
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Li-Tung Huang,
Kaohsiung Chang Gung Memorial Hospital,
Taiwan

REVIEWED BY

Subhojit Sen,
UM-DAE Centre for Excellence in Basic
Sciences, India
Bo Yan,
Jining Medical University, China

*CORRESPONDENCE

Xiaolong Yu

xllxl9999@126.com

RECEIVED 14 March 2023

ACCEPTED 15 June 2023
PUBLISHED 06 July 2023

CITATION

Tao Z, Jin Z, Wu J, Cai G and Yu X (2023)
Sirtuin family in autoimmune diseases.
Front. Immunol. 14:1186231.
doi: 10.3389/fimmu.2023.1186231

COPYRIGHT

© 2023 Tao, Jin, Wu, Cai and Yu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 06 July 2023

DOI 10.3389/fimmu.2023.1186231
Sirtuin family in
autoimmune diseases

Zhengjie Tao1,2, Zihan Jin3, Jiabiao Wu4, Gaojun Cai5

and Xiaolong Yu1,2*

1Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou,
Jiangsu, China, 2Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University,
Changzhou, Jiangsu, China, 3Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing
Medical University, Changzhou, China, 4Department of Immunology, Wujin Hospital Affiliated with
Jiangsu University, Changzhou, Jiangsu, China, 5Cardiology, Wujin Hospital Affiliated with Jiangsu
University, Changzhou, Jiangsu, China
In recent years, epigenetic modifications have been widely researched. As

humans age, environmental and genetic factors may drive inflammation and

immune responses by influencing the epigenome, which can lead to abnormal

autoimmune responses in the body. Currently, an increasing number of studies

have emphasized the important role of epigenetic modification in the

progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide

adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-

mediated deacetylation is an important epigenetic alteration. The SIRT family

comprises seven protein members (namely, SIRT1–7). While the catalytic core

domain contains amino acid residues that have remained stable throughout the

entire evolutionary process, the N- and C-terminal regions are structurally

divergent and contribute to differences in subcellular localization, enzymatic

activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and

cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are

predominantly found in the nucleus. SIRTs are key regulators of various

physiological processes such as cellular differentiation, apoptosis, metabolism,

ageing, immune response, oxidative stress, and mitochondrial function. We

discuss the association between SIRTs and common autoimmune diseases to

facilitate the development of more effective therapeutic strategies.

KEYWORDS
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1 Introduction

Histone deacetylase (HDAC) is an enzyme that catalyzes the removal of acetyl

functional groups from lysine residues of histones and non-histones. At present, there

are 18 known HDAC enzymes classified into four categories: Class I Rpd3-like proteins

(HDAC1, HDAC2, HDAC3, and HDAC8); Class II Hda1-like proteins (HDAC4, HDAC5,

HDAC6, HDAC7, HDAC9, and HDAC10); Class III Sir2 like proteins (SIRT1, SIRT2,

SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7); and class IV protein (HDAC11) (1). SIRTs
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(Sirtuins) are highly conserved enzyme homologues of the yeast Sir2

protein, originally identified as mate-type regulator 1 (MAR1) in

Saccharomyces cerevisiae by Klar et al. in 1979, and the mutations at

this locus lead to yeast transgenic failure (2). At the end of the 20th

century, four homologues of Sir2 silencing genes had also been

reported, and the Sir2 gene family was further investigated for its

role in silencing, cell cycle progression, and chromosome stability (3).

Sir2 has been reported to be associated with yeast longevity (4). Using

the brewer’s yeast Sir2 amino acid sequence as a probe, Frye et al.

identified five human SIRTs (namely, SIRT1, SIRT2, SIRT3, SIRT4,

and SIRT5) and observed possible protein ADP-ribosyltransferase

activity (5). As confirmed by Imai et al. in 2000, yeast and mouse

Sir2 proteins are nicotinamide adenine dinucleotide (NAD)-

dependent histone deacetylases associated with genome silencing and

ageing (6). During the same period, similar identification was

conducted using human SIRT4 as a probe, and two new human

sirtuins (SIRT6 and SIRT7) were discovered (7). SIRTs have some

similarities and differences compared to HDACs of categories I, II, and

IV. Firstly, SIRTs are the only cofactors that require NAD as enzyme

activity. NAD is used as a reactant to deacetylate the acetyllysine

residues of the protein substrate that forms nicotinamide, and the

deacetylated products andmetabolite 2’-O-acetyl-ADP ribose, which is

different from the zinc ion dependence catalyzed by other categories of

enzymes. Secondly, HDAC types I, II, and IV belong to the arginase/

deacetylase superfamily proteins, which contain arginase-like amide

hydrolases and histone deacetylases. SIRTs exhibit single ADP

ribosyltransferase and histone deacetylase activity. In addition, SIRTs

have clearer intracellular localization. Finally, all four types of HDAC

have both histone and non-histone substrates in eukaryotes. Herein,

we review the history pertaining to the discovery of the SIRT family, as

well as important studies related to autoimmune aspects (Figure 1).
2 Structure and function of SIRTs

Historically, seven mammalian homologues of yeast Sir2

(SIRT1 to SIRT7) have been identified, and all require cofactor
Frontiers in Immunology 02
NAD as a substrate. A common feature of SIRT family proteins is

the conserved catalytic core region consisting of approximately 270

amino acids (8). The sequence between SIRT proteins is conserved

and consistent, and the SIRT catalytic core region exhibits a high

degree of structural overlap. The catalytic core region includes; (a) a

large and structurally homologous Rosmann folding domain with

NAD binding protein characteristics; (b) more diverse and smaller

zinc-binding domains in the structure; (c) and loops that connect

the Rosmann folding domain with the zinc-binding domain (9, 10).

These loops form obvious extended cracks between the large and

small domains, where NAD and peptide substrates containing

acetyllysine enter from the opposite side and bind to the enzyme.

The reaction groups of amino acids involved in catalysis and two

binding substrate molecules are buried in protein tunnels in the

gaps between the two structural domains (10). The homologous

catalytic cores of the seven subtypes of the SIRT family catalyze

through the same deacylation mechanism, which is considered the

second commonality, including the following processes: (a) NAD

and acetyllysine substrate binding; (b) Glycosidic bond cleavage; (c)

Acetyl transfer; And the formation of (d) O-acetyl-ADPR,

nicotinamide, and deacetylated lysine products (11).

The differences between SIRT family proteins were initially

believed to be due to their different subcellular localization. Outside

the catalytic core, SIRT proteins have variable N-and C-terminal

regions. These regions are not conservative in the protein family,

and their length, sequence and secondary structure differ. This will

affect the subtype-specific localization and regulation of proteins

(SIRT1 and 2 in the nucleus and cytoplasm; SIRT3, 4, and 5 in

mitochondria; SIRT6 and 7 in the nucleus) (8). SIRT1 has the

largest expansion in mammalian subtypes, including the N-

terminal STAC binding domain (SBD) and inherent disordered

regions (12, 13). Mitochondria SIRT3, 4, and 5 have very short

extensions, especially the N-terminal mitochondrial localization

sequence (MLS) (14). The catalytic activity level of members of

the SIRT protein family is their second significant difference.

Because the pocket of the active site containing the acyl group of

the substrate shows remarkable difference among the subtypes, the
FIGURE 1

The history of the discovery of the SIRT family and important studies related to autoimmune diseases.
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subtype specificity of Lys acylation of different proteins is caused

(8). Although there are slight differences in peptide binding slots

between subtypes of the SIRT family, this has a relatively small

impact on the catalytic activity of each subtype (15).

SIRT1, 2, and 3 show robust deacetylation activities. SIRT4 and

SIRT6 display ADP-ribosyl transferase activity, used to transfer

ADP-ribose from NAD to the substrate, thus yielding nicotinamide

as a product (16). There are physical and functional interactions

between SIRT4 and the components of pyruvate dehydrogenase

complex (PDH). The lipase cofactor from the E2 component

dihydroacyl lysine acetyltransferase (DLAT) is enzymatically

hydrolyzed, which reduces the activity of PDH, thus affecting the

glycolysis and tricarboxylic acid cycles (17). Additionally, SIRT6

prefers long-chain fatty acylations over acetylations due to a

hydrophobic, wider acyl binding region than in other isoforms

(18, 19). Free fatty acids can also bind and activate the deacetylation

activity of SIRT6, which may explain the strong in vivo

deacetylation activity of subtypes (20). SIRT5 exhibits enzyme

activity mediated by specific Arg for malonylation, succinylation,

and glutarylation (21, 22). SIRT7 shows deacetylation activity and is

localized in nucleoli that govern the transcription of RNA

polymerase I (23). Many targets can be modified by SIRTs,

including histones and non-histones. SIRTs participate in a series

of cellular metabolism and function regulation by modifying these

targets, including inflammation, oxidative stress, mitochondrial

function, immune response, and cellular differentiation,

proliferation, and metabolism. Overall, the SIRT family plays

significant roles in the regulation of cellular function and

metabolism (Table 1). However, our current understanding of the

SIRT protein family is limited, and it is necessary to conduct more

research in this field.
3 Relationship between SIRTs and
immune inflammation

SIRTs, to some extent, influence autoimmune disease progression

by epigenetically modifying the targets affecting immune cells and

immune responses. We summarize the relationship between SIRT

family and immune inflammation (Figure 2).

In the nuclear factor-kB (NF-kB) pathway, SIRT1 binds to and

deacetylates c-Fos and c-Jun, thereby inhibiting activator protein-1

(AP-1) transcriptional activity and reducing AP-1-associated

cyclooxygenase-2 (COX2) and prostaglandin (E2) expression in

peritoneal macrophages (24). However, deletion of SIRT1 would

lead to increased tumour necrosis factor-a (TNF-a) and interleukin
(IL)-1b levels by hyperacetylation of NF-kB p65 in macrophages

(25, 26). Additionally, blockade of the AP-1 signalling pathway

inhibits T cell activation and proliferation. SIRT1 regulates the

production of cytokines (e.g., IL-12, TGFb-1) via HIF-1a in

dendritic cells (DCs) while inhibiting Th1 and promoting Treg

differentiation (27). SIRT1 is expressed at high levels in intestinal

inflammatory Th17 cells and deacetylates not only retinoic acid

receptor-related orphan receptor-gt (RORgt), which activates IL-17

and inhibits the IL-2 promoter to stimulate Th17 cell differentiation

but also STAT3, which prevents Th17 differentiation under certain
Frontiers in Immunology 03
circumstances (28, 29). In the NF-kB pathway, SIRT2 is present in a

complex with p65 when the cell is unstimulated. Upon TNFa
stimulation, p65 translocates to the nucleus, while SIRT2 remains

in the cytoplasm. Coactivator p300 binds to nucleus p65 and is

acetylated at K310, K314 and K315 to fine-tune gene expression.

When the NF-kB response is terminated, p65 shuttles back to the

cytoplasm, and SIRT2 deacetylates p310 at K65, thereby resetting

the entire NF-kB response (30). Thus, SIRT2 can reduce the

expression of NF-kB-dependent genes, IL-1b, IL-6, monocyte

chemotactic protein-1, matrix metalloproteinase (MMP)-9 and

MMP-13, thereby exerting anti-inflammatory effects (31).In the

NLRP3 inflammatory signalling pathway, targeted NLRP3

deacetylation by SIRT2 inhibits the assembly and activation of

NLRP3 inflammatory vesicles, leading to the attenuation of IL-1b-
and IL-18d-induced inflammatory response (32). In the mitogen-

activated protein kinase (MAPK)-related inflammatory signalling

pathway, SIRT2 deacetylates MKP-1, decreases the acetylation level

of MKP-1, promotes Toll-like receptor signalling, and upregulates

MAPK signalling, thereby promoting the production of

proinflammatory factors IL-1b, IL-6, TNF-a, and iNOS and

eventually leading to inflammation (33, 34).

The activation of SIRT3 deacetylase activity by SENP1 in the

mitochondria of T cells promotes T cell survival and memory T cell

development, which are mediated by 5’-AMP-activated protein

kinase (AMPK) (35). SIRT3 deficiency activates the deacetylation at

NLRC4 inflammatory vesicles Lys71 and Lys272, which mediate IL-

1b production (36). SIRT4 overexpression blocks Treg cell

production by conventional T cells in vitro, whereas SIRT4

knockdown has been shown to enhance the anti-inflammatory

activity of Tregs in the injured spinal cord parenchyma of mice. In

Treg cells, SIRT4 downregulates the expression of AMPK, FOXP3,

IL-10, and TGF-b; conversely, the AMPK agonist AICAR restores the

expression of FOXP3 and IL-10 in SIRT4-overexpressing Treg cells

(37). SIRT5-deficient mice are prone to dextran sulfate sodium

(DSS)-induced colitis, which is associated with high PKM2

succinylation and IL-1b production due to SIRT5 deficiency (38).

SIRT5 deficiency induces stronger T cell activation, as evidenced by

an imbalance in the differentiation subpopulations of Tregs and Th1

cells (39). Additionally, SIRT5 competes with SIRT2 to block p65

deacetylation by SIRT2 in a manner unrelated to deacetylase activity,

leading to increased acetylation of p65 and activation of the NF-kB
pathway and its downstream cytokines, thereby enhancing the innate

inflammatory response of macrophages (40).

The unique regulatory role of SIRT6 in inflammatory diseases

mainly depends on the activity of TNF-a and NF-kB as well as on

several other factors within the regulatory functions of TNF-a and

NF-kB. SIRT6 acts as a lysine deacylase that catalyzes the hydrolysis
and secretion of TNF-a from cells, thereby functioning as a pro-

inflammatory agent (19). Furthermore, SIRT6 interacts with Lys310

of the NF-kB p65 subunit and inhibits the expression of the

proinflammatory factor NF-kB (41). Given that SIRT7 is involved

in various immune-mediated inflammatory responses (including the

NF-kB inflammatory pathway), SIRT7 may, therefore, be closely

associated with intestinal immune-mediated inflammatory responses,

such as inflammatory bowel disease (IBD). Kim et al. showed that

SIRT7 attenuated colonic mucosal inflammation in mice (42).
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TABLE 1 The structure and function of SIRTs.

y Targets Functions

Histones:
H1K26
H3K9,H3K14,H3K18,H3K56
H4K6,H4K12,H4K16
Non-histones:
P53,FOXO1/3/4,HSF1,HIF1a,NF-kB,
P300,TGF-b,PGC-1a

1.Cell metabolism
2.DNA transcription, repair
3.Inflammation inhibition
4.Oxidative stress

Histones:
H3K56
H4K16
Non-histones:
MnSOD2,p53,PGC1-a,CypD,FOXO3a,
AMPK

1.Cell metabolism
2.DNA replication,
transcription, translation
3.Cell cycle
4.Inflammation regulation

Histones:
H3K56
H4K14
Histones:
SOD2,PDMC1a,IDH2, GOT2,FoxO3a

1.Cellular metabolism
2.Inflammation inhibition
3.Oxidative stress
4.Apoptosis
5.Autophagy

Non-histones:
GDH,PDH,ANT

1.Cellular metabolism
2.Mitochondrial metabolism
3.Oxidative stress

Non-histones:
CPS1

1.Cellular metabolism
2.Immune regulation
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SIRTs
Uniprot ID
(From:http://

www.uniprot.org/)
Organism Length

Structure
(From: AlphaFold) Intracellular

localizations Enzyme activi

SIRT1 Q96EB6
Homo sapiens
(Human)

747 AA Nucleus/cytoplasm Deacetylase

SIRT2 Q8IXJ6
Homo sapiens
(Human)

389 AA Nucleus/cytoplasm Deacetylase

SIRT3 Q9NTG7
Homo sapiens
(Human)

399 AA Nucleus/Mitochondria Deacetylase

SIRT4 Q9Y6E7
Homo sapiens
(Human)

314 AA Mitochondria

1.ADP-
ribosyltransferase
2.Lipoamidase
3.Deacetylase

SIRT5 Q9NXA8
Homo sapiens
(Human)

310 AA Mitochondria
1.Succinyl deacylas
2.Malonyl deacylas
3.Deacetylase
t
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TABLE 1 Continued

Structure
From: AlphaFold) Intracellular

localizations Enzyme activity Targets Functions

Nucleus

1.Deacetylase
2.ADP-
ribosyltransferase
3.Long-chain fatty
acyl deacylase

Histones:
H2BK12,
H3K9,H3K17,H3K18,H3K27,H3K56
Non-histones:
PGC1-a,TRF2,KAP1,TNF-a

1.Cell metabolism
2.Chromatin and DNA repair

Nucleus Deacetylase

Histones:
H3K18
Non-histones:
Hif-1a,Hif-2a,EIA,Smad6

1.Gene transcriptional
regulation
2.Chromatin and DNA repair
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Organism Length (

SIRT6 Q8N6T7
Homo sapiens
(Human)

355 AA

SIRT7 Q9NRC8
Homo sapiens
(Human)

400 AA
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Overall, there are many studies on the mechanisms of SIRTs

family involvement in inflammation, especially involving NF-kB,
TNF-a, NLRP3, and MAPK-related pathways. It is also worth

noting that the effects of various SIRTs on disease may vary from

disease to disease or even have opposite effects, as will be discussed

later. Further studies are needed in the future to explore whether

changes in the levels of SIRTs are common pathological changes in

the onset and progression of inflammation-related diseases. Further

attention is also needed to resolve some of the conflicting data and

to better understand the key role of the SIRTs family in the

inflammatory response. Here, we speculate that the conflicting

roles of the SIRTs family in inflammation may be due to their

regulation of common signalling pathways under specific

pathological conditions. In summary, there is still a wide scope

for research on SIRTs that needs to be further explored to determine

the role of the SIRTs family in the inflammatory response and the

potential mechanisms of action.
4 Relationship between SIRTs and
oxidative stress

Under normal conditions, nutrients in the body (e.g., glucose,

fatty acids, etc.) are oxidized to release energy. As part of b-
oxidation, glycolysis, and the Krebs cycle, this energy is

transmitted via NAD by reduction to NADH (43). As we age,

abnormal biochemical reactions of the body as well as

pathophysiological processes will lead to the production of ROS.

The SIRT family is NAD-dependent and can participate in the

oxidative stress process in the body. The current study found that

the SIRT family is involved in oxidative stress mainly associated

with the following proteins or genes: NF-kB, NRF2, FOXOs, PGC-
1a, p53, and AMPK (11). We summarize here the relationship

between the SIRT family and oxidative stress-related factors to

facilitate our later discussion of the disease (Figure 3).

NRF2 plays an extremely important role in antioxidant

response element (ARE)-dependent transcriptional regulation.

NRF2 regulates the expression of antioxidant genes by mutating

upon stimulation and interacting with ARE (44). SIRT1 activates
Frontiers in Immunology 06
Nrf1 by altering the structure of Keap2, leading to NRF2 nuclear

translocation and promoting the expression of antioxidant genes,

such as glutathione transferase (45). In peripheral nerve injury,

downregulation of spinal SIRT2 inhibits NRF2 activity leading to

oxidative stress (46). Overexpression of SIRT6 enhances NRF2

signalling to reduce oxidative stress in brain tissue (47). In the

FOXOs family, FOXO1, FOXO3 is involved in important oxidative

stress processes by regulating the scavenging of excess ROS by

downstream target genes such as upregulated manganese

superoxide dismutase (MnSOD) and catalase (CAT). SIRT1

induces FOXO1 translocation and increases the level of FOXO1

protein in adipocytes, thereby reducing ROS and oxidative stress

production (48). In addition, SIRT3 also activates FOXO3 gene

expression to resist oxidative stress (49). PGC-1a can scavenge

excessive ROS, induce antioxidant enzyme expression and maintain

mitochondrial function to block oxidative stress injury. SIRT1 can

activate PGC-1a through deacetylation to scavenge oxidative stress-

induced ROS and alleviate oxidative stress injury (50). In addition,

PGC-1a and SIRT3 can directly interact with each other to exert

antioxidant capacity (51). p53 as a regulator can play a role in

promoting oxidative stress and antioxidant. It promotes oxidative

stress injury by regulating targets such as glutathione/NADH.

Inhibit oxidative stress by regulating MnSOD, glutathione

peroxidase 1 and Jun N-terminal kinase (JNK) (52). SRT2104

(SIRT1 agonist) was used to enhance the expression and activity

of renal SIRT1 and deacetylate p53, leading to the activation of

antioxidant signalling (53). AMPK is a major regulator of metabolic

homeostasis and is activated under conditions of oxidative stress.

Overexpression of SIRT1 leads to deacetylation of liver kinase B1

(LKB1), an upstream regulator of AMPK, which activates AMPK to

attenuate oxidative stress (54). In addition, SIRT6 promotes AMPK

expression and upregulates gene expression of MnSOD and CAT

proteins, thereby inhibiting oxidative stress (55).

In addition, oxidative damage induces the formation of large

silencing complexes containing DNA methyltransferases and

constituents of the polycomb (56). This damage induces the

recruitment of key components of the complex from

transcriptionally depleted regions of the genome to GC-rich

regions, including the promoter CpG island. the components of
FIGURE 2

The relationship between SIRTs and immune inflammation. (A) Relationship between SIRTs and immune inflammation. (B) The most widely studied
NF-kB pathway in the SIRT family and the different roles of SIRTs in this process.
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PRC4, SIRT1 and EZH2, are tightly bound to chromatin. Due to the

high amount of guanine enriched in GC-rich regions, which are the

most easily oxidized of the four deoxyribonucleosides, they may be

the primary targets of oxidative damage (57). This oxidative stress-

induced translocation leads to changes in histone labelling,

transcription and DNA methylation, resulting in gene silencing in

regions of DNA damage. Thus it can promote genome stability.

In conclusion, as shown in Figure 3, the maintenance of redox

homeostasis is achieved by balancing mechanisms acting at various

complex levels associated with transcriptional regulation. These

studies reflect the importance of the SIRTs protein family in

oxidative stress, acting synergistically through different

mechanisms to enhance intracellular homeostasis. The apparent

protective effect of SIRTs against oxidative stress could serve as a

mechanistic basis for the development of antioxidants

and modulators.
5 Role of SIRTs in organ-specific
autoimmune diseases

5.1 Endocrine system: Graves’ disease,
Hashimoto’s thyroiditis, Type 1
diabetes mellitus

Little has been reported regarding the role of SIRT1 in Graves’

disease, a classic autoimmune thyroid disease. Sarumaru et al. showed

that polymorphisms in the SIRT1 gene were associated with an

increase in thyroid autoantibody production (58). SIRT1 may act as a

negative regulator of GD-related inflammatory processes. Compared

with healthy controls, patients with Graves’ disease exhibited reduced

SIRT1 expression and activated NF-kB pathway in their peripheral

blood. Further analysis revealed that SIRT1 inhibited the NF-kB
pathway activity via p65 deacetylation (59). But there are also reports
Frontiers in Immunology 07
to the contrary that dysregulation of epigenetic modification genes in

peripheral bloodmononuclear cells (PBMCs) in patients with Graves’

disease led to a significant increase in the mRNA expression of

histone H4 hypoacetylation and histone deacetylases 1 and 2 (60).

The difference between the two is unclear for now. As in other

autoimmune diseases, Treg function is defective in Graves’ disease.

By using a flow cytometry assay and conducting a protein blotting

analysis, Zhang et al. detected more IL-17+ T cells in parallel with a

decrease in Treg cells. FOXP3 and miR-23a-3p were significantly

downregulated in patients with Graves’ disease, whereas SIRT1 and

RORgt were upregulated. Further studies showed that the aberrant

acetylation of FOXP3, which is regulated by miR-23a-3p by targeting

SIRT1, mediated the defective Treg function in patients with Graves’

disease (61).

Hashimoto’s thyroiditis is similar to Graves’ disease in that

reduced FOXP3 expression levels, and defective Treg function are

regulated by SIRT1-mediated aberrant FOXP3 acetylation in

patients with Hashimoto’s thyroiditis. Ex-527 (a SIRT1 inhibitor)

upregulates the FOXP3 acetylation levels and subsequently

increases the number of Treg cells and inhibits function (62).

Additionally, oxidative stress interferes with the normal function

of thyroid cells. Th1 cytokines drive oxidative stress and cause a

significant decrease in SIRT1 expression associated with HIF-1a,
GLUT-1, and VEGF-A upregulation, suggesting that SIRT1 (a key

regulator of oxidative stress) may be regarded as a potential

therapeutic target for Hashimoto’s thyroiditis (63).

SIRT1 plays a crucial role in Type 1 diabetes mellitus (T1DM),

which results from autoimmune-mediated b-cell destruction,

leading to insulin deficiency. Destruction and apoptosis of

pancreatic b-cells are the typical features of T1DM. Biason-

Lauber et al. identified a T–C exchange in exon 1 of SIRT1

corresponding to a leucine-proline mutation in residue 107.

SIRT1-L107P expression in pancreatic islet b-cells leads to an

overproduction of nitric oxide, cytokines, and chemokines (64).
FIGURE 3

The relationship between SIRTs and oxidative stress. Excessive ROS produced by various exogenous as well as abnormal endogenous metabolic
processes will lead to an imbalance in the oxidative and antioxidant balance of the body, in which the SIRT family is mainly involved in the
antioxidant process. adenosine 5´-monophosphate (AMP)-activated protein kinase (AMPK), forkhead box protein O3a (FOXO3a), glucose 6-
phosphate dehydrogenase (G6PD), glutathione SH (GSH), recombinant isocitrate dehydrogenase 2, mitochondrial (IDH2), manganese superoxide
dismutase (MnSOD), nuclear factor kappa B subunit (NF-kB), nuclear erythroid 2-related factor 2 (NRF2), oxoguanine glycosylase 1 (OGG1),
peroxisome proliferators-activated receptor g coactivator 1alpha (PGC-1a), phosphoglycerate mutase 2 (PGAM2), superoxide dismutase 2 (SOD2).
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This mutation is likely to contribute to oxidative stress as well as

inflammation that destroys pancreatic islet b-cells. Previous studies
revealed that the application of curcumin (an anti-inflammatory,

antioxidant, and anti-apoptotic substance) and tropisetron (a 5-

HT3 receptor antagonist) led to a reduction in b-cell apoptosis and
that both oxidative stress and endoplasmic reticulum stress played a

key role in the apoptotic process. Excess ROS generated by stress, as

well as inflammatory mediators, caused damage to the islet b-cells.
However, curcumin inhibited the SIRT1/PERK/CHOP pathway to

reduce apoptosis, whereas tropisetron attenuated inflammation by

inhibiting SIRT1/NF-kB signalling (65, 66). Additionally,

resveratrol reduced hyperglycemia-induced superoxide production

by upregulating SIRT1, inducing FOXO3a, and inhibiting p47phox

in monocytes, resulting in a protective effect against cellular

oxidative stress (67).
5.2 Respiratory system: Pulmonary fibrosis

Pulmonary fibrosis is an irreversible interstitial pulmonary

complication characterized by progressive exacerbation and an

unpredictable clinical course. Recent developments in the field of

pulmonary fibrosis indicate the critical role of SIRTs as potential

anti-fibrotic drug targets in regulating disease progression. In

particular, SIRT1, SIRT3, SIRT6, and SIRT7 have been recognized

as protective SIRTs associated with pulmonary and metabolic

diseases, including fibrosis (68).

Liang et al. reported that SIRT1 activation promoted ACE2 self-

renewal and differentiation in patients with idiopathic pulmonary

fibrosis (IPF) and aged mice by regulating the zinc transporter

protein SLC39A8 (ZIP8), thereby attenuating pulmonary fibrosis

(69). Additionally, Qian et al. showed that the expression of non-

coding RNA sirt1 antisense (sirt1 AS) was significantly reduced in

bleomycin (BLM)-induced pulmonary fibrosis and that sirt1 AS

effectively inhibited the TGF-b1-modified epithelial-to-

mesenchymal transition (EMT) in vitro and alleviated the

progression of IPF in vivo (70). The two studies mentioned above

show that increased SIRT1 promotes ACE2 and inhibits EMT

action, both of which ultimately alleviate IPF. In addition, SIRT1

activation or overexpression can also attenuate pulmonary fibrosis

via regulation of TGF-b1/p300 signalling (71). However, Zeng et al.

observed that SIRT1 expression was significantly increased in the

lungs of patients with IPF and a mouse model of BLM-induced

pulmonary fibrosis. This seems contradictory to some extent, and

further studies are necessary to clarify this, considering that SIRT1

expression in pulmonary fibrosis remains controversial.

Mesenchymal stem cell (MSC)-based therapy has emerged as a

new strategy for treating IPF. It can exert benefits by affecting

SIRT1-related pathways. Shi et al. observed that the expression of

miR-199a-5p was significantly enhanced in the sera of patients with

IPF and in IPF-MSCs, inducing the senescence of MSCs. miR-199a-

5p inhibition ameliorated this process; mechanistically, miR-155-5p

inhibition promoted autophagy and ameliorated the senescence of

IPF-MSCs by activating the SIRT1/AMPK signalling pathway.

Therefore, the transplantation of anti-miR-199a-5p-IPF-MSCs is

expected to become a new therapeutic target in the future (72).
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A previous investigation on the role of SIRT2 in pulmonary

fibrosis revealed that SIRT2 expression was upregulated in human

embryonic lung fibroblasts treated with TGF-b1. Treatment with

the SIRT2 inhibitor AGK2 significantly attenuated the degree of

pulmonary fibrosis and reduced the phosphorylation of Smad2/3;

therefore, SIRT2 may be involved in IPF development by regulating

the Smad2/3 pathway (73). SIRT3 is a mitochondrial protein

deacetylase that regulates antioxidant response and mitochondrial

homeostasis. Its absence may lead to alveolar epithelial cell injury

and fibroblast-myofibroblast differentiation. Sosulski et al. showed

that SIRT3 deficiency in the ageing mouse lung promoted TGF-b1-
mediated fibrotic responses and increased Smad3 levels, possibly

interacting with SIRT2 (74). SIRT3 deficiency promotes pulmonary

fibrosis by enhancing mitochondrial DNA damage and apoptosis in

alveolar epithelial cells. Cryptotanshinone has been suggested to be

an effective treatment for pulmonary fibrosis, as it modulates the

TGF-b1/Smad3, STAT3, and SIRT3 pathways (75). Restoration of

SIRT3 gene expression through airway delivery has also been shown

in mice to address age-related persistent pulmonary fibrosis (76).

SIRT6 is involved in the TGF-b1 signalling pathway and inhibits

alveolar cell fibrosis. Chen et al. observed EMT inhibition resulting

from the inactivation of the TGF-b1/Smad2 signalling pathway

(77). Additionally, SIRT6 inhibits the EMT in IPF by inactivating

TGF-b1/Smad3 signalling, which emphasizes the critical role of

SIRT6 in IPF (78). SIRT6 inhibits the NF-kB signalling pathway to

block the pulmonary myofibroblast differentiation induced by TGF-

b1 (79). Patients with pulmonary fibrosis have been reported to

display the lowest SIRT7 expression levels in fibroblasts (80). The

decrease in SIRT7 expression has a pro-fibrotic effect, which is

mediated by changes in Smad3 levels. SIRT7 also regulates TGF-b-
induced lung fibrosis via glutaminase 1 (81).

The above evidence suggests that SIRT1, SIRT3, SIRT6, and

SIRT7 contribute to the prevention and amelioration of LPF

pathogenesis and that the number of studies on SIRT2 remains

insufficient, with the regulatory roles of other SIRT members being

unclear. Mazumder et al. reviewed the regulatory roles of SIRTs in

cellular and mitochondrial metabolic pathways that are critical for

pulmonary fibrosis. They concluded that most SIRTs are protective

against pulmonary fibrosis, except SIRT2, which may play a pro-

fibrotic role given the pro-inflammatory effects observed in asthma

(68). The potential role of SIRTs in regulating pulmonary fibrosis

warrants further studies.
5.3 Digestive system: Inflammatory
bowel disease

IBD is characterized by recurrent chronic intestinal

inflammation and gastrointestinal bleeding and can be divided

into two main types—namely, Crohn’s disease and ulcerative

colitis. In recent decades, IBD has received increasing attention

owing to its increasing incidence worldwide.

Some clinical studies have shown that the reduced activity of

SIRT1 in various IBD models may contribute to the development of

IBD. Caruso et al. detected insignificant SIRT1 RNA and protein

expression in the lamina propria mononuclear cells from patients
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with IBD and observed that SIRT1 downregulation promoted the

sustained production of inflammatory cytokines and oxidative

stress in colitis. Subsequent treatment with the specific SIRT1

activator Cay10591 for IBD in lamina propria mononuclear cells

decreased the NF-kB activation and inhibited the synthesis of

inflammatory cytokines, whereas treatment with the SIRT1

inhibitor Ex-527 increased the release of interferon (IFN)-g (82).

Thus, exogenous administration of SIRT1 activators reduced colitis

(83). Similarly, Ren et al. used the SIRT1 activator SRT1720 to

reduce intestinal epithelial cell apoptosis in ulcerative colitis via

inhibition of CHOP and cystein-12 (molecules associated with

endoplasmic reticulum stress-mediated apoptosis); in contrast,

administration of nicotinamide (a SIRT1 inhibitor) exerted the

opposite effect (84). Additionally, resveratrol treatment had been

shown to significantly improve DSS-induced colitis and restore the

SIRT1-mRNA levels (85), to upregulate the expression of

phosphorylated mammalian target of rapamycin (mTOR) and

SIRT1 in colonic tissues, to reduce autophagy, and to regulate

SIRT1/mTOR signalling via inhibition of the intestinal

inflammatory cascade response (86). It is interesting to note that

SIRT1 knockdown has also been confirmed to have a protective

effect against IBD (83). SIRT1 gene deletion may help in

maintaining gastrointestinal immune homeostasis to improve the

disease status of colitis. Wellman et al. reported that intestinal

epithelial SIRT1 regulated the intestinal microbiota (87).

Furthermore, it improves the intestinal antibacterial defence to

prevent intestinal inflammation (88). Thus, SIRT1 deletion in the

intestine has a positive impact on IBD development. Akimova et al.

investigated the role of SIRT1 targeting FOXP3+ T cells in chronic

colitis in mice and showed that FOXP3+ T cells translocation in B6/

Rag1 mice led to chronic colitis. Additionally, the secondary

transfer of TE cells lacking Sirt1 to B6/Rag1(-/-) mice resulted in a

nearly three-fold increase in iTreg formation compared to that in

wild-type TE cell-receiving mice. In the absence of SIRT1, naive T

cells tended to differentiate into Tregs. In addition, treatment with

EX-527 reduced weight loss and colonic inflammation but

increased iTreg differentiation (89). Dong et al. showed that the

protein kinase CK2 downregulated SIRT1 expression, was involved

in Th17 inhibition, and promoted Treg differentiation (90). SIRT1

deficiency may inhibit colitis development by inducing Tregs.

In summary, both the activation and inhibition of SIRT1 exert a

protective effect in patients with IBD. SIRT1 upregulation decreases

NF-kB acetylation, leading to increased pro-inflammatory cytokine

expression. In contrast, SIRT1 deletion or silencing suppresses

colit is and maintains gastrointestinal homeostasis by

inducing Tregs.
5.4 Nervous system: Multiple sclerosis

Multiple sclerosis is a neurodegenerative disease characterized

by chronic inflammation of the central nervous system, in which

several factors influencing disease susceptibility and progression act

together. SIRT1 induces chromatin silencing via histone

deacetylation and regulates cell survival by modulating

transcriptional activity. A large number of cells express SIRT1 in
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both acute and chronic active multiple sclerosis, whereas SIRT1-

mRNA and protein expressions are significantly reduced in PBMCs

during relapse (91). The expression of SIRT1 correlates with

acetylation and methylation of H3K9. Ciriello et al. collected

PBMCs from patients with multiple sclerosis treated with

gramoxone acetate to determine phosphorylated SIRT1 (p-SIRT1)

and H3K9me3 levels. Compared to stable patients with multiple

sclerosis, this relapse during which p-SIRT1 protein and H3K9me3

levels showed statistically significant differences (92). Therefore,

SIRT1 may serve as a biomarker of relapse. Studies using animal

models of demyelinating and neurodegenerative diseases have

shown that SIRT1 induction ameliorates the disease process (93).

Recent studies have reported that the loss and dysfunction of

mitochondria and peroxisomes contribute to myelin and axonal

damage in multiple sclerosis. Singh et al. observed that treatment

for EAE with a combination of lovastatin and AMPK activator

(AICAR), lovastatin-mediated RhoA inhibition, and AICAR-

mediated AMPK activation in mice synergistically enhanced the

expression of transcription factors and regulators required for

biogenesis (e.g., PPARa/b, SIRT1), as well as mitochondrial and

peroxisomal functions, providing a protective effect (94). Methylene

blue (MB) treatment significantly reduced the clinical scores of

experimental autoimmune encephalomyelitis (EAE) and attenuated

pathological damage to the spinal cord, which was associated with

activation of the AMPK/SIRT1 signalling pathway and inhibition of

pro-inflammatory T cell responses (95, 96). Oral treatment with the

SIRT1-activating compound SRTAW04 significantly increased

SIRT1 activity within the optic nerve and prevented optic nerve

meridian loss. SRTAW04 treatment significantly reduced ROS

levels, increased mitochondrial function-related enzyme

expression, and reduced demyelination, exerting a similar

protective effect (97). In addition, Sirt3 and mitochondrial

abnormalities may be associated with excessive fatigue or muscle

dysfunction in multiple sclerosis. The use of ellagic acid (EA) was

able to increase SIRT3 expression and reduce oxidative stress in

muscle tissue, ultimately restoring mitochondrial function (98).

Immune cells are involved in regulating the expression of SIRTs

and the pathogenesis of multiple sclerosis, but they are poorly

studied. Th17 cell is an important component of the adaptive

immune system and is involved in the pathogenesis of most

autoimmune and inflammatory syndromes. SIRT1 increases the

transcriptional activity of RORgt, the hallmark transcription factor

of Th17 cells, and enhances Th17 cell production and function.

Both T cell-specific SIRT1 deficiency and pharmacological SIRT1

inhibitor treatment inhibit Th17 differentiation and are protective

in a mouse model of multiple sclerosis (28). For example, MB

treatment reduces Th17 responses and increases Treg responses

(95). In vitro and in vivo, lipocalin (ADN) upregulates SIRT1 and

peroxisome proliferator-activated receptor g (PPARg) and inhibits

RORgt, which can inhibit Th1 and Th17 and their cytokines in vitro

(99). ADN deficiency mainly promotes antigen-specific Th17 cell

responses in EAE. These results systematically reveal the effect of

ADN on pathogenic Th17 cells and the underlying mechanism. B

cells act as APCs to overactivate T cells and exacerbate the

progression of multiple sclerosis. MiR-132 overexpression in B

cells significantly enhanced lymphotoxin and TNF-a production
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while inhibiting the miR-132 target SIRT1. The aberrant production

of these cytokines by multiple sclerosis B cells can be normalized by

resveratrol. The miR-132-SIRT1 axis controls proinflammatory

cytokine secretion by B cells (100). Degeneration of

oligodendrocytes (OGDs) and OGD precursors (OPCs) increases

with age and is associated with increased inflammatory activity of

astrocytes and microglia (101). Genetic inactivation of SIRT1

increases the production of OPCs in the mouse brain, and neo-

OPCs differentiate normally to produce fully myelinated

oligodendrocytes. Thus, it improved myelin regeneration and

delayed paralysis in a mouse model of demyelination injury.

SIRT1 inactivation resulted in the upregulation of genes involved

in cellular metabolism and growth factor signalling, particularly

PDGF receptor alpha (PDGFRa) . PDGFRa mediates

Oligodendrocyte expansion through its downstream AKT and

p38 MAPK signalling molecules (102). SIRT1 inactivation confers

anti-inflammatory functions to astrocytes, inhibits the production

of pro-inflammatory mediators by myeloid cells and microglia, and

promotes the differentiation of oligodendrocyte progenitors. A

study in mice revealed that astrocyte-specific SIRT1 knockout

(SIRT1-/-) inhibited EAE progression, SIRT1-/- astrocytes

expressed a series of nuclear factor erythroid-derived 2-like 2

(Nfe2l2) target genes, and Nfe2l2 deficiency changed the

beneficial effects of SIRT1-/- astrocytes into deleterious effects

(103). DC plays a key role in activating, shaping and preventing

the characteristic CNS immune-mediated damage in MS and EAE.

The inhibition of Sirt6 diminished the immune response mainly by

reducing CXCR4-positive and CXCR4/CCR7-dual-positive DCs in

lymph nodes of EAE mice, which was associated with early

downregulation of CD40 expression on DCs and elevated levels

of the anti-inflammatory cytokine IL-10 (104).
5.5 Urinary system: IgA nephropathy and
mesangial proliferative glomerulonephritis

IgAN is the most common primary glomerular disease, with a

relatively poor prognosis and lack of pathogenesis-based therapy.

Compound K, the major absorbable intestinal bacterial metabolite of

ginsenosides, ameliorates the inflammatory response in IgA

nephropathy. It inhibits NLRP3 inflammatory vesicle activation in

renal tissues, macrophages, and bone marrow-derived DCs through

NF-kB/NLRP3 on the one hand and enhances the induction of

autophagy by increasing SIRT1 expression on the other hand,

thereby inhibiting NLRP3 inflammatory vesicles (105). Tris

(dibenzylideneacetone) dipalladium (Tris DBA) is a small molecule

palladium complex that alleviates immune complex-mediated diseases,

particularly IgAN. Treatment of IgAN mice with Tris DBA resulted in

significant improvements in renal function, albuminuria, and renal

pathology, mainly through the inhibition of NLRP3 inflammatory

vesicle initiation signalling and blunting of NLRP3 inflammatory

vesicle activation in kidney tissue or cultured macrophages induced

by SIRT1 and SIRT3-mediated autophagy (106).

MsPGN is characterized by glomerular thylakoid cell

proliferation and extracellular matrix deposition in the thylakoid

region, developing into glomerulosclerosis. SRT1720 activation of
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SIRT1 significantly enhanced the activity of the NRF2/ARE

pathway, including promoting the nuclear content and ARE

binding capacity of NRF2, increasing the protein levels of two

target genes of NRF2, HO-1 and SOD1, which ultimately increased

total SOD activity and decreased malondialdehyde levels in renal

tissues of experimental anti-Thy 1.1 MsPGN rats and alleviated the

pathological process of MsPGN (107).
6 Role of SIRTs in systemic
autoimmune diseases

6.1 Rheumatoid arthritis

RA is an autoimmune disease involving multiple systems,

characterized by synovial proliferation, vascular opacification, and

bone destruction. The SIRT family is closely associated with the

development of RA. The rs3740051, rs7069102, and rs1467568

variants in the SIRT1 gene are associated with RA susceptibility in

the Chinese Han population (108). Kara et al. found increased SIRT3-

mRNA expression and decreased SIRT2-mRNA expression in RA,

whereas both were increased in active RA (109). Fibroblast-like

synoviocytes (FLS) are thought to play a central role in the

development, progression, and perpetuation of RA. It is capable of

producing pro-inflammatory cytokines and proteases that destroy

bones and cartilage (110). SIRT1 is involved in inhibiting the activity

of FLS and promoting FLS apoptosis. SIRT1 activation induces FLS

apoptosis through the activation of cystein-3 and PI3K/Akt signalling

pathways. SIRT1 overexpression not only inhibits FLS proliferation,

invasion and migration but also reduces the production of pro-

inflammatory cytokines, thus alleviating RA synovial inflammation

effectively. Zhang et al. found that Overexpression of circ-SIRT1

inhibited the proliferation and induced apoptosis of RA-FLS MH7A

cells in addition to reducing IL-1b, IL-6 and TNF-a levels in MH7A

cells and suppressing inflammation (111, 112). These effects are

associated with NF-kB activation, and SIRT1 reduces p65 protein

expression, phosphorylation, and acetylation in RA-FLS to inhibit the

NF-kB pathway (113). Also, SIRT1 upregulation inhibits AP-1 and

NF-kB activation to reduce COX2 levels in RA-FLS (114). Therefore,

silencing of SIRT1 will promote FLS proliferation and adhesion,

leading to a poor prognosis of RA (115). However, in the synovial

tissue of RA smokers, silencing of SIRT1 reduced FLS proliferation

and is accompanied by increased apoptosis of FLS and decreased IL-6

and IL-8 levels (112, 115). Furthermore, SIRT1 promotes FLS

invasion and cartilage destruction through an MMP (TIMP1)-

dependent mechanism of inhibition. SIRT1 elevation in the RA

synovium inhibits TIMP1 expression through deacetylation of

TIMP1-associated histones, thereby disrupting transcription factor-

specific protein 1 (Sp1) binding to the TIMP1 promoter. In rats with

collagen-induced arthritis, SIRT1 depletion promoted TIMP1

expression in synovial tissue and ameliorated cartilage destruction.

Monocyte macrophages are critical for RA pathogenesis. M1

macrophages act as pro-inflammatory mediators in the synovium,

whereas M2 macrophages suppress inflammation and promote

tissue repair. SIRT1 transgenic (SIRT1-Tg) mice exhibited lower

TNF-a and IL-1b expression levels than wild-type mice. Activation
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of SIRT1/AMPKa signalling exerts anti-inflammatory activity by

regulating M1/M2 polarization, thereby reducing the inflammatory

response in RA (116). SIRT1 overexpression in adjuvant-induced

arthritic rats reshapes the differentiation characteristics of

monocytes and inhibits the glycolytic pathway, an effect that is

less pronounced in normal cells (117). Alpha-mangiferin (MG)

stimulation activates the cholinergic anti-inflammatory pathway,

which upregulates SIRT1 signalling, thereby inhibiting M1

polarization through the NF-kB pathway and improving the

pathological immune environment in early AIA rats (118). SIRT1

agonists inhibit PMA-induced phosphorylation and nuclear

translocation of PU.1, thereby suppressing monocyte-to-

macrophage differentiation (119).

Induction of Sirt1 upregulation in RA-FLS using resveratrol

may significantly inhibit FLS invasion and reduce the extent of joint

damage, which may be achieved by suppressing the expression of

MMP-1 and MMP-13. This can also be specifically regulated by

SIRT6, which specifically reduces TNF-a-induced MMP-1

production (120). It can also inhibit ROS production and FLS

proliferation by activating the SIRT1/NRF2 signalling pathway

(121, 122). Additionally, the upregulation of SIRT1-mRNA,

which induces apoptosis through the activation of cysteinase-9

and effector cysteinase-3, also inhibits FLS (123).

In summary, an effective way to slow the progression of RA is to

promote apoptosis, inhibit FLS proliferation, invasion and

migration, and suppress synovial inflammation.SIRT1 produces

negative regulatory effects on various pathways, mainly targeting

FLS, while also improving the function of other immune cells, such

as M1/M2 phenotype switching, to exert an inhibitory effect on

inflammation. In addition, SIRT1 also attenuates synovial oxidative

damage factors, such as peroxide production. The interaction

between oxidative stress and inflammatory response needs to be

further investigated and focused on in the future.
6.2 Systemic lupus erythematosus

SLE is a multisystemic, chronic, systemic inflammatory disease.

The impact of epigenetics on the autoimmune pathogenesis of SLE

has been pointed out in many studies in recent years, and epigenetic

changes in SLE that have been identified include DNA methylation,

histone modifications, and non-coding RNA modifications. Shen

et al. found a significant increase in SIRT1-mRNA and protein

levels in patients with active lupus nephritis (LN), which is, in part,

good evidence (110). Consiglio et al. found that variants in the

SIRT1 promoter rs3758391 increased the incidence and activity

index of SLE and that the rs3758391 T allele was a risk factor for

lupus nephritis (124). Abnormal immune cell activity due to

epigenetic alterations is important for the inflammatory immune

response to SLE. The development and progression of SLE is

associated with dysfunction of the innate and adaptive immune

systems, leading to impaired immune tolerance and autoantibody

production; T cells, B lymphocytes, and their cytokines are key

factors in the pathogenicity of SLE.

SIRT1 low expression alleviates SLE progression. Hu et al.

found that transfection of SIRT1-siRNA into MRL/lpr mice
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interfered with SIRT1-mRNA transcription and translation

processes, increased acetylation of cytosolic histones H3 and H4

in CD4+ T cells, attenuated autoimmune responses (125). In one

study, CD4+ T cells isolated from SLE patients transfected with

SIRT1-siRNA showed inhibition of DNA methyltransferase 1

(DNMT1) activity; Th17 cytokines, such as IL-17A, IL-22, and

IL-23, were positively correlated with disease activity and severity,

and a higher proportion of Th17 cells was found in patients with

active SLE and high levels of serum IL-17 (126). SIRT1 acts as a

regulator of the inhibition of Th17 differentiation, and its reduced

expression leads to a lower percentage of Tregs and a higher

percentage of Th17 cells. The aryl hydrocarbon receptor (AhR) is

a transcription factor involved in various inflammatory diseases,

and its ligand is required for CD4+ T cell differentiation and

maturation into Th17 or Treg. Peripheral blood AhR activation in

patients with active SLE (127). Studies on lupus CD4+ T cells have

shown that UV-B radiation inhibits SIRT1-mRNA and protein

expression by activating AhR and suppressing DNMT1 activity in

CD4+ T cells by binding upstream of the SIRT1 promoter

translation initiation site, thus mitigating the progression of the

pathological process (128). Conversely, SIRT1 reverses the AhR-

induced imbalance between Th17 and Treg populations and

promotes IL-17A and IL-22 secretion by CD4+ T cells (129). IL-2

is a key Treg cell regulator that regulates FOXP3 expression to

maintain immune tolerance. However, SIRT1 deacetylates FOXP3

and suppresses IL-2 transcription by regulating Bclaf1 and nuclear

factors in activated T cells, thereby inhibiting Treg proliferation

(130). Surprisingly, in some cases, SIRT1 activation also alleviates

renal damage in SLE, and RSV has been found to reduce proteinuria

and immunoglobulin deposition in lupus nephritis and IgG1 and

IgG2a levels in the serum of pristane-induced lupus mice by

activating SIRT1 (131). Additionally, resveratrol inhibited the

expression of CD69 and CD71 in CD4+ T cells and CD4+ T cell

proliferation, induced CD4+ T cell apoptosis, and reduced the ratio

of CD4+ IFN-g+ Th1 cells and Th1/Th2 cells in vitro (110).

Immunosuppression caused to some extent by this may account

for the protective effect of SIRT1 activators on SLE. High expression

of SIRT2 will promote the progression of SLE. Hisada et al. found

that the transcription factor inducible cAMP early blocker (ICER)

was overexpressed in T cells of SLE patients and lupus-susceptible

mice, directly binding to the Sirt2 promoter and promoting its

transcription. This led to increased SIRT2 expression in CD4+ T

cells of patients, which inhibited IL-2 production through the IL-2

gene c-Jun and histone deacetylation (132). Overexpression of

SIRT2 increased the proportion of Th17 cells.

Katsuyama et al. provided evidence that elevated CD38

expression in CD8 + T cells in SLE patients with a high incidence

of infection lead to increased acetylated EZH2 through inhibition of

SIRT1. Acetylated EZH2 inhibits RUNX3 expression. CD8+CD38+

T cells can reduce the cytotoxic response of T cells by suppressing

the expression of cytotoxicity-related transcription factors (T-bet,

RUNX3, and EOMES) through the CD38/NAD/SIRT1/EZH2 axis

(133). The abnormal activation of B cells produces excess antibodies

leading to systemic inflammation, and enhances their ability to act

as antigen-presenting cells (APCs), contributing to T cell activation.

Wang et al. transfected mouse B cells BaF3 with SIRT1-shRNA and
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found that SIRT1 overexpression promoted BaF3 cell proliferation,

decreased apoptosis, and increased expression of pro-inflammatory

cytokines (IL-6, IL-2, and TNF-a). IL-2 and TNF-a) expression

levels were elevated. Additionally, the NF-kB pathway and p65 were

significantly activated and phosphorylated, and the expression of B-

cell CLL/lymphoma-3 (Bcl-3) was increased (134). In contrast, in

MRL-lpr mice, the SIRT1 agonist RSV enhanced the expression of

the IgG receptor Fcg receptor (FcgRIIB), leading to the activation of

inhibitory B cell receptors, thereby inducing B cell apoptosis and a

significant reduction of B cells in the spleen and bone marrow. After

RSV treatment, there was a significant decrease in plasma cells with

high FcgRIIB expression, leading to a decrease in serum

autoantibody (e.g., IgG1, IgGa) levels and a decrease in immune

complex deposition in the kidney (135). This has promising

applications in the treatment of SLE, as both T cells and NK cells

do not express FcgRIIB, and the development of targeted drugs for

this locus can avoid affecting multiple immune cells to a certain

extent and reduce the side effects of immunotherapy.
6.3 Systemic sclerosis

SSc is a severe autoimmune connective tissue disease

characterized by extensive peripheral microangiopathy and

progressive cutaneous and visceral fibrosis leading to severe organ

dysfunction. In the last few decades, a growing number of studies

have explored the contribution of SIRTs to the pathogenesis of

systemic sclerosis, highlighting the significant anti-fibrotic effects of

SIRT1 and SIRT3. Both SIRT1 and SIRT3 serum levels were

significantly reduced in patients with systemic sclerosis compared

to those in controls. In systemic sclerosis, a decrease in circulating

SIRT1 and SIRT3 levels enhances the severity of cutaneous fibrosis

and interstitial lung disease. Reduced serum SIRT1 and SIRT3 levels

also correlate with the severity of the microvascular injury, and

SIRT3 levels are associated with the development of finger

ulcers (136).

SIRT levels are reduced in the tissues of patients with systemic

sclerosis, and molecular studies have revealed several mechanisms

by which reduced SIRT levels lead to fibrosis, with most attention

paid to the regulation of the TGF-b signalling pathway. The

activation of SIRTs in cell culture and animal models induces

antifibrotic effects, and decreased levels and activity of SIRTs are

emerging as pathogenic factors in systemic sclerosis. Restoration of

SIRTs expression levels may be therapeutic for patients with

systemic sclerosis (137, 138). SIRT1 expression was reduced in

patients with systemic sclerosis and TGF-b-dependent
experimental fibrosis patients, but this reduction was not

sufficient to counteract the excessive activation of TGF-b
signalling in systemic sclerosis. However, if SIRT1 is knocked

down, TGF-b/SMAD signalling is inhibited, Smad gene activity is

diminished, transcription of TGF-b target genes is reduced, and

collagen release from fibroblasts is ultimately reduced (139, 140).

Resveratrol ameliorates BLM-induced skin inflammation and

fibrosis in systemic sclerosis mice by activating SIRT1/mTOR

signalling. Amelioration of mTOR has been found in fibroblasts
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from patients with systemic sclerosis and in skin lesions from BLM-

treated mice. Rapamycin is an mTOR-specific inhibitor that

significantly inhibits inflammation and fibrosis. SIRT1 activation

significantly inhibited the enhanced mTOR expression in skin

lesions in BLM-treated mice. However, in BLM-treated cells and

mice, resveratrol exerted an inhibitory effect on the expression of

inflammatory factors and reduced the collagen levels after mTOR

knockdown (138, 141). SIRT3 is associated with increased oxidative

stress, leading to fibrosis. TGF-b inhibition of SIRT3 leads to a

decrease in SIRT3-dependent deacetylase activity, which results in

an inadequate antioxidant response. SIRT3 expression was

significantly reduced in systemic sclerosis skin biopsies and

transplanted fibroblasts and was inhibited by TGF-ß treatment in

normal fibroblasts. The enhancement of cellular SIRT3 by

hexafluorine treatment blocked intracellular TGF-b signalling and

fibrotic responses and attenuated the activation phenotype of

systemic sclerosis fibroblasts, while the accumulation of

mitochondrial and cytoplasmic ROS in fibroblasts was reduced

(142, 143).

Overall, SIRT1 and SIRT3 have been shown to improve fibrosis

by inhibiting TGF-b-induced signalling, and in addition, SIRT1

attenuates the inhibition of the mTOR pathway. Both of these

pathways are important for the development of anti-fibrotic

therapies. Moreover, the earlier SIRT1 is activated with

resveratrol; the better the fibrosis of the skin and other tissues can

be improved. Therefore, we predict that SIRT1 may play a

preventive therapeutic role in early SSc.
6.4 Vasculitis and giant cell arteritis

Anti-neutrophil cytoplasmic antibody-associated vasculitis

(AAV) is a systemic autoimmune disease involv ing

hyperactivated neutrophils, inflammatory factors, and ROS.

Shimojima et al. investigated the role of Tregs in AAV and

showed that SIRT1 levels, to some extent, negatively regulated the

AMPK pathway through the mTOR, maintaining the stability of

Tregs in AAV (144). Additionally, oxidative stress had been

observed to be involved in giant cell arteritis, which was mainly

maintained by the enhanced ROS production by immature

neutrophils. Levels of both ROS in leukocyte fractions and plasma

markers of oxidative stress (lipid peroxidation and total antioxidant

capacity) were significantly increased in patients with giant cell

arteritis, as compared with those in healthy controls. A significant

decrease in SIRT1 expression was found in PBMCs from patients

with giant cell arteritis. However, how these alterations contribute

to the pathogenesis of giant cell arteritis has not been

elucidated (145).
7 Treatment strategies and prospects

Over recent years, SIRTs have been increasingly recognized to

play an important role in the pathogenesis of innate and adaptive

immunity, as well as in autoimmune and inflammatory diseases. In
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this review, we described the structure of SIRTs and discussed the

effects of different intracellular localization of SIRTs on cellular

metabolism, differentiation, immunity, apoptosis, oxidative stress,

and mitochondrial function based on the important epigenetic

modification function of deacetylation of the SIRT family. We

further investigated and compared the interconnections and

interactions among SIRT family members to elucidate the role of

SIRTs in common organ-specific autoimmune diseases (e.g.,

Graves’ disease, type 1 diabetes, pulmonary fibrosis, IBD, multiple

sclerosis) and systemic autoimmune diseases (e.g., SLE, RA,

systemic sclerosis). Many of the inflammatory signalling pathways

mentioned in the paper have been extensively studied, but research

on inhibitors and activators of these inflammation-specific targets

has been slow and has not yet been fully used for the treatment of

diseases. Resveratrol is one of the more hotly studied SIRT1

agonists. It is considered a potential antioxidant drug for the

treatment of various autoimmune diseases as well as for

anticancer therapy. Many of these effects are due to modulation

by SIRT1 targets, such as PGC-1a and NF-kB. In addition,

resveratrol activates AMPK, inhibits cyclooxygenase, and affects

the activity of many other enzymes. In T1DM, resveratrol plays a
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protective role against cellular oxidative stress through the SIRT1-

FOXO3a pathway. In IBD, resveratrol treatment restored SIRT1

mRNA levels, inhibited NLRP-3 inflammatory vesicle activation,

and ameliorated colitis in mice. In MS, resveratrol treatment

reduced the production of pro-inflammatory cytokines such as

IL-6 and IL-12/23 p40d in mice. In RA, resveratrol inhibits the

activation of the MAPK signalling pathway and IL-1b expression in

rat synovial tissue and suppresses the development of arthritis.

Activation of PI3K/Akt signalling pathway by excitation-induced

apoptosis of FLS. In SLE, resveratrol upregulates FcgRIIB through

NF-kB activation to reduce the number of B cells and their antibody

production and improve lupus. In addition, several small molecule

SIRT1 activators (e.g., SRT2104, SRT2379, SRT3025, etc.) have

entered clinical trials. Here, we summarized the current potential

therapeutic options for these autoimmune diseases (Table 2).

The vast majority of existing studies have focused on SIRT1,

with more limited research on other members of the SIRT family

(e.g., the newly identified SIRT7). In addition, studies exploring the

relationship between the SIRT family and autoimmune diseases are

inadequate. In the future, more detailed interactions and effects of

the SIRT family should continue to be refined, with further
TABLE 2 The studies related to the treatment of autoimmune diseases.

Autoimmune
diseases

Animal
models

Tissue/Cell
types

Substances/
Drugs Pathways Main mechanisms and effects References

GD — PBMC SIRT1
SIRT1/NF-
kb

The expressions of IL-6, IL-8, TNF-a, and MCP1
were reduced.

(59)

HT

— Thyroid
Th1 cytokines (IL-
1a, IFN-g)

Th1
cytokine/
NOX4/ROS/
SIRT1/HIF-
a

Th1 cytokines caused excessive ROS production by
oxidative stress, downregulated SIRT1, upregulated
HIF-a, GLUT-1,VEGF-A.

(63)

—
CD4CD25FOXP3
T cells

SIRT1
SIRT1/
FOXP3

SIRT1-mediated aberrant FOXP3 acetylation leaded
to reduced FOXP3 expression levels and defective
Treg function.

(62)

T1DM DN rats Kidney
Isoliquiritigenin
(ISLQ)

SIRT1/NF-
kB

ISLQ inhibited the release of NF-kB, IL-1b, TNF-a
and reduced oxidative stress in the kidney.

(146)

DN/STZ
mice

Kidney/Podocyte miR-34a
P53/miR-
34a/SIRT1

Inhibition of P53/miR-34a/SIRT1 axis ameliorated
podocyte injury in diabetic nephropathy.

(147)

CKD rats
Kidney/Mesangial
cells (MCs)

RSV
SIRT1/
Smad3/
TGF-b1

TGF-b1-induced ETM and renal fibrosis were
attenuated.

(148)

DN mice Kidney/Podocyte
Gardenia
jasminoides (GE)

APMK/
SIRT1/NF-
kB

TNF-a, IL-6 and IL-1b decreased and inhibited the
development of DN.

(149)

DB mice
Kidney/BUMPT
cells

Tin-nickelate
calcein-1 (STC-1)

AMPK/
SIRT3

STC-1 ameliorated renal injury in DN by inhibiting
Bnip3 expression through the AMPK/SIRT3
pathway.

(150)

DN rats Kidney/MCs RSV
SIRT1/
FOXO1

RSV significantly increased the expression of
AdipoR1 by activating FOXO1 in diabetic kidney.

(151)

— Kidney/HK-2 cells
Pyrroloquinoline
quinine (PQQ)

PI3K/Akt/
FOXO3a

PPQ achieved its protective effects through PI3K/
Akt/FOXO3a pathway and SIRT3-dependent
regulation.

(152)

(Continued)
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TABLE 2 Continued

Autoimmune
diseases

Animal
models

Tissue/Cell
types

Substances/
Drugs Pathways Main mechanisms and effects References

DB mice Kidney/MCs Flavonoids (FMN)
SIRT1/Nrf2/
ARE

FMN upregulated SIRT1 expression to activate the
Nrf2/ARE signaling pathway and ameliorated
oxidative stress in DN to prevent the progression of
renal fibrosis.

(153)

DN rats Kidney/MCs miR-217
SIRT1/HIF-
1a

miR-217 promoted inflammation and fibrosis in
high glucose cultured rat glomerular thylakoid cells
via the SIRT1/HIF-1a signaling pathway.

(154)

PF PF mice
Mesenchymal
stem cells (MSCs)

miR-155-5p
SIRT1/
AMPK

miR-155-5p inhibition promoted autophagy and
ameliorated IPF-MSC senescence by activating the
SIRT1/AMPK signaling pathway.

(73)

PF mice Lung fibroblasts AGK2
SIRT2/
Smad2/3

Inhibition of SIRT2 alleviated fibroblasts activation
and pulmonary fibrosis via Smad2/3 Pathway.

(74)

PF rats Lung
Cryptotanshinone
(CTS)

TGF-b1/
Smad3/
STAT3/
SIRT3

Fibrosis biomarkers (fibronectin, type I collagen and
a-SMA) were significantly downregulated.

(76)

IBD UC mice
Colon/M1
macrophages

Loganin
SIRT1/
NF-kB

Loganin inhibited macrophage M1 polarization and
regulated SIRT1/NF-kB signaling pathway to reduce
ulcerative colitis.

(155)

Colitis
mice

Colon/Tregs
Desmethylisoboldine
(NOR)

NAD/
SIRT1/
SUV39H1/
H3K9me3

NOR promoted Treg differentiation and reduced
colitis by targeting glycolysis and the subsequent
NAD/SIRT1/SUV39H1/H3K9me3 signaling
pathway.

(156)

—

Intestinal
epithelial THP-1
cells

Ginsenoside Rk2
SIRT1/ERK/
MEK

Ginsenoside Rk2 prevented ulcerative colitis by
inactivating the ERK/MEK pathway via SIRT1.

(157)

UC mice Colon Dornithine (Ori)
SIRT1/NF-
kB/P53

DSS-induced inflammatory response, oxidative
stress and intestinal mucosal apoptosis were
Inhibited.

(158)

UC mice
Intestinal
epithelial IEC-6
cells

Atractylenolide III
(AT III)

AMPK/
SIRT1/
PGC-1a

AT III Inhibited the production of pro-
inflammatory factors and the reduction of
antioxidants and attenuated intestinal epithelial
barrier disruption and mitochondrial dysfunction.

(159)

UC rats Colon Umbelliferone(UMB)

TLR4/NF-
kB-p65/
iNOS;
SIRT1/
PPARg

UMB ameliorated acetic acid-induced ulcerative
colitis by modulating TLR4/NF-kB-p65/iNOS and
SIRT1/PPARg signaling pathways.

(160)

Colitis
mice

Colon
Chitosan
oligosaccharide
(COS)

PPARg/
SIRT1/NF-
kB

COS down-regulated pro-inflammatory cytokines
and up-regulated mucin-2 levels. Activation of
PPARg and SIRT1 inhibited the activation of NF-kB
pathway and reduced NO and IL-6 production.

(161)

Colitis
rats

Colon Cilostazol
cAMP/
SIRT1

Cilostazol inhibited NF-kB, Akt and MAPK
inflammatory pathways and reduced acetic acid-
induced oxidative stress and apoptosis.

(162)

Colitis
rats

Colon Ligliptin

AMPK/
SIRT1/
PGC-1a
JAK2/
STAT3

Ligliptin activated the AMPK-SIRT1-PGC-1a
pathway and inhibited the JAK2/STAT3 signaling
pathway, downregulated TNF-a, IL-6 and NF-kB
p65, and upregulated the anti-inflammatory
cytokine IL-10, reducing the severity of colitis.

(163)

Colitis
mice

Colon Ulva pertusa
NF-kB/
Nrf2/SIRT1

Ulva pertusa reduced DNBS-induced tissue damage,
inhibited NF-kB-induced inflammatory cascade
response, and regulated the expression of p53, Bax,
Bcl-2 and cystathione.

(164)
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TABLE 2 Continued

Autoimmune
diseases

Animal
models

Tissue/Cell
types

Substances/
Drugs Pathways Main mechanisms and effects References

UC rats Colon Engeletin(EMPA)
SIRT1/
PI3K/AKT/
NF-kB

EMPA counteracted AA-induced UC in rats by
modulating the SIRT1/PI3K/AKT/NF-kB
inflammatory pathway, normalizing the oxidant/
antioxidant balance, and improving the integrity of
the colonic barrier.

(165)

MS

EAE mice
Spinal Cord/Th17
cells/Tregs

Methylene blue(MB)
AMPK/
SIRT1

MB Inhibited pro-inflammatory T-cell responses,
significantly reduced clinical scores of EAE, and
attenuated pathological damage to the spinal cord.

(96)

EAE mice
Thymic epithelial
cells (TECs)

NAD+ PI3K/Akt/
mTOR

NAD+ stimulation of SIRT1 expression inhibited the
PI3K/Akt/mTOR pathway, promoted autophagy in
TECs and inhibited the autoimmune state of EAE
mice, thereby protecting EAE mice from sustained
injury.

(166)

EAE mice Th17/Th2 cells Lipocalin (ADN)
SIRT1/
PPARg/
RORgt

ADN Inhibited Th17 differentiation and limited
autoimmune CNS inflammation.

(100)

RA

— RA-FLS GAS5
miR-222-
3p/SIRT1

LncRNA GAS5 attenuated RA-FLS proliferation,
inflammation, and promoted apoptosis.

(167)

RA mice
RA-FLS/PBMC/
Exos

NEAT1
MicroRNA-
23a/MDM2/
SIRT6

NEAT1 promoted rheumatoid arthritis. (168)

CIA mice
CIA-FLS/Bone/
Cartilage

Quercetin (Que)

SIRT1/
PGC-1a/
NRF1/
TFAM

Que Improved impaired mitochondrial function,
decreased clinical scores, attenuated synovial
inflammatory hyperplasia and bone/chondral
destruction, and reduced the secretion of
inflammatory factors.

(169)

AIA rats
M1 macrophages/
Th1 cells

Alpha-invertin (MG) CAP/SIRT1

MG Induced cholinergic anti-inflammatory pathway
(CAP) activation, upregulated SIRT1 signaling,
inhibited M1 polarization via NF-kB pathway, and
improved the pathological immune environment.

(123)

SLE

—
CD4+T cells/
CD1+T cells

Ultraviolet B (UVB)
AhR/SIRT1/
DNMT1

UVB inhibited the activity of DNMT1 via AhR
activation dependent SIRT1 suppression in CD4+ T
cells.

(129)

MRL/lpr
mice

Splenic CD4+ T
cells

miR-199a-5p
miR-199a-
5p/SIRT1/
p53

miR-199a-5p improved lupus symptoms but
increased senescence of splenic CD4+ T cells.

(170)

— CD8CD38+T cells CD38

CD38/
NAD/
SIRT1/
EZH2

CD38 overexpression in CD8+ T cells decreased the
cytotoxic response of T cells by inhibiting SIRT1
leading to an increase in acetylated EZH2.

(134)

MRL/lpr
mice

B cells RSV
SIRT1/
FcgRIIB/
NF-kB

RSV activated SIRT1, enhanced FcgRIIB expression,
induced B-cell apoptosis, reduced serum
autoantibodies and ameliorated lupus nephritis.

(136)

— Monocytes Pam3CSK4
TLR2/
SIRT1/
PPAR-g

Downregulation of SIRT1 enrichment in the PPAR-
g promoter regulated PPAR-g expression and
induced polarization of monocytes toward an M2-
like phenotype with increased Arg-1 expression and
decreased expression of CD80, NF-kB, IL-1b, IL-6,
IL-12, and CCR7.

(171)

ASLN
mice

Kidney
Hauptophanol
(HNK)

SIRT1/
autophagic
axis/NLRP3

Negative regulation of T-cell function and enhanced
activation of NLRP3 inflammatory vesicles by
reduced SIRT1/autophagy axis to alleviate renal
lesions in ASLN mice.

(172)

LN mice
Splenic
lymphocytes

Panax notoginseng
saponin (PNS)

SIRT1/
FOXO1/
MDR1

PNS inhibited SIRT1/FOXO1/MDR1 signaling
pathway in lymphocytes and reversed P-gp-
mediated steroid resistance in lupus.

(173)

(Continued)
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attention to the substrate changes and gene expression effects

induced by the SIRT family. The development and application of

specific SIRT family agonists and inhibitors built on this basis

should be improved. Detailed mechanistic elaboration of the SIRT

family will help to better explore the pathogenesis of autoimmune

diseases and thus provide novel therapeutic directions.
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adenosine 5’-monophosphate (AMP)

activated protein kinase (AMPK)

activator protein 1 (AP-1)

cyclooxygenase-2 (COX2)

dentin matrix acidic phosphoprotein 1 (DMP1)

forkhead box protein O1 (FOXO1)

forkhead box protein O3 (FOXO3)

forkhead box protein O3a (FOXO3a)

forkhead box protein P3 (FOXP3)

glucose 6-phosphate dehydrogenase (G6PD)

glutathione SH (GSH)

hypoxia inducible factor 1, alpha subunit (HIF-1a)

interleukin-1 (IL-1)

interleukin-1beta (IL-b)

interleukin-2 (IL-2)

interleukin-6 (IL-6)

interleukin-10 (IL-10)

interleukin-12 (IL-12)

interleukin-17 (IL-17)

interleukin-17f (IL-17f)

interleukin-18 (IL-18)

interferon gamma (IFN-g)

mammalian target of rapamycin (mTOR)

manganese superoxide dismutase (MnSOD)

mitogen-activated protein kinase (MAPK)

matrix metalloproteinase 2 (MMP2)

matrix metalloproteinase 9 (MMP9)

matrix metalloproteinase 13 (MMP13)

monocyte chemotactic protein 1 (MCP-1)

nucleotide-binding oligomerization domain leucine-rich repeat and
pyrin domain-containing 3

(NLRP3)

nucleotide-binding oligomerization domain leucine-rich repeat and
caspase recruitment domain-containing 4

(NLRC4)

nuclear factor kappa B subunit (NF-kB)

nuclear erythroid 2-related factor 2 (NRF2)

oxoguanine glycosylase 1 (OGG1)

prostaglandin E2 (PGE2)

peroxisome proliferator-activated receptor g coactivator 1-alpha (PGC-1a)

peroxisome proliferator activated receptor alpha (PPAa)

peroxisome proliferators-activated receptor g coactivator 1alpha (PGC-1a)
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plasminogen activator inhibitor 1 (PAI-1)

phosphoglycerate mutase 2 (PGAM2)

phosphoinositide-3 kinase (PI3K)

receptor tyrosine kinase-like orphan receptor gamma t (RORgt)

signal transducer and activator of transcription 3 (STAT-3)

superoxide dismutase 2 (SOD2).

transforming growth factor-beta 1 (TGF-b1)

tumor necrosis factor-a (TNF-a)
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