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Objective: This study aims to explore the difference between 11C-methyl-N-
2β-carbomethoxy-3β-(4-fluorophenyl)-tropanel (11C-CFT) positron emission 
tomography (PET) imaging in the early-onset Parkinson’s disease (EOPD) and late-
onset Parkinson’s disease (LOPD), and to analyze the correlation between 11C-CFT 
PET imaging and disease duration, Hoehn & Yahr (H&Y) stage, motor symptoms, 
and non-motor symptoms in patients with idiopathic Parkinson’s disease (PD), so 
as to explore its application value in assessing the severity of Parkinson’s disease.

Materials and methods: A total of 113 patients with idiopathic PD were included 
in this study. The patients were divided into EOPD and LOPD groups according 
to the age of 60 years, of which 58 were early-onset and 55 were late-onset. 
All patients underwent 11C-CFT PET imaging and manually sketched regions of 
interest (ROI) to delineate the caudate nucleus, anterior putamen, and posterior 
putamen ROI layer-by-layer, and the corresponding values were recorded. 
Clinical data [age of onset, disease duration, H&Y stage, total Unified Parkinson’s 
Disease Rating Scale (UPDRS) score, UPDRS III score, tremor score, postural 
instability/gait difficulty (PIGD) score, rigidity score, bradykinesia score, and 
Montreal Cognitive Assessment (MoCA) score] were collected from all patients. 
The differences in striatal 11C-CFT uptake between patients with EOPD and LOPD 
were compared, and the correlation between striatal 11C-CFT uptake and the 
clinical data of patients with idiopathic PD was evaluated.

Results: The caudate nucleus  11C-CFT uptake was higher in EOPD than in the LOPD 
group (t = 3.002, p = 0.003). 11C-CFT uptake in the caudate nucleus in patients with 
PD was negatively correlated with the age of onset, H&Y stage, disease duration, 
total UPDRS score, UPDRS III score, rigidity score, and bradykinesia score (p < 0.05). 
The anterior and posterior putamen 11C-CFT uptake was negatively correlated 
with H&Y stage, disease duration, total UPDRS score, UPDRS III score, PIGD score, 
rigidity score, and bradykinesia score (p < 0.05).

Conclusion: 11C-CFT PET provides an objective molecular imaging basis for the 
difference in disease progression rates between patients with EOPD and LOPD. 
Secondly, 11C-CFT PET can be used as an important objective indicator to assess 
disease severity and monitor disease progression.
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1. Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease worldwide after Alzheimer’s disease (AD) 
(1), and the main pathological changes are: degeneration and loss of 
nigrostriatal dopaminergic neurons, formation of Lewy bodies in the 
remaining neurons and reduction of striatal dopamine levels. The 
clinical manifestations of PD are predominantly motor symptoms, 
including rest tremor, rigidity, bradykinesia, and postural imbalance. 
With the progress of clinical and pathological research, PD has been 
found to be accompanied by some non-motor symptoms. Braak et al. 
classified the pathological changes in PD into six stages according to 
the different sites of α-synuclein deposition and the time and order of 
PD pathology in 2003, among which non-motor symptoms included: 
cognitive, olfactory, sleep, autonomic dysfunctions, anxiety and 
depression and mental and behavioral dysfunction (2). Although 
imaging and genetic research for the diagnosis of Parkinson’s disease 
have made great progress in recent years, the diagnosis of PD still 
depends mainly on the comprehensive assessment of medical history, 
symptoms and signs, and response to levodopa drugs, which lacks a 
gold standard for diagnosis. The pathogenesis of PD is very complex, 
and the pathophysiological mechanism includes: oxidative stress, 
mitochondrial dysfunction, neuroinflammation, etc. Based on the 
above pathophysiological changes, the current research hotspot is 
mainly to find effective biomarkers for PD diagnosis. Among them, 
great progress has been made in the study of biomarkers of the central 
nervous system and peripheral blood, and it plays an important role 
in the diagnosis and differential diagnosis of PD and Parkinson’s 
syndrome (3–5). However, it is still difficult to reflect the essential 
characteristics of PD. Moreover, most patients with PD have atypical 
clinical symptoms in the early stages, that are difficult to detect and 
diagnose. At the same time, a reliable objective assessment index for 
evaluating PD severity is lacking.

Positron emission computed tomography (PET/CT) is an in vivo 
molecular imaging technique. By combining with different 
radiotracers, systemic or local metabolic, functional and structural 
information can be obtained to achieve early detection, early diagnosis 
and early treatment of diseases. Different radiotracers in PET indicate 
different features. PET/CT is also increasingly used for the diagnosis 
and evaluation of PD because of its specific advantages, such as the 
dopamine transporter (DAT)-PET. DAT-PET imaging is based on the 
principle that 11C-methyl-N-2β-carbomethoxy-3β-(4-fluorophenyl)-
tropanel (11C-CFT) tracers specifically bind to striatal DAT to visualize 
the caudate nucleus and putamen, while DAT-deficient regions such 
as the cerebellum and cortex do not bind to the tracer, in order to 
assess the density of presynaptic dopaminergic neurons in the striatum 
and reflect the severity of neuronal degeneration in the dense 
substantia nigra (6). Therefore, a reduction of 11C-CFT uptake in the 
caudate nucleus and putamen plays an important role in the early 
diagnosis and differential diagnosis of PD (7, 8).

DAT-PET imaging is clinically useful for differentiating PD from 
conditions unrelated to dopaminergic dysfunction, such as essential 
tremor, dystonia, drug-induced parkinsonism and vascular parkinsonism. 
(9, 10). However, the 11C-CFT uptake in different parts of the striatum in 
patients with PD is different, and whether it is related to the age of onset 
and disease severity of patients with PD, especially the correlation with 
motor and non-motor symptoms, needs to be further investigated. In this 
study, the correlation between striatal 11C-CFT uptake and clinical data 

[including age of onset, disease duration, H&Y stage, total UPDRS score, 
UPDRS III score, tremor score, postural instability/gait difficulty (PIGD) 
score, rigidity score, bradykinesia score, and the Montreal Cognitive 
Assessment (MoCA) score] in patients with idiopathic PD was analyzed 
in the Chinese population, with the aim of exploring the application value 
of DAT-PET in assessing PD severity. In addition, the incidence of 
Parkinson’s disease increases with age, and the cut-off age varies by age 
group, distinguished by the ages of 40, 45, 50, 60, or 70 years; the terms 
used in the literature, such as juvenile, young, and late-onset Parkinson’s 
disease, are defined differently (11). In this study, PD was defined as early-
onset Parkinson’s disease (EOPD) or late-onset Parkinson’s disease 
(LOPD) by taking the age of onset of 60 years as the limit, and the 
difference between 11C-CFT uptake in EOPD and LOPD was preliminarily 
explored using DAT-PET imaging.

2. Materials and methods

2.1. Subjects

One hundred thirteen patients with a definite diagnosis of idiopathic 
PD who underwent 11C-CFT PET imaging at the Parkinson’s Disease 
Specialized Clinic, Department of Neurology, First Hospital of Jilin 
University from January 2020 to October 2022 were included in this 
study, including 58 patients with EOPD and 55 patients with LOPD. All 
patients were definitively diagnosed by an experienced Parkinson’s disease 
specialist according to the clinical diagnostic criteria for Parkinson’s 
disease established by the International Parkinson and Movement 
Disorders Society in 2015 (12).

Inclusion criteria were: ① clinically diagnosed idiopathic PD; ② 
can cooperate with 11C-CFT DAT-PET scan and there are no 
contraindications; ③ complete clinical data (including 
MDS-UPDRS, MoCA).

Exclusion criteria were: ① Non-idiopathic PD; ② Associated with 
brain diseases such as stroke, head trauma, and cranial surgery.

2.2. Clinical assessment

2008 MDS Revised Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS) was used to assess motor symptoms of PD patients 
(13). Among them, tremor scores included: UPDRS II 2.10, UPDRS 
III 3.15–3.18; rigidity scores included: UPDRS III.3.3; bradykinesia 
scores included: UPDRS II 2.4–2.9, UPDRS III.3.2 3.4–3.8 3.14; PIGD 
scores included: UPDRS II 2.12–2.13, UPDRS III.3.10–3.12 (14). 
Montreal Cognitive Assessment (MoCA) was used to assess cognition 
(15). All assessments were performed in the “on” state of the patients. 
The MDS-UPDRS score was performed by a professional in the 
patient’s “off ” state, and the MoCA score was performed in the 
patient’s “on” state, within 1 week of the DAT PET scan.

2.3. 11C-CFT PET imaging process

The 11C-CFT is produced by the HM-12 cyclotron of Sumitomo 
Heavy Machinery Co., Ltd. in Japan with a purity of ≥95% for 
radiochemistry. A Siemens Discovery 16HR PET/CT scanner was 
used. Patients discontinued PD medications for at least 12 h before the 
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examination, and all patients were injected intravenously with 11C-
CFT at a uniform standard of 3.7 MBq/Kg via the back of the hand. 
The PET/CT examinations were performed under calm breathing 
after a 60-min waiting period in a quiet environment. The patient 
position was supine on the examination bed, the head was fixed in the 
head rest, and the scan area included the entire head. CT images were 
acquired first for attenuation correction, and PET imaging was 
performed in the same field of view in the three-dimensional mode 
for 15 min. Image reconstruction was performed using an iterative 
method to obtain CT, PET, and PET/CT fusion images of the brain in 
the transverse, coronal, and sagittal views, respectively.

2.4. Image analysis methods

Three consecutive images with the clearest striatal structures on 
the PET/CT fusion images were selected, and the regions of interest 
(ROI) method was used to delineate the caudate nucleus, anterior 
putamen and posterior putamen ROI layer-by-layer; the maximum 
radioactivity counts of each nucleus were recorded. The parieto-
occipital cortex, which lacks DAT distribution, was selected as the 
background reference area, and the distribution of each ROI was 
semi-quantitatively calculated using the following formula: 11C-CFT 
uptake value = (ROI radioactivity count/occipital radioactivity 
count)-1 (16). 11C-CFT uptake in the caudate nucleus, anterior 
putamen, and posterior putamen was the average radioactivity uptake 
on the left and right sides.

2.5. Statistical analysis

SPSS26.0 software was used for the data analysis. Normally 
distributed data are expressed as X^- ± S, and non-normally 
distributed data are expressed as M (P25, P75). The t-test was used for 
comparisons between data groups that conformed to a normal 
distribution and the rank-sum test was used for comparisons between 
data groups that did not conform to a normal distribution. Analysis 
of covariance was used to correct the influence of confounding 
variables. Spearman’s correlation analysis was used to evaluate the 
correlation between striatal 11C-CFT uptake and the clinical data of 
patients with PD. P < 0.05 indicated a statistically significant difference.

3. Results

3.1. Subject characteristics

A total of 113 patients were included in this study, with a mean 
age of onset of 57.11 ± 11.53 years, and a median duration of disease 
of 4 (2, 6) years. They were divided into EOPD group and LOPD 
group according to whether the age of onset was greater than 60 years 
old, including 58 patients in EOPD group and 55 patients in LOPD 
group. There was no significant difference between groups in gender, 
duration of disease, H&Y stage, total UPDRS score, UPDRS III score, 
tremor score, PIGD score, rigidity score, and bradykinesia score. 
MoCA score (p = 0.010) and 11C-CFT uptake in the caudate nucleus 
(p = 0.008) were significantly higher in EOPD group than in LOPD 
group (Table 1).

3.2. Covariance analysis of striatal 11C-CFT 
uptake in EOPD group and LOPD group 
after correcting for disease duration

The results of the covariance analysis after correcting for disease 
duration showed that 11C-CFT uptake in the caudate nucleus in the 
EOPD group was significantly higher than in the LOPD group 
(t = 3.002, p = 0.003). There was no significant difference between the 
anterior and posterior putamen 11C-CFT uptake between the EOPD 
and LOPD groups (Table 2 and Figures 1, 2).

3.3. Correlation analysis of striatal 11C-CFT 
uptake in patients with PD with clinical 
data

In patients with PD, the caudate nucleus 11C-CFT uptake was 
negatively correlated with the age of onset, H&Y stage, disease 
duration, total UPDRS score, UPDRS III score, rigidity score, and 
bradykinesia score (p < 0.05) (Figures 3A–G), while the anterior and 
posterior putamen 11C-CFT uptake was negatively correlated with 

TABLE 1 Demographics and clinical characteristics of PD patients.

Characteristic PD 
(n = 113)

EOPD 
(n = 58)

LOPD 
(n = 55)

P

Participants (Male/

Female)

113 (49/64) 58 (23/35) 55 (26/29) 0.165

Age of onset (year) 57.11 ± 11.53 48.41 ± 9.18 66.27 ± 4.47 <0.001

Disease duration 

(year)

4 (2, 6) 4 (2, 8) 3 (2, 5) 0.154

H&Y stage 2 (1, 2) 2 (1, 2) 2 (1.5, 2) 0.088

Total UPDRS score 44 (32, 67) 42.5 (31, 70) 47 (32.5, 66) 0.881

UPDRS III score 25 (18, 40) 24 (17, 40) 27 (18.5, 39) 0.419

Tremor score 7 (3, 12) 6.5 (3, 11) 9 (4.5, 13.5) 0.206

PIGD score 3 (2, 6) 3 (2, 5) 3 (2, 6) 0.582

Rigidity score 3 (2, 6) 3 (1, 7) 4 (2, 6) 0.799

Bradykinesia score 19 (12, 30) 19 (13, 31) 20 (12, 29.5) 0.847

Education (year) 11.1 ± 3.82 10.64 ± 3.44 11.58 ± 4.16 0.191

MoCA score 21.58 ± 5.06 22.86 ± 5.09 20.42 ± 4.82 0.010

Caudate nucleus 1.40 ± 0.45 1.51 ± 0.51 1.29 ± 0.35 0.008

Anterior putamen 1.20 ± 0.48 1.22 ± 0.56 1.18 ± 0.38 0.657

Posterior putamen 0.71 ± 0.46 0.73 ± 0.52 0.70 ± 0.39 0.691

TABLE 2 Comparation of striatal 11C-CFT uptake in EOPD and LOPD after 
correction for the disease duration.

Characteristic Group X ± S B t P

Caudate nucleus
EOPD 1.527 ± 0.058

0.252 3.002 0.003
LOPD 1.275 ± 0.059

Anterior putamen
EOPD 1.243 ± 0.063

0.084 0.918 0.361
LOPD 1.159 ± 0.065

Posterior putamen
EOPD 0.742 ± 0.061

0.059 0.667 0.506
LOPD 0.683 ± 0.063
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H&Y stage, disease duration, total UPDRS score, UPDRS III score, 
PIGD score, rigidity score, and bradykinesia score (p < 0.05) 
(Figures 3H–U). There was no significant correlation between striatal 
11C-CFT uptake and tremor score and MoCA score (Table 3).

4. Discussion

PD is a chronic neurodegenerative disease characterized by the 
degeneration and progressive loss of dopaminergic neurons in the 
substantia nigra-striatum. Its prevalence increases progressively with 
age. DAT is located on the cell membrane of presynaptic neurons and 
can transport dopamine from the synaptic cleft to the presynaptic 
membrane for reuse or further degradation after dopaminergic 
neurons release impulses, thus regulating the amount of dopamine 
released from presynaptic nerve endings to ensure normal 
physiological function of the synapses. 11C-CFT is mainly distributed 

in the bilateral caudate nucleus and putamen, whereas radioactivity 
distribution in other regions of the brain is extremely low, indicating 
that dopamine in the brain is mainly concentrated in the bilateral 
striatal region, as consistent with the neuroanatomical dopaminergic 
nerve fiber projection pathway. Dopaminergic neuronal projections 
are mainly located in the substantia nigra-striatum pathway. Animal 
studies have shown that DAT significantly correlates with the levels of 
synaptic dopamine transmitters (17) and residual nigrostriatal 
dopaminergic neurons (18), which can accurately reflect the severity 
of nigrostriatal dopaminergic neuronal damage. The number of DAT 
is closely related to the occurrence and progression of PD.

First, this study found that patients with EOPD had a higher 
cognitive score than those with LOPD. And the 11C-CFT uptake in the 
caudate nucleus was also higher in patients with EOPD than in those 
with LOPD. These are consistent with the findings of Yang et al. (19). 
Controlling for the effects of disease duration, patients with early 
onset PD have higher caudate nucleus 11C-CFT uptake, resulting in 
less damage to dopaminergic neurons. It can be hypothesized that 
EOPD has a slower rate of disease progression, which is in agreement 
with Schrag et  al. (20). It is also consistent with the pathological 
characteristics of PD, where the ventral lateral substantia nigra is most 
affected, dopaminergic neurons are the most deficient, and the middle 
and posterior parts of the putamen may receive the most projections 
from the ventral lateral substantia nigra; therefore, the lesion initially 
involves the middle and posterior parts of the putamen. As the disease 
progresses, the anterior putamen and caudate nucleus become 
progressively more involved (21). The higher 11C-CFT uptake in the 
caudate nucleus of patients with EOPD indicates less damage to 
dopaminergic neurons in the caudate nucleus and later involvement 
of the caudate nucleus, resulting in slower disease progression. 
Patients with EOPD sshow better cognitive function, consistent with 
the findings of Wickremaratchi et al. (22). Analysis of the causes, in 
addition to age, may be due to the unequal involvement of the caudate 
nucleus and putamen in parallel basal ganglia-thalamus-cortex 
circuits. The dopaminergic circuits associated with the putamen are 
primarily responsible for motor functions, and lesions in the putamen 
nucleus are mainly associated with motor symptoms and symptom 
severity (23). The cholinergic pathways associated with the caudate 

FIGURE 1

Comparation of striatal 11C-CFT uptake in EOPD and LOPD 
(**p ≤ 0.01; ns: p > 0.05).

FIGURE 2
11C-CFT PET images of Parkinson’s disease. (A) LOPD; (B) EOPD. 11C-CFT PET metabolic model for EOPD and LOPD: 11C-CFT uptake in the caudate 
nucleus in patient with EOPD was significantly higher than LOPD, and there was no significant difference between the anterior and posterior putamen 
between patients with EOPD and LOPD.
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FIGURE 3

Correlation analysis of PD patients. Correlation analysis between the caudate nucleus 11C-CFT uptake and: (A) age of onset;  (B) H-Y stage; (C) disease 
duration; (D) total UPDRS score; (E) UPDRS III score; (F) rigidity score; (G) bradykinesia score. Correlation analysis between the anterior putamen 

(Continued)
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nucleus are more likely to be involved in cognitive and emotional 
functions, and patients with lesions in the caudate nucleus have 
cognitive changes (24). Patients with EOPD have better preservation 
of the caudate nucleus, and therefore, better cognition. Significant 
differences were observed between patients with EOPD and LOPD in 
terms of clinical presentation, response to medication, progression 
rate, and prognosis. The results of this study provide an objective 
molecular imaging basis for determining the differences in progression 
rate between the two.

Second, in this study, 11C-CFT uptake in the caudate nucleus, 
anterior putamen, and posterior putamen was negatively correlated 
with H&Y stage, disease duration, total UPDRS score, and UPDRS III 
score, consistent with previous study fundings (25, 26). In addition, 
this study divided the UPDRS score for movement into four 
subdomains: tremor, rigidity, bradykinesia, and PIGD, and found that 
11C-CFT uptake in the caudate nucleus, anterior putamen, and 
posterior putamen was negatively correlated with rigidity and 
bradykinesia scores. 11C-CFT uptake in the anterior and posterior 
putamen negatively correlated with the PIGD score. This is related to 
the dysfunction of the cortex-basal ganglia-thalamus-cortex loop, in 
which the striatum receives fiber projections from the sensorimotor 
cortex and transmits them via the “direct pathway” and the “indirect 
pathway” (27) to the medial globus pallidus/substantia nigra pars 
reticulate in the output nucleus of the basal ganglia. Patients with PD 
have reduced substantia nigra-striatal dopaminergic, which causes 
inhibition of the “direct pathway” and excitation of the “indirect 
pathway,” resulting in motor symptoms such as reduced movement 
and rigidity (28). Thus, the longer the disease course, the more 
advanced the H&Y stage, the higher the motor symptom score, and 
the lower the striatal 11C-CFT uptake, indicating severe dopaminergic 
neuronal damage. Therefore, DAT PET imaging can be used to assess 
the severity of PD. This study also found that 11C-CFT uptake in the 

caudate nucleus, anterior putamen, and posterior putamen was not 
significantly correlated with tremor score, which is consistent with 
most previous studies suggesting that tremor is not associated with 
dopamine loss in the substantia nigra striatum (29–35). This may 
be due to the fact that the loop involved in PD tremor is not the same 
as the loop involved in the reduced movement and rigidity. Huang 
et al. showed that subthalamic burst discharges are dependent on 
input from the motor cortex, resulting in erroneous re-entrant 
information relays from the cortico-subthalamic nucleus to the 
pallido-thalamocortical loops, and thus Parkinsonian tremor (36). 
The caudate nucleus and putamen are not part of this loop, which 
explains why striatal 11C-CFT uptake does not correlate with tremor 
scores. In addition, pathological studies have shown that patients with 
tremor-type Parkinson’s disease have less degeneration in the 
substantia nigra, which projects mainly to the striatum, and more 
degeneration in the posterior region of the red nucleus, which projects 
mainly to the pallidus. This may also explain the lack of correlation 
between tremor scores and caudate-putamen DAT uptake (37).

Undeniably, 18F-DOPA PET is the first in vivo assessment of 
dopaminergic function in PD. 18F-Dopa is a fluorinated analog of 
levodopa that follows the same presynaptic dopamine (DA) 
synthesis pathway. It is decarboxylated by aromatic L-amino acid 
decarboxylase (AADC) and stored in presynaptic vesicles in the 
form of 18F-labeled dopamine, providing an in vivo measure of 
AADC activity and presynaptic DA storage capacity. However, in 
the pathological state, levodopa decreases, and AADC activity 
compensatively increases as a compensatory response to progressive 
DA cell death. Upregulated AADC activity may lead to 18F-dopa 
overestimation nerve terminal density and underestimation of the 
disease severity in early PD. In addition, most AADC-containing 
neurons are capable of taking up and converting 18F-dopa. 11C-CFT 
has been used to label DAT to assess dopaminergic neuron function, 
which may more sensitively reflect disease severity in early 
PD. Therefore, we chose DAT-PET in this study (38).

In conclusion, 11C-CFT DAT-PET provides an objective molecular 
imaging basis for the difference in the rate of disease progression between 
patients with EOPD and those with LOPD. At the same time, DAT-PET 
can also be used as an important objective indicator to assess disease 
severity and monitor disease progression. The loss of striatal DAT is 
closely related to the clinical manifestations, especially motor symptoms. 
With the help of this study, clinicians can also preliminarily estimate the 
extent of DAT loss and dopaminergic neuronal damage in the patient’s 
brain based on the patient’s medical history, symptoms, signs and scale 
scores to predict the severity and progression rate of the disease, which is 
helpful in guiding clinical treatment and prognosis. What’s more, this 
study provides an objective basis for screening patients for intermediate 
and advanced surgical indications for deep brain stimulation (DBS), and 
also provides an objective basis for accurate screening of patients in 
clinical drug trials. It is expected to promote early diagnosis and accurate 
treatment of Parkinson’s disease.

This study has several limitations. First, this was a single-center, 
small-sample study, and there may have been bias in terms of 

11C-CFT uptake and: (H)  H-Y stage;  (I) disease duration;  (J) total UPDRS score;  (K)  UPDRS III score; (L)  PIGD score;  (M)  rigidity score; (N)  
bradykinesia score. Correlation analysis between the posterior putamen 11C-CFT uptake and:  (O) H-Y stage;  (P)  disease duration;  (Q)  total UPDRS 
score;  (R)  UPDRS III score;  (S)  PIGD score;  (T)  rigidity score;  (U)  bradykinesia score.

TABLE 3 Spearman correlation analysis of striatal 11C-CFT uptake in PD 
patients with clinical data.

Characteristic Caudate 
nucleus

Anterior 
putamen

Posterior 
putamen

R P R P R P

Age of onset −0.315 0.001 −0.091 0.339 −0.079 0.403

H&Y stage −0.205 0.029 −0.286 0.002 −0.329 <0.001

Disease duration −0.187 0.048 −0.285 0.002 −0.382 <0.001

Total UPDRS score −0.256 0.004 −0.405 <0.001 −0.396 <0.001

UPDRS III score −0.246 0.009 −0.314 0.001 −0.333 <0.001

Tremor score −0.079 0.408 −0.01 0.914 −0.114 0.230

PIGD score −0.151 0.110 −0.253 0.007 −0.209 0.026

Rigidity score −0.278 0.003 −0.355 <0.001 −0.343 <0.001

Bradykinesia score −0.253 0.007 −0.372 <0.001 −0.359 <0.001

MoCA score 0.065 0.495 0.068 0.477 −0.038 0.691

Figure 3 (Continued)
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geography, race, examination, and assessment. Expansion of the 
sample size should be considered to conduct a multicenter study 
and further validate the findings. Second, DAT binding is 
susceptible to the effects of drugs (e.g., amantadine and modafinil) 
and normal aging, which may overestimate disease severity. This is 
intended for further validation in patients with PD who undergo 
DTBZ imaging.

Equations

 

11C CFT uptake

ROI radioactivity count occipital radioactivit= / yy count( ) −1
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