 
statistically significant differences between the PD and control 
participants to identify covariates to include in the downstream 
differential expression analysis. There was no significant difference 
in age (p = 0.90), sex distribution (p = 0.70), education level 
(p = 0.16), or smoking history (p = 0.75) between the groups 
(Supplementary Table S1). Given that these variables were 
balanced, they did not meet the criteria to be included as covariates. 
PD subjects had higher MDS-UPDRS-III (p < 0.0001) and 
Hamilton depression scores (p < 0.0001) than controls and lower 
MoCA (p = 0.0003) and UPSIT scores (p < 0.0001), all of which 
survived Bonferroni correction (p < 0.0065) for the eight 
demographic and clinical characteristics tests. Hoehn and Yahr 
scale scores were higher in PD subjects than in control subjects 
(p = 0.0001). Scores ranged from 1–5 and had a mean of 2.2 for PD 
participants. Most PD subjects (n = 36) had a disease duration of 
<10 years (Table 1). Among the PD patient samples that passed 
smRNA sequencing read quality control (n = 46), 42 were on 
antiparkinsonian medications and four were drug-naive.

3.2. Characterization of isolated serum 
exosomes and microvesicles by NanoSight

Vesicle size and concentration were used to confirm the presence 
of exosomes and microvesicles and to detect vesicle size differences 
between groups. The average sample concentration was 0.173 vesicles 
per μL of serum and the vesicle size was 100–400 ± 5 nm 
(Figures 1B–D). The average vesicle size was 173 nm, and the size 
ranges are aligned with expected exosome (40–200 nm) and 
microvesicle (200–1,000 nm) sizes. There was no significant difference 
(p > 0.05) in vesicle concentration or size between PD and controls. 
Insignificant differences in vesicle sizes indicate that the exosomes and 
microvesicles have similar morphology between PD and 
control groups.

3.3. SmRNA expression profile

The quality filtered and aligned reads were analyzed to detect 
clustering separation between groups, testing confounding effects, 
and differential expression data. We used multidimensional scaling 
(MDS) as an exploratory analysis tool to identify patterns among 
the aligned reads. The MDS plot of filtered smRNA reads revealed 
differences in clustering separation between PD and control 
subjects (Figure  2A). There was no significant clustering in the 
hierarchical clustering analyses of smRNA reads regarding age, sex, 
education, or smoking history (Figure  2B). However, there was 

TABLE 1 Demographic and clinical characteristics of study participants.

Control 
(n = 40)

PD (n = 60) P value

Age (years; Mean ± SD) 66.3 ± 10.9 66.6 ± 9.9 0.90

Sex (Male/Female) 20/20 33/27 0.77

Education 17.2 ± 2.9 16.4 ± 3.1 0.16

Smoking (Yes/No/*) 10/30/0 18/40/2 0.75

MDS-UPDRS Score-III 5.3 ± 5.6 31.0 ± 23.6 <0.0001

Hamilton Depression 

Scale
2.3 ± 3.0 7.2 ± 5.2 <0.0001

MoCA 25.7 ± 2.42 23.0 ± 4.5 0.0003

UPSIT 31.7 ± 6.26 20.1 ± 8.13 <0.0001

Hoehn and Yahr Scale 0.38 ± 0.90 2.2 ± 1.16 <0.0001

Antiparkinsonian 

drugs (Yes/No)

Whole cohort NA 56/4 NA

After sequencing read 

quality control
NA 42/4 >0.7

PD Duration (Years) <10 years 10–15 years >15 years

Number of PD Patients 36 11 13

Data represent the mean ± standard deviation unless otherwise indicated. *Indicates data 
were not available for subjects. PD, Parkinson’s disease; MDS-UPDRS-III, Movement 
Disorders Society Unified PD Rating Scale motor subscore; MoCA, Montreal Cognitive 
Assessment; UPSIT, University of Pennsylvania Smell Identification Test. NA, Not applicable.
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hierarchical clustering among the PD samples and the duration of 
PD, MDS-UPDRS-III, and MoCA (Figure 2B). After FDR multiple 
test correction, differential expression analysis between PD and 
control samples resulted in 29 smRNAs being significant for 
differential expression (22 up- and 7 down-regulated in PD subjects, 
FDR < 0.05) (Table  2). The unsupervised hierarchical clustering 
analysis of these 29 smRNAs grouped the majority of the PD 
samples to the left and control samples clustered predominately on 
the right of the heatmap (Figure 2B). Of the 29 smRNAs, there was 
no differential expression between those on or never on 
antiparkinsonian medications (p > 0.7) (Supplementary Table S1).

3.4. Detection of a known PD marker, 
hsa-miR-26b-5p, via qRT-PCR

We used a known differentially expressed PD marker (Keller et al., 
2015; Mushtaq et al., 2016; Fyfe, 2020), hsa-miR-26b-5p, as a positive 
control when detecting differentially expressed smRNAs. The 
qRT-PCR detected an hsa-miR-26b-5p expression significantly higher 
in PD than in control subjects (p < 0.001) (Figure 2C). This result 
indicated that the sequencing runs could capture smRNA signatures 
that differentiate PD and control patients.

3.5. Association of smRNAs with clinical 
parameters

LASSO was used to select the clinical parameters for association 
tests because of the expected multicollinearity of smRNAs. LASSO 
selected among the 29 differentially expressed smRNAs those to 
include in the regression association analysis for each clinical outcome 
(Table 3). Age at visit, disease duration, MoCA, total MDS-UPDRS, 
and education (years) outcomes were not tested for association 
because LASSO reduced the coefficients of the 29 smRNAs to zero for 
each outcome; this suggested these clinical parameters are affected by 
the multicollinearity of the 29 differentially expressed smRNAs. 
Hoehn and Yahr stage outcome included hsa-miR-21-5p as a predictor 
in the regression but did not yield statistically significant results 
(p = 0.227). Hamilton Depression Scale included 7 smRNAs 
[RNA5SP382 (p =  0.891), hsa-miR-181a-5p (p =  0. 840), hsa_
piR_016658 (p = 0.129), hsa-miR-25-3p (p = 0.624), hsa-miR-191-5p 
(p =  0.139), hsa-miR-21-5p (p =  0.923), and hsa_piR_005019 
(p =  0.156)] in the regression model. Hoehn and Yahr Stage and 
Hamilton Depression Scale were not associated significantly with the 
smRNAs having coefficients greater than zero [Bonferroni adjusted 
(α = 0.05) significance threshold (7.143 × 10−3) for 8 tests].

3.6. Assessing predictive value with logistic 
regression and random forest analyses

We used LR and RF analyses to identify which of the 29 
statistically significant differentially expressed smRNA have predictive 
value for the PD phenotype. The AUC values represent performance 
on the test set. An AUC >0.5 suggests the model discriminates better 
between PD and control subjects than random chance. Univariate LR 
revealed an AUC of the ROC ≥0.74 for the following smRNAs: 

hsa-miR-6,073, hsa_piR_016658, hsa_piR_019825, and hsa-miR-
21-5p (Table 4). Seven smRNAs (hsa_piR_020498, hsa_piR_007362, 
hsa_piR_017754, RNA5SP485, hsa_piR_022606, RNA5-8SP4, and 
hsa_piR_005019) each had an AUC < 0.5; these were not suitable for 
predicting PD and indicated small expression differences between 
control and PD subjects (Jamalabadi et  al., 2016). The RF model 
trained on the 29 smRNAs generated an AUC of 0.942. The top 10 
smRNAs in descending order of Gini coefficients were: miR_6,073, 
hsa_piR_019825, hsa_piR_004153, hsa.miR.21.5p, hsa_piR_004150, 
hsa_piR_016658, hsa_piR_005019, hsa.miR.26b.5p, hsa_piR_017754, 
and hsa_piR_015068 (Figure  3). The larger the MeanDecraseGini 
indicates that the variables are important in discriminating between 
the PD and control groups.

3.7. Targets and roles of miRNA

The neuronally derived exosomal smRNAs were the only high 
throughput biomolecular data we measured, but pathway analysis aids 
in finding known associations between the smRNAs and other 
biological domains. The IPA functional network analysis used the 29 
differentially expressed smRNA to build a network of genes and 
proteins that contextualize the function of the smRNAs. From the 29 
differentially expressed smRNAs, the IPA network analysis displayed 
an association network (Figure 4) of smRNA targets that included 
VNSL1 (calcium-mediated signaling), TP53 (RNA-protein covalent 
cross-linking), DDIT (role in neuronal cell death), and HTR1-A 
(regulation of dopamine) (Table 5).

4. Discussion

Our study applied a previous method isolating neuronally 
enriched microvesicle miRNAs using CD171 to serum samples of 
control and PD participants. Consistent with our hypotheses, 
we  discovered a panel of smRNA expressions upregulated and 
downregulated in PD compared to control subjects. Four individual 
smRNAs in an LR model demonstrated a modest ability to 
discriminate between control and PD subjects (AUC ≥ 0.74). The 4 LR 
models showed that simple univariate models have some predictive 
ability and their performance serves as a baseline. The RF model of 29 
smRNAs had high accuracy in distinguishing groups (AUC = 0.942). 
The identified smRNAs were involved in cell proliferation and DNA 
repair. The current findings suggest that neuronally-enriched 
microvesicle smRNAs may be identified in PD subjects and mark the 
disease. Further studies are warranted to validate these findings and 
explore pathological insights.

The predictive qualities of exosomal/microvesicle miRNAs for 
PD have been explored. miRNA was isolated from the serum of 30 
PD patients and was compared to 30 healthy controls to test for the 
differential expression of ex-miRNAs in PD patients (Barbagallo 
et  al., 2020). The expression levels of let-7d, miR-22* (asterisk 
indicates anti-sense miR), miR-23a, miR-24, miR-142-3p, and 
miR-222 were significantly increased in the serum of PD patients. In 
addition, receiver operating characteristic (ROC) curve analysis 
revealed that these six ex-miRNAs are ideal biomarkers to predict 
the PD phenotype. Another differential expression study compared 
the levels of 24 miRNAs from the serum of 109 PD patients and 40 
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FIGURE 2

Altered smRNAs profiles in neuronally-enriched serum-derived exosomes of PD by RNA-Seq Analysis. (A) MDS analyzes the smRNA read counts from 
PD and control subjects. (B) Unsupervised hierarchical clustering of the 29 differentially expressed smRNAs (rows) for the 45 PD and 28 control 
samples (columns). The sample ID and the top column in the annotation bars indicating the disease state of each subject in a color code (grey for 
controls and black for PD cases) are shown at the top of the plot. The other annotation bars illustrate age, sex, education, smoking status, disease 
stages, disease duration, MDS-UPDRS, MoCA, twin pairs, and the expression level of smRNAs across all samples. Not available values are shown in 
white. (C) qRT-PCR was used to confirm the level of miR-26b-5p. Relative levels of one miRNA (miR-26b-5p) in the serum of PD cases and controls 
were determined by qRT-PCR. Each point represents the mean of triplicate samples. ***p < 0.001.
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healthy controls (Cao et al., 2017). The study showed that the levels 
of miR-24 (AUC, 0.908) and miR-195 (AUC, 0.697) were increased, 
and miR-19b (AUC, 0.753) was decreased in PD patients, indicating 
the possible use of miRNA as a novel strategy to ascertain PD status. 
Although the miRNAs from serum exosomes and microvesicles can 
be indicators of PD, the cellular origins of these vesicles and their 
respective miRNA cargo concerning PD are unknown. Several 
studies also have analyzed smRNA levels in body fluids (Margis 
et al., 2011; Mushtaq et al., 2016) (serum, plasma, and CSF) when 
comparing PD and healthy control patients, but the findings have 
been inconsistent (Li and Le, 2020). The discrepancies may involve 
differences in smRNA stability in samples (Blondal et al., 2013), 
analysis platforms (Roser et al., 2018), biofluids used (McDonald 
et al., 2011; Leggio et al., 2017), study populations (Leggio et al., 
2017), and unknown cell type origins of smRNA.

To our knowledge, this is the first study analyzing the expression 
of neuronally-enriched smRNAs in serum samples from PD patients 
using next-generation sequencing, qRT-PCR validation, and 
evaluating the predictive value of the detected microvesicle smRNAs 
with LR and RF classifiers. Their involvement in regulating PD has 
been discussed (Filatova, 2012; Leggio et al., 2017). We observed that 
29 neuronally-enriched exosomal smRNAs were expressed 
differentially between PD and control subjects; four of the 29 smRNAs 
align with previous findings. The smRNAs we identified have been 
implicated as circulating biomarkers in PD such as hsa-miR-26b-5p, 
hsa-miR-181a-5p, hsa-miR-221-3p, and miR-21-5p. In substantia 
nigra tissue, hsa-miR-26b-5p is upregulated in PD patients and 
neuronally derived exosomes and microvesicles from PD patients 
(Martinez and Peplow, 2017). Hsa-miR-26b-5p is involved in cell 
proliferation and apoptosis regulation for multiple myeloma, 

TABLE 2 Target genes and associated regulatory networks for differentially expressed miRNAs between PD and controls.

Upregulated in PD Log2 (Fold-Change) FDR Average expression P-value

hsa-miR-26b-5p 9.804 5.74E-7 12.048 8.16E-9

RNA5SP382 7.874 5.74E-7 9.955 1.59E-8

hsa_piR_009295 6.851 9.25E-7 9.451 3.42E-8

hsa_piR_020498 5.993 7.14E-5 9.634 4.63E-6

hsa_piR_020492 4.851 1.804 9.979 2.84E-4

hsa-miR-181a-5p 4.758 7.64E-3 13.196 1.42E-3

hsa_piR_016658 4.702 2.70E-3 14.593 4.51E-4

hsa-miR-25-3p 4.119 2.01E-2 11.630 4.37E-4

hsa-miR-191-5p 3.987 2.36E-2 12.683 5.68E-3

hsa_piR_004153 3.718 5.65E-4 9.442 7.85E-5

p-hsa-miR-330 3.550 4.36E-2 12.791 1.17E-2

hsa-miR-6,073 3.464 1.06E-4 8.159 9.83E-6

hsa-miR-221-3p 3.406 2.36E-2 9.901 5.51E-3

hsa-miR-21-5p 3.177 2.79E-2 14.211 6.99E-3

RNA5SP259_RNA5SP25 3.175 1.42E-6 6.693 6.56E-8

hsa_piR_004150 2.898 2.99E-4 7.369 3.53E-5

RNU6-1300P 2.823 2.99E-4 6.928 3.84E-5

hsa_piR_019825 2.731 3.01E-3 9.155 5.3E-4

hsa_piR_015068 2.400 1.70E-3 7.000 2.52E-4

RNA5-8SP6 2.248 2.99E-4 6.591 3.88E-5

hsa_piR_004152 1.981 2.4E-4 6.493 2.44E-5

RNA5SP263_RNA5SP26 1.893 2.01E-2 6.531 4.46E-3

Down-regulated in 
PD Log2 (Fold-Change) FDR Average Expression P-value

hsa_piR_005019 −7.375 5.03E-6 12.808 2.80E-7

hsa_piR_017754 −5.959 7.37E-5 8.617 5.46E-6

RNA5-8SP4 −3.011 5.74E-7 6.665 1.46E-8

hsa_piR_002468 −2.723 1.80E-2 9.047 3.67E-3

RNA5SP485 −2.656 8.48E-5 6.785 7.06E-6

hsa_piR_022606 −1.575 8.74E-3 6.443 1.7E-3

hsa_piR_007362 −1.169 4.37E-2 6.470 1.15E-2
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hepatocellular carcinoma, and subarachnoid hemorrhage phenotypes 
(Wang et al., 2016; Jia et al., 2018; Liu et al., 2021). Hsa-miR-181a-5p 
[midbrain neurons (Hegarty et al., 2018)] and hsa-miR-221-3p [blood 
plasma (Schulz et al., 2019; Chen et al., 2021)] are upregulated in PD 
patients. Previous studies suggest these smRNAs are dysregulated in 
PD and affect neuronal proliferation and apoptosis (Hamada et al., 
2012; Hegarty et  al., 2018; Jia et  al., 2018). In agreement with a 
previous study in peripheral blood mononuclear cells from PD 
patients (Fu et al., 2017), miR-21-5p was upregulated in our study, 
which suggests an autoimmune response in PD. The exosomes and 

microvesicles captured in this study likely originated from neurons 
and may suggest that perturbations in the smRNA cargo reflect 
changes in neurons linked to the PD phenotype. Our finding indicates 
that the neuronally derived exosomes and microvesicles from blood 
serum carry known PD smRNAs previously detected directly from 
brain tissue and blood plasma.

Our smRNA differential expression analysis was consistent with 
some previous findings (Fu et al., 2017) but differed from other studies 
(Hamada et al., 2012; Fu et al., 2017). For example, previous studies 
reported that miR-221-3p and miR-181a-5p were downregulated in 
PD serum (Margis et al., 2011; Hamada et al., 2012; Ding et al., 2016). 
In contrast, we  found that miR-221-3p and miR-181a- 5p were 
upregulated in PD cases versus controls. These discrepant results may 
have occurred due to differences in miRNA extraction methods 
(whole blood vs. serum). Previous studies have shown that smRNAs 
from whole blood exist outside exosomes and microvesicles (Ding 
et al., 2016) and smRNAs are more stable when contained within an 
exosome versus those freely circulating (Gallo et al., 2012; Zhang et al., 
2015). Another factor may be differences in cellular sorting by smRNA 
type and quantity during the exosome loading (Zhang et al., 2015). 
Antiparksonian drugs have a documented effect on smRNA 
expression (Alieva et al., 2015; Goh et al., 2019) but our results lacked 
significance due to the small sample size and unbalanced groups. 
Future studies testing neuronally-enriched exosomal versus free-
circulating smRNA profiles may provide further insight into the 
specific sample and procedure that best reflects PD pathogenesis.

In addition to differential expression, we further tested whether 
the smRNA profile may differentiate control and PD participants. 
Univariate LR of the smRNAs demonstrated a modest ability to 
discriminate between groups. The top 4 LR predictors were hsa-miR-
6,073 [associated with small lung cancer (Kuang et al., 2020)], hsa_
piR_016658 [upregulated in glioblastoma extracellular vesicles (Hallal 
et al., 2020)], hsa_piR_019825 [upregulated in glioma cell lines (Zimta 
et al., 2020)], and hsa-miR-21-5p [associated with oncogenic factor 

TABLE 4 Logistic regression AUC of 29 smRNAs.

smRNA marker AUC smRNA marker AUC

hsa-miR-6,073 0.781 hsa_piR_004152 0.599

hsa_piR_016658 0.767 RNA5SP263_RNA5SP26 0.564

hsa_piR_019825 0.752 RNA5-8SP6 0.563

hsa-miR-21-5p 0.743 hsa-miR-221-3p 0.561

hsa_piR_004153 0.733 hsa_piR_020492 0.560

hsa_piR_004150 0.725 RNU6-1300P 0.546

hsa-miR-26b-5p 0.691 hsa_piR_002468 0.505

hsa_piR_015068 0.686 hsa_piR_020498 0.444

hsa_piR_009295 0.642 hsa_piR_007362 0.438

hsa-miR-191-5p 0.637 hsa_piR_017754 0.389

hsa-miR-25-3p 0.635 RNA5SP485 0.382

p-hsa-miR-330 0.631 hsa_piR_022606 0.378

RNA5SP382 0.622 RNA5-8SP4 0.359

RNA5SP259_RNA5SP25 0.616 hsa_piR_005019 0.343

hsa-miR-181a-5p 0.614

Area under the curve (AUC) values were used to gauge the ability of the univariate LR 
models to discriminate between PD and control subjects using the 29 smRNA panel.

TABLE 3 Association of smRNAs with clinical parameters.

LASSO selected 
predictor variables

Coefficient value p-value Clinical parameter Control range PD range

- - - Age at Visit 43–86 43.6–93

- - - Disease Duration (years) 0 0–32

hsa-miR-21-5p 1.96E-04 0.227 Hoehn and Yahr Stage 0–3 1–5

- - - MoCA 21–30 9–29

RNA5SP382 −3.01E-04 0.891 Hamilton Depression Scale 0–12 0–21

hsa-miR − 181a-5p 2.81E-04 0.840

hsa_piR_016658 1.36E-03 0.129

hsa-miR-25-3p -1.25E-03 0.624

hsa-miR-191-5p −4.70E-03 0.139

hsa-miR-21 − 5p -5.10E-05 0.923

hsa_piR_005019 −2.69E-03 0.156

- - - Total UPDRS 0–27 3–98

- - - Education (Years) 8–23 7–21

LASSO was used to select the smRNAs for regression to test the association between smRNA expression levels and clinical parameters: age at visit, disease duration, Hoehn and Yahr stage, 
MoCA, Hamilton depression score, total MDS-UPDRS, and education (years). PD clinical parameters are listed along with the smRNAs tested for association (of the 29 smRNAs in the panel 
expressed differentially in PD and control subjects). The outcomes without predictor variables had all of the coefficients of the 29 smRNA variables shrunk down to zero. They are represented 
as a dash, thereby not having any smRNA predictors tested for association via regression.
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for glioblastoma (Jiang J. et al., 2020; Lu et al., 2020)]. These 4 smRNA 
predictors suggest a disruption in normal cell proliferation may 
indicate PD while sharing characteristics with phenotypes with altered 
cellular proliferation, such as glioblastoma. These univariate models 
assume independence from other smRNAs; however, smRNAs are 
prone to multicollinearity (Barbagallo et  al., 2020). Although the 
smRNAs do not have high AUC values expected for diagnostic 
purposes (Hajian-Tilaki, 2013), they have better predictive abilities 
than random chance. Further molecular studies of these candidate 
biomarkers and their incorporation into more sophisticated 
multivariate prediction models may yield further insights.

The RF model using all 29 smRNAs indicated these factors had 
high accuracy (AUC = 0.942) in discriminating between control and 
PD subjects. This increase in model performance might be due to the 
biological complexity captured from multiple smRNA expression 
variables. Unlike the univariable LR models, RF models are tree-based 
and capture some non-linear dependencies among the 29 smRNA 
features (Menze et al., 2009). The top 10 smRNA predictors in the RF 
model were associated with breast cancer survival (Krishnan et al., 
2016), colorectal cancer (Qu et al., 2019), germline-specific functions 
(Girard et al., 2006), and white matter lesions near lateral ventricles 
(Hamada et  al., 2012). The top predictors in the RF models were 
associated with functions involving disruption of cell proliferation, 
consistent with the LR model results. This finding may further 
implicate perturbations in essential cell proliferation pathways 
associated with PD. The germline-specific smRNAs involve meiosis 
and stem cell maintenance (Cox et  al., 2000), which may reflect 
changes in genomic stability. These results suggest a neuronal stress 
response involving cellular proliferation pathways may occur in PD.

The Gini importance calculations (Figure 3) ranked the predictors 
according to how much a feature decreases prediction error on average 
across RF models of different combinations of these 29 features. 
Although our RF model will require additional rigorous testing before 

being considered for diagnostic purposes, the smRNA predictors with 
the highest Gini importance values may be candidate markers. In the 
future, those smRNAs can be prioritized for detection in a clinical 
setting since they contribute more toward decreasing the classification 
error than smRNAs with the lowest Gini importance values. 
Additional studies are warranted to elucidate the role of these smRNAs 
in explaining how these markers contribute to PD pathophysiology.

Using LASSO followed by linear regression, however, we found no 
significant associations between smRNAs and clinical parameters 
(Table 3). LASSO aided in identifying smRNAs (from the set of 29 
differentially expressed smRNAs) that were multicollinear with one 
another in the set by shrinking their coefficients to 0. The results 
suggest that smRNAs are prone to affect one another’s expression. A 
possible explanation for the lack of significant results is that PD 
patients have heterogenous clinical presentations (Foltynie et al., 2002; 
Lewis et al., 2005; Kehagia et al., 2010). The PD cohort in this study 
had a mean Hoehn and Yahr stage of 2.2 (SD = 1.12), indicating a mild 
disease stage (Goetz et al., 2004). The range was 1–5 (Table 2), with 
most PD participants having Hoehn and Yahr scores of 2. A prior 
study in a PD cohort with a mean Hoehn and Yahr score of 1.8 also 
reported no significant associations between miRNAs from 
cerebrospinal fluid and UPDRS and Hoehn and Yahr scores (Marques 
et  al., 2017). Another study found that hsa-miR-4,639-5p was 
upregulated in early stage (Hoehn and Yahr scores 1–2.5) PD patients 
compared to controls, but there was a lack of significance for that same 
miRNA for those with Hoehn and Yahr scores ≥3 when compared to 
controls (Chen et al., 2017). These data suggest specific smRNAs may 
be  better suited as a marker of disease rather than progression. 
Additional studies exploring broader motor and non-motor measures 
are needed to determine the potential clinical meaning of smRNA 
changes in PD.

The IPA was used to gain genetic context by identifying genes 
(Table 5) associated with the smRNAs expressed differentially (22 

FIGURE 3

Random forest model diagnostic values and AUC curves. Variable importance plots obtained from Random Forest (RF) in R show the top smRNAs 
ranked based on the mean decrease in Gini coefficients. The ROC curve plot and the AUC value display the RF model’s performance in discriminating 
between PD and controls.
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upregulated and 7 downregulated) in control and PD subjects. This 
included genes associated with annealing DNA strands and regulating 
pathways involved in Schwann cell myelination and apoptosis (e.g., 
Tp53, DDIT4) (Lu et  al., 2017). The smRNAs also impact genes 
responsible for a neuronal calcium sensor (Burgoyne and Weiss, 2001) 
that modulates neuronal death (VSNL1) (Burgoyne and Weiss, 2001; 

Recabarren and Alarcón, 2017). The current findings for Tp53, 
DDIT4, and VSNL1 are consistent with those reported previously, 
indicating they both participate in neuronal death in PD (Lu et al., 
2017; Recabarren and Alarcón, 2017). HTR1-A has been proposed to 
be involved in dopamine regulation and the mechanistic pathway of 
antiparkinsonian drugs (Cacabelos, 2020). These data also suggest that 

FIGURE 4

Gene pathways. The network displays the biological effects of the smRNAs on genes and other smRNAs. The edges with a solid arrowhead represent 
the direction of effects, and a blunted arrowhead represents inhibition. The input for the gene path analyses were the 29 differentially expressed 
smRNAs that were statistically significant.

TABLE 5 Ingenuity pathway analysis (IPA) of targeted genes.

Gene Full name UNIPROT ID Molecular function Cellular 
component

Biological process

VNSL1 Visinin-like protein 1 P62760 Calcium ion binding Cytosol Calcium-mediated signaling

Tp53 Cellular tumor antigen p53 P04637 DNA strand annealing 

activity

Nuclear matrix RNA-protein covalent cross-

linking

DDIT4 DNA damage-inducible 

transcript 4 protein

Q9NX09 Required for normal neuron 

migration during embryonic 

brain development.

Cytosol Plays a role in neuronal cell 

death

HTR1-A 5-hydroxytryptamine 

receptor 1A

P08908 G protein-coupled receptor 

for 5-hydroxytryptamine 

(serotonin)

Cell Membrane Regulation of dopamine and 

5-hydroxytryptamine levels 

in the brain, neuron activity, 

and behavior
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smRNAs participation in PD manifestation may involve altered cell 
proliferation and apoptosis. There is accumulating evidence to link 
oncogenic and neurodegenerative processes to PD (Pan et al., 2008). 
We  found candidate biomarkers of PD and contextualized their 
biological function, albeit with constraints.

Although our study identified smRNAs associated with PD, it still 
has limitations. Selectively isolating neuronally derived exosomes and 
microvesicles relies on immunoprecipitation using antibodies against 
CD171 that are not exclusively expressed on neurons. Although the 
exosome size was consistent with previous reports (Tomlinson et al., 
2015), extracellular vesicles with a size of ≥200 nm also were isolated 
using the current methods. The isolated vesicles require validation in a 
future study via western blot with CD9, CD63, and CD171 antibodies 
(Kowal et al., 2017). The samples were collected and exosomes were 
extracted between 2012–2015; the freeze–thaw cycles and the long-term 
−80°C blood sample storage negatively affect exosome concentrations 
(Ge et al., 2014; Gelibter et al., 2022). An up-to-date exosome extraction 
from these blood samples would not represent the original exosomes 
extracted and sequenced. Freeze–thaw cycles and − 80°C storage also 
affect exosome morphology by promoting exosome fusion, increasing 
its size beyond 200 nm (Gelibter et al., 2022). Exosome fusion may also 
explain the presence of vesicles within the 200–400 nm range, according 
to Nanosight data. The exosome fusion will adversely affect the Western 
blot due to the size increase and the change in charge (Ge et al., 2014; 
Petersen et al., 2018). A suggested solution for future studies involves 
extracting exosomes from fresh blood samples before cold storage 
(Gelibter et al., 2022).

SmRNAs were the biomarkers of interest; however, exosome cargo 
such as fragments of RNA pseudogenes (e.g., RNA5SP382) was 
sequenced and those respective reads were aligned to pseudogenes 
(Raposo and Stoorvogel, 2013). SmRNAs are not the only cargo in the 
captured exosomes and microvesicles that can be  sequenced; for 
example, messenger RNAs from serum exosomes have been used to 
characterize neurodegenerative diseases (Sproviero et  al., 2022). 
Challenges in exosome isolation may affect the pathways identified by 
the IPA that was not specific to neurons. In addition, the association 
of smRNA findings with clinical metrics was explored. However, there 
was a lack of significance likely due to the heterogeneity of PD disease 
progression and the PD group representing an intermediate disease 
stage. Additional measures (e.g., non-antiparkinsonian drugs) should 
be investigated to obtain a more robust perspective of their impact. 
Medications can change miRNA expression profiles in PD subjects 
(Alieva et  al., 2015), as shown by the common PD medication 
levodopa (Margis et al., 2011). Thus, further work is needed to confirm 
the predictive capabilities of the smRNAs identified, adjust for possible 
drug confounders, and optimize neuronal exosome isolation. Due to 
a lack of a validation set, our logistic regression and random forest 
models should be considered exploratory to find biological insights 
instead of a clinically applicable prediction model (Steyerberg, 2018).

This study employed a novel approach to isolate neuronally 
enriched exosomal smRNAs to identify those expressed 
differentially in control and PD subjects. Whereas a small number 
of smRNAs had a modest ability to discriminate controls from PD 
subjects, a combination of all 29 smRNAs expressed differently 
between groups had high accuracy. Although the smRNAs were not 
correlated with PD clinical metrics, they were associated with 
oncogenic and cellular proliferation processes. These data suggest 
smRNAs may have utility as PD biomarkers and the profiles 

we  identified are distinct from those previously reported using 
serum or plasma circulating smRNA. The method of capturing 
exosomes and microvesicles and sequencing the smRNA cargo can 
be  adapted to other complex neurological diseases to construct 
prediction models and detect new markers that also may 
be biologically informative.
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Glossary

AUC Area under the receiver operating characteristic curves

CPS Counts per read

FDR False discovery rate

HDRS Hamilton Depression Rating Scale

IPA Ingenuity Pathway Analysis

LASSO Least absolute shrinkage and selection operator

LR Logistic regression

MDS Multidimensional scaling

MDS-UPDRS-III Movement Disorders Society Unified PD Rating Scale motor subscale

miRNAs Micro RNAs

MoCA Montreal Cognitive Assessment

PD Parkinson’s disease

piRNAs Piwi-interacting RNAs

qRT-PCR Quantitative real-time polymerase chain reaction

RF Random forest

SmRNAs Small RNAs

UPSIT University of Pennsylvania Smell Identification Test
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