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Programming 
Languages/Software 
Engineering: Eclipse, OSGi, and 
the Java Model



Project 0, Part 2

2

https://csc-71010-csci-77100-fall-2022.github.io/WALA-Quick-Start/


Questions a and b
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< Application, LTest, main([Ljava/lang/String;)V >
4 v5 = binaryop(add) v3:#5, v4:#6 (line 4)

a. What is this instruction doing?
b. In the original source, computation occurs on 

both lines 3 and 4. Why in the IR is there only 
an instruction for line 4?

class Test { 
 public static void main(String[] a) { 
  int x = 5; 
  int y = x + 6; 
  System.out.println(y);
 }
}



My solution to questions 
c and d
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https://github.com/CSc-71010-CSCI-77100-Fall-2022/WALA-Quick-Start/commit/a24a47ec5a7db5b174de43e056df1d4e7c353753
https://github.com/CSc-71010-CSCI-77100-Fall-2022/WALA-Quick-Start/commit/a24a47ec5a7db5b174de43e056df1d4e7c353753


Add (static) fields to hold counts
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public class Main {

/**
 * Total number of instructions seen.
 */
private static int totalInstructions;

/**
 * Total number of instructions in all methods that are branching statements.
 */
private static int totalBranchingInstructions;



To the end of main(), add output 
statements
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public static void main(String[] args) throws Exception {
// …
// output the total number of instructions (part c).
System.out.println("Total instructions: " + totalInstructions);

// output the total number of instructions (part d).
System.out.println("Total branching instructions: " + totalBranchingInstructions);

}



Modify checkInstruction() to count all 
instructions seen
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private static void checkInstruction(SSAInstruction instruction) {
// increment the instruction count.
++totalInstructions;



Modify checkInstruction() to count 
branching instructions seen
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private static void checkInstruction(SSAInstruction instruction) {
// increment the instruction count.
++totalInstructions;

// if it's a branching instruction.
if (instruction instanceof SSAGotoInstruction || 

instruction instanceof SSAConditionalBranchInstruction ||        
instruction instanceof SSASwitchInstruction) {
// output it to see what it looks like.
System.out.println("Found branching instruction of type " + 

instruction.getClass().getName() + ": " + instruction);

// increment the branching count.
++totalBranchingInstructions;

}
}



Import the new instruction types
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import com.ibm.wala.ssa.SSAConditionalBranchInstruction;
import com.ibm.wala.ssa.SSAGotoInstruction;
import com.ibm.wala.ssa.SSASwitchInstruction;
// …
class Main {

// ....
}



Output Snippet
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Processing instructions for application method: < Application, LJLex/CLexGen, packCode([C[C[CII)[C >

Found branching instruction of type com.ibm.wala.ssa.SSAConditionalBranchInstruction: 
conditional branch(ne, to iindex=63) 9,53

Found branching instruction of type com.ibm.wala.ssa.SSASwitchInstruction: 
switch 6 [0->102,1->107,2->112,3->122,4->127,5->132,6->117]

Found branching instruction of type com.ibm.wala.ssa.SSAGotoInstruction: 
goto (from iindex= 106 to iindex = 142)

...
Total instructions: 6535
Total branching instructions: 1089

What do these 
mean?



A little bit about the Eclipse’s Plugin 
Architecture

● The Eclipse architecture is an interesting case study in itself.
● Follows the conventions of the OSGi component architecture.
● Very dynamic!

○ Plugins are loaded at boot time.
○ Heavy use of reflection (actually an interesting research field for static analysis).

● Basically, everything is a plugin, even Eclipse core functionality.
○ They are “core” plugins.
○ Eclipse without any plugins is a mere shell.
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https://www.osgi.org/


Eclipse Plugin 
Extension Points 
and Extensions

● Plugins are configured through metadata:
○ plugin.xml

■ Extensions, extension points, etc.
○ MANIFEST.mf

■ Runtime stuff (classpath, i.e., where to find libraries), dependencies, version ranges.
● Plugins can have extension points and can extend other plugins.
● An extension point allows other plugins to extend functionality provided by the plugin.

○ For example, add a menu item to a context menu (right-click).
● A plugin extends the functionality of another plugin by extending its extension point.
● Many plugins are both extensions of other plugins and also have extension points.
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Analysis and Transformation in Eclipse

● WALA is an extensive library of static analysis algorithm implementations.
○ We’ll learn about these algorithms throughout the semester.
○ WALA can analyze a variety of software:

■ Android.
■ Javascript.
■ Etc.

○ WALA doesn’t have great transformation capabilities.
■ It’s mainly for analysis.
■ There is another project called Soot that is more ept at bytecode transformation than 

WALA. We won’t Soot in this course, though.
● WALA used to be a little bit easier to work with within Eclipse since it originally 

has an OSGi-type architecture.
● Probably something to do with both originating from IBM.
● Since a major transition, my understanding is that OSGi metadata was removed.

● Eclipse supports source-to-source transformation on ASTs. 13

Python?
Scalpel?

PyDev?

https://docs.google.com/presentation/u/0/d/1pHic5YpmHOpg-wNWe3_sQOLWfeVNn_J8bMe0YZeb-k8/edit
https://github.com/wala/ML
https://github.com/SMAT-Lab/Scalpel
https://github.com/fabioz/Pydev


Analysis and Transformation in Eclipse

● We’ve mainly looked at ASTs, but Eclipse really has two models for any given 
programming language.

● For Java, this is called the Java Model.
● It’s a domain model for everything up to Workspaces and Projects down to fields and 

methods.
● For example, an IProject is an interface representing any project in a workspace.

○ An IJavaProject is specific for Java.
● The JavaCore.create() is useful for obtaining IJavaElements (objects in the Java Model) 

without the UI (e.g., right-clicking on an object).
● The Java Model doesn’t allow transformations at the source level.
● However, there are useful analyses that can be generated, e.g., search engines, type 

hierarchies, and call graphs (more later on these).
14

https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fresources%2FIProject.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2FIJavaProject.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2FJavaCore.html


JDT View

● The AST View plugin in Eclipse is 
useful for visualizing an AST.

● Likewise, the JDT View plugin is 
useful for visualizing the Java 
Model.

● These two models work 
hand-in-hand.

○ For example, you can build an AST 
node (instance of an 
CompilationUnit) from a file in the 
Java Model (instance of an 
ICompilationUnit).
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https://www.eclipse.org/jdt/ui/jeview/index.php
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FCompilationUnit.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2FICompilationUnit.html


Assignment 1: This 
week’s homework
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https://bbhosted.cuny.edu/webapps/blackboard/content/listContentEditable.jsp?content_id=_70325463_1&course_id=_2180243_1&mode=cpview


Part 1: Use the Visitor Pattern for 
Project 0, Part 2
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● Checking the types of each instruction can be cumbersome.
○ How do you know which types are available?

● Instructions in WALA support the visitor pattern!
○ But not as fully as we saw last week.

● Use com.ibm.wala.ssa.IR.visitNormalInstructions(Visitor) in the main() method!
○ We don’t need an array of all instructions (except to get the count of all instructions):

// the instructions in the IR.
SSAInstruction[] instructions = ir.getInstructions();

○ Instead, give the IR a visitor (for the branching instruction count).
● Subclass com.ibm.wala.ssa.SSAInstruction.Visitor.

○ “Default” implementations of all methods do nothing.
○ Only override the visit() methods for types you are interested in.
○ Add your own functionality.

https://wala.github.io/javadoc/com/ibm/wala/ssa/IR.html#visitNormalInstructions-com.ibm.wala.ssa.SSAInstruction.IVisitor-
https://wala.github.io/javadoc/com/ibm/wala/ssa/SSAInstruction.Visitor.html


Assignment1, Part 2: Learn how to 
work with ASTs

● Goals:
○ Appreciate the difference between ASTs and the instruction IR.

■ WALA generates instruction IR, Eclipse generates AST IR.
○ Learn how to build Eclipse plugins.
○ Learn how to discover, build, and analyze open-source projects.
○ Run your plugin on a project you found.
○ Collect various statistical data

● Sample output and resources available
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https://bbhosted.cuny.edu/webapps/blackboard/content/listContentEditable.jsp?content_id=_70325470_1&course_id=_2180243_1
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