
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Open Educational Resources Hunter College

2023

Introduction Introduction

Raffi T. Khatchadourian
CUNY Hunter College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/hc_oers/42

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/hc_oers
https://academicworks.cuny.edu/hc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/hc_oers/42
https://academicworks.cuny.edu/hc_oers/42
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Programming
Languages/Software
Engineering
Introduction

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Programming Languages,
Software Engineering,
and Software Evolution

2

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Programming Languages, Software
Engineering, and Software Evolution

● Change is at the heart of software development.
● To change software, developers need to understand complex relationships between

programing language constructs (Object-Oriented, Dynamic Languages).
● Developers must also engineer their changes to meet their goals, maintain

architectural integrity, and not cause regressions.

3

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Research in Software Evolution

● How to ease the burden of efficiently, correctly, and securely evolve and maintain large
and complex software systems?

● What are the common changes in software in practice? How can we analyze them?
Leverage them?

● What are the relationships between those changes and resolving technical debt?
● How can we automate software evolution and maintenance?
● How can we infer safe and effective program transformations?
● How can we analyze software before and after transformations without running the

code?

4

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Automated Evolution Examples

● Migrate legacy systems to utilize new programming language constructs.
● Upgrading library/framework APIs.
● Converting sequential code to parallel (and vice-versa) for enhanced efficiency?
● Improve responsiveness (e.g., sync -> async).

5

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Quiz 1: About You

1. Name?
2. Occupation, recreating, motivation?
3. Grad program (e.g., CS PhD, MS/MA), years of study, who is your grad advisor?
4. Background (e.g., undergrad PL/SE courses you’ve taken, industrial PL/SE experience,

other CS background—such as ML).
5. One thing you expect to take out of this course?
6. What are your post graduation plans?

6

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Topics in Software Maintenance and
Evolution

● Reverse engineering and
re-engineering.

● Software refactoring and
restructuring.

● Software migration, renovation, and
rejuvenation.

● Software and system comprehension.
● Software repository analysis and

mining.
● Code cloning and provenance.
● Concept and feature location.

7

● Change and detect management.
● Evolution of non-code artifacts.
● Software testing.
● Maintenance and evolution

processes.
● Software quality assessment.
● Run-time evolution and dynamic

configuration.
● Human aspects of software evolution.

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Theme: ● Machine Learning (ML)/Deep
Learning (DL) becoming pervasive.

● Mission-critical applications (e.g.,
autonomous cars).

● Run-time performance (a lot of data,
especially for DL).

● Programming is close to the
hardware but fast.

● Programming is difficult to get speed
(especially for training).

● Easier programming sacrifices speed
(run-time efficiency).

● How to get the best of both worlds
for legacy DL systems?

8

ML/DL
programming and
software evolution

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Course Logistics

9

● Review syllabus.
● Get familiar with Bb page.
● Bb discussion board.

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Research-Oriented Course

● Learn fundamentals but with an eye towards research!
● At times, the course may feel “unorganized.”
● Many choice, need to choose.
● Course structure is fixed, but the content is “dynamic.”
● Complete a research or industrial-novel project of your choice (individual or teams of

2-3 students).
○ Follow the steps of open-ended/risky research (proposal, fit in PL/SE literature, evaluate

empirically or by mathematical proof).
○ At the end, you will have produced a research paper that you can submit to a conference.
○ Why? Equips you to conduct novel R&D.

10

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Research-Oriented Course

● Participate in class discussions and activities.
● Read research papers.

○ Later on, papers that match your project topic.
● Paper critiques.

○ Submit before class.
○ Why? Equips you to think critically.

● Research presentation.
○ You prepare and deliver for selected research papers.
○ Why? Equips you to communicate your ideas.

● Research projects (not implementing an “app”)
○ Individual or teams of 2-3.

11

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Introduction to Program
Analysis and
Transformation

12

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Traditional Programs

Input OutputProgram1

13

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Programs Analysis

OutputProgram1Program2

14

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Programs Analysis

OutputProgram1Program2

● How many variables?
● How many functions?
● Is the architecture reusable?
● What is the test coverage?
● Are bugs likely?
● Are there security

vulnerabilities?

15

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Programs Transformation (Refactoring)

Program2’Program1Program2

Does Program2’ produce
the same output as
Program2 given the same
input?

Is Program2’ better
than Program2? Is it
faster? Is it easier to
maintain? More
secure?

16

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Research Topics

● Study how programmers code.
● Study how programmers change

code.
● How to deal with large and complex

software?
● How to locate potential performance

improvements?
● How to locate potential bugs?
● How to discover potential security

flaws?

● Can we automatically change
programs to use latest language and
platform features?

● How do we ensure that the new
program works the same as the old
one?

● Is the new program designed better
than the old one? Is it easier to
maintain?

17

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Use Cases for Compile-Time Analysis

Compiler

● Traditional compilation (C,C++,Fortran)

○ Analysis in the compiler for correctness and performance.
● Modern compilation (Java w/ bytecode, C# w/ CIL)

○ Analysis in the translator (e.g., javac)
○ Lightweight analysis in the just-in-time (JIT) compiler inside the virtual machine

Target Program

Source program Target program

Input Output

Translator

Target Program

Source program Intermediate program

Intermediate
program

Output

Input

18

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Use Cases for Compile-Time Analysis

● Software development environments
○ E.g., in Eclipse: finds code smells and potential defects; performs code refactoring.

● Software verification/checking tools
○ Prove the absence of certain categories of defects.

● Testing tools
○ E.g., for regression testing – which tests do not need to be rerun after some changes to the

program?
● Also: comprehension tools, debugging tools (after failure), performance analysis tools,

etc.
● More generally, static analysis (vs. dynamic analysis).

19

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Inside a Traditional Compiler: Front End

● Lexical analyzer (aka scanner)
○ Converts ASCII or Unicode to a stream of tokens.

● Syntax analyzer (aka parser)
○ Creates a parse tree from the token stream.

● Semantic analyzer
○ Type checking and conversions; other semantic checks
○ Some compile-time analyses done here, on the AST

● Generator of intermediate code
○ A parse tree is too high-level for code generation & optimization
○ Create lower-level intermediate representation (IR), e.g., three-address code.

20

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Inside the Compiler: Middle Part

● Compile-time analysis of intermediate code
○ Additional IRs: control-flow graph (CFG), static single assignment form (SSA), def-use graph,

etc.
○ Control-flow analysis, data-flow analysis, pointer analysis, side-effect analysis, polyhedral

analysis,
● Machine-independent optimization of intermediate code: better three-address code.

○ Copy propagation, dead code elimination, code motion, constant propagation, redundancy
elimination, parallelization, data locality optimizations, …

● Currently, this is where most of compiler research is focused.

21

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Three-Address Code

● ASTs are high-level IRs
○ Close to the source language.
○ Suitable for tasks such as type checking and type inferencing.

● Three-address code is a lower-level IR
○ Closer to the target language (i.e., assembly code)
○ Suitable for tasks such as code generation/optimization

● Basic ideas
○ A small number of simple instructions: e.g. x = y op z
○ A number of compiler-generated temporary variables

a = b + c + d; in source code t = b + c; a = t + d;
○ Simple flow of control – conditional and unconditional jumps to labeled statements

22

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Important Note

23

● The choice of the program representation on which to perform analysis is critical
○ E.g. if you are writing an Eclipse plug-in, you have access to the AST, but not to a lower-level

IR
■ Plus, the results of the analysis are useful for ASTs (e.g., code smells reported to the

programmer)
● In a compiler, we usually prefer to have access to a lower-level IR, since the analyses

and transformations are easier
● In this course, we will focus on this scenario.

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Addresses and Instructions

24

● “Address”: a program variable, a constant, or a compiler-generated temporary variable
● Instructions

○ x = y op z : binary operator op; y and z are variables, temporaries, or constants; x is a
variable or a temporary

○ x = op y : unary operator op; y is a variable, a temporary, or a constant; x is a variable or a
temporary

○ x = y : copy instruction; y is a variable, a temporary, or a constant; x is a variable or a
temporary

○ Arrays, flow-of-control
○ Each instruction contains at most three “addresses”

■ Thus, three-address code

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Simple Examples

x = y produces one three-address instruction

Left: a pointer to the symbol table entry for x
Right: a pointer to the symbol table entry for y
For convenience, we will write this as x = y

x = - y produces t1 = - y; x = t1;

x = y + z produces t1 = y + z; x = t1;

x = y + z + w produces t1 = y + z; t2 = t1 + w; x = t2;

x = y + - z produces t1 = - z; t2 = y + t1; x = t2;
25

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Flow of Control

● Three-address instructions
○ goto L : unconditional jump to the three-address instruction with label L
○ if (x relop y) goto L : x and y are variables, temporaries, or constants; relop ∈ { <, <=,

==, !=, >, >= }
● The labels are symbolic names

26

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

More Examples

if (x < 100) goto L2;
goto L3;
L3: if (x > 200) goto L4;
goto L1;
L4: if (x != y) goto L2;
goto L1;
L2: x = 0;
L1: …;

27

if (x < 100) goto L2;
if (x <= 200) goto L1;
if (x == y) goto L1;
L2: x = 0;
L1: …;

● Possible three-address code: two versions
○ Example: if (x < 100 || x > 200 && x != y) x = 0;

Credits: Slide content may contain repurposed material originally by Danny Dig and Atanas Rountev.

Main Topics

28

● Control-flow analysis: what sequences of instructions could be executed at run time?
○ Infinite number of sequences -> need finite static representation (control-flow graph)

● Data-flow analysis: what are the effects of these instruction sequences on the state
of the program?

○ Infinite (or very large) sets of possible states -> need finite/small abstractions, often with loss
of precision

● Key technical challenges: abstractions must be
○ correct (depending on the client)
○ precise and efficient-to-compute

● Code transformations: enabled by analysis.
○ In refactoring, this is called precondition checking.

	Introduction
	Introduction

