
TYPE Original Research

PUBLISHED 06 July 2023

DOI 10.3389/fcomp.2023.1211739

OPEN ACCESS

EDITED BY

Guoyin Wang,

Chongqing University of Posts and

Telecommunications, China

REVIEWED BY

Zhongbao Zhang,

Beijing University of Posts and

Telecommunications (BUPT), China

Fan Min,

Southwest Petroleum University, China

Jinhai Li,

Kunming University of Science and Technology,

China

*CORRESPONDENCE

Pengfei Chen

chenpf7@mail.sysu.edu.cn

RECEIVED 25 April 2023

ACCEPTED 19 June 2023

PUBLISHED 06 July 2023

CITATION

Li M, Yang M and Chen P (2023) Alarm

reduction and root cause inference based on

association mining in communication network.

Front. Comput. Sci. 5:1211739.

doi: 10.3389/fcomp.2023.1211739

COPYRIGHT

© 2023 Li, Yang and Chen. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Alarm reduction and root cause
inference based on association
mining in communication
network

Min Li1, Mengyuan Yang2 and Pengfei Chen2*

1School of Systems Science and Engineering, Sun Yat-sen University, Guangzhou, China, 2School of

Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China

With the growing demand for data computation and communication, the size

and complexity of communication networks have grown significantly. However,

due to hardware and software problems, in a large-scale communication network

(e.g., telecommunication network), the daily alarm events are massive, e.g.,

millions of alarms occur in a serious failure, which contains crucial information

such as the time, content, and device of exceptions. With the expansion of

the communication network, the number of components and their interactions

become more complex, leading to numerous alarm events and complex alarm

propagation. Moreover, these alarm events are redundant and consume much

e�ort to resolve. To reduce alarms and pinpoint root causes from them, we

propose a data-driven and unsupervised alarm analysis framework, which can

e�ectively compress massive alarm events and improve the e�ciency of root

cause localization. In our framework, an o	ine learning procedure obtains results

of association reduction based on a period of historical alarms. Then, an online

analysis procedure matches and compresses real-time alarms and generates root

cause groups. The evaluation is based on real communication network alarms

from telecom operators, and the results show that our method can associate

and reduce communication network alarms with an accuracy of more than 91%,

reducing more than 62% of redundant alarms. In addition, we validate it on fault

data coming from a microservices system, and it achieves an accuracy of 95%

in root cause location. Compared with existing methods, the proposed method

is more suitable for operation and maintenance analysis in communication

networks.

KEYWORDS

Artificial Intelligence for IT Operations, alarm compression, alarm association, root cause

analysis, communication network

1. Introduction

The communication network connects communication and computation devices and

allows information exchange to achieve resource sharing. The communication network is

the core for mobile devices to access the Internet and realizes wireless signal transmission.

Nowadays, communication network service has been widely used in all fields of our life.

According to the Communications Industry Statistics Bulletin survey (2020), the total number

of mobile base stations nationwide reached 9.31 million in 2020, with a net increase of

900, 000 for the year and over 600, 000 new 5G base stations. With the development

of 5G communication technology, the scale of the communication network is gradually

expanding, and the association of communication networks is highly complex with intensive

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1211739
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1211739&domain=pdf&date_stamp=2023-07-06
mailto:chenpf7@mail.sysu.edu.cn
https://doi.org/10.3389/fcomp.2023.1211739
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1211739/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

network elements. Meanwhile, with the increasing demand of

customers, the reliability of communication networks should

also increase accordingly (Ksentini and Pujolle, 2006). In large-

scale complex communication networks, since the dependency

relationship between numerous components is complex, which

generates kinds of abnormal information at any time, these

anomalies degrade the user experience and bring huge losses in

serious cases. It is a challenge for operation and maintenance

(O&M) engineers to quickly handle abnormal information from

communication networks to ensure the stability and reliability of

communication services.

The alarm events of communication networks are crucial for

O&M, which records alarm information such as time points,

devices, machine rooms, components, and network elements (Zhao

et al., 2020). Based on the analysis of real alarms in communication

networks, we found a propagation phenomenon among associated

alarms, which causes a large number of related alarms to appear in

short intervals. This propagation phenomenon with a wide range

of influence and a large number of alarms is called alarm storm

(Wen et al., 2015), where the root causes of the alarm storm are

called Root Cause Alarms (Abele et al., 2013), and alarms that are

strongly associated and can be compressed into the same group

are called Redundant Alarms. During the O&M of communication

networks, accurately compressing redundant alarms and quickly

locating root cause alarms can effectively relieve the impact of alarm

storms on service quality. Traditional methods mainly deal with

communication network alarms based on expert experience and

rules. Manual operation is not only inefficient, slow, and costly, but

also not making enough use of alarm data. Facing the increasing

number of alarms and their complex associations, AIOps (Artificial

Intelligence for IT Operations) is a more practical solution that

incorporates intelligent algorithms into O&M (Long et al., 2020).

In recent years, intelligent technologies are widely used, such as

association mining, data analysis, and machine learning (Basha

et al., 2020; Chen et al., 2021; Jiang and Bai, 2023; Liu et al.,

2023; Xie et al., 2023). However, the analysis of alarm data from

communication networks still faces three following challenges.

Challenge 1. The no-periodic and irregular content of alarm

events. Based on the analysis results of datasets obtained from real

communication networks, the life cycle of alarms is poorly regular,

and it may occur frequently in a certain period while hardly in

the rest of the time. In addition, the text of alarms is irregular

and inconsistent, leading it difficult to obtain their occurrence

frequency and handle them by experience or rules. Simply using

time window partitioning is likely to result in unexpected and

wrong segmentation. Therefore, standardizing preprocessing for

irregular alarm events and segmenting non-periodic sequences of

alarm events reasonably are challenges.

Challenge 2. The diversity of alarm sequences. Numerous

alarms in real communication networks are generated

simultaneously in short intervals, and the data collection is

affected by external factors such as network delay and system

clock offset, resulting in inaccurate timestamps of alarms. It

leads to a diversity of alarm sequences and difficulty in mining a

stable sequence pattern (Dorgo and Abonyi, 2018). Therefore, the

challenge is to use the content and context of segmented alarm

events to aggregate them and extract the association graphs of

alarms more precisely.

Challenge 3. The noise in alarms. Alarm storms usually happen

with a large number of redundant and interfering dependencies,

which seriously affects the accuracy and compression efficiency of

association mining. Therefore, in the face of a diverse and rapidly

developing communication network, current AIOps solutions are

difficult to work well (Alinezhad et al., 2022). Therefore, facing an

alarm storm, compressing massive alarm events, extracting critical

alarm association graphs, and automatically sorting the most likely

root cause alarm based on association weights are challenges.

Considering the above challenges, we propose an unsupervised

and lightweight communication network alarm analysis

framework, which reduces redundant alarms and infers

root causes for a large number of real-time alarms. Our

approach includes an offline learning procedure and an

online analysis procedure, where the offline learning mines

associations based on historical alarm records, while the

online analysis applies the learned associations for alarm

compression and noise elimination, and infers the root

cause of alarm storms. The contributions are summarized as

follows:

• We propose segmentation methods for communication

network alarms both in offline learning and online analysis,

which segment alarm sequences based on a time window and

the attributes of alarms.

• We propose a method to accurately mine associations of

communication network alarms based on their content and

context, both in stable sequence patterns and non-periodic or

episodic patterns. Meanwhile, to cope with irregular texts in

alarm events, we propose a method for standardizing alarm

event information.

• We propose an improved Louvain community discovery

algorithm to reduce and group a large number of alarms using

their association information. We also propose a real-time

alarm compressionmethod based on offline learned associated

alarm groups.

• We model the association relationship as a probabilistic

directed acyclic graph and propose a method to calculate the

importance of alarms based on the alarm association graph

and propose a heuristic root cause inference method based

on PageRank (Berkhin, 2005). It achieves 95% accuracy in

locating the root causes.

The rest of this study is organized as follows. Section 2 gives

an overview of our framework. Sections 3, 4 describe the details of

offline learning and online analysis, respectively. The experiments

and evaluation are shown in Section 5, and we review the related

works in Section 6. Section 7 provides an overall conclusion of

our study.

2. Overview of framework

The overview of our analysis framework for communication

network alarms is shown in Figure 1, which includes the offline

learning procedure (A1 to A5 in Purple) and the online analysis

procedure (B1 to B4 in Blue).

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

FIGURE 1

The overview of communication alarm analysis framework.

FIGURE 2

The definition and statistical results. (A) Example of alarm scenario and failure scenario. (B) Alarm time interval histogram. (C) Statistical counts of

similarity of alarm device room.

2.1. The o	ine learning procedure

Figure 1 (A1 to A5) shows the offline learning process,

and it consists of the following five steps (A1) Pre-process,

collecting historical alarms from monitors for a specific period

as offline training data, such as a set of data before the alarm

occurs. Then, filter and regulate alarm attributes based on

human-designed rule templates, reorganize alarm sequences of

the same or similar sources that occur in a short interval, and

output a regulated historical alarm sequence. (A2) Segmentation

of historical alarm sequences based on alarm time and alarm

sources. The outputs are segments of alarm sequences for

different alarm scenarios. (A3) Historical alert association mining,

including alert association based on context and content, both

are represented by an association matrix. Context associations

are obtained by constructing a co-occurrence probability

model, and content associations are obtained by calculating

content similarity. The outputs are historical alarm association

matrices. (A4) A directed and acyclic probabilistic graph is

constructed based on the historical alarm association matrices

as an alarm association model. (A5) The association noise is

eliminated by the community discovery algorithm, and the

closely associated alarm groups are classified as association

reduction results of offline learning and further used for online

analysis.

2.2. The online analysis procedure

Figure 1 (B1–B4) shows the online analysis process, and it

consists of the following four steps: (B1) Real-time alarm collection

and pre-processing collect alarms from monitors with a fixed time

interval and regulate them in the same way as offline learning.

(B2) Aggregate and reorganize alarms based on data sources and

divide them into segments. The outputs are segments of alarm

sequences in different scenarios. (B3) Real-time compression by

alarm matching matches alarms within each segment based on

the results of offline learning. The matched alarms are separated

according to the grouping result of offline learning, while the

unmatched alarms are constructed into similar sets based on

historical alarms. Finally, the alarms are placed into different

groups. (B4) Calculate and rank the importance of the alarms

in matched compression groups. The alarm with the highest

score is marked as the root cause. Meanwhile, the root cause

of the corresponding group information is reported to network

operators.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

Input: Alarm Sequences: seq = {e1, e2, . . . , en}, Time

Thresholds: cuttime, Scenario Thresholds:

cutroom;

Output: Alarm Sequence Segmentation Set:

segment = {seg1, seg2, . . . , segn};

1 for ei in seq do

2 if Alarm ei is the first alarm in the sequence then

/* create a new segment and place the

current alarm */

3 segi ← DataFrame();

4 segi.append(ei);

5 else

/* calculate time interval and similarity of

occurrence sources */

6 1t = timestampei − timestampei−1;

7 wordei ,wordei−1 = WordCut(roomei , roomei−1);

8 1s = Jaccard(wordei ,wordei−1);

/* Delineate the sequences belonging to

different alarm scenarios */

9 if 1t ≤ cuttime and 1s ≤ cutroom then

10 segi.append(ei);

11 else

12 segment← segi;

13 segi+1 ← DataFrame();

14 segi+1.append(ei);

15 end

16 end

17 end

18 return segment;

Algorithm 1. Alarm sequence segmentation algorithm.

3. O	ine learning of communication
network alarms

3.1. Alarm sequence segmentation

3.1.1. Definition
Alarm Scenarios and Failure Scenarios. As shown in

Figure 2A, communication networks are deployed in different

and independent areas, and alarms propagate in the same or

neighboring machine rooms. Therefore, we define Alarm Scenarios

when alarms are generated within a short interval and at the

same or similar data sources (i.e., machine rooms hosting the

communication devices), and the propagation of alarm in the same

scenario is defined as a Fault Scenario. We further count the time

interval of alarms in a month based on the real communication

networks, as shown in Figure 2B. The alarms that belong to the

same propagation and appear within 1 min account for more than

95%. It indicates that alarms propagate fast, and when the time

interval is more than 1 min, there is a low association between

alarms. According to the above results, we set the segmentation

threshold of the alarm sequence as 1 min.

Additionally, because there are numerous alarms within 1

min, segmentation only based on time threshold may classify

redundant and inaccurate sequences belonging to different alarm

scenarios. Therefore, we counted the characteristics of other

attributes of related alarms, such as the similarity of the data

sources (e.g., device room), as shown in Figure 2C, more than

70% of the associated alarms occur in the same room site, and

20% in neighboring room sites (similarity values from 0.7 to

1.0). There are also room sites with low similarities, which are

affected by inaccurate descriptions and biased data labels in the

similarity calculation. Furthermore, cross-site propagation exists

in real environments, but such cases are very scarce, and setting

a low similarity threshold in sequence segmentation will result

in incorrect segmentation. Therefore, we do not consider corner

cases such as cross-site propagation and select 0.6 as the scenario

segmentation threshold.

3.1.2. Alarm sequence segmentation algorithm
According to the above analysis, alarms of the same scenario

usually occur within 1 min and appear in the same or close to the

occurrence room site. Based on the similarity of occurrence time

and the occurrence room, the segmentation algorithm is defined as

Algorithm 1 (O(n) time complexity). Figure 3A shows an example

of the alarm segmentation results.

3.2. Alarm association mining

The alarm sequence segmentation algorithm separates alarm

sequences of different alarm scenarios, but we need further root

cause analysis of alarms in one scenario. As shown in Figure 2A,

two different root cause alarms (marked by alarm icons) occurred at

a similar time and in nearby sites, causing other alarms (marked by

warning icons). Thus, alarms within different fault scenarios have

different propagation paths, and alarms of the same fault scenario

are highly correlated. Therefore, after sequence segmentation, it is

necessary to divide alarms into different fault scenarios and infer

their propagation paths.

Based on the analysis of real alarm data, alarms with the

same root cause usually have a high probability of co-occurrence

(Weng et al., 2018). Moreover, the related alarms show similarity

in attributes such as room sites, device, and alarm content (Zhao

et al., 2020). As for the device association, it is difficult to obtain the

exact topology due to the complex dependencies of communication

network devices and components in real production. Currently,

widely used spatial analysis methods such as topological network

construction and topological region delineation rely on accurate

topology, and inaccurate topological knowledge generates more

noise. Therefore, (i) for the spatial association of communication

network alarms, we mainly consider the association between the

alarm sources in the sequence segmentation process. (ii) For the

association of alarm contents, wemainly consider the title of crucial

alarms because of the redundant information in alarm details.

Table 1 shows examples of related alarms, which have similar

titles. Furthermore, analyzing their similarities can supplement

the shortage in context association. However, there are redundant

content or abbreviation irregularities in alarm titles, which need to

be standardized in pre-processing.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

FIGURE 3

The segmentation algorithm and sequence patterns. (A) Example of alarm sequences segmentation. (B) Example of base station alarm sequence

pattern.

TABLE 1 Example of associated alarms.

Timestamp Alarm room Alarm title Alarm device Root cause

t1 Room1 Wireless base station disconnection BTS Shared site power failure

t1 Room1 Station break for power reasons BTS Shared site power failure

t1 Room1 Station break for suspected power reasons BTS Shared site power failure

t1 Room1 Station break transmission reason SDH Transmission device failure

t2 Room1 ABIS site control link disconnected EnodeB Tower power failures

t2 Room1 Control link break alarm EnodeB Tower power failures

3.2.1. Association of alarm context
Alarms in real communication networks are usually not

periodic, and the frequency of occurrence varies widely. We

collected the real alarm data from a telecom operator in a month.

The data show that frequent alarms are as many as thousands,

while scarce alarms are only a few. In addition, numerous alarms

occur at the same time, and their timestamps are susceptible to

deviations due to external factors, resulting in unstable alarm

sequences and difficulty in capturing a uniform sequence pattern,

as shown in Figure 3B. Therefore, association mining algorithms

based on frequent or sequential patterns, such as the Apriori

algorithm (Bodon, 2000), FP-growth algorithm (Borgelt, 2005),

WINEPI algorithm (Li et al., 2010), and PrefixSpan (Han et al.,

2001) algorithm, have difficulty in extracting the association of non-

periodic or episodic alarms. In neural network-based association

mining, irregular sequences can seriously affect the training effect

of models. To adapt to irregular and non-periodic alarms, we

construct a novel probabilistic model to mine context association

of alarms, which is based on the Bayesian theory (Bernardo and

Smith, 2009), using statistical learning (Vapnik, 1999) instead of

prior knowledge, defined as Equation (1).

D(ei, ej) =
{

P(ej|ei) if Count(ei → ej)ei ,ej∈segk ≥ Count(ej → ei)ei ,ej∈segk

P(ei|ej) if Count(ei → ej)ei ,ej∈segk < Count(ej → ei)ei ,ej∈segk ,
(1)

where D(ei, ej) denotes the co-occurrence probability of alarms

ei and ej. To obtain the alarm propagation paths, conditional

probability is used to represent the alarm co-occurrence

probability. However, it is difficult to obtain the propagation

paths of alarms in real communication networks. We obtain

it based on statistical learning, summarizing the directions of

co-occurrence alarms in a segment. Thus, Count(ei → ej)ei ,ej∈segk
denotes the count of alarm ei occurs before ej in segment segk,

and the opposite is defined as Count(ej → ei)ei ,ej∈segk . When

alarm ei precedes ej more times in a segment, the co-occurrence

probability is expressed as conditional probability P(ej|ei). The

mathematical meaning is the occurrence probability of alarm ej
under the condition that alarm ei occurs and vice versa for P(ei|ej).

Equation (2) is a calculation example of conditional probability

P(ej|ei).

P(ej|ei) =

max

(

Count(ei|ei ,ej)ei ,ej∈segk
Count(ei)

,
Count(ej|ei ,ej)ei ,ej∈segk

Count(ej)

)

if 1c ≤ 1d

Count(ei|ei ,ej)ei ,ej∈segk+Count(ej|ei ,ej)ei ,ej∈segk
Count(ei)+Count(ej)

if 1c > 1d

(2)

1c = |Count(ei)− Count(ej)|, 1d is a hyperparameter threshold,

where Count(ei|ei, ej) and Count(ej|ei, ej) are the number of alarms

ei and ej in a single segment. Count(ei) and Count(ej) are the total

number of ei and ej in all segments. 1c is the absolute value of

the difference between alarms ei and ej. 1d is a hyperparameter

threshold determining whether the frequency of alarms is different

from each other. According to the co-occurrence of associated

alarms, (i) for two alarms with a small difference in the count,

the conditional probability is the larger value (the proportion of

co-occurrence to each count). When the propagation direction is

uncertain, choosing the maximum value can remain the association

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

TABLE 2 Examples of the alert title processing.

Raw alert titles Splitting Conversion Denoising

STM16 optical physical

interface signal loss

STM16, optical,

physical interface,

signal loss

STM16, optical,

physical interface,

signal loss

optical,

physical interface,

signal loss

Ethernet ETPI physical

interface signal loss

Ethernet,

physical interface,

signal loss

Ethernet,

physical interface,

signal loss

Ethernet,

physical interface,

signal loss

ETPI_LOS ETPI, LOS Ethernet,

physical interface,

signal loss

Ethernet,

physical interface,

signal loss

R_LOS R, LOS R interface,

signal loss

R interface,

signal loss

MS_AIS MS, AIS Reuse segments,

alarms,

indication signals

Reuse segments,

alarms,

indication signals

when the noise is removed. (ii) as for two alarms with a significant

difference in the occurrence count. To avoid the effect of episodic

alarms, conditional probability is defined as the count of co-

occurrence alarms in a segment divided by the total count of two

alarms. The threshold 1d is a statistical count value of alarms

within a certain period, we set1d = 370 in our experiments, which

is the average count within a month.

3.2.2. Association of alarm content
The offline learning procedure is based on the historical data

of a certain period that may have potential errors. To ensure

the accuracy of association mining, further analysis is needed

with other attributes of alarms. We mainly consider the similarity

between alarm titles, but according to Table 1, titles need to be

regulated first. We collect professional terms for communication

network alarm events to extend the Chinese Thesaurus (jieba,

2020). Then, alarm titles are sorted according to the occurrence

of count of words in descending order as two types. (i) Keywords,

such as “withdrawal, broken link, broken station”. (ii) Normal

words, such as “occurrence, of” and variables such as interface

and address number. We generate a list of key terms for alarms

based on expert experience and a list of synonym conversions, such

as “LOS” equals “loss of signal”. Table 2 shows an example of the

processing of alert titles, and it shows that the irregularities come

from normal words and synonyms. Therefore, we regularized the

titles by subdividing and filtering them using synonym lists and

keyword lists. After regularization, the similarity of alarm titles can

be better calculated. Considering the word shifting and repetition

in regularization, we choose the Jaccard coefficient (Niwattanakul

et al., 2013) to calculate the similarity, defined as Equation (3).

S(ei, ej) = Jaccard(texti, textj) =
keyword(texti)

⋂

keyword(textj)

keyword(texti)
⋃

keyword(textj)
(3)

3.2.3. Construction of association matrix
The association N × N matrix, where N is the number of

historical alarms, is constructed based on context association and

content association of alarms according to Equation (4). The

hyperparameter α ∈ [0, 1] is an association weight, which is a trade-

off on the importance between context and content. Generally,

if the alarm sequence patterns are straightforward, we could

concentrate on the context and set a larger α. In this study, we set

α = 0.6 with more attention to the context association and regard

content association as additional information.

Covei ,ej = α × D(ei, ej)+ (1− α)× S(ei, ej) (4)

3.3. Alarm reduction based on association

Figure 4A shows the cumulative distribution of the values in

association matrices, where the lower values are the noise. They

have weakly associated alarms with the same time or occurrence

sites but are triggered by different root causes. The noise usually

belongs to different failure scenarios that can be filtered out using

co-occurrence probabilities. For the preprocessing of denoising,

threshold filtering is widely used (Marvasti, 2015). However, it is

difficult to set a proper threshold for real communication network

alarms, and the filtering accuracy is unacceptable. Larger thresholds

may lose important associations, and smaller thresholds fail to

filter noises. In contrast, clustering or community discovery (Coscia

et al., 2011) is more feasible. Meanwhile, the clustering algorithm

still requires hyperparameters such as the number of centers in K-

means (Hartigan and Wong, 1979) or distance of DBSCAN (Ester

et al., 1996). Therefore, we turn to the non-parametric Louvain

community discovery algorithm (De Meo et al., 2011), which is

measured by the metrics of association grouping results.

The association of communication network alarms is modeled

by a directed acyclic graph (DAG), where the nodes are alarms, the

directed edges denote the propagation direction of alarms, and the

weights of the edges are association levels. Then, the community-

based discovery algorithm finds out associations from the graph

as reduction results. Since it is a directed graph, we add weights

to module metrics, defined as Equation (5), where G denotes an

undirected graph converted from the directed association graph.

We ignore the propagation direction because our reduction mainly

considers the degree of association. Moreover, C(C ∈ G) denotes a

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

FIGURE 4

The statistical results and threshold comparison. (A) Statistical histogram of alarm correlation values. (B) Comparison of di�erent denoising threshold.

community,
∑

Cov(ei, ej)ei ,ej∈G denotes the sum of all edge weights

in the graph G,
∑

Cov(ei, ej)ei ,ej∈C denotes the sum of all edge

weights of community C, and
∑

Cov(ei, ej)ei∈C,ej∈G denotes the

sum of associated edge weights of communityC. Based on Equation

(5), the community with the largest module degree Q is the closest

alarm association.

Q =
∑

∑

Cov(ei, ej)ei ,ej∈C
∑

Cov(ei, ej)ei ,ej∈G
−

(

∑

Cov(ei, ej)ei∈C,ej∈G

2×
∑

Cov(ei, ej)ei ,ej∈G

)2

(5)

The Louvain algorithm visits communities randomly, and a

large number of graph edges may lead to biased division. Therefore,

eliminating invalid associated edges can improve the accuracy and

stability of reduction. We set different reduction thresholds by

locating the alarm nodes that are inconsistent in multiple divisions.

We count the number of nodes in a group, and when the number

is stable in multiple iterations, the invalid edges affecting the

reduction are eliminated. As shown in Figure 4B, the deviations

generated by the invalid edges are small, and stable groups are

obtained in the iterations when the reduction thresholds are [0.13,

0.15, 0.23, and 0.25]. Therefore, we set 0.13 in our experiments. The

association reduction algorithm is shown in Algorithm 2 (O(n2)

time complexity), including association denoising and community

discovery, and finally generates the groups of associated alarms.

4. Online analysis of communication
network alarms

4.1. Real-time alarm compression

The real communication network alarms are numerous even

millions when an alarm storm occurs. Moreover, their occurrences

are unstable, leading to difficulty in setting a fixed time window

for analysis (Hu et al., 2017). Inappropriate time window results

in incorrect classification results of alarms. Therefore, we propose

a real-time sequence segmentation (Algorithm 3) (O(n2) time

complexity) based on offline learned alarm associations to group

alarms, then analyze them by groups. There are three steps as

follows: (i) the associated alarms are segmented by the interval

threshold at first. (ii) Reorganize sequences within the same time

segment according to alarm sources (machine rooms or device

names) and aggregate alarms with the same or similar sources.

It can reduce the impact of timing deviations and enhance the

alarm compression rate. (iii) Based on the aggregation results and

the reorganized sequences, dividing alarms into different alarm

scenarios for subsequent analysis.

Alarms are further divided into matched and unmatched

alarms based on historical data. We propose the real-time alarm

matching and compression algorithm as shown in Algorithm 4

(O(n2) time complexity). (i) Matched alarms are events that

appear in offline learning, which are grouped using the association

reduction results. This matching is based on the list of compressed

alarm association groups. If the current alarm groups have a

majority intersection with the group list of a compressed collection,

it can be put into that collection. (ii) The unmatched alarms are

mainly new types of alarms or independent alarms, which are

grouped by the similarity to historical alarms. We extract the key

contents of the current alarm and calculate its similarity with

historical alarms, then sort them in descending order and form

a similar set as the historical alarms with Top-k similarity. If the

alarm belongs to a compressed segment in a similar set, it will be put

into that group. Otherwise, the alarm is put into the independent

groups. (iii) Finally, new alarms with a low similarity are grouped

into an independent group.

4.2. Root cause inference

When an alarm storm occurs, there are still numerous

compressed alarm groups. Automatically inferring the root cause

is necessary. In communication networks, the root cause alarm

results in a wide propagation scope but is nearly not influenced

by other nodes. Therefore, root cause alarms usually have more

out-degree edges (and out-degree weights) and fewer in-degree

edges (and in-degree weights) in the association graph. To infer

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

Input: Global Association Directed Graph: Gdirected,

Reduction Threshold: β;

Output: Hash Tables of Groups: HashG;

1 G← Gdirected .to_undirected; /* convert directed

graph to undirected graph */

/* association denoising and remove independent

nodes */

2 for edge, node in G do

3 if edge.weight < β then

4 G.remove_edge(edge);

5 end

6 if node.in_edge = 0 and node.out_edge = 0 then

7 G.remove_node(node);

8 end

9 end

10 HashG = dict(), Gid = 1; /* Louvain algorithm based

on equation (5) metric */

11 for e in G.nodes do

12 Gsub ← G.bfs_search(e); /* Generate subgraph by

breadth-first search node */

13 community← Louvain(Gsub);

14 for node in community.nodes do

15 if community.get_node(node) == community.get_num(e) then

16 HashG[node].update(Gid); Gid ← Gid + 1

17 end

18 end

19 end

20 return HashG;

Algorithm 2. Association reduction algorithm.

the root cause alarm, we modify the PageRank algorithm to obtain

importance scores. PageRank is a basic algorithm for evaluating

the importance of a website and is applied to identify the key

nodes (Tortosa et al., 2021; Xiong and Xiao, 2021). Our improved

PageRank algorithm not only considers the number of in and out

edges but also incorporates weights to calculate the importance

score. Based on the association graph shown in Figure 5A, for in-

edges, the importance of node ei on node ex in Figure 5 (a2) is

greater than in Figure 5 (a1). For out-edges, the importance of node

ex influenced by node ei in Figure 5 (a2) is greater than in Figure 5

(a3). In summary, for alarm node ei, : the meaning of the sentence

“In summary, for alarm node ei....” is not clear. Please check and

confirmwhether this sentence is appropriate or amend if necessary.

define the importance of impact as Inf+
imp(ei)

and the importance

of being impacted as Inf−
imp(ei)

, as shown in Equation (6), where

OutSet(ei) and InSet(ei) are the set of out-degree and in-degree of

alarm node ei. PR is the original definition of node importance in

the PageRank algorithm.

Inf+
imp(ei)

=
∑

ek∈OutSet(ei)
PR(ek)

InDegree(ek)
, Inf−

imp(ei)
=

∑

ej∈InSet(ei)
PR(ej)

OutDegree(ej)
(6)

We further consider the association weight of alarms to indicate

the impact degree and the larger value means a greater impact.

Input: Real-time Alarm Sequences:

seqrealtime = {e1, e2, . . . , en}, Time Threshold: timecut,

Scenarios Threshold: roomcut, Begin Time:

tbegin;

Output: Segmented Sets: segments = {seg1, seg2, . . . , segn};

1 segments← DataFrame(); segtime ← DataFrame();

segscene ← DataFrame();

2 for ei in seqrealtime do

/* time segmentation based on timestamp */

3 if ei.timestamp− tbegin < timecut then

4 segtime.append(ei); tbegin ← ei.timestamp;

5 else

/* sequence reorganization for current time

segment */

6 segtime.cluster(’alarms rooms’);

segscene.append(segtime);

7 for eti in segtime do

8 wi,wi−1 ← WordCut(roomi, roomi− 1);

1s = Jaccard(wi,wi−1);

9 if 1s < roomcut then

10 segscene.append(eti)

11 else

12 segments.append(segscene); segscene.clear();

segscene.append(eti)

13 end

14 end

15 segtime.clear(); segtime.append(ei)

16 end

17 end

18 return segments;

Algorithm 3. Real-time alarm segmentation.

Adding weights not only quantifies the impact degree but also

accelerates the convergence of the algorithm. Therefore, we define

a new importance of impact as Equation (7), where Inf (ei)
+ and

Inf (ei)
− denote the importance of impact and being impacted of

alarm node ei.

Inf (ei)
+ =

∑

ek∈OutSet(ei)

PR(ek)

InDegree(ek)
× Covei ,ek ,

Inf (ei)
− =

∑

ej∈InSet(ei)

PR(ej)

OutDegree(ej)
× Covej ,ei

(7)

We also modify the definition of PR (node importance score

in PageRank), which is the relationship of the influence degree

of one node on rest nodes, as shown in Equation (8). Therefore,

the node with the highest importance score is the most likely root

cause node.

PR(ei) = Inf (ei)
+ − Inf (ei)

− (8)

Based on the above definitions, we propose a root cause

inference (Algorithm 5) (O(n2) time complexity) to infer root cause

alarms in grouped alarm sets. The algorithm includes initialization,

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

Input: Segmented Sets: segments = {seg1 , seg2, . . . , segn},

Similar Set Size: k,

Historical Alarms:Ehistory = {h1, h2, . . . , hn},

Offline Learning Groups:

HashG = {e1 :[G1, . . . ,Gn], . . . , en :[G1, . . . ,Gm]}

Output: Segmented Sets: Gcompress = {g1, g2, . . . , gn};

1 Gcompress ← DataFrame(); GIdcompress ← dict();

Hashcompress ← dict(); num = 0;

2 for segi in segments do

/* matched alarms */

3 if HashG[segi] 6= [] then

4 for ni, gi in GIdcompress do

5 if HashG[segi]
⋂

gi 6= φ then

6 Gcompress[ni].append(segi); Hashcompress[segi]← ni;

7 GIdcompress[ni].update(HashG[segi]); break;

8 end

9 end

10 if segi cannot be compressed then

11 Gcompress[num].append(segi); Hashcompress[segi]← num;

12 GIdcompress[num].update(HashG[segi]); num← num+ 1

13 end

14 else

/* unmatched alarms */

15 sim← dict();

16 for hei in Ehistory do

17 wordi,wordi−1 = WordCut(segi , hei);

sim[hei] = Jaccard(wordi,wordi−1);

18 end

19 simList = sorted(sim)[0 : k];

20 for sei in simList do

21 if sei ∈ segments and sei ∈ Hashcompress then

22 Hashcompress[segi]← Hashcompress[sei];

23 Gcompress[Hashcompress[sei]].append(segi)

24 end

25 end

26 if segi not in Hashcompress then

27 Gcompress[num].append(segi); Hashcompress[segi]← num;

28 GIdcompress[num].update(HashG[segi]); num← num+ 1

29 end

30 end

31 end

32 return Gcompress;

Algorithm 4. Real-time alarm matching and compression.

iterative update, and importance ranking. Moreover, the root cause

node is output when it reaches a stable distribution.

5. Evaluation

5.1. Dataset

Our dataset comes from a real-world telecom operator’s real

communication network, and it contains real alarms from June

1st to 30 in 2019, with a total of 154, 273 alarm records, of which

12, 253 are grouped and labeled by experts. We use data from June

1st to 22 as training data for offline learning and obtain association

reduction results. Then use labeled data from June 23 to 30 for

online analysis testing.

5.1.1. Regularization and preprocessing
We regularized the communication network alarms by

extracting a uniform template. To reduce the interference of invalid

information, only attributes that are valid for analysis are retained.

According to our alarm sequence segmentation and association

analysis, we select the following attributes including occurrence

time, machine room, alarm title, device type, network element name,

and alarm level. We count the categories of the above attributes on

the training dataset, which contains 13 categories of device types,

144 categories of alarm titles, and 12, 201 categories of network

element names. Therefore, we discard the network element name

attribute because it is too fine-grained compared to the others, it is

not conducive to alarm association analysis.

We further analyze the alarm titles on each device, as shown

in Figure 5B, most of the alarm contents occur on specific devices.

Therefore, we define two types of regular alarm templates. (i)Alarm

template based on alarm titles, we define the regular alarm event as

eindi = {ai} and a regular alarm record as Eindi = {ai, ti, ri, gi, li}.

Alarms with the same title are regarded as the same alarm event.

(ii) Alarm template based on the alarm title and device attributes,

we define the regular alarm event as emix
i = {ai, di} and a regular

alarm record as Emix
i = {ai, di, ti, ri, gi, li}. Alarms with the same

title and device type are regarded as the same alarm event. In the

above definitions, where ti is the timestamp, ri is the alarm room,

ai is the alarm title, gi is the alarm level,li is the alarm label, di is

alarm device. Our analysis framework mainly uses the second rule

template emix
i .

Due to the influence of external factors such as network delay

or system clock offset, there are inaccuracies in timestamps. To

deal with this problem, we set a time window and treat alarms

in a window as occurring at the same timestamp. Alarm scenario

aggregation reorganizes the alarms that occur at the same time

according to alarm sources and improves the compressibility of

the alarm sequence. We set the time window as one minute

based on our statistical summarizing in Section 3.1, most of the

relevant alarms occur within one minute. Based on the raw training

dataset, the historical sequence segmentation algorithm can obtain

33, 968 segments. However, after scenario aggregation, the number

of segments further reduces to 23, 798, which reduces 30% of

segments, effectively improving the compression rate of the alarm

sequence.

5.2. Evaluation of o	ine learning

We mainly validate the compression results of offline learning.

It starts with historical sequence segmentation of the regulized

and scenario-aggregated training data with 23, 798 segments

(Algorithm 1). Then, the association matrix is constructed by

mining contextual dependencies and content similarity of alarm

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

FIGURE 5

The importance example and statistical results of alarm devices. (A) Example of impact importance of node. (B) Statistical results of alarm title types

on each device.

Input: Subgraphs: Subex = {(ei → ej) :Covei ,ej , . . . },

Iterations: iter, Exist Threshold: E

Output: Root Cause Node: noderoot_cause;

1 pr← dict(); /* initialization */

2 for node in Subex .nodes do

3 pr[node] = 1/length(Subex .nodes)

4 end

/* iterative update: calculating node importance

scores */

5 for count is 1 to iter do

6 prchange ← 0;

7 for node in Subex .nodes do

8 OutSet← list(Subex .OutDegree(node));

InSet← list(Subex .InDegree(node));

9 prnew ← Inf (node)+ − Inf (node−);

prchange ← prchange + (prnew − pr[node]);

10 pr[node]← prnew;

11 end

12 if prchange < E then

13 break;

14 end

15 end

/* importance ranking: the node with highest

importance score */

16 noderoot_cause ← sorted(pr.items());

17 return noderoot_cause;

Algorithm 5. Root cause inference.

segments. The alarm association is constructed as a probabilistic-

directed acyclic graph. Moreover, a total of 169 nodes with 391

associated edges are generated based on the training data, which is

shown in Figure 6A. The noisy association causes a large number

of ungrouped alarms which cannot be used for analysis. The

area marked by purple circles in Figure 6A are grouped alarms.

The association graph is analyzed using the association reduction

(Algorithm 2) and root cause inference (Algorithm 5). We obtain

169 reduced association groups, Figure 6B shows part of the results,

where the purple nodes are the root cause alarms of corresponding

groups. It shows that our offline learning procedure eliminates

noises from historical alarm association graphs and further makes

alarm grouping more accurate.

5.2.1. Online compression
Online compression is based on the results of offline learning.

In addition, we generate real-time alarms based on the test dataset

to validate the effectiveness of online compression. After data

preprocessing, the real-time alarm segmentation (Algorithm 3)

and the real-time alarm compression (Algorithm 4) are used for

compression. The compression rate can reach up to 40%. Figure 7

shows an example of the compression results. The left part shows

a real-time alarm sequence obtained in a segment. The right part

shows the analysis results, where the nodes marked in purple color

at the top are inferred root causes of the group. Meanwhile, the

edges which are highly correlated with root causes are denoted by

dark arrows, while other edges are denoted by lighter arrows. It

shows that our online analysis effectively compresses the alarms

and infers the propagation of key root causes in the compressed

group.

5.3. Evaluation of online analysis

5.3.1. Metrics
We define three key metrics to evaluate our alarm analysis

results.

(i) Alarm loss. We define “lost alarms", which are independent

alarms and not associated with other alarms and are usually filtered

out as noises. This idea comes from two aspects. One is about

the truly independent alarms, and the other is about failing to

extract the associations from alarms due to improper association

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

FIGURE 6

Example of association reduction in o	ine learning procedure. (A) Original alarm association. (B) Example of alarm groups.

FIGURE 7

Example of real-time alarm mapping matching.

analysis methods. Since the number of independent alarms is

fixed, the number of lost alarms can evaluate the capability of

analysis algorithms. The alarm loss is defined as eventLoss =
eventloss
∑

eventall
, where eventloss are independent nodes and

∑

eventall is

the total number of alarms. The smaller eventLoss indicates a more

comprehensive mining of the method.

(ii) Group accuracy. It is defined as accuracy = True Positive
total alarms

,

and the higher accuracy indicates the more reliable association

reduction and matching results of the analysis method. The true

positive is evaluated based on the dataset labeled by experts.

(iii) Compression rate. It is the compression degree of the

number of alarms, defined as compress =
alarms−groups

alarms
, where

alarms is the total number of alarms, and groups is the number of

groups. A higher compression rate means a greater compression

degree of alarms.

5.3.2. Regularization and pre-processing
We compare the results of the two regularization templates,

as shown in Table 3, where eind is a template only based on alarm

titles, and emix is a fine-grained template based on alarm titles and

device attributes. Scenario aggregation refers to the reorganization

of alarms with similar occurrence sources in the pre-processing

phase. The results in Table 3 show that scenario aggregation not

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

only improves the grouping accuracy but also effectively improves

the compression rate. In addition, different templates have less

impact on compression but some impact on grouping accuracy,

among which templates eind based on alarm titles achieve better

results. Because of the fineness of the alarm labels in the test dataset,

which is only labeled at the title level.

5.3.3. Association analysis of alarms
We compare several commonly used alarm association analysis

methods in communication networks. (i) Frequent pattern mining

methods, such as improved Apriori algorithm (Bodon, 2000) and

FP-Growth algorithm (Borgelt, 2005). (ii) Sequence pattern mining

methods, we choose the PreFixSpan algorithm (Han et al., 2001),

which is widely applied in the field of alarm analysis. (iii) Neural

network-based methods, we chose the LSTM model (Yu et al.,

2019) to learn the sequence relationship for predictive analysis,

and the input is the unique encoding (one-hot) of the warning

sequence. (iv) Word embedding-based methods, which convert

alarm sequences into word sequences for analysis. It is one of the

most effective analysis methods in recent years, and we choose

the word embedding-based (Li et al., 2018) APE interaction model

(Paradis et al., 2004) for comparison.

We compare the above models in extracting association

relationships based on the training dataset and then use the

test dataset to validate their association analysis results. Table 4

shows the optimal results of each method. We summarize as

follows: (i) the Apriori algorithm and FP-Growth algorithm can

only capture the association of frequently occurring alarms and

lose a large number of non-periodic or episodic alarms, which

seriously affects the grouping accuracy and compression rate. (ii)

The PreFixSpan algorithm can only capture alarm association with

fixed sequential patterns and loses alarm with sequential deviations

and non-periodic ones. It has a certain improvement over the

frequent pattern mining methods. (iii) The LSTM-based model

predicts alarms based on the prior sequence and does not have the

problem of alarm loss. However, the irregularity of communication

network alarms and the diversity of sequences lead to costly

training and low prediction accuracy.Meanwhile, themodel cannot

determine the alarm propagation direction as well as perform alarm

compression, so we only record the accuracy rate. (iv) The APE

model is also unable to determine the propagation direction and

needs to calculate between each pair of alarms, which includes

a large number of redundant calculations. The reduction process

also costs a long time and it is weak to eliminate association

noise. Our method performs better on all metrics. It not only

mines the association relationship with fixed pattern alarms but

also non-periodic and episodic alarms. Therefore, it can provide

more accurate and reliable association reduction results, compress

massive real-time alarms, and accelerate analysis.

5.3.4. Association reduction results
Figure 8A shows a representative case of two groups. The left

and right parts of the graph are divided into two closely correlative

subgroups. The value of the connected edge (marked in red)

between the two subgroups is much lower than the average value

within the two groups, thus it is regarded as an association noise.

However, since the noisy edge weights cannot be known in advance,

the ability to eliminate the noise is limited by setting proper

thresholds and clustering distance. Three popular community

discovery algorithms are compared in Figure 8, namely (a) the

Infomap algorithm (Rosvall and Bergstrom, 2008), (b) the LPA

algorithm (Zhu et al., 2003), and (c) the Louvain algorithm (DeMeo

et al., 2011). As shown in Figure 4, only the Louvain algorithm

eliminates the noisy edge of the subgraph and correctly divides

the groups. The LPA algorithm incorrectly eliminates associations

and obtains 6 groups. The Infomap algorithm does not correctly

identify the noisy edge. We further selected the threshold value 0.2

(CDF curve inflection point value) for comparison based on the

results of the association statistics value as shown in Table 5. The

threshold-based graph reduction method has unstable grouping

accuracy, and the LPA algorithm loses important relations and

performs poorly in grouping accuracy and compression rate.

The Infomap algorithm has poor elimination of noises and poor

effectiveness. The Louvain algorithm performs the best in both

grouping accuracy and compression rate and eliminates noises

more comprehensively.

5.3.5. Real-time matching and compression
Real-time alarm matching and compression (Algorithm 4)

include matching alarm groups based on offline learning and

grouping unmatched ones based on similarity. As the expert-

tagged alarms dataset does not contain unmatched alarms. To

expand the dataset, we use the expert-labeled test dataset to form

eliminable alarms set Alarmremove = {er1, . . . , ern} and simulate the

unmatched alarms. Those alarms mainly consist of independent

alarms and new alarms that do not appear in history, both of

which are rare in general. The number of independent alarms

is <15% of the total alarms. The number of new alarms is

estimated by calculating the proportion of alarms that occur in

the last 3 days and not in the first 7 days based on the real

alarm data with a 10-day period, which is <5% of the total. Our

experiments eliminate the alarms one by one in Alarmremove from

the training dataset sequentially, and the results are shown in

Table 6. The impacts of different proportions of unmatched alarms

are compared. The comparison results show that our method

achieves high grouping accuracy and compression rate in different

scenarios, demonstrating the processing capability of our algorithm

for matched and unmatched alarms.

5.3.6. Root cause inference
Since experts did not label the specific root causes of the

fault groups. To further verify the effectiveness of our root cause

inference algorithm, we obtain the dataset with root cause labels

based on the microservice simulation system VirtualWarRoom

(Chen et al., 2020) by fault injection. The architecture of the

microservice system is shown in Figure 9A.

The microservice components are interrelated, therefore, the

fault injection of a service results in anomaly propagation in the

system. We form a group according to the services injected with

faults and the services subjected to fault propagation, and the

injected node is the root cause node. An example of fault injection is

shown in Figure 9B, where a delayed exception is injected into the

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

TABLE 3 Comparison of regularization and pre-processing methods.

Method Alarm loss (%) Grouping accuracy (%) Compression rate (%)

emix + Scenario aggregation 15.97 91.86 62.18

eind + Scenario aggregation 15.97 93.02 62.71

emix + No aggregation 15.97 88.05 51.94

TABLE 4 Comparison of association analysis algorithm.

Analysis algorithm Alarm loss (%) Grouping accuracy (%) Compression rate (%)

Apriori 80.47 55.47 47.25

FP-growth 30.59 63.09 21.26

PreFixSpan 21.89 70.99 32.18

LSTM (sequence) – 20.25 –

LSTM (one-hot) – 40.39 –

APE - 52.39 45.72

Ours 15.97 91.86 62.18

FIGURE 8

Association reduction results of di�erent algorithms. (A) Origin and infomap. (B) LPA. (C) Louvain.

TABLE 5 Comparison of association statute algorithm.

Statute algorithm Alarm loss (%) Grouping accuracy (%) Compression rate (%)

Graph method (threshold) 21.16 81.45 57.63

LPA 15.97 86.05 52.94

Infomap 15.97 88.19 53.65

Louvain 15.97 91.86 62.18

TABLE 6 Comparison results of real-time matching and compression.

Eliminate alarms Unmatched alarms (%) Grouping accuracy (%) Compression rate (%)

None 0.00 91.86 62.18

er1 10.87 89.54 59.78

er2 5.39 89.69 60.07

er3 4.85 90.45 61.37

er4 2.30 90.72 60.82

er5 1.09 90.30 61.46

er6 0.37 91.86 62.14

webserver_elb service at time t3. Based on the system architecture

in Figure 9A, the affected services are denominator and cloud-front.

We only collect datasets with exceptions, including timestamps,

service instances and root cause service with injected faults. We

construct two datasets as follows: (i) Dataset A, inject faults into

the microservice system every 10 s for a total of 180 times, yielding

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

FIGURE 9

System architecture and example of fault injection. (A) Architecture of microservice system. (B) Response time of services (unit:sm).

152 groups with fault propagation. (ii) Dataset B, inject faults every

30 s for a total of 50 times and obtaining 41 groups with fault

propagation. We validate our root cause inference algorithm based

on the above dataset, it is worth noting that we do not need to

perform content association analysis because the injected faults are

all time-delayed anomalies.

We construct association graphs using the relationships

between services and analyze groups one by one. For dataset A,

our algorithm correctly infers the injected service instance in 144

groups with an accuracy of 94.74%. For dataset B, 40 groups are

correctly inferred with an accuracy of 97.56%. There are examples

of root cause inference in Figure 10, where the purple node is the

inferred root cause. The blue nodes are fault-propagated service

instances, the direction of the edge is the propagation direction,

and the weight of the edges is the propagation probability and

unlabeled edges in light gray with less probability. As shown in

Figure 10C, after injecting a time delay fault to the appserver

service, the appserver-elb, websever, websever-elb, cloudfront, and

denominator services all experience a time delay fault, and the

propagation relationship is consistent with the system architecture

in Figure 9A.

5.4. E�ciency analysis

An efficient analysis is needed in real communication networks.

Therefore, we counted the number of alarm events occurring

in different periods and constructed multiple validation datasets

with different alarm events for evaluation. Then we validate the

efficiency of two parts of our analysis framework. (i) Offline

learning, alarm segmentation is affected by the number of historical

alarms, association mining is affected by the number of alarm

events, and association reduction is affected by the complexity

of the association graph. Figure 11B shows the results of offline

learning, which grows linearly with the size of the dataset.

(ii) The efficiency of online analysis is also affected by the

number of real-time alarms. Figure 11C shows the results of

the simulation based on real communication network alarms,

illustrating that the efficiency of online analysis also grows linearly

with the size of the dataset. In summary, the time complexity

of our analysis framework is O(N2). It can deal with massive

alarms in large-scale communication networks and effectively

reduce the alarm processing time and improve the analysis

efficiency.

5.5. Discussion of parameters

5.5.1. Segment threshold
During the segmentation of the historical and real-time alarm

sequences, the interval and scenario thresholds are obtained based

on the statistical analysis results. We compared different time

intervals and scenario thresholds as shown in Figures 12A, B. Due

to the limited labeled dataset, the differences in the figures are

not obvious, but Figure 12A shows that a smaller time threshold

will lose a large number of associations, with the highest rate

of alarm loss and the lowest rate of grouping accuracy. While

excessive time thresholds obtain a low alarm loss rate but lead to

a noisy association. Figure 12B shows that the sequence cannot

be segmented with a small scenario threshold, which gets a small

rate of alarm loss, but the grouping accuracy is low due to a large

number of error associations. However, if the scenario threshold is

much larger, it will lose part of the propagation association in the

nearby alarm sources, affecting the grouping accuracy. According

to the above comparison results, we select the segmentation time

threshold of 60 s and the scenario threshold of 0.6 to ensure that

the three metrics achieve the best on our dataset.

5.5.2. Association weight
When constructing the association matrix, we use the

association weight parameter α to control the weight of context

dependency and alarm content similarity in the association value

(Equation 4). To find an appropriate threshold, we compare

different weights based on two regular templates as shown in

Figures 12C, D. The template eind based on alarm titles has a large

impact on the parameter change, and α = 0.7 get the best grouping

result. The template emix based on title and device attributes has

little effect on parameter changes, and α = 0.6 get the best

grouping result. Therefore, emix based on complex attributes has

stronger stability, and the grouping accuracy is not easily affected

by parameters but will be affected by the label granularity.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

FIGURE 10

(A–C) Example of root cause inference in microservice system.

FIGURE 11

Comparison of statute thresholds and e�ciency analysis. (A) Comparison of di�erent statute thresholds. (B) E�ciency analysis of o	ine learning. (C)

E�ciency analysis of online learning.

FIGURE 12

Comparison of di�erent parameters. (A) Comparison of di�erent time thresholds. (B) Comparison of di�erent scenarios thresholds. (C) Comparison

of correlation weights based on template eind. (D) Comparison of correlation weights based on template emix.

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

5.5.3. Association reduction threshold
The number of invalid associations affects the partition result

of the Louvain algorithm, so it is necessary to eliminate the invalid

edges with an appropriate reduction threshold β . We compare

thresholds of 0.13, 0.15, 0.23, and 0.25 as shown in Figure 11A.

When β = 0.23 and β = 0.25, all metrics are stable, but more

alarm loss leads to a lower grouping accuracy. When β = 0.09, the

number of alarm losses is minimum, but the grouping result is not

accurate enough. When β = 0.13 and β = 0.15, a higher grouping

accuracy can be obtained. When β = 0.13, fewer alarms are lost,

the compression degree of real-time alarms is higher, and obtain

the best associations compression result.

6. Related work

The popular alarm analysis and management systems in the

industry (BingShow, PagerDuty, BigPanda, Moogsoft) tend to use

simple alarm strategies to improve versatility and adapt to diverse

application scenarios, such as merging alarms according to their

devices or merging adjacent alarms based on a priori topology

knowledge. Such systems are effective when applied to regular

data, but are less effective in complex data. In addition, these

systems usually extract associations based on complete and fine-

grained system topological diagrams, but in large-scale systems and

complex communication networks with a large number of services

and many device components, it is difficult to obtain accurate

and stable topology knowledge. At present, the AIOps solutions

proposed by enterprises and operators in the real environment are

less targeted, and the accuracy is affected by excessive focus on

program generality due to the large differences in types of abnormal

information in diverse systems. Therefore, there is still room for

development in this field.

6.1. Time series segmentation

Traditional methods of time series analysis are mainly

implemented based on parameter estimation (Chandola et al.,

2009). However, prior knowledge is difficult to obtain for real

environments, and methods based on non-parametric estimation

are more widely used, such as data-based spatial density

distributions (Wu et al., 2014) or deviation distributions (Costa

et al., 2019). Another commonly used method is based on the

Hawkes Process of self-excited point processes for time series

analysis, where the density function is not only time-dependent but

also controls the effect of the historical situation on the present

through the intensity function (Mei et al., 2017). To obtain more

accurate intensity functions, methods based on machine learning

and reinforcement learning have also become hot research topics in

recent years (Du et al., 2016; Yan et al., 2019). The above methods

have certain requirements for data distribution, therefore, methods

based on time series statistics have also been widely used in recent

years. For example, the methods of setting sliding time windows

to divide the series (Li et al., 2015), clustering the time series

(Aggarwal et al., 2003; Pham et al., 2009), dividing the time series

by temporal features and related attributes. Those methods do not

need to consider the distribution of the data and are more suitable

for irregularly distributed communication network alarms.

6.2. Alarm association analysis

The aggregation and reduction of alarm events can effectively

improve data quality and reduce the cost of locating the root

cause of faults (Mansoor et al., 2022). Traditional alarm association

analysis methods mainly rely on manual analysis, such as those

based on instance inference (Kolodner, 2014), simplemodels (Chao

and Liu, 2004) and a priori rules (Abraham, 1988). The mainstream

mining association rule methods are based on the frequent mining

algorithm, such as the Apriori algorithm (Shuiyao et al., 2020;

Zheng et al., 2020; Zhu, 2020) with FP-Growth algorithm (He et al.,

2020; Wang et al., 2020); and methods based on sequential pattern

mining algorithm, such asWINEPI algorithm (Lin et al., 2019) with

PrefixSpan algorithm (Niyazmand and Izadi, 2019). This type of

approach learns rules from data but requires accurate and low-

complex event sequences to achieve reliable results. Meanwhile,

data-driven approaches based on data mining algorithms, such

as the construction of association knowledge using data mining

algorithms (Xuewei et al., 2014), association prediction using

probabilistic models (Marvasti, 2015), and feature decomposition-

based approaches, such as capturing spatiotemporal associations

through tensor decomposition (Kimura et al., 2015), have also

been used for association analysis. In addition, there are methods

based on neural networks for association analysis, such as

fault detection models using LSTM neural networks (Liu et al.,

2018), capturing spatiotemporal associations of anomalies through

deep learning methods (Yuan et al., 2018), and building alarm

analysis and prediction frameworks (Zhang and Wang, 2019). In

addition, there are approaches to convert alarm analysis to natural

language processing problems, such as APE (Chen et al., 2019)

is a probabilistic model for association analysis based on Word

Embedding. CAR (Lin et al., 2018) ranks alarms based on word

embedding to analyze content association. And methods model

sequences as n-tuples grammar trees (Hubballi et al., 2011) and

compute anomalous inter-sequence associations using machine

translation models (Nie et al., 2020). Log2Vec (Meng et al., 2020) is

also a log analysis framework that combines word embedding with

OOV word processors. There are also alarm reduction methods in

cloud systems, such as iPACK (Liu et al., 2023) is an incident-aware

method for aggregating duplicate tickets and alerts that considers

failure information from both the customer and cloud sides. GRLIA

(Chen et al., 2021) is also an incident aggregation framework based

on graph representation learning over the cascading graph of cloud

failures. The proposed framework learns a representation vector

for each unique type of incident in an unsupervised and unified

manner that can encode both topological and temporal correlations

among incidents.

6.3. Alarm root cause localization

Alarm root cause analysis has become an increasingly

important topic of research investigated by many researchers

(Alinezhad et al., 2022). Traditional alarm root cause localization

methods are mainly based on expert experience to manually

label root causes or use supervised learning and semi-supervised

learning (Musumeci et al., 2020) to locate root causes. The

supervised approaches are less feasible due to the difficulty

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

of obtaining a large amount of labeled alarm data in real

environments. In contrast, unsupervised methods are more

suitable, such as Granger causal analysis methods (Seth, 2007),

based on Granger causality graphs (Liu et al., 2020), and the

construction of causal probability graphs based on probabilistic

relationships to locate root causes (Marvasti, 2015). In recent

years, another hot research defines the root cause location problem

as a problem based on fault propagation graphs, such as causal

model analysis based on Bayesian network graphs (Wunderlich and

Niggemann, 2017), heuristic algorithms based on fault propagation

graphs with random wandering (Wang et al., 2018; Weng et al.,

2018; Ma et al., 2019), and methods that apply the importance

ranking idea of PageRank (Page et al., 1999) algorithm to infer

root causes (Treinen and Thurimella, 2007; Zhang et al., 2017).

Such methods can quickly infer the effective root cause in fault

propagation graphs by optimizing the ranking process to get

the key nodes in the causal graph. APGNN (Jiang and Bai,

2023) propose a novel data-driven approach for propagation-

based root cause analysis and fault detection, which involves

associating alarms and extracting a root-derived graph based on

Bayesian Network, constructing alarm propagation graphs (APGs),

refining repair orders for actual fault information, and using Graph

Neural Network to extract features and learn the mapping from

APG to the true fault. ImpactTracer (Xie et al., 2023) builds an

impact graph to provide a complete view of fault propagation in

microservices and uses a novel backward tracing algorithm that

exhaustively traverses the impact graph to identify the root cause

node accurately.

7. Conclusion

To address the difficulties in current communication network

operation and maintenance, this paper proposes a data-driven

and unsupervised alarm analysis framework, which is trained by

historical alarms to obtain strongly correlated alarm groups after

association reduction and apply to the matching and compression

of real-time alarms. The model outputs the compressed groups

with inferred root causes. We evaluated the analysis framework

based on real communication network alarm data and validated

the accuracy of the root cause inference algorithm based on

the monitoring data after fault injection in the microservice

system. The results show that our method can precisely capture

alarm associations. Moreover, it can correctly compress and group

more than 91% of alarms, ensuring accurate and reliable analysis

results. It also can reduce the number of pending tasks by more

than 62%, significantly reducing the burden of operation and

maintenance. It further infers root cause alarms with more than

95% accuracy, providing key information for analysis. In future

work, we will expand the applicability of our framework, such as

analyzing the cross-range propagation and long-term dependence

of communication network alarms, optimizing the method of

determining the propagation direction among episodic alarms, and

reducing the dependence on expert experience in the construction

of documents related to alarm content association analysis.

Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: The experimental data used in this paper

comes from real data of enterprises, which involves confidential

information about enterprise operations and cannot be disclosed.

We will disclose it after declassification. Requests to access these

datasets should be directed to chenpf7@mail.sysu.edu.cn.

Author contributions

ML and MY contributed to the conception and design of

the study, collected the dataset, and performed the statistical

analysis. PC supervised the findings of this work. ML verified the

analytical methods and wrote the first draft of the manuscript. All

authors contributed to the manuscript revision and approved the

submitted version.

Funding

This research was supported by the National Key Research

and Development Program of China (No. 2019YFB1804002), the

National Natural Science Foundation of China (No. 62272495), the

Guangdong Basic and Applied Basic Research Foundation (No.

2023B15150200), and the Fundamental Research Funds for the

Central Universities, Sun Yat-sen University (No. 22qntd1004).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abele, L., Anic, M., Gutmann, T., Folmer, J., Kleinsteuber, M., and Vogel-
Heuser, B. (2013). Combining knowledge modeling and machine learning for alarm

root cause analysis. IFAC Proc. 46, 1843–1848. doi: 10.3182/20130619-3-RU-3018.0
0057

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
mailto:chenpf7@mail.sysu.edu.cn
https://doi.org/10.3182/20130619-3-RU-3018.00057
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

Abraham, A. (1988). “Rule-based expert systems,” in Proceedings of the International
Conference on Systems, Man and Cybernetics (IEEE), 610–615.

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). On clustering massive data
streams: a summarization paradigm. SIGMOD Record. 32, 18–25.

Alinezhad, H. S., Roohi, M. H., and Chen, T. (2022). A review of alarm root cause
analysis in process industries: commonmethods, recent research status and challenges.
Chem. Eng. Res. Design. doi: 10.1016/j.cherd.2022.10.041

Basha, N., Sheriff, M. Z., Kravaris, C., Nounou, H., and Nounou, M. (2020).
Multiclass data classification using fault detection-based techniques. Comp. Chem. Eng.
136, 106786. doi: 10.1016/j.compchemeng.2020.106786

Berkhin, P. (2005). A survey on pagerank computing. Int. Math. 2, 73–120.
doi: 10.1080/15427951.2005.10129098

Bernardo, J. M., and Smith, A. F. (2009). Bayesian Theory, Vol. 405. John Wiley &
Sons.

Bodon, F. (2000). “A fast apriori implementation,” in European Conference on
Principles of Data Mining and Knowledge Discovery (Springer), 111–122.

Borgelt, C. (2005). “An implementation of the FPGrowth algorithm in C++,” in
Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent
Pattern Mining Implementations (ACM), 1–5.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: a survey.
ACM Comp. Surv. 41, 1–58. doi: 10.1145/1541880.1541882

Chao, C.-S., and Liu, A.-C. (2004). An alarm management framework for
automated network fault identification. Comput. Commun. 27, 1341–1353.
doi: 10.1016/j.comcom.2004.04.009

Chen, H., Chen, P., and Yu, G. (2020). A framework of virtual war room and matrix
sketch-based streaming anomaly detection for microservice systems. IEEE Access 8,
43413–43426. doi: 10.1109/ACCESS.2020.2977464

Chen, Y., Wang, S., Li, J., Huang, H., and Zhang, Y. (2019). “Entity embedding
based anomaly detection for heterogeneous categorical events,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
p. 2758–2766.

Chen, Z., Liu, P., Wang, Y., Gu, R., and Huang, X. (2021). Graph-based incident
aggregation for large-scale online service systems. IEEE Trans. Serv. Comput. 14,
219–232.

Coscia, M., Giannotti, F., and Pedreschi, D. (2011). A classification for community
discovery methods in complex networks. Stat. Anal. Data Mining 4, 512–546.
doi: 10.1002/sam.10133

Costa, B. S. J., Bezerra, B. L. D., Lima, R. C. M., Cavalcante-Neto, J., and Lima-Neto,
F. B. (2019). Online fault detection based on typicality and eccentricity data analytics.
IEEE Trans. Indust. Informat. 6, 3732–3741.

De Meo, P., Ferrara, E., Fiumara, G., and Provetti, A. (2011). “Generalized Louvain
method for community detection in large networks,” in International Conference on
Advances in Social Networks Analysis and Mining (IEEE), 32–39.

Dorgo, G., and Abonyi, J. (2018). Sequence mining based alarm suppression. IEEE
Access 6, 15365–15379. doi: 10.1109/ACCESS.2018.2797247

Du, N., Zhang, X., Sun, L., and Zhang, J. (2016). “Modeling the intensity function
of point process via recurrent neural networks,” in 2016 IEEE International Conference
on Data Mining (ICDM) (IEEE), 1095–1100.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). Density-based spatial
clustering of applications with noise. In Int. Conf. Knowl. Discov. Data Mining 6, 240.

Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., et al. (2001).
“Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth,”
in Proceedings of the 17th International Conference on Data Engineering (IEEE),
215–224.

Hartigan, J. A., and Wong, M. A. (1979). Algorithm as 136: a k-means clustering
algorithm. J. R. Stat. Soc. Ser. C 28, 100–108. doi: 10.2307/2346830

He, Y., et al. (2020). Research on alarm association mechanism of information
system based on fp-growth algorithm. J. Phys. Conf. Ser. 1693, 012082.
doi: 10.1088/1742-6596/1693/1/012082

Hu, W., Chen, T., and Shah, S. L. (2017). Discovering association rules of mode-
dependent alarms from alarm and event logs. IEEE Transact. Cont. Syst. Technol. 26,
971–983. doi: 10.1109/TCST.2017.2695169

Hubballi, N., Biswas, S., and Nandi, S. (2011). “Sequencegram: n-gram modeling
of system calls for program based anomaly detection,” in 2011 Third International
Conference on Communication Systems and Networks (COMSNETS 2011) (IEEE), 1–10.

Jiang, W., and Bai, Y. (2023). Apgnn: alarm propagation graph neural network
for fault detection and alarm root cause analysis. Comp. Netw. 220, 109485.
doi: 10.1016/j.comnet.2022.109485

Jieba. (2020). Jieba. Available online at: https://github.com/fxsjy/jieba

Kimura, T., Akagi, S., Arakawa, Y., and Kawahara, Y. (2015). Spatio-temporal
factorization of log data for understanding network events. IEEE Trans. Knowl. Data
Engg. 27, 2381–2394.

Kolodner, J. (2014). Case-Based Reasoning. Morgan Kaufmann.

Ksentini, A., and Pujolle, G. (2006). Evaluation of multicast and unicast routing
protocols performance for group communication with QoS constraints in 802.11
mobile ad-hoc networks.Wireless Pers. Commun. 39, 377–396.

Li, T.-Y., Zhang, Y., and Liu, X. (2015). “Study of alarm pretreatment based on
double constraint sliding time window,” in 2015 IEEE International Conference on
Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) (IEEE),
1384–1387.

Li, Y., Chen, Q., Zhang, Y., Xu, H., and Yang, Z. (2018). Word embedding for
understanding natural language: a survey. Front. Comput. Sci. 12, 681–696.

Li, Y., Sun, Y., and Luo, J. (2010). Application of Winepi mining algorithm in IDS.
J. Comput. Infm. Syst. 6, 951–958.

Lin, P., Ye, K., Chen,M., and Xu, C.-Z. (2019). “Dcsa: using density-based clustering
and sequential association analysis to predict alarms in telecommunication networks,”
in 2019 IEEE 25th International Conference on Parallel and Distributed Systems
(ICPADS) (IEEE), 1–8.

Lin, Y., Chen, Z., Cao, C., Tang, L.-A., Zhang, K., and Li, Z. (2018). Collaborative
alerts ranking for anomaly detection. arXiv [Preprint]. arXiv: 1612.07736

Liu, J., He, S., Chen, Z., Li, L., Kang, Y., Zhang, X., et al. (2023). “Incident-aware
duplicate ticket aggregation for cloud systems,” in arXiv [Preprint]. arXiv: 2302.09520

Liu, Y., Chen, H.-S., Wu, H., Dai, Y., Yao, Y., and Yan, Z. (2020). Simplified granger
causality map for data-driven root cause diagnosis of process disturbances. J. Process
Control 95, 45–54. doi: 10.1016/j.jprocont.2020.09.006

Liu, Y., Li, X., Li, Y., Li, Y., and Li, Y. (2018). “Towards the use of lstm-based
neural network for industrial alarm systems,” in 2018 IEEE International Conference
on Prognostics and Health Management (ICPHM), 1–6.

Long, X., Zheng, W., and Chen, C. (2020). Cloud native intelligent operation and
maintenance technology. J. Phys. Conf. Ser. 1645, 012028.

Ma, M., Lin, Z., Wang, W., Zu, J., Liu, H., Li, Z., et al. (2019). “MS-Rank:
Multi-metric and self-adaptive root cause diagnosis for microservice applications,” in
Proceedings of the 2019 ACM SIGMOD International Conference on Management of
Data (ACM), 1741–1758.

Mansoor, N., Muske, T., Serebrenik, A., and Sharif, B. (2022). “An empirical
assessment on merging and repositioning of static analysis alarms,” in 2022 IEEE 22nd
International Working Conference on Source Code Analysis and Manipulation (SCAM)
(IEEE), 219–229.

Marvasti, M. (2015). An anomaly event correlation engine: Identifying root causes,
bottlenecks, and black swans in IT environments. J. Netw. Comput. Appl. 57, 1–21.

Mei, H., Eisner, J., Yang, T., Gan, Z., and Wang, F. (2017). The neural hawkes
process: A neurally self-modulating multivariate point process. J. Mach. Learn. Res. 18,
6274–6309.

Meng, W., Liu, Y., Huang, Y., Zhang, S., Zaiter, F., Chen, B., et al. (2020).
“A semantic-aware representation framework for online log analysis,” in 2020 29th
International Conference on Computer Communications and Networks (ICCCN)
(IEEE), 1–7.

Musumeci, F., Magni, L., Ayoub, O., Rubino, R., Capacchione, M., Rigamonti,
G., et al. (2020). Supervised and semi-supervised learning for failure identification
in microwave networks. IEEE Transact. Netw. Serv. Manag. 18, 1934–1945.
doi: 10.1109/TNSM.2020.3039938

Nie, B., Xu, J., Alter, J., Chen, H., and Smirni, E. (2020). “Mining multivariate
discrete event sequences for knowledge discovery and anomaly detection,” in 2020
50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN) (IEEE), 552–563.

Niwattanakul, S., Singthongchai, J., Naenudorn, E., and Wanapu, S. (2013). “Using
of jaccard coefficient for keywords similarity,” in Proceedings of the International
Multiconference of Engineers and Computer Scientists, 380–384.

Niyazmand, T., and Izadi, I. (2019). Pattern mining in alarm flood
sequences using a modified prefixspan algorithm. ISA Trans. 90, 287–293.
doi: 10.1016/j.isatra.2018.12.050

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank citation
ranking: Bringing order to the web. Stanford InfoLab. 1, 1–17.

Paradis, E., Claude, J., and Strimmer, K. (2004). Ape: analyses of
phylogenetics and evolution in r language. Bioinformatics 20, 289–290.
doi: 10.1093/bioinformatics/btg412

Pham, Q.-K., Raschia, G., Mouaddib, N., Saint-Paul, R., and Benatallah, B. (2009).
“Time sequence summarization to scale up chronology-dependent applications,” in
Proceedings of the 18th ACM Conference on Information and Knowledge Management,
1137–1146.

Rosvall, M., and Bergstrom, C. T. (2008). Maps of random walks on complex
networks reveal community structure. Proc. Nat. Acad. Sci. U. S. A. 105, 1118–1123.
doi: 10.1073/pnas.0706851105

Seth, A. (2007). Granger causality. Scholarpedia 2, 1667.
doi: 10.4249/scholarpedia.1667

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://doi.org/10.1016/j.cherd.2022.10.041
https://doi.org/10.1016/j.compchemeng.2020.106786
https://doi.org/10.1080/15427951.2005.10129098
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.comcom.2004.04.009
https://doi.org/10.1109/ACCESS.2020.2977464
https://doi.org/10.1002/sam.10133
https://doi.org/10.1109/ACCESS.2018.2797247
https://doi.org/10.2307/2346830
https://doi.org/10.1088/1742-6596/1693/1/012082
https://doi.org/10.1109/TCST.2017.2695169
https://doi.org/10.1016/j.comnet.2022.109485
https://github.com/fxsjy/jieba
https://doi.org/10.1016/j.jprocont.2020.09.006
https://doi.org/10.1109/TNSM.2020.3039938
https://doi.org/10.1016/j.isatra.2018.12.050
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.4249/scholarpedia.1667
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Li et al. 10.3389/fcomp.2023.1211739

Shuiyao, C., Lanxin, Q., Weiping, S., and Tao, L. (2020). “Power wireless
heterogeneous network management system based on big data technology,” in 2020
IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS)
(IEEE), 117–121.

Tortosa, L., Vicent, J. F., and Yeghikyan, G. (2021). An algorithm for ranking the
nodes of multiplex networks with data based on the pagerank concept. Appl. Math.
Comput. 392, 125676. doi: 10.1016/j.amc.2020.125676

Treinen, J. J., and Thurimella, R. (2007). “Application of the pagerank algorithm
to alarm graphs,” in Information and Communications Security: 9th International
Conference, ICICS 2007, Zhengzhou, China, December 12-15, 2007. Proceedings 9
(Springer), 480–494.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transact.
Neural Netw. 10, 988–999. doi: 10.1109/72.788640

Wang, P., Xu, J., Ma,M., Lin,W., Pan, D.,Wang, Y., et al. (2018). “Cloudranger: root
cause identification for cloud native systems,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID) (IEEE), 492–502.

Wang, K. R., Hu, W., and Chen, T. (2020). “An efficient method to discover
association rules ofmode-dependent alarms based on the fp-growth algorithm,” in 2020
IEEE Electric Power and Energy Conference (EPEC) (IEEE), 1–5.

Wen, G., Feng, Z., Wei, H., and Zhang, W. (2015). System optimization strategy of
alarm storm. J. Comput. Theoret. Nanosci. 12, 327–334.

Weng, J., Wang, J. H., Yang, J., and Yang, Y. (2018). Root cause analysis of anomalies
of multitier services in public clouds. IEEE/ACM Transact. Netw. 26, 1646–1659.
doi: 10.1109/TNET.2018.2843805

Wu, K., Zhang, K., Fan, W., Edwards, A., and Philip, S. Y. (2014). “Rs-forest: a
rapid density estimator for streaming anomaly detection,” in 2014 IEEE International
Conference on Data Mining (IEEE), 600–609.

Wunderlich, P., and Niggemann, O. (2017). “Structure learning methods for
bayesian networks to reduce alarm floods by identifying the root cause,” in 2017
22nd IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA) (IEEE), 1–8.

Xie, R., Yang, J., Li, J., and Wang, L. (2023). “Impacttracer: root cause localization
in microservices based on fault propagation modeling,” in 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE) (IEEE), 1–6.

Xiong, J., and Xiao, W. (2021). Identification of key nodes in abnormal fund trading
network based on improved pagerank algorithm. J. Phys. Conf. Ser. 1774, 012001.
doi: 10.1088/1742-6596/1774/1/012001

Xuewei, F., Dongxia, W., Minhuan, H., and Xiaoxia, S. (2014). “An approach of
discovering causal knowledge for alert correlating based on data mining,” in 2014
IEEE 12th International Conference on Dependable, Autonomic and Secure Computing
(IEEE), 57–62.

Yan, Z., Li, W., Liu, X., Li, C., and Liu, Z. (2019). Recent advance in temporal point
process: A review from a machine learning perspective. Neurocomputing. 335, 98–113.

Yu, Y., Si, X., Hu, C., and Zhang, J. (2019). A review
of recurrent neural networks: Lstm cells and network
architectures. Neural Comput. 31, 1235–1270. doi: 10.1162/neco_a_0
1199

Yuan, Z., Zhou, X., and Yang, T. (2018). “Hetero-convlstm: a deep learning
approach to traffic accident prediction on heterogeneous spatio-temporal data,” in
Proceedings of the 24th ACMSIGKDD International Conference on Knowledge Discovery
& Data Mining, 984–992.

Zhang, M., Li, X., Zhang, L., and Khurshid, S. (2017). “Boosting spectrum-
based fault localization using pagerank,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and analysis, 261–272.

Zhang, M., and Wang, D. (2019). “Machine learning based alarm analysis and
failure forecast in optical networks,” in 2019 24th OptoElectronics and Communications
Conference (OECC) and 2019 International Conference on Photonics in Switching and
Computing (PSC) (IEEE), 1–3.

Zhao, N., Chen, J., Peng, X., Wang, H., Wu, X., Zhang, Y., et al. (2020).
“Understanding and handling alert storm for online service systems,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP) (IEEE), 162–171.

Zheng, Q., Li, Y., and Cao, J. (2020). Application of data
mining technology in alarm analysis of communication network.
Comput. Commun. 163, 84–90. doi: 10.1016/j.comcom.2020.0
8.012

Zhu, L. (2020). Implementation of web log mining device under
apriori algorithm improvement and confidence formula optimization.
Int. J. Inf. Technol. Web Eng. 15, 53–71. doi: 10.4018/IJITWE.202010
0104

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). “Learning from labeled
and unlabeled data with label propagation,” in Proceedings of the 20th
International Conference on Machine Learning (ICML-03) (AAAI Press),
912–919.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1211739
https://doi.org/10.1016/j.amc.2020.125676
https://doi.org/10.1109/72.788640
https://doi.org/10.1109/TNET.2018.2843805
https://doi.org/10.1088/1742-6596/1774/1/012001
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1016/j.comcom.2020.08.012
https://doi.org/10.4018/IJITWE.2020100104
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Alarm reduction and root cause inference based on association mining in communication network
	1. Introduction
	2. Overview of framework
	2.1. The offline learning procedure
	2.2. The online analysis procedure

	3. Offline learning of communication network alarms
	3.1. Alarm sequence segmentation
	3.1.1. Definition
	3.1.2. Alarm sequence segmentation algorithm

	3.2. Alarm association mining
	3.2.1. Association of alarm context
	3.2.2. Association of alarm content
	3.2.3. Construction of association matrix

	3.3. Alarm reduction based on association

	4. Online analysis of communication network alarms
	4.1. Real-time alarm compression
	4.2. Root cause inference

	5. Evaluation
	5.1. Dataset
	5.1.1. Regularization and preprocessing

	5.2. Evaluation of offline learning
	5.2.1. Online compression

	5.3. Evaluation of online analysis
	5.3.1. Metrics
	5.3.2. Regularization and pre-processing
	5.3.3. Association analysis of alarms
	5.3.4. Association reduction results
	5.3.5. Real-time matching and compression
	5.3.6. Root cause inference

	5.4. Efficiency analysis
	5.5. Discussion of parameters
	5.5.1. Segment threshold
	5.5.2. Association weight
	5.5.3. Association reduction threshold

	6. Related work
	6.1. Time series segmentation
	6.2. Alarm association analysis
	6.3. Alarm root cause localization

	7. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

