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ABSTRACT 

The Next-generation networks, such as 5G and 6G, need capacity and requirements for low 

latency and high dependability. According to experts, network slicing is one of the most 
important features of (5 and 6) G networks. To enhance the Quality of Service (QoS), network 
operators may now operate many instances on the same infrastructure due to configuring 
able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer 
size, and computing functions, may have various virtualized network resources. Because 
network resources are limited, virtual resources of the slices must be carefully coordinated 
to meet the different QoS requirements of users and services. To achieve QoS, these 
networks may be modified using Artificial Intelligence (AI) and machine learning (ML). 
Developing an intelligent decision-making system for network management and reducing 
network slice failures requires reconfigurable wireless network solutions with machine 
learning capabilities. In this paper, using Spiking Neural Network (SNN) and prediction, we 
have developed a 'Buffer-Size Management' model for controlling network load efficiency by 
managing the slice's buffer size. To analyze incoming traffic and predict the network slice 
buffer size, our proposed Buffer-Size Management model can intelligently choose the best 
buffer size for each slice to reduce packet loss ratio, increase throughput to 95% and reduce 
network failure by about 97%. 
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 حجم المخزن  في تقسيم حزمة البيانات لتخمين التلقائية المتصاعدة العصبيةالشبكة  تقنية
 الشبكة بيئة في الظاهري  المؤقت

 
 2نادية عدنان شلتاغ الجمالي , ،*1د الياسري محمد موسى رشي

 معهد المعلوماتية للدراسات العليا ،الهيئة العراقية للحاسبات والمعلوماتية 1
 جامعة بغداد ،كلية الهندسة ،قسم هندسة الحاسبات 2

 
 الخلاصة

ثرة البيانات لك وذلكالسبببببببعة  وزيادةالى متطلبات معينة مثس تقليس زمن انتقال البيانات  والسببببببباد تحتاج شببببببببلة الايس ال ام  
د يلون لكس . قتقنية حالية هي تقطيع الشبببببلة الى شببببراة  متعددة أفضببببسهذا فان  ولتحقيقة الماسببببة الى السببببرية العالي والحاجة

و الأن موارد الشببببلة  ونظرًاللاتصبببال وحام الم زن الم قو ووفاةل الحوسببببة. حزمة البيانات ، مثس شبببريحة موارد ةاببببة  ها
ياب تنسيق الموارد الافتراضية للشراة  بعناية لتلبية متطلبات جودة ال دمة الم تلفة للمست دمين فانه محدودة، الشريحة الواحدة 

جعس الشبلة و شريحة اللإدارة الشبلة وتقليس حالات فشس  قرار ذكيت اذ لايتطلب تطوير نظام فانه هذا النحو  لىويوال دمات. 
للتحلم ( MLوالتعلم الالي ) , " Spiking Neural Network" تقنية قا لة لإيادة التكوين مع إملانات التعلم الآلي. باسببببت دام

حام الواردة والتنب  ب تدفق البياناتالم زن الم قو للشببببببببببببريحة. لتحليس حركة  في كفاءة تحميس الشبببببببببببببلة من ةلال إدارة حام
أن ي تار  ذكاء  'Buffer-Size Management' الم زن الم قو لشببببريحة الشبببببلةن يملن لنموذج إدارة حام الم زن الم قو

و تقليس فشبببببس  %95 إلى الشببببببلة إنتاجية، وزيادة لبياناتأفضبببببس كمية حام الم زن الم قو لكس شبببببريحة لتقليس نسببببببة فقدان ا
  .%97الشبلة الى 

 
 الشبلات العصبية المتصايدة ،تقسيم حزمة البيانات ال ام ،الايس  الكلمات الرئيسية:

 
1. INTRODUCTION 

Due to the importance of mobile communication in today's technology era (Gupta, 2015), 
there is a problem with the number of communication devices that is increasing 
exponentially; to meet the demands of the next generation of communication. These devices 
require high bandwidth, mobility, low latency, and enhanced quality QoS (Saad, 2019). 
Communication technology has rapidly evolved from 2G to 4G and is preparing for 5G and 
6G. Furthermore, future communication systems must operate reliably and seamlessly in 
diverse wireless networks and handle reconfiguration (Thantharate, 2019). User needs 
and communication reliability are constantly challenging for companies offering these 
services. Expanding Long Term Evolution (LTE) networks to increase bandwidth, 
throughput, and service quality is the best way to meet the demands of 5G networks (Addad, 
2019). 5G networks can enhance mobility in services, reconfiguration, infrastructure, and 
various activities. It would give numerous potentials for mobilizing a variety of application 
fields such as seamless mobility, traffic monitoring, healthcare services, etc. One of the key 
components of the 5G network, according to the definition of the third-generation 
partnership project (3GPP), is network slicing. The operator can increase QoS by 
reconfiguring and supplying portions of their network to their customers' needs through 
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network slicing (Mayoral, 2016). The providers may save many resources by reconfiguring 
and slicing their networks while no one uses them. Configuration and network slicing can 
reduce latency, increase bandwidth, allow seamless mobility, and improve QoS. For example, 
the same network infrastructure may offer various services to consumers with better QoS. 
Critical monitoring of the devices and their associated traffic is necessary for ensuring QoS 
and resource efficiency (Oladejo, 2017). Machine learning has demonstrated its ability to 
make vital decisions in various settings. To make predictions and key decisions, machine 
learning would use reconfigurable network environments to keep track of various devices 
and evaluate network slices and a massive quantity of data created during communication 
(Afolabi, 2019).  
A 5G network slicing resource allocation is proposed and studied extensively (Liang, 2018). 
They suggested QoS-aware resource allocation. In the proposed system, a virtualized 
infrastructure management provides virtual resources to VMs by monitoring resource use. 
A scheme is presented for buffers based on the quality-of-service sensitivity of buffer 
allocation in network slices with varying quality-of-service needs (Ponulak, 2011). 
(Thantharate et al., 2019) provide a 'DeepSlice' model for managing network load 
efficiency and availability using in-network deep learning and prediction using Deep 
Learning (DL) Neural Network (Wang, 2014).  
The primary goal of the proposed work is to provide a reconfigurable wireless network 
slicing model for 5G networks based on machine learning and Spiking Neural Networks. 
Network service providers have several challenges, including determining an accurate slice 
assignment (Chahlaoui, 2019). For some of the services in a normal network, having a 
larger buffer size might be beneficial, while it could be deadly for others. This depends on 
the specific traffic situation that the network is experiencing at the time. We call these 
throughputs, delay, and loss trade-offs. Maximum buffer size is excellent for file transfer 
systems that demand high throughput, whereas real-time applications want minimal and 
constant latency. Since virtual network slices provide various services with varied QoS 
needs, buffer sizes may be acceptable. In a restricted buffer size situation, effective buffer 
management is needed to optimize the overall QoS satisfaction of slices with varying QoS 
criteria (Salman, 2020). Network slices with varying QoS needs have varied sensitivities 
that reveal buffer sizing-related QoS changes. They presented a buffer-sizing approach 
leveraging QoS sensitivity to increase QoS satisfaction in a restricted buffer size situation 
(Chergui, 2019). This study involves the construction of an ideal SNN-based model that 
assures no slice failure condition. Network traffic is routed to other slices in case of a slice 
failure, ensuring regular operations for these requests. When a slice fails or is overloaded, 
the master slice will be a backup (AlQahtani, 2020). This study aims to allocate the correct 
buffer size slice based on incoming new traffic requests and optimal network resource 
utilization slice in the overflow situation. 
 

2. MACHINE LEARNING AND SPIKING NEURAL NETWORK 

Due to its restrictive foundation, the existing LTE architecture cannot scale to meet the needs 
of various applications. When serving a company's unique needs, it frequently falls short of 
expectations because it lacks personalization (Thantharate, 2019). Businesses have 
greater connection and throughput requirements than the current 4G LTE network can 
provide due to rising mobile data and customer demands (Khan, 2020). Using network 
slicing, 5G may efficiently provide many virtual networks over a single physical one (Li, 
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2020). Much effort is put into optimizing and effectively scheduling radio and network 
resources, but in 5G networks, resource allocation based on the service being provided is a 
must-have. The increasing number of devices and new services offered by 5G networks 
would add to the already massive quantity of data traffic that operators now deal with 
(Shiltagh, 2015). With ML in place, gaps in the knowledge can be examined, and any 
required adjustments can be made. Machine learning offers a network analysis of the 
massive data set, which may be researched further to adjust any given slice swiftly and cost-
effectively. The Spiking Neural Network consists of different layers that are named; H, I, and 
J, as they are shown in Fig. 1A. The input data is first encoded in the encoding process; the 
real information is encoded 𝑡𝑖𝑛𝑝𝑢𝑡  calculated based on Eq. (1) 

 

𝑡𝑖𝑛𝑝𝑢𝑡 =  𝑡𝑚𝑎𝑥 − 𝑟𝑜𝑢𝑛𝑑 (𝑡𝑚𝑖𝑛  +  
(𝑖𝑛𝑝𝑢𝑡− 𝑖𝑛𝑝𝑢𝑡min)(𝑡𝑚𝑎𝑥− 𝑡𝑚𝑖𝑛)

(𝑖𝑛𝑝𝑢𝑡𝑚𝑎𝑥− 𝑖𝑛𝑝𝑢𝑡𝑚𝑖𝑛)
 )                                                 (1)    

 
𝑖𝑛𝑝𝑢𝑡𝑚𝑎𝑥  and 𝑖𝑛𝑝𝑢𝑡𝑚𝑖𝑛 that represent the maximum and minimum values of the real input 
information. The 𝑡𝑚𝑎𝑥  and 𝑡𝑚𝑖𝑛  represent the largest and minimum interval and 𝑡𝑖𝑛𝑝𝑢𝑡  is 

defined as the input information in the time domain. Fig. 1B, SNN may dynamically activate 
network automation to adjust resource allocation; where 𝑤𝑖𝑗

𝑘  represent as a weight for each 

sub-connection and 𝑡𝑖  represent the first firing times of particular neurons in the respective 
layers and 𝑑𝑘 defined as the delay of synaptic terminals, which remains constant during a 
simulation but is updated by Spike Prop afterward. The unweight contribution 𝑦𝑖

𝑘(𝑡) of a 
single synaptic terminal to the state variable is given by Eq. (2). 
 
 𝑦𝑖

𝑘(𝑡) = 𝜀(𝑡 − 𝑡𝑖
𝑓

 − 𝑑𝑘)                                                                                                                       (2) 
 

where 𝑡𝑖
𝑓

 is the firing time for neuron (i) and  𝑑𝑘  is delay related to the synaptic terminal 𝑘. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
        Figure 1. Spiking neural network architecture (Bohte, 2002) 

 
The membrane potential (internal state) of a neuron is 𝑚𝑗(𝑡), equals the weighted sum of 

incoming 𝑦𝑖
𝑘 delay response functions from the previous layer by Eq. (3). 

 
𝑚𝑗(𝑡) =  ∑ ∑ 𝑤𝑖𝑗

𝐾𝑑
𝑘=1

𝑁𝐼
𝑖=1 (𝑡)𝑦𝑖

𝑘(𝑡)                                                                                                   (3) 
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Without human involvement, SNN will be accountable for delivering, processing, and making 
intelligent choices for network resource adaption. To make the best judgments, it will also 
weigh some different variables, maybe more than a single person could consider quickly 
(Walter, 2015). 
Whenever a new slice is added to the network, SNN will analyze it in real-time to determine 
how well it is doing. Where it stands compared to other networks, what problems could 
arise, what network sections are functioning normally, and if anything seems out of the 
ordinary (Khan, 2020). Organizational challenges now prevent the widespread use of 
network slicing. This is because several hardware and organizations inside a service 
provider's network must be interacted with for a single modification to be implemented 
(Meneses, 2019). 
5G's programmability features will enable a customized end-to-end solution for every use 
case. Network slicing considers various factors, such as the kind of slice, buffer capacity, 
bandwidth, throughput, latency, equipment type, portability, reliability, isolation, power, 
and many more. Since 5G enables the collection of such large datasets, big data analytics 
need machine learning. One of the most important and useful ML-based applications in the 
wireless sector is the detection and revival of dormant cellular cells (Saqib, 2019). Other 
relevant and useful ML-based applications in the wireless industry include optimizing 
mobile tower operations, accelerating wireless channel adoption, facilitating targeted 
marketing, autonomous decision-making in IoT networks, real-time data analysis, predictive 
maintenance, customer churn, sentiment analysis by social networking, fraud detection, e-
commerce, and many more (Paropkari, 2017). Since Uber employs real-time differential 
pricing depending on demand, the number of available vehicles, the weather, the time of day, 
and other factors, using ML in apps comparable to Uber will have several advantages. Better 
accuracy and prediction in the future may be achieved by using a platform built on machine 
learning to analyze and process massive amounts of historical and real-time data. Uber 
automatically adjusts to real-time price differences (Abhishek, 2018). 
 
3. BENEFITS OF SPIKING NEURAL NETWORKS  

 Speed: Spiking Neural Networks are capable of transferring much information by using a 
few numbers of spikes. That initiates the possibility of the creation of high-speed 
operations. 
 Real-time Action: spiked networks can use time-based information and readily integrate 
into “real” dynamic environments (Ahmed, 2022).  
 Complexity: spike networks, as a third generation, can also perform and has access to 
process the second generation computing with less complexity (Khan, 2020).   
 Biological Fidelity: Those networks can be applied in biological fields because of their 
similarity with biological neuronal networks (Ahmed, 2022).  
 
4. THE PROPOSED MODEL 

The proliferation of 5G-connected devices will increase the volume of data that can be 
processed by neural networks, which are already in widespread use. An accurate analysis 
must be performed to make quick, effective decisions, which is impossible for a human brain 
to do in a reasonable amount of time.  
To choose which slice's virtual buffer size to employ based on the input data, establish an 
ML model and then construct an SNN. In the first stage, aggregate traffic data, then in the 
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second stage, extract features of traffic to input to the SNN for encoding and convert the 
input information to the time domain. The third stage of SNN estimates the optimal virtual 
buffer’s size for each slice and, in the final stage, distributes the results of the 'Buffer-Size 
Management on the slices. 
The subsequent 'Buffer-Size Management' is used in managing network load, identifying the 
best virtual buffer size for each slice in the network, and so on. Our ML and SNN models 
utilize the same dataset, with over 65,000 distinct input combinations. Our dataset contains 
the most important network and device features, such as the packet delay budget, maximum 
packet loss, and simulation time. The number of input devices trying to connect to our 
system is growing. Smartphones, Internet of things devices, augmented reality and virtual 
reality devices, traffic from Industry or public safety communication, healthcare, smart city 
or smart house traffic, etc., are all examples represented in Fig. 2. Our SNN will keep track of 
everything that happens and utilize that data to make well-informed decisions in estimate 
network resource reservation is needed with high efficiency in the future. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Generalized network slice representation of our buffer-size management model 

 
5. PERFORMANCE EVALUATION 

Here, we test the Buffer-Size Management model to see whether it meets our requirements 
for slice buffer prediction. To prove the efficacy of our method, a simulated network in the 
Mininet emulator is developed, and software-defined networking and Python 3.11 is utilized. 
Our approach will automatically estimate any new connections to the slice virtual buffer size 
needed to carry the device if any individual slice's usage rises over a particular threshold of 
its total available resources. Mininet with Python may be operated on a workstation running 
Ubuntu 14.04 LTS with a 2.2 GHz Intel CPU and 16GB of RAM. POX is set up on three different 
virtual machines and serves as the SDN controller for each slice. 
 
5.1 Experimental Environment  

Python was used to design a network with a grid topology and establish three virtual 
networks that share all nodes and connections. Each connection has a bandwidth of 150 



Journal  of  Engineering    Number 6         June  2023       Volume 29   
 

 

93 

MB/s, and the total buffer capacity is restricted to 250 packets. The network nodes are 
randomly paired with the host. The TCP packet size is 1,000 bytes, but the UDP packet size 
is 200. All senders create flows every second for the duration of the 50-second experiment. 
Assuming Slice 1 is utilized for file transfers, the average transmission rate of individual TCP 
flows to 50 MB/s, and UDP flows to 2 MB/s is set. Slice 2 is for real-time services. The 
transmission speeds for TCP and UDP are 5 and 2 MB/s, respectively. 70% describe the sets 
of QoS requirements that each slice must meet. Slice 3 is used for the alternative slice when 
slice 1 or slice 2 fails; the TCP and UDP transmission rates are 5 and 2 MB/s, respectively. 
Table 1 displays the experimental parameters. While each input to our model in our training 
dataset has six to eight parameters, our model only needs two or three features to identify 
the requested services and assign the appropriate fraction. This is crucial because many 
devices with varying capacities constantly and intermittently demand new services. 

 
Table 1. Experimental parameters 

 

 

5.2 Experimental Results 

In this section, the evaluation will be based on three criteria for evaluating the performance 
of the proposed work: the packet loss ratio and throughput. Finally, the amount of buffer size 
needed by each slice during the simulation shows the results of a study comparing the 
consequence rates of control slicing and non-control slicing methods using several Quality-
of-Service (QoS) options so that the evaluation is very accurate. 
 
5.2.1 Packet loss ratio  

The Packet Loss Ratio (PLR) for the network when three slices based on a spiking neural 
network are implemented. These proposed models are compared using the PLR parameter 
of the same network; the comparison also includes networks without the controller and 
determines the curve of the average proposed slices. These proposed models are compared 
using the PLR parameter of the same network; the comparison also includes networks 
without the controller and determines the curve of the average proposed slices.  It is noted 
in Fig. 3 that the loss of data in the slice without a controller is much more than in the control 
slices, where the rate of data loss is approximately 60%, while the maximum loss of the 

Parameters 
Slice with 

static buffer 
size 

Slice 
-1- 

Slice 
-2- 

Slice 
-3- 

Link bandwidth 150 MB/s 150 MB/s 150 MB/s 150 MB/s 
Throughput 
requirement 

70% 95% 80% 70% 

Data loss 
requirement 

10% 5% 10% 14% 

Total buffer size 450 packets change buffer change buffer change buffer 

UDP packet size 200 bytes 2 MB/s 2 MB/s 2 MB/s 
TCP packet size 1,000 bytes 50 MB/s 50 MB/s 50 MB/s 
Total 
experiment time 

50 ms 50 ms 50 ms 50 ms 
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control slice did not exceed 20%, as indicated by the black line, which represents the average 
of the three slices. 

Figure 3. Packet loss ratios of a network slice and non-controller slice 
 
5.2.2 Throughput 

To prevent data loss and increase throughput in the network, Buffer-size management will 
now estimate the virtual buffer’s slice size the next time. We carried out experiments to 
examine how to adjust the buffer size in each slice. Fig. 4 displays the outcomes of comparing 
slicing and non-slicing approaches using varied buffer sizes. It is clear that the throughput 
of the control slices is more than the throughput of the non-control slice, and here the black  
line indicates the average control slice, which reaches more than 94%, compared to the 
without controller slice, whose throughput reaches less than 45%. 
 
5.2.3 Buffer Capacity Amount 
 

Slices 1, 2, and 3 were held constant while we tested different buffer capacity values. The 
slice's name is shown against the x-axis and virtual buffers' growth or shrinkage. The black 
line shows that the average slicing approach was more successful than the non-slicing 
approach. Performance gains or losses may be shown in Fig. 5, depending on the buffer sizes.  
At the 45.7 percentile, a performance improvement is reported. Up to 12%, more 
performance is possible with the correct buffer size; the maximum buffer size (i.e., 450 
packets) was always used for the non-slicing method. In the equal-sized buffer technique, 
each slice has its buffer of the same size. The buffer widths of the three slices are optimized 
by our system, which examines the available buffer space at 50 different times. According to 
our traffic situation, the overall satisfaction with the proposed approach is higher than usual. 
To acquire results that are as similar as possible to real-time, we ran our simulation for 50 
seconds. The model's slicing prediction accuracy over various unknown devices is also 
tested.  
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Figure 4. Throughout a network slice and non-controller slice 
 

 
 

Figure 5. Buffer capacity for each slice during the simulation time 
 
6. CONCLUSIONS 
 
A significant challenge facing the research community is creating a smart decision-making 
system for incoming network traffic to guarantee load balancing, limit network slice failure, 
and give alternative slice buffer size in case of slice failure or overloaded situations. To solve 
this issue, we offer a 'Buffer-Size Management’ technique that uses essential characteristics 
of connected devices to anticipate the most optimal virtual buffer size for every incoming 
network traffic. According to the findings of the experiments, the performance of the 
network slicing scheme combined with the proposed Buffer-Size Management is superior to 
that of the non-slicing scheme and the equalized buffer approach. And Indicative of the 
generalizability of the presented method, the Buffer-Size Management model achieved an 
overall recognition rate of 95%. Future work will improve the model with additional details, 
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such as network function scheduling, that must be considered when embedding slices into a 
common physical network. 
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