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Abstract of the Thesis

Non-Rigid Registration with Deep Learning and Conformal Harmonic Maps

by

Daniel Billmann

Master of Science

in

Computer Science

Stony Brook University

2023

We present a novel fully-automated approach to non-rigid registration for high-resolution
facial scans using conformal harmonic maps. The novelty of this paper is its use of applied
deep learning models to prepare data for geometric algorithms to compute non-rigid regis-
tration. We use facial detection to both constrain the boundary of the face and provide a
mechanism to manipulate the input mesh. We use conformal harmonic maps[7] to map a
dense 3D point cloud to the closed unit disc D1(0) and optimize the weights of each edge.
Our experiments show the effectiveness of this approach.
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1 Introduction and Prior Research

Advances in 3D digital scanning technology and computer vision in recent years, particu-
larly with the capabilities of deep neural networks, have produced many impressive models
of the human face. These models are able to quickly recognize facial features and track
their movements in real time. We wanted to harness the usefulness and efficiency of these
models to denoise facial scan data and return a consistent boundary of the face for 3D image
registration. In this work, we make two contributions: First, we use a deep learning model
to capture the consistent boundary of a 3D facial scan for non-rigid registration. Second,
we show the importance of a consistent boundary in the context of non-rigid registration by
comparing it to some example inconsistent boundaries we constructed. When we use the
term consistent boundary, we are referring to a consistent physical boundary between two
surfaces. For example, two circles with radii 1 and 1.01 have a consistent boundary, while a
circle with radius 1 and a square with area 2 do not. We constructed inconsistent boundaries
using the deep learning library by removing “chunks” of the face, being careful to preserve
important regions of the face for computation and measurement. Our research uses con-
formal harmonic maps to understand surface-level effects of orthopedic maxillary expansion
(OME) in pediatric patients. OME is a common expansion technique that widens the upper
jaw in order to fit the upper and lower teeth together better. It primarily performed on
children aged 8-18 using devices such as a palatal expander. We chose conformal harmonic
maps because of their angle-preserving properties and because of the Uniformization The-
orem, which proves a Riemannian surface is conformally equivalent to a unit disc. Using a
unit disc is important for computational efficiency given the high density of mesh inputs in
R3. Conformal maps were used in prior research for both tracking facial surfaces in 3D [15]
and matching surfaces in 2D and 3D [2, 6, 8, 13, 14]. We use a deep learning model and
quadric edge collapse decimation to preprocess the mesh. Then we conformally map each
mesh to a unit disc and pass key landmarks to a Möbius transformation to rotate the discs.
Finally we construct a non-rigid mapping from one disc to the other using a K Nearest
Neighbors (KNN) classifier with k = 1. We also provided a mechanism to analyze metric
landmarks to understand how the surface has changed. The rest of the paper is organized in
the following sections: theoretical background on the operations themselves (2), followed by
methodology and step-by-step implementation (3), then the analysis and results (4), before
the conclusion and potential next steps (5).
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2 Theoretical Background

2.1 Quadric Edge Collapse Decimation[4]

2.1.1 Description

Quadric Edge Collapse Decimation (QECD) is a surface simplification algorithm that re-
moves unimportant edges (v1, v2) 7→ v̄ and unifies them to a single point [4] (see figure 1).

Figure 1: Contraction of the edge (v1, v2) into a single point. The shaded triangles become
degenerate and are removed during the contraction.

2.1.2 Algorithm

The fundamental operation of the algorithm is edge contraction, written as (v1, v2) 7→ v.
The algorithm has three steps:

1. Move vertices v1 and v2 to v̄.

2. Replace all occurrences of v2 with v1.

3. Delete v2 and any degenerate faces.

2.2 Discrete Conformal Harmonic Map[5]

2.2.1 Description

The facial surface is approximated by simplicial complex, namely triangle mesh M . A vertex
is denoted as vi; an oriented edge (halfedge) [vi, vj], where vi is the source, vj is the target;
an oriented face is [vi, vj, vk], where vi, vj, and vk are sorted counter-clock-wisely. function
f : M 7→ R is defined on vertices. Suppose p is a point inside a triangle [vi, vj, vk], then p
can be represented as the linear combination of three vertices, p = λivi + λjvj + λkvk, where
(λi, λj, λk) are barycentric coordinates of p, where λi + λj + λk = 1. Barycentric coordinates

can be computed as follows: λi =
|[p,vj ,vk]|
|[vi,vj ,vk]|

where |·| represents the signed area of the oriented

triangle. Then the function f becomes a piecewise linear function:

f(p) = λif(vi) + λjf(vj) + λkf(vk) (1)

1



By direct computation, it is possible to directly compute the harmonic energy

E(f) =
∑

vi,vj∈M

wij(f(vi)− f(vj))
2 (2)

2.2.2 Useful equations

Image Boundary:

IB(vi) = (cos(θi), sin(θi)), θi = 2π

∑l
i=1 |vl − vl−1|∑n
k=1 |vk − vk−1

(3)

Cotangent Edge Weight:

wij =

{
1
2
(cot(θk) + cot(θl)) if [vi, vj] is adjacent to 2 faces

1
2
(cot(θk) if [vi, vj] is on the boundary.

(4)

Harmonic Energy:

E(f) =
∑

vi,vj∈M

wij(f(vi)− f(vj))
2 (5)

2



2.2.3 Algorithm

Algorithm 1 Conformal Harmonic Map - Discrete R3 7→ R2 [5]

1. Trace the mesh boundary and get a sequence of vertices [v0, ..., vn−1].
2. Set the image boundary vertex vi with the function IB(vi).
3. For all edges [vi, vj] compute the cotangent edge weight wij using the above formula.
4. For all inner vertices vk go through all the surrounding vertices vj and construct the
discrete Laplace equation, E(f) = 0.
5. Solve the Linear System.

2.3 Möbius Transformation

2.3.1 Description

There is a unique Möbius transformation taking any three distinct points of C+, z1, z2, z3, to
any three distinct points of C+, w1, w2, w3 such that zi 7→ wi. We use z1 and z2, designated
as the left and right eye corner points, respectively, to construct the angle θ using the arctan,
then use θ to compute the transformation of each point.

2.3.2 Algorithm

Let z, origin ∈ C+, θ ∈ [0, 360) then the transformation T (z) can be described by the
equation

T (z, origin, θ) = e(θi) · z − origin

1− (conj(origin) · z)
(6)

3



3 Methodology

Methodology
To calculate the non-rigid changes to the face we use a conformal harmonic map to transform
the input mesh M ∈ R3 into a surface on the unit disc D0(0) ∈ R2 x, y ∈ [−1, 1] and evaluate
changes in R2. On the next page we illustrate this process with a flow chart.

Algorithm 2 Non-Rigid Registration Pipeline

1. Face detection with MediaPipe
2. Quadric Edge Collapse Decimation
3. Conformal Harmonic Mapping
4. Möbius Transformation
5. K -Nearest Neighbors

4



Figure 2: Non-Rigid Registration with Deep Learning and Conformal Harmonic Maps
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3.1 Data Acquisition

3.1.1 Subject Description

Subjects are pediatric patients being treated with OME which has a side effect of changing
how the surface of the face appears. To protect their confidentiality, we are only using my
scan in the presentation of results.

3.1.2 3D Camera Description

The 3D scanning system is based on multiple wavelength phase shifting structured light
methods. The sinusoidal lighting patterns are precisely controlled by the Digital Mirror
Device (DMD) and projected onto the physical objects. The high speed digital cameras
capture the raw images with high frame rate. For each pixel on the image, the relative
phase information can be decoded directly by solving equation groups with trigonometric
functions. The relative phase equals the absolute phase modulo 2π. In order to recover the
absolute phase, an integer optimization process is required to find the phase periods. This
can be achieved by using multiple wavelength fringe patterns, such that the synthesized
wavelength is long enough to cover the whole scanning volume. The depth information is
proportional to the absolute phase. Furthermore, a color camera captures the rich texture
of the human skin. By camera calibration, we can determine the relative relation between
the color camera and the gray camera, then we can compute the texture coordinates

3.1.3 3D Image Capture Process

Each subject was scanned twice. Both scans are captured with the subjects seated, facing
the camera against a black background. The subjects are scanned a few weeks apart. The
shortest difference between scan times was 14 days and the longest was 87 days, see Appendix
A for more details.

3.1.4 Technical Specifications

Each 3D camera scan returns a pair of files - a WaveFront object file (.obj) and a Portable
Network Graphic image file (.png). The WaveFront objects are formatted as follows:

v x y z r g b

v ...

...

vt x y

vt ...

...

f v/vt v/vt v/vt

f ...

...

For each vertex point, denoted by v there is a corresponding texture point vt such that vi
and vti refer to the same point. This relationship allows us to run computations on the 2D
image and infer computation on the 3D object.

6



3.2 Boundary Detection with MediaPipe [11]

3.2.1 Boundary Detection

We evaluated the boundary of the simplicial complex mesh using an approximate solution
with a facial detection model called MediaPipe (MP), an open-source machine learning
pipeline for tracking landmarks in either still or streamed images. MP uses a 3D canonical
face model comprised of 468 landmarks that capture a face’s key points. The landmark
locations on the canonical image as well as their semantic grouping are both published on
GitHub under the Apache License. In our experiments, we constructed two sets of these
landmarks to form a facial boundary. We ran boundary detection which returned an image
with a red line, BGR (0, 0, 255) that outlined the face. A version of this boundary is displayed
in Figure 3 below, with the boundary thickness augmented to improve visibility.

Figure 3: Detected Facial Boundary

We used NumPy[9] to identify the respective height and width indices where the pixel
color equaled the boundary color. We then passed the input image and the indices to
OpenCV[1] where we used the .fillPoly() method to construct a binary mask of the image
(see Figure 4).

Figure 4: Binary Mask of Face
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The binary mask is represented as a height by width by depth matrix, with the depth
being the BGR colors such that the matrix dimensions are always (H,W, 3). We know from
our data inputs that each pixel in the image corresponds to a texture vt line in the .obj file.
We read in the texture lines from the .obj file and scale them up to the dimensions of the
matrix. The resulting texture image gives a binary impression of the shape of the face, as
depicted in Figure 5(a) below. When we combine the binary mask and the texture image
we return a constrained texture image as in Figure 5(b).

(a) Unconstrained (b) Constrained

Figure 5: Texture Image

From the data input section, for each texture point vti there is a corresponding vertex vi.
We use the constrained face to construct a list of indices. For each set of texture coordinates
(y, x), if the pixel at location constrained texture y, x is red, BGR (0, 0, 255), the texture
index is added to the list. Below is a quick code snippet illustrating the idea.

indices = []

for idx, (y, x) in textures:

if constrained_face[y,x] == (0, 0, 255) # Red

indices.append(idx)

We then use the indices list to filter the vertices in the object. However, this adds
complexity when writing back the object for the faces. Faces in the input object are of the
form f v1/vt1 v2/vt2 v3/vt3 which means they are highly dependent on vertex order. To
account for this, we constructed a hash map that mapped the index of the unfiltered object
to the index of the filtered object. For example, if there are 10 vertices in the unfiltered
object but we filtered the object down to use only vertices 4, 5, and 6, the mapping would
be as follows: 

4 7→ 1
5 7→ 2
6 7→ 3

 (7)

We then use this mapping when writing faces back to the object. First we translate the
unfiltered vertex indices to a filtered vertex. Then, if all filtered vertices are in the new mesh,

8



we write the face to the .obj file.
In summary, we use MP to detect the boundary image indices and build a mask. We translate
these filtered indices to texture indices from the .obj file. We then map the unfiltered texture
indices to filtered vertex indices. Once we obtain all this information, we can construct a
filtered .obj file. Below we display the filtered file:

(a) Front View (b) Side View

Figure 6: Collapsed Source Object
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3.2.2 Inconsistent Boundary Construction

To establish the importance of a consistent boundary in 3D facial scan registration, we
decided to build inconsistent boundaries, which we also call ”boundary methods” to test
against the consistent boundary. We elected to build six inconsistent boundaries per consis-
tent boundary for a total of twenty four inconsistent boundaries. We removed chunks from
the left part of the forehead, right part of the forehead, center of the forehead, left cheek,
right cheek, and chin. The chunks varied in size and shape because our main focus was to
remove some part of the face to make it inconsistent. We built the boundaries the same way
we built the consistent boundaries with a few added constraints. First, we made sure not to
use any keypoints or metric points when removing chunks. Second, we made sure at least
one edge of the chunk was also an edge in the corresponding boundary. Finally, we kept
the number of vertices below 15 in all cases since we built these manually. Below are the
resulting masks of each chunk and its corresponding inconsistent boundary mask. We will
discuss how these inconsistent boundaries affected the final results in the next full section
(4).

Figure 7: Initial Mask
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Figure 8: Chin

(a) Chunk (b) Inconsistent Boundary

Figure 9: Left Cheek

(a) Chunk (b) Inconsistent Boundary

Figure 10: Right Cheek

(a) Chunk (b) Inconsistent Boundary
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Figure 11: Center Forehead

(a) Chunk (b) Inconsistent Boundary

Figure 12: Left Forehead

(a) Chunk (b) Inconsistent Boundary

Figure 13: Right Forehead

(a) Chunk (b) Inconsistent Boundary

12



3.2.3 Keypoint Detection

MediaPipe builds this face boundary with 468 3D face landmarks [11]. We use these land-
marks to compute the Möbius Transformation in step 4 of the pipeline as well as the analysis
post-registration. For the Möbius transformation, we capture three points: the left eye cor-
ner, right eye corner, and nosetip, as pictured in Figure 14. We will go into more detail why
those points were chosen in section 3.5, Möbius Transformation.

Figure 14: Detected Möbius Keypoints

This method is repeated for any points used for evaluating metrics downstream. We talk
more about these points’ usage in sections 3.3, 3.5, and 4.

3.3 Quadric Edge Collapse Decimation [4]

We introduced QECD because the simplicial complex in our use case is too dense to run
computation algorithms in a reasonable time. This was an operation we previously executed
using MeshLab[3] to collapse the vertices. We used the software’s associated Python API,
PyMeshLab[12], to automate the operation. It is important to note that we convert the key
points calculated during boundary detection from a vertex value to an integer index value.
First we load the mesh and the key points, then we compute QECD. After completing the
operation, we use the key point vertex coordinates to select the closest vertex and return
the vertex’s index.

13



Figure 15: QECD-Collapsed Source Data

(a) Front View (b) Side View

3.4 Conformal Harmonic Mapping

We used the algorithm described in section 2.2.3 to convert the collapsed mesh into a unit
disc and then compute a conformal harmonic map on the disc.

14



Figure 16: Surface After Conformal Harmonic Mapping

3.5 Möbius Transformation

In order to compute non-rigid registration more accurately, we näıvely align the two unit
discs D0 using a Möbius transformation. We use the calculated key points from MediaPipe
as our initial z1, z2, and z3, which represent the left eye corner, right eye corner, and nose
tip, respectively. Our assumption is that by aligning these points we will align the faces and
minimize registration error.

This step is important for checking the predicted boundary from the first step in the
algorithm is correct. If the transformation leads to a face that looks more warped than
the input, it is likely this boundary is not consistent. This helped us identify issues with
capturing shadows on the face and choose different boundary landmarks to outline the face.
In figure 17 below, we can see that both the source (a) and target (b) images are aligned
similarly. In the case of (a), the face is more centered, with the nosetip closer to the origin
than in figure 16.

15



Figure 17: Möbius Transformed Surface

(a) Source (b) Target

3.6 Non-Rigid Registration with KNN

We approached registration two different ways. The first is to map each vertex on the source
disc to the nearest corresponding point on the target disc. The second is to choose specific
metric points (i.e. corners of the mouth, cheeks, chin) on each disc and measure how the
points changed. We use the Euclidean distance metric in R2 to compute both these metrics.
We write out a map of the vertex indices to a text file of the form sourcei 7→ targetj,
with i ∈ V erticessource and j ∈ V erticestarget. This allows us the option to understand the
movements of corresponding points in R3 We also write out the distance between metric
points to a file so they may be analyzed for future use.

Figure 18: Non-Rigid Registration

16



4 Analysis and Results

Analysis and Results

4.1 Challenges with Boundary Detection

In this section we discuss some of the challenges and obstacles we encountered on the way
to achieving our results.

4.1.1 Faces behind Manifold

Another side effect of the boundary issues is related to re-mapping the filtered face. In some
cases, we had an issue with mapping the input vertices to the output vertices. This issue
led to triangle faces appearing behind the mesh, spanning the width of the face. We wrote a
patch to alleviate the issue, only writing out faces if their areas are less than a constant. As
expected, this check significantly increased run-time, nearly doubling it. However, the issue
typically resolved itself when we constrained the boundary closer to the center of the face.
Our use case involves changes closer to the center of the face which allowed us to adjust the
boundary accordingly.

4.1.2 Shadows

We initially used the boundary silhouette as defined by MediaPipe to constrain faces before
we ran into issues with shadows on patients’ faces. These shadows led to warped faces on
the unit discs, boundary shadows being weighted heavier than facial features, and issues
with aligning the unit discs with a Möbius transformation. All of these are symptoms of an
inconsistent boundary.

Another thing to consider is the subjects’ skin color. There was some variety between
subjects’ tone and base that may make some subjects harder to identify with boundary
detection. This should be front of mind when selecting deep learning models for facial
detection.

4.1.3 Illumination

Another issue is that some of the subjects wore jewelry, specifically earrings. This affected
the mask that we used to filter the boundary of the face and led to computational issues.
We changed the filter to use a solely red filter, BGR (0, 0, 255), which solved the problem.

4.2 Results

4.2.1 Boundary Detection Efficacy

We built four different facial boundaries using MP’s landmarks, which we named outer,
middle, inner, and custom and refer to collectively as “boundary types”. we elaborate on
their boundary construction in Appendix B. In the table below, we display the results of
running our pipeline on each patient with each boundary we constructed. We also briefly

17



describe the different outcomes in the key below. The extended descriptions for this key are
in Appendix C.

Key:
Acronym Description
A - Best Unit Disc aligned

FL Unit Disc flipped 180◦

MA Misaligned
MS Unit Disc Majority Shadow
WF Warped Unit Disc
FBF Face Behind Manifold

SB - Worst Unit Disc straight boundary

Patient No. Outer Middle Inner Custom
4 FBF, SB A A A
5 FBF SB, MS A FL
9 FBF MA A A
11 FBF MS A FL
12 FBF FBF, WF WF MA
13 FBF MA A A
14 A A MA A
16 A ma∗ ma∗ ma∗

18 FBF MS, WF FL FL
30 FBF FBF, WF A A

It is worth noting that patient 16 was very closely misaligned, rotated by about 10◦.
This table shows that different boundaries have different effects on the conformal mapping
and therefore the non-rigid registration and metric accuracy. Of the ten patients, we were
able to align the transformation of their faces using this pipeline in eight of them, using at
least one of the boundaries. Another result that is important to note is the runtime. We
outline a sample in Appendix D. As result, this method can be used currently to reduce and
in some cases eliminate the manual effort of constraining a boundary from these scans.

4.2.2 Importance of Consistent Boundaries

Our goal was to see if the consistent boundary registered the facial scans’ conformally mapped
surfaces better than inconsistent boundaries. For each boundary type (outer, middle, inner,
custom), we performed registration with the consistent boundary plus all six inconsistent
boundaries. To measure registration error, we chose five metric points relevant to OME and
calculated the distance between their location on the source and target surfaces, taking the
sum of the total error. We repeated this for each of the ten patients, resulting in a matrix
M

4×10×7
.

Given the small sample size of our patients and testing that our error for consistent
boundary was always less than the each inconsistent boundary, we chose a one-sided t-test.

18



We ran the test pairwise with the consistent boundary (cb) as one parameter and each
inconsistent boundary (IB) as the other.

∀ib ∈ IB. (8)

cb.size, ib.size ≤ 10 (9)

pvalue = ttest(cb, ib) (10)

α ≥ pvalue ? reject h0 : do not reject h0 (11)

We built the results into a heatmap, labeled by boundary type and inconsistent boundary
used.

Figure 19: p-value Heatmap

The test yielded ambiguous results, failing to decisively accept or reject the null hypoth-
esis in all cases. In some cases, the p-values are small enough to reject the null hypothesis

19



h0 when compared to a standard α value of 0.05. However, higher values of α such as 0.10
or 0.20 should be given some consideration given the size of the samples. Alternatively, cer-
tain combinations of boundary types and boundary methods are comfortably within the null
hypothesis. An outlier exists with the inner boundary type with the right cheek boundary
method. No p-value was calculated. This occurs when the number of samples is too low,
which means there were issues upstream calculating this boundary. Likely, the boundary
method was built incorrectly, which led to the harmonic map step skipping the mapping
altogether, resulting in no metric points downstream. This conjecture leads me to my final
point - there is a lightly noticeably trend with the heatmap. The inner consistent bound-
ary leaves the smallest area of the boundary types, the middle the second smallest, custom
third smallest, and outer the largest. Any additional masking would affect the registration
proportionately. Ignoring the NaN value in the inner row for a moment, all but one of
inner ’s five p-values are less than 0.20, arguably a good alpha given the sample size. The
trend continues with middle having all but two p-values less than 0.20, custom has three
of six, and outer has four of six less than 0.20. This method offers both tentative support
and insufficient evidence to reject the null hypothesis that a consistent boundary returns a
better registration than an inconsistent boundary.

5 Conclusion

Conclusion and Future Work
For future researchers interested in this type of problem, we suggest looking at several
opportunities. The first is to investigate more thoroughly the definition of a consistent
boundary. If that can be more clearly mathematically established, it may be possible to
solve for the boundary programmatically. Another opportunity would be to apply alternative
methods to conformally map the manifolds to a surface to improve the runtime. Our focus
of this work was to use computer vision techniques to aid with discrete differential geometry
techniques; advanced methods that could improve runtime exist[10]. We used a deep learning
facial model to constrain a simplicial complex to perform geometric algorithms upon. Our
work serves to demonstrate the effectiveness of the combination of these techniques.

Our results did not conclusively prove consistent boundaries are better than inconsistent
boundaries for non-rigid registration. They do suggest there a potential monotonic relation-
ship between the area of the constrained boundary and the size of the chunk removed. A
logical next step would be to research consistent boundaries compared to other boundary
methods and more conclusively quantify the effects of changes to the boundary.
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6 Appendices

Appendices

A OME Duration

Patient No. Days Between Visits
4 77
5 14
9 21
11 87
12 57
13 50
14 78
16 22
18 43
30 43
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B Boundary Landmark IDs

Boundary
name Description Ordered Landmark IDs

Silhouette Landmarks detailing 10, 338, 297, 332, 284, 251,
the outer most 389, 356, 454, 323, 361, 288,
boundary of 397, 365, 379, 378, 176, 149,
the face 150, 136, 172, 58, 132, 93,

234, 127, 162, 21, 54, 103,
67, 109

Second Landmarks detailing 151, 108, 69, 104, 68, 71,
the second most 139, 34, 227, 137, 177, 215,
outside boundary 138, 135, 169, 170, 140, 171,

of the face 175, 396, 369, 395, 394, 364,
367, 435, 401, 366, 447, 264,
368, 301, 298, 333, 299, 337

Third Landmarks detailing 9, 107, 66, 105, 63, 70,
the third most 156, 143, 116, 123, 147, 213,

outside boundary 192, 214, 210, 211, 32, 208,
of the face 199, 428, 262, 431, 430, 434,

416, 433, 376, 352, 345, 372,
383, 300, 293, 334, 296, 336

Custom Landmarks detailing 151, 108, 69, 104, 68, 156,
a boundary of 143, 116, 123, 147, 213, 138,
the face that 135, 169, 170, 140, 171, 175,

is a combination 396, 369, 395, 394, 364, 367,
of landmarks from 433, 376, 352, 345, 372, 301,
the Second and 298, 333, 299, 337
Third boundaries

C Boundary Detection Results

I cannot publish several of the below states because they were only present in pediatric
patients. To protect their confidentiality, I am only using my scan in the thesis.
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Best - Unit Disc Aligned The ideal outcome of the pipeline.
After the Möbius transformation,
the discs are aligned with the nose
tip at the origin and the inside

corner of each eye in a horizontal
line above the eyes.

Unit Disc flipped 180◦ The same as Aligned, except either
the source or the target unit disc

is rotated 180 ◦ such that the eyes are
below the nose tip.

Misaligned The source and target unit discs
are misaligned by less than 180◦.

Unit Disc Majority Shadow One or both of the unit discs
is blacked or grayed out due to
the amount of shadows in the

initial scan.
Warped Unit Disc One or both of the unit discs are warped

such that the human facial features are
compressed and twisted.

Face Behind Manifold After running boundary detection, there are
triangular faces spanning the width of the
manifold present behind the human face.

Worst - Unit Disc straight boundary The resulting unit disc from the conformal
mapping has straight edges around part of
the boundary rather than a consistent circle.

D Sample Runtime Table

This table gives the reader an idea of runtime of all 24 combinations of boundary types and
boundary methods for a single individual.

Pipeline Step Average Runtime (seconds) Total Runtime (seconds)
Boundary Detection 9.18458 220.43

QECD 5.20750 124.98
Conformal Harmonic Map 33.76708 810.41

Möbius Transform 0.97292 23.35
Non-Rigid Registration 11.44292 274.63

Total 60.575 1453.8
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