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The integration of haptic technology into affective computing has led to a 
new field known as affective haptics. Nonetheless, the mechanism underlying 
the interaction between haptics and emotions remains unclear. In this paper, 
we proposed a novel haptic pattern with adaptive vibration intensity and rhythm 
according to the volume, and applied it into the emotional experiment paradigm. 
To verify its superiority, the proposed haptic pattern was compared with an existing 
haptic pattern by combining them with conventional visual–auditory stimuli to 
induce emotions (joy, sadness, fear, and neutral), and the subjects’ EEG signals 
were collected simultaneously. The features of power spectral density (PSD), 
differential entropy (DE), differential asymmetry (DASM), and differential caudality 
(DCAU) were extracted, and the support vector machine (SVM) was utilized to 
recognize four target emotions. The results demonstrated that haptic stimuli 
enhanced the activity of the lateral temporal and prefrontal areas of the emotion-
related brain regions. Moreover, the classification accuracy of the existing 
constant haptic pattern and the proposed adaptive haptic pattern increased by 
7.71 and 8.60%, respectively. These findings indicate that flexible and varied haptic 
patterns can enhance immersion and fully stimulate target emotions, which are 
of great importance for wearable haptic interfaces and emotion communication 
through haptics.
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1. Introduction

Emotions play a crucial role in human social communication and interaction (Keltner et al., 
2019). With the development of computer technology and human-computer interaction, the 
field of affective computing (Picard, 1997) has emerged with the primary objective of studying 
and developing theories, methods, and systems to recognize, interpret, process, and simulate 
human emotions. Emotions normally change in response to external stimuli, and haptic stimuli 
can convey more intricate and subtle emotional experiences to the human body compared to 
visual and auditory stimuli (Hertenstein et al., 2006, 2009). Consequently, a new research trend 
has arisen in affective computing, which aims to explore the potential of incorporating haptic 
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technology into the processes of emotion recognition, interpretation, 
and simulation. This integration of haptic technology with affective 
computing has given rise to a new area called “Affective Haptics” (Eid 
and Al Osman, 2016).

Affective haptics focuses on the analysis, design, and evaluation 
of systems capable of inducing, processing, and simulating emotions 
through touch, which has been applied in many fields. For example, 
e-learning applications may benefit from affective haptics by 
reinvigorating learners’ interest when they feel bored, frustrated, or 
angry (Huang et al., 2010). In healthcare applications, affective haptics 
can be used to treat depression and anxiety (Bonanni and Vaucelle, 
2006), as well as assist in the design of enhanced communication 
systems for children with autism (Changeon et  al., 2012). Other 
applications include entertainment and games (Hossain et al., 2011), 
social and interpersonal communication (Eid et  al., 2008), and 
psychological testing (Fletcher et al., 2005).

Affective haptics consists of two subfields: emotion recognition 
and haptic interfaces. Emotion recognition is to identify emotional 
states through the user’s behavior and physiological reactions (Kim 
et al., 2013). Haptic interfaces provide a communication medium 
between touch and the human subject (Culbertson et al., 2018). The 
current status of these two subfields will be  discussed in the 
following paragraphs.

Emotion recognition can be broadly divided into two categories: 
recognition based on non-physiological signals and physiological 
signals (Fu et al., 2022). Non-physiological signals, such as speech 
signals (Zhang et al., 2022), facial expressions (Casaccia et al., 2021), 
and body posture (Dael et al., 2012), are easily influenced by personal 
volition and the environment, which makes it hard to accurately 
evaluate an individual’s emotional state. Conversely, physiological 
signals, which include electroencephalogram (EEG) (Li et al., 2018), 
electrocardiogram (ECG) (Sarkar and Etemad, 2022), electromyogram 
(EMG) (Xu et al., 2023), and electrodermal activity (EDA) (Yin et al., 
2022), vary according to emotional states, thus providing a more 
objective means of measuring emotions (Giannakakis et al., 2022). 
Among these signals, EEG is widely applied in various fields (Zhang 
et al., 2023; Zhong et al., 2023) and particularly closely associated with 
emotions (Zhang et al., 2020), so emotion recognition based on EEG 
has gained widespread usage.

The process of EEG-based emotion recognition involves emotion 
induction, EEG data preprocessing, feature extraction, and 
classification models. Koelstra created a publicly available emotion 
dataset, the DEAP dataset, which contains the EEG and peripheral 
physiological signals of subjects when watching music videos 
(Koelstra et  al., 2012). Additionally, Zheng also published 
continuously three emotion datasets based on 62-channel EEG 
signals: SEED, SEED-IV, and SEED-V (Zheng et al., 2019a,b; Wu 
et al., 2022). Currently, the above datasets are commonly utilized to 
extract various features and boost the classification performance by 
deep learning algorithms (Craik et al., 2019). Liu proposed a three-
dimension convolution attention neural network composed of spatio-
temporal feature extraction module and EEG channel attention 
weight learning module (Liu et  al., 2022). Zhong proposed a 
regularized graph neural network for EEG-based emotion recognition 
and validated its superiority on two public datasets, SEED, and 
SEED-IV (Zhong et al., 2022). The datasets mentioned above induced 
emotions in subjects using movie clips of specific emotions. Recently, 
a few researchers attempted to combine other senses to induce 

emotions. Wu developed a novel experimental paradigm that allowed 
odor stimuli to participate in video-induced emotions, and 
investigated the effects of the different stages of olfactory stimuli 
application on subjects’ emotions (Wu et al., 2023). Raheel verified 
that enhancing more than two of the human senses from cold air, hot 
air, olfaction, and haptic effects could evoke significantly different 
emotions (Raheel et al., 2020). In general, emotion induction often 
relies on visual–auditory stimuli, whereas research on emotions 
induced by haptic stimuli remains quite limited. In other words, there 
are few studies on recognizing emotions using EEG signals in 
affective haptics, which to some extent hinders the development of 
this field.

The haptic interfaces in affective haptics are primarily used to 
transmit touch sensations to the user through haptic devices 
(Culbertson et  al., 2018). Incorporating haptic devices into 
emotional induction can convey feelings that are difficult to 
express with visual–auditory stimuli. Nardelli developed a haptic 
device that mimicked the sensation of stroking by moving a fabric 
strip at varying speeds and pressures to examine how the speed 
and pressure of haptic stimuli elicit different emotional responses 
(Nardelli et al., 2020). Tsalamlal used a haptic stimulation method 
of spraying air on the participant’s arm (Tsalamlal et al., 2018). 
Haynes developed a wearable electronic emotional trigger device 
that produced a sense of pleasure by stretching and compressing 
the skin surface of the wearer (Haynes et  al., 2019). Wearable 
devices such as haptic jackets (Rahman et al., 2010) and haptic 
gloves (Mazzoni and Bryan-Kinns, 2015) are also commonly used 
in the field of affective haptics. Ceballos designed a haptic jacket 
and proposed a haptic vibration pattern that enhanced emotions 
in terms of valence and arousal (Ceballos et  al., 2018). 
Subsequently, Li combined this vibration pattern with visual–
auditory stimuli to form a visual–auditory-haptic fusion induction 
method, demonstrating that haptic vibration improved the 
accuracy of EEG-based emotion recognition tasks (Li et al., 2022). 
Whereas, the design of haptic patterns requires further exploration 
to better understand the mechanism between haptics 
and emotions.

In conclusion, significant progress has been made in the field of 
affective haptics. However, the mechanism between haptics and 
emotions has not yet been clearly revealed. This is primarily due to: 
(1) the limited application of objective emotion recognition methods 
in affective haptics; and (2) the lack of diverse haptic patterns. To 
address these issues, this study designed two haptic vibration patterns 
and combined them with conventional visual–auditory stimuli to 
induce emotions (joy, sadness, fear, and neutral). EEG signals were 
utilized to classify four target emotions and to explore the effects of 
haptic stimuli on emotions. The contributions of this work are 
summarized as follows,

 • This paper proposed a novel haptic pattern with adaptive 
vibration intensity and rhythm according to the video volume, 
and applied it into the EEG emotional experiment paradigm.

 • Compared to the existing haptic pattern with fixed vibration 
intensity and rhythm, the proposed haptic pattern significantly 
enhanced emotions.

 • This paper analyzed the possible reasons for emotional 
enhancement due to haptic vibration from the perspective of 
neural patterns.
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2. Materials and methods

In this work, we  presented a novel framework for emotion 
recognition in combination with two haptic vibration patterns, as 
illustrated in Figure 1. It included visual–auditory-haptic fusion stimuli, 
EEG acquisition, EEG pre-processing, feature extraction, and emotion 
classification. Compared to the conventional EEG-based emotion 
recognition framework, the innovation of this study is to incorporate two 
haptic patterns with visual–auditory stimuli to explore the effects on 
emotions. The former is an existing haptic pattern, named Haptic 1. The 
latter is the proposed adaptive haptic pattern, named Haptic 2. Please see 
Section 2.3 for details of the two haptic patterns.

2.1. Subjects

Sixteen subjects (11 males and 5 females) aged between 20 and 
30 years old, all right-handed and with no history of psychiatric illness, 
participated in the emotion experiment. Prior to the experiment, they 
were informed about the procedure and allowed to adapt to the 
experimental setting. The study was approved by the Ethics Committee 
of Southeast University, and all subjects received compensation for 
their involvement in the experiment.

2.2. Experimental setup

In this experiment, the subjects were exposed to visual–auditory-
haptic fusion stimuli to induce emotion. The subjects wore a haptic 
vest and sat in a comfortable chair approximately 0.7 meters away 
from the monitor, as shown in Figure 2A. EEG signals were recorded 
by a 64-channel active electrode cap (Brain Products GmbH, 
Germany), following the international standard 10–20 system. All 
channels were referenced to the FCz channel, and the Fpz channel was 
chosen as the ground, as shown in Figure 2B, so a total of 63 channels 
of EEG data are available. During the recording, the impedance of all 

channels was kept below 10 kΩ. The EEG sampling frequency was set 
to 1,000 Hz, and a band-pass filter from 0.05 to 100 Hz was utilized to 
filter the EEG signals to attenuate high-frequency band components. 
Meanwhile, a notch filter at 50 Hz was applied to reduce power 
line interference.

In order to elicit target emotions (joy, sadness, fear, and neutral) 
in the subjects, we employed a team of eight psychology graduate 
students to jointly select 16 movie clips that characterized the above 
four emotions. Each emotion corresponded to 4 movie clips, and all 
the movie clips were accompanied by Chinese subtitles. Further 
details can be found in Table 1.

The haptic stimuli implemented in the experiment were realized 
by using a haptic vest from bHaptics Inc., as illustrated in Figure 3A. As 
we can see from Figure 3B, this wearable and portable vest provides a 
double 5 × 4 matrix with motors positioned at both the front and back 
areas. Each motor provides two methods of vibration modulation: the 
first is to set the motor’s vibration intensity and rhythm directly, while 
the second one adjusts the intensity and rhythm of the motor 
adaptively according to the intensity and frequency of the audio 
signals. Various haptic vibration patterns can be created by setting the 
individual parameters of each motor and the overall linkage to give 
users a specific feeling. The device is controlled through the Unity 
application via Bluetooth. By incorporating corresponding haptic 
vibration patterns with different movie clips, we generated emotional 
stimulation materials that combine visual, auditory, and haptic 
sensations. The detailed descriptions of the vibration patterns are 
provided in the next section Experimental protocol.

2.3. Experimental protocol

Two different haptic vibration patterns were designed to explore 
their differential effects on emotion. The detailed flow of the emotion 
experiment is depicted in Figure 4. In total, there were 16 sessions for 
each experiment. Firstly, each session had a 5-s cue to start. Next, the 
visual–auditory-haptic fusion stimuli were applied for approximately 
4 min, where the visual–auditory stimuli used a previously selected 
film clip and the haptic stimuli were chosen from either of the two 
haptic patterns. Then, the subjects were required to conduct a 20-s 
self-assessment, followed by a 30-s rest. During the self-assessment, 
the subjects were requested to declare their emotional responses to 
each session, which would be used later as a reference for assessing the 
validity of the collected data.

The visual–auditory-haptic fusion stimuli scheme is shown in 
Figure 5. The visual–auditory stimuli were presented as movie clips 
throughout the experiment, while the haptic stimuli were applied only 
in the second half of each clip to explore whether haptic stimuli could 
enhance emotions. Importantly, we aimed to examine the differences 
between the two haptic patterns in inducing emotions. We randomly 
assigned Haptic 1 or Haptic 2 to the 16 movie clips. The first haptic 
vibration pattern employed a fixed vibration intensity and rhythm, 
where each emotion (joy, sadness, and fear) corresponded to a specific 
intensity and rhythm of vibration, as displayed in Table 2. This pattern 
has been demonstrated to be effective in previous studies (Ceballos 
et al., 2018; Li et al., 2022). The second haptic pattern adapted the 
vibration intensity and rhythm to the video volume. Specifically, the 
vibration intensity was positively correlated with volume, and the 
vibration rhythm was adjusted by setting a volume threshold below 

FIGURE 1

The framework for emotion recognition that incorporates two haptic 
patterns with traditional visual–auditory stimuli.
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which no vibration was generated. To maintain sample balance, both 
patterns were presented for eight sessions.

2.4. Data preprocessing

The EEG signals were decomposed using the EEGLAB toolbox. 
Initially, the sampling rate of the EEG signals was reduced from 1,000 
to 200 Hz to expedite computation. Furthermore, a bandpass filter 
ranging from 1 to 50 Hz was applied to the signals. Then, the 
independent component analysis (ICA) was employed to remove 
EOG and EMG artifacts. Furthermore, the common average reference 
(CAR) was used to re-reference EEG signals to eliminate the global 
background activity. To correct for stimulus-unrelated variations in 
power over time, the EEG signal from the 5 s before each video was 
extracted as a baseline. Finally, the non-haptic and haptic signals were 
separately intercepted for subsequent analysis. In this study, the EEG 
signals were divided into five frequency bands: delta (1–4 Hz), theta 
(4–8 Hz), alpha (8–14 Hz), beta (14–31 Hz), and gamma (31–50 Hz).

2.5. Feature extraction and classification

After data preprocessing, we  extracted the frequency domain 
features and their combinations in this study. Four features that 
proved to be  efficient for EEG-based emotion recognition were 
compared (Zheng et  al., 2019b), including PSD, DE, DASM, 
and DCAU.

The PSD feature is the average energy of EEG signals in five 
frequency bands for 63 channels, and can be computed directly using 
a 256-point short-time fourier transform (STFT) with a 1-s-long 

window and non-overlapped Hanning window. The DE feature is 
defined as follows,
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where the time series X obeys the Gauss distribution N(μ, δ2), x is a 
variable, and π and e are constants. It has been proven that, in a certain 
band, DE corresponds to the logarithmic spectral energy of a fixed-
length EEG series (Shi et al., 2013). Compared with the PSD, DE has 
a balanced ability to distinguish between low and high frequency 
energy in EEG patterns.

The DASM feature is calculated as the differences between DE 
features of 28 pairs of hemispheric asymmetry electrodes (Fp1-Fp2, 
F7-F8, F3-F4, FT7-FT8, FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-TP8, 
CP3-CP4, P3-P4, O1-O2, AF3-AF4, F5-F6, FC5-FC6, FC1-FC2, 
C5-C6, C1-C2, CP5-CP6, CP1-CP2, AF7-AF8, P5-P6, P1-P2, 
PO7-PO8, PO3-PO4, FT9-FT10, TP9-TP10, and F1-F2), expressed as

 
DASM h X h Xi

left
i
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The DCAU feature is defined as the differences between DE 
features of 22 pairs of frontal-posterior electrodes (FT7-TP7, 
FC5-CP5, FC3-CP3, FC1-CP1, FCZ-CPZ, FC2-CP2, FC4-CP4, 
FC6-CP6, FT8-TP8, F7-P7, F5-P5, F3-P3, F1-P1, FZ-PZ, F2-P2, 
F4-P4, F6-P6, F8-P8, Fp1-O1,Fp2-O2, AF3-CB1, and AF4-CB2). 
DCAU is defined as

 
DCAU h X h Xi

frontal
i
posterior= ( ) − ( ) (3)

After feature extraction, we  utilized linear-kernel SVM 
classifiers for the 4-class classification. For statistical analysis, a 
4-fold cross-validation strategy was utilized to evaluate the 
classification performance.

3. Results

3.1. Analysis of frequency band energy 
distribution

To investigate the continual progression of emotional states, 
we  employed wavelet transform methods to conduct time-
frequency analysis on EEG signals. A 5-s time window was used to 
slide the EEG data without overlapping for analysis. According to 
the two haptic patterns, we  calculated the average value of all 
channels across all subjects in four emotion types, with the results 
presented in Figures 6, 7. We find that the energy distribution of all 
emotional states diminishes with an increase in frequency. In 
comparison to the corresponding non-haptic patterns, the energy 
distributions of the three emotions (joy, sadness, and fear) are 
obviously higher in the high-frequency band under the two haptic 
patterns. Joy and sadness show no obvious changes in the 

TABLE 1 Details of selected film clips.

No. Label File clips 
sources

Film time

1 Joy Lost in Thailand 1:03:41–1:08:30

2 Joy Mr. Bean’s Holiday 0:36:47–0:40:55

3 Joy Kung Fu Hustle 0:31:58–0:36:49

4 Joy Fight Back to School 0:39:52–0:43:34

5 Sadness Aftershock 0:19:36–0:23:15

6 Sadness Aftershock 1:47:49–1:51:47

7 Sadness To live 1:12:55–1:17:45

8 Sadness To live 1:59:49–2:03:32

9 Fear The Conjuring 0:37:06–0:40:41

10 Fear The Skeleton Key 1:23:43–1:27:29

11 Fear Black Swan 1:21:48–1:25:20

12 Fear Dead Silence 0:08:09–0:12:11

13 Neutral Huangshan 

documentary

0:00:50–0:04:36

14 Neutral Mount Tai 

documentary

0:00:38–0:04:36

15 Neutral Aerial China: Xinjiang 0:2:29–0:6:33

16 Neutral Aerial China: Shanxi 0:31:05–0:34:53

https://doi.org/10.3389/fnins.2023.1219553
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1219553

Frontiers in Neuroscience 05 frontiersin.org

low-frequency band, whereas fear emotions reveal a decrease in 
energy. This suggests that haptic vibration patterns are capable of 
affecting various emotions. Moreover, it can be seen that Haptic 2 
has more energy in the alpha, beta, and gamma bands than Haptic 
1 when comparing Figure 6 with Figure 7. Since the average energy 
is based on all channels and all time segments, the next paragraph 
requires further analysis considering topographical maps.

3.2. Analysis of brain topographical maps

In order to analyze whether and how haptic stimuli affect 
emotional brain regions, we computed the mean DE features across 
all subjects in five frequency bands and then projected them onto the 
scalp. To highlight the changes more distinctly, the corresponding 
baseline features (collected during the 5-s preparation period) were 
subtracted from the projected DE features. Figures 8, 9 display the 
brain topographic maps for different emotional states in non-Haptic 
1, Haptic 1, non-Haptic 2, and Haptic 2, respectively.

In Figure 8, the average neural patterns for different emotions in 
non-Haptic 1 and Haptic 1 are depicted. In the non-Haptic 1 state, the 
four types of emotions differ in the lateral temporal areas mainly in 
beta and gamma frequency bands. Specifically, the lateral temporal 
areas exhibit obvious activation for happy emotions in beta and 
gamma bands, while the corresponding areas for neutral emotions are 
inhibited. The prefrontal areas of sadness show more activation in beta 
and gamma bands compared to other emotions. The alpha band 
activation in the parietal areas is higher for happy and neutral 
emotions than for sadness and fear. The occipital regions in the theta 
and alpha bands for all emotions show low activation, with sadness 
and fear showing less activation. Afterward, with the application of 
Haptic 1, the energy distribution of different emotions across brain 
regions follows a similar trend as non-Haptic 1, but with more notable 
variations. The lateral temporal areas show more activation in beta 
and gamma bands for joy. The lateral temporal and parietal areas for 
sadness and fear concentrate more energy in both beta and gamma 
bands. Therefore, haptic vibration not only maintains the fundamental 
neural patterns for different emotions, but also increases the activation 
of the lateral temporal and prefrontal areas.

Figure  9 presents the average neural patterns of the four 
emotions for all subjects in non-Haptic 2 or Haptic 2. In non-Haptic 
2, the brain topography maps for the four emotions are similar to 
those displayed in Figure 8, with only minor discrepancies. This 
phenomenon can be attributed to the fact that subjects are unlikely 

FIGURE 2

Experimental setup and paradigm for emotion recognition. (A) An experimental platform for evoking subjects’ emotions through the visual–auditory-
haptic fusion stimulation. (B) The EEG cap layout for 64 channels.

FIGURE 3

The haptic vest with a dual vibration motors matrix: (A) Vest. (B) Front 
view of the motors matrix.

TABLE 2 Parameters of Haptic 1.

Emotion type Haptic parameters

Joy Frequency: 1.4 Hz 

Intensity: 90%

Direction: Inward 

Pattern: Discrete

Sadness
Frequency: 0.45 Hz 

Intensity: 50%

Direction: Outward 

Pattern: Discrete

Fear
Frequency: 0.5 Hz 

Intensity: 90%

Direction: Inward 

Pattern: Discrete
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to respond identically to various audiovisual materials conveying 
the same emotion. Subsequently, the neural patterns of the different 
emotions in Haptic 2 state showed some similarity to those of 
Haptic 1. However, there is a more concentrated distribution of 
energy in brain regions in Haptic 2 state, with greater activation in 
lateral temporal and prefrontal areas in beta and gamma bands, and 
more inhibition in occipital areas in alpha bands. Hence, the above 
two haptic patterns indeed have different effects on emotion-
related regions.

3.3. Classification performance

We employed SVM to classify the DE features in all frequency 
bands. Figure 10 provides a visual representation of the emotional 
classification results for 16 subjects in non-Haptic 1, Haptic 1, 
non-Haptic 2, and Haptic 2, respectively. It can be observed that the 
classification accuracy of DE features in beta, gamma, and full band 
frequency ranges is significantly higher than in delta and theta bands. 
This indicates that the delta and theta bands have little impact on 

FIGURE 4

Emotion experimental paradigm based on the visual–auditory-haptic stimuli. The visual–auditory stimuli include a previously selected film clip and the 
haptic stimuli chosen from either of the two haptic patterns.

FIGURE 5

Procedure of two visual–auditory-haptic fusion stimuli. The visual–auditory stimuli were presented as movie clips throughout the experiment, while 
the haptic stimuli were applied only in the second half of each clip. The first haptic vibration pattern employed a fixed vibration intensity and rhythm, 
and the second haptic pattern adapted the vibration intensity and rhythm to the video volume.
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emotion recognition, similar to the difficulty of finding obvious 
differences between these two bands in different emotions in brain 
topographic maps. Moreover, the accuracy in haptic patterns is 
significantly higher than that in non-haptic patterns, especially in 
beta, gamma, and full band frequencies. The results demonstrate that 
combining traditional visual–auditory stimuli with haptic stimuli can 
effectively induce emotions.

Tables 3, 4 present the average SVM classification results of 
different features of the five frequency bands in Haptic 1 and Haptic 
2, respectively. Meanwhile, the paired-sample t-test results on the 
accuracy of four features in different frequency bands for the two 
cases of non-Haptic 1 - Haptic 1, and non-Haptic 2 - Haptic 2 are 
shown in Table 5. The results indicate that the average accuracy of 
PSD, DE, DASM, and DCAU features in the two haptic patterns is 
significantly higher than that in non-haptic patterns, demonstrating 
that haptic stimuli can enhance subjects’ emotions. In most cases, 
the average accuracy of DE features is higher than that of the other 
three features, indicating that DE features are superior in 
representing emotions. Additionally, the average accuracy of beta 
and gamma bands is significantly higher than that of other bands 
for four features. These findings suggest that beta and gamma bands 

play a crucial role in EEG-based emotion recognition and are highly 
correlated with emotional states. These quantitative results are 
consistent with the qualitative results obtained from the brain 
topographic maps.

To further compare the emotional enhancement effects of 
different haptic patterns, we calculated the average classification 
accuracy growth rates of four features across various frequency 
bands in Haptic 1 and Haptic 2, as presented in Table 6. It can 
be seen that the accuracy growth rates in Haptic 2 are higher than 
those in Haptic 1 for all features and all frequency bands, with a 
more significant increase observed in the alpha and beta frequency 
bands. Taking DE features as an example, the classification 
accuracy of Haptic 1 and Haptic 2 increased by 7.71 and 8.60%, 
respectively. In particular, as shown in Table 5, Haptic 2 presents 
a significant improvement in classification accuracy compared to 
not applying haptic stimuli in almost all bands, but the 
classification accuracy of Haptic 1 is not significantly improved in 
the lower bands. These results suggest that Haptic 2, with adaptive 
vibration intensity and rhythm, is more effective in eliciting 
emotions than Haptic 1, which has constant vibration intensity 
and rhythm.

FIGURE 7

Mean time-frequency analysis based on 16 subjects with non-Haptic 2 or Haptic 2.

FIGURE 6

Mean time-frequency analysis based on 16 subjects with non-Haptic 1 or Haptic 1.
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FIGURE 9

The average neural patterns in different emotional states for 16 subjects with non-Haptic 2 or Haptic 2.

FIGURE 8

The average neural patterns in different emotional states for 16 subjects with non-Haptic 1 or Haptic 1.
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4. Discussion

4.1. Important brain regions and frequency 
bands for emotion

This paper presented the average neural patterns associated with 
four emotional states evoked by visual–auditory stimuli, as depicted 
in Figures  8, 9. Notably, the activation of lateral temporal and 
prefrontal areas in beta and gamma bands varied obviously in different 
emotional states. It suggests that these brain regions are highly 

correlated with different emotions and are considered the key regions 
for generating emotions. Overall, these findings are consistent with 
the results of previous research (Zheng and Lu, 2015; Zheng et al., 
2019b). Besides, the accuracy of emotion classification was obviously 
higher in beta and gamma bands compared to other single bands. 
Interestingly, in some cases, the accuracy in total bands was lower than 
that in gamma bands. This may be  due to the low classification 
accuracy of lower frequency band signals, which disturb the overall 
emotion classification. In summary, collecting EEG signals in beta and 
gamma bands from lateral temporal and prefrontal regions is an 
effective approach for recognizing emotions induced by 

FIGURE 10

The average classification accuracy of DE feature by SVM in different frequency bands with non-haptic and haptic patterns.
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TABLE 5 Paired-sample t-test results on the accuracy of four features in different frequency bands for two cases of non-Haptic 1 - Haptic 1, and non-
Haptic 2 - Haptic 2 (α = 0.05).

(Non-Haptic 1) – (Haptic 1) (Non-Haptic 2) - (Haptic 2)

PSD DE DASM DCAU PSD DE DASM DCAU

Delta 0.7921 0.8896 0.9598 0.5535 0.3148 0.0138 0.0624 0.7836

Theta 0.8374 0.4872 0.0686 0.1751 0.0469 0.0045 0.2201 0.2252

Alpha 0.1325 0.0745 0.2065 0.4003 0.0001 0.0001 0.0001 0.0286

Beta 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Gamma 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Total 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

TABLE 6 The average classification accuracy growth rates of four features in different frequency bands with Haptic 1 and Haptic 2.

PSD DE DASM DCAU

Growth 
rate 1

Growth 
rate 2

Growth 
rate 1

Growth 
rate 2

Growth 
rate 1

Growth 
rate 2

Growth 
rate 1

Growth 
rate 2

Delta 0.85% 2.12% 1.23% 5.76% 0.63% 3.32% 0.33% 0.11%

Theta 0.24% 3.05% 2.09% 4.13% 0.52% 2.37% 0.93% 3.60%

Alpha 5.67% 17.36% 5.57% 15.87% 4.89% 12.94% 3.69% 9.70%

Beta 14.36% 18.22% 11.75% 13.93% 13.56% 16.04% 14.55% 25.23%

Gamma 11.35% 11.95% 7.79% 8.62% 9.93% 11.40% 14.36% 16.96%

Total 8.95% 13.66% 7.71% 8.60% 9.49% 11.46% 10.35% 15.56%

TABLE 3 The average classification accuracy of four features in different frequency bands with non-Haptic 1 and Haptic 1.

PSD DE DASM DCAU

Non-
Haptic 1

Haptic 1 Non-
Haptic 1

Haptic 1 Non-
Haptic 1

Haptic 1 Non-
Haptic 1

Haptic 1

Delta 40.77% 40.96% 46.60% 46.73% 36.36% 36.40% 37.99% 38.27%

Theta 40.12% 40.92% 46.99% 47.87% 35.70% 35.85% 38.58% 38.75%

Alpha 45.37% 47.72% 54.05% 56.75% 39.81% 41.48% 40.89% 42.18%

Beta 72.47% 82.06% 79.60% 88.35% 65.37% 73.36% 60.59% 68.58%

Gamma 82.56% 91.16% 87.30% 95.42% 77.06% 84.11% 70.15% 79.37%

Total 82.82% 89.87% 88.09% 94.53% 78.99% 85.69% 75.34% 82.62%

TABLE 4 The average classification accuracy of four features in different frequency bands with non-Haptic 2 and Haptic 2.

PSD DE DASM DCAU

Non-
Haptic 2

Haptic 2 Non-
Haptic 2

Haptic 2 Non-
Haptic 2

Haptic 2 Non-
Haptic 2

Haptic 2

Delta 37.28% 38.16% 41.64% 43.90% 33.60% 34.59% 35.52% 35.81%

Theta 38.27% 39.39% 44.19% 46.01% 34.39% 35.24% 36.88% 38.07%

Alpha 42.59% 49.54% 50.19% 57.96% 38.77% 43.40% 39.09% 42.41%

Beta 72.05% 84.61% 79.52% 90.17% 66.06% 76.35% 57.09% 70.86%

Gamma 82.41% 91.79% 87.34% 94.60% 77.89% 86.32% 68.49% 79.56%

Total 80.81% 91.40% 87.31% 94.51% 78.32% 86.79% 71.59% 82.36%
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visual–auditory stimuli. This finding can be utilized as a reference to 
simplify the number of EEG acquisition electrodes and reduce the 
data scale.

4.2. Neural pattern for haptic-enhanced 
emotion

This paper demonstrated the superiority of the application of 
haptic patterns over non-haptic patterns in EEG-based emotion 
recognition. Certainly, previous studies have come to a similar 
conclusion that haptic stimuli improve the efficiency of emotion 
recognition tasks (Raheel et al., 2020; Li et al., 2022). However, few 
studies have analyzed and explained the phenomenon from the 
perspective of neural patterns. Notably, haptic stimuli not only 
maintain the fundamental neural patterns for different emotions, but 
also increase the activation of lateral temporal and prefrontal areas 
that closely associated with emotion, as illustrated in Figures 8, 9. 
We speculate that there are two reasons for this phenomenon: (1) 
Although haptic stimuli applied to the torso typically activate the 
somatosensory cortex in the parietal area directly, there was only a 
weak enhancement of the parietal area in the brain topographic 
maps. However, the brain is a complex interconnected structure, and 
it is possible that haptic stimuli affect lateral temporal and frontal 
regions through the somatosensory cortex. Meanwhile, a converging 
body of literature has shown that the somatosensory cortex plays an 
important role in each stage of emotional processing (Kropf et al., 
2019; Sel et al., 2020). (2) The application of haptic stimuli increased 
the subjects’ immersion. Rather than exclusively focusing on haptic 
stimuli, the subjects’ senses may have been fully engaged in watching 
emotional movie clips.

4.3. Efficiency of the proposed haptic 
pattern

In this paper, a novel haptic pattern (Haptic 2) was designed and 
compared with the existing haptic pattern (Haptic 1) in EEG 
emotional paradigm. The experimental results demonstrate that 
different haptic patterns have varying levels of emotional 
enhancement. According to the t-test in Table 5, the classification 
accuracy of Haptic 2 was significantly increased over non-haptic 
pattern in almost all frequency bands. However, the classification 
accuracy of Haptic 1 was not significantly improved in the lower 
bands. Furthermore, as shown in Table 6, the classification accuracy 
growth rates in Haptic 2 were slightly higher than those in Haptic 1. 
As we can see from Figure 9, Haptic 2 resulted in a more concentrated 
energy distribution in subjects’ brain regions. Specifically, lateral 
temporal and prefrontal regions increased activation in beta and 
gamma bands, while occipital regions exhibited greater inhibition in 
alpha bands. This amplified difference in energy distribution in 
emotion-related regions may account for higher classification 
accuracy growth rates of Haptic 2. Additionally, based on subjective 
feedback from subjects, most of them said that Haptic 2 was more 
suitable for the movie scene. We  hypothesize that the adaptive 
adjustment of vibration intensity and rhythm with audio in Haptic 2 
can enhance immersion and fully stimulate target emotions compared 

to Haptic 1. In general, these findings suggest that the proposed haptic 
pattern has superiority in evoking target emotions to some degree.

4.4. Limitations and future work

In our work, we combined two haptic vibration patterns with 
visual–auditory stimuli to induce emotions and classify four emotions 
based on EEG signals. However, our study still has certain limitations. 
Firstly, the number of subjects was not large enough, and the age range 
was limited to 20 to 30 years old. In the future, we will extend the 
proposed experiment paradigm to a larger number of subjects and a 
wider age range to investigate whether there are gender and age 
differences in the effects of haptic stimuli on emotion. In addition, this 
study only extracted features from single-channel EEG data, ignoring 
the functional connectivity between brain regions. Subsequently, 
we will utilize EEG-based functional connectivity patterns and more 
advanced deep learning algorithms considering brain topology in 
future studies. Moreover, our experimental results preliminarily 
showed the adaptive haptic vibration pattern is more advantageous to 
enhance emotion, while more detailed and reasonable designs of the 
haptic patterns require further exploration. In the design of the two 
haptic patterns, we only considered vibration intensity and rhythm, 
but neglected the impact of vibration location. Hence, we will create 
more comprehensive haptic vibration patterns to further investigate 
the mechanism of haptic stimuli on emotion enhancement.

5. Conclusion

The motivation of this study is to investigate the variations in 
emotional effects induced by different haptic patterns. This paper 
proposed a novel haptic pattern with adaptive vibration intensity and 
rhythm according to the video volume, and compared it to the existing 
haptic pattern in emotional experiment paradigm. Specifically, the 
above two haptic patterns were combined with traditional visual–
auditory stimuli to induce emotions, and four target emotions were 
classified based on EEG signals. Compared with the visual–auditory 
stimuli, the visual–auditory-haptic fusion stimuli significantly 
improved the emotion classification accuracy. The possible reason is 
that haptic stimuli cause distinct activation in lateral temporal and 
prefrontal areas of the emotion-related regions. Moreover, different 
haptic patterns had varying effects on enhancing emotions. The 
classification accuracy of the existing and the proposed haptic patterns 
increased by 7.71 and 8.60%, respectively. In addition, the proposed 
haptic pattern showed a significant improvement in classification 
accuracy compared to non-haptic pattern in almost all bands. The 
results show that the haptic pattern with adaptive vibration intensity 
and rhythm is more effective in enhancing emotion. Therefore, flexible 
and varied haptic patterns have extensive potential in the field of 
affective haptics.
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