
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Open Educational Resources Hunter College

2022

Eclipse, OSGi, and the Java Model Eclipse, OSGi, and the Java Model

Raffi T. Khatchadourian
CUNY Hunter College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/hc_oers/41

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/hc_oers
https://academicworks.cuny.edu/hc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/hc_oers/41
https://academicworks.cuny.edu/hc_oers/41
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Programming
Languages/Software
Engineering: Eclipse, OSGi, and
the Java Model

Project 0, Part 2

2

https://csc-71010-csci-77100-fall-2022.github.io/WALA-Quick-Start/

Questions a and b

3

< Application, LTest, main([Ljava/lang/String;)V >
4 v5 = binaryop(add) v3:#5, v4:#6 (line 4)

a. What is this instruction doing?
b. In the original source, computation occurs on

both lines 3 and 4. Why in the IR is there only
an instruction for line 4?

class Test {
 public static void main(String[] a) {
 int x = 5;
 int y = x + 6;
 System.out.println(y);
 }
}

My solution to questions
c and d

4

https://github.com/CSc-71010-CSCI-77100-Fall-2022/WALA-Quick-Start/commit/a24a47ec5a7db5b174de43e056df1d4e7c353753
https://github.com/CSc-71010-CSCI-77100-Fall-2022/WALA-Quick-Start/commit/a24a47ec5a7db5b174de43e056df1d4e7c353753

Add (static) fields to hold counts

5

public class Main {

/**
 * Total number of instructions seen.
 */
private static int totalInstructions;

/**
 * Total number of instructions in all methods that are branching statements.
 */
private static int totalBranchingInstructions;

To the end of main(), add output
statements

6

public static void main(String[] args) throws Exception {
// …
// output the total number of instructions (part c).
System.out.println("Total instructions: " + totalInstructions);

// output the total number of instructions (part d).
System.out.println("Total branching instructions: " + totalBranchingInstructions);

}

Modify checkInstruction() to count all
instructions seen

7

private static void checkInstruction(SSAInstruction instruction) {
// increment the instruction count.
++totalInstructions;

Modify checkInstruction() to count
branching instructions seen

8

private static void checkInstruction(SSAInstruction instruction) {
// increment the instruction count.
++totalInstructions;

// if it's a branching instruction.
if (instruction instanceof SSAGotoInstruction ||

instruction instanceof SSAConditionalBranchInstruction ||
instruction instanceof SSASwitchInstruction) {
// output it to see what it looks like.
System.out.println("Found branching instruction of type " +

instruction.getClass().getName() + ": " + instruction);

// increment the branching count.
++totalBranchingInstructions;

}
}

Import the new instruction types

9

import com.ibm.wala.ssa.SSAConditionalBranchInstruction;
import com.ibm.wala.ssa.SSAGotoInstruction;
import com.ibm.wala.ssa.SSASwitchInstruction;
// …
class Main {

//
}

Output Snippet

10

Processing instructions for application method: < Application, LJLex/CLexGen, packCode([C[C[CII)[C >

Found branching instruction of type com.ibm.wala.ssa.SSAConditionalBranchInstruction:
conditional branch(ne, to iindex=63) 9,53

Found branching instruction of type com.ibm.wala.ssa.SSASwitchInstruction:
switch 6 [0->102,1->107,2->112,3->122,4->127,5->132,6->117]

Found branching instruction of type com.ibm.wala.ssa.SSAGotoInstruction:
goto (from iindex= 106 to iindex = 142)

...
Total instructions: 6535
Total branching instructions: 1089

What do these
mean?

A little bit about the Eclipse’s Plugin
Architecture

● The Eclipse architecture is an interesting case study in itself.
● Follows the conventions of the OSGi component architecture.
● Very dynamic!

○ Plugins are loaded at boot time.
○ Heavy use of reflection (actually an interesting research field for static analysis).

● Basically, everything is a plugin, even Eclipse core functionality.
○ They are “core” plugins.
○ Eclipse without any plugins is a mere shell.

11

https://www.osgi.org/

Eclipse Plugin
Extension Points
and Extensions

● Plugins are configured through metadata:
○ plugin.xml

■ Extensions, extension points, etc.
○ MANIFEST.mf

■ Runtime stuff (classpath, i.e., where to find libraries), dependencies, version ranges.
● Plugins can have extension points and can extend other plugins.
● An extension point allows other plugins to extend functionality provided by the plugin.

○ For example, add a menu item to a context menu (right-click).
● A plugin extends the functionality of another plugin by extending its extension point.
● Many plugins are both extensions of other plugins and also have extension points.

12

Analysis and Transformation in Eclipse

● WALA is an extensive library of static analysis algorithm implementations.
○ We’ll learn about these algorithms throughout the semester.
○ WALA can analyze a variety of software:

■ Android.
■ Javascript.
■ Etc.

○ WALA doesn’t have great transformation capabilities.
■ It’s mainly for analysis.
■ There is another project called Soot that is more ept at bytecode transformation than

WALA. We won’t Soot in this course, though.
● WALA used to be a little bit easier to work with within Eclipse since it originally

has an OSGi-type architecture.
● Probably something to do with both originating from IBM.
● Since a major transition, my understanding is that OSGi metadata was removed.

● Eclipse supports source-to-source transformation on ASTs. 13

Python?
Scalpel?

PyDev?

https://docs.google.com/presentation/u/0/d/1pHic5YpmHOpg-wNWe3_sQOLWfeVNn_J8bMe0YZeb-k8/edit
https://github.com/wala/ML
https://github.com/SMAT-Lab/Scalpel
https://github.com/fabioz/Pydev

Analysis and Transformation in Eclipse

● We’ve mainly looked at ASTs, but Eclipse really has two models for any given
programming language.

● For Java, this is called the Java Model.
● It’s a domain model for everything up to Workspaces and Projects down to fields and

methods.
● For example, an IProject is an interface representing any project in a workspace.

○ An IJavaProject is specific for Java.
● The JavaCore.create() is useful for obtaining IJavaElements (objects in the Java Model)

without the UI (e.g., right-clicking on an object).
● The Java Model doesn’t allow transformations at the source level.
● However, there are useful analyses that can be generated, e.g., search engines, type

hierarchies, and call graphs (more later on these).
14

https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fresources%2FIProject.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2FIJavaProject.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2FJavaCore.html

JDT View

● The AST View plugin in Eclipse is
useful for visualizing an AST.

● Likewise, the JDT View plugin is
useful for visualizing the Java
Model.

● These two models work
hand-in-hand.

○ For example, you can build an AST
node (instance of an
CompilationUnit) from a file in the
Java Model (instance of an
ICompilationUnit).

15

https://www.eclipse.org/jdt/ui/jeview/index.php
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FCompilationUnit.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2FICompilationUnit.html

Assignment 1: This
week’s homework

16

https://bbhosted.cuny.edu/webapps/blackboard/content/listContentEditable.jsp?content_id=_70325463_1&course_id=_2180243_1&mode=cpview

Part 1: Use the Visitor Pattern for
Project 0, Part 2

17

● Checking the types of each instruction can be cumbersome.
○ How do you know which types are available?

● Instructions in WALA support the visitor pattern!
○ But not as fully as we saw last week.

● Use com.ibm.wala.ssa.IR.visitNormalInstructions(Visitor) in the main() method!
○ We don’t need an array of all instructions (except to get the count of all instructions):

// the instructions in the IR.
SSAInstruction[] instructions = ir.getInstructions();

○ Instead, give the IR a visitor (for the branching instruction count).
● Subclass com.ibm.wala.ssa.SSAInstruction.Visitor.

○ “Default” implementations of all methods do nothing.
○ Only override the visit() methods for types you are interested in.
○ Add your own functionality.

https://wala.github.io/javadoc/com/ibm/wala/ssa/IR.html#visitNormalInstructions-com.ibm.wala.ssa.SSAInstruction.IVisitor-
https://wala.github.io/javadoc/com/ibm/wala/ssa/SSAInstruction.Visitor.html

Assignment1, Part 2: Learn how to
work with ASTs

● Goals:
○ Appreciate the difference between ASTs and the instruction IR.

■ WALA generates instruction IR, Eclipse generates AST IR.
○ Learn how to build Eclipse plugins.
○ Learn how to discover, build, and analyze open-source projects.
○ Run your plugin on a project you found.
○ Collect various statistical data

● Sample output and resources available

18

https://bbhosted.cuny.edu/webapps/blackboard/content/listContentEditable.jsp?content_id=_70325470_1&course_id=_2180243_1

	Eclipse, OSGi, and the Java Model
	Eclipse, OSGi, and the Java Model

