
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Electrical & Computer Engineering Faculty 
Publications Electrical & Computer Engineering 

2008 

Vegetation Identification Based on Satellite Imagery Vegetation Identification Based on Satellite Imagery 

Vamsi K.R. Mantena 
Old Dominion University 

Ramu Pedada 
Old Dominion University 

Srinivas Jakkula 
Old Dominion University 

Yuzhong Shen 
Old Dominion University, yshen@odu.edu 

Jiang Li 
Old Dominion University, jli@odu.edu 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs 

 Part of the Electrical and Computer Engineering Commons, Remote Sensing Commons, and the 

Theory and Algorithms Commons 

Original Publication Citation Original Publication Citation 
Mantena, V. K. R., Pedada, R., Jakkula, S., Shen, Y., & Li, J. (2008) Vegetation identification based on 
satellite imagery. In H. R. Arabnia (Ed.), Proceedings of the 2008 International Conference on Image 
Processing, Computer Vision & Pattern Recognition, IPCV 2008 (pp. 245-251). CSREA Press. 

This Conference Paper is brought to you for free and open access by the Electrical & Computer Engineering at ODU 
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by 
an authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1192?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Authors Authors 
Vamsi K.R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen, Jiang Li, and Hamid R. Arabnia (Ed.) 

This conference paper is available at ODU Digital Commons: https://digitalcommons.odu.edu/ece_fac_pubs/410 

https://digitalcommons.odu.edu/ece_fac_pubs/410


VEGETATION IDENTIFICATION BASED ON SATELLITE IMAGERY

Vamsi K. R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen and Jiang Li

Old Dominion University
Department of Electrical and Computer Engineering, Norfolk, VA 23529

{vmant002, rpeda003, sjakk001, yshen, jli}@odu.edu

ABSTRACT

Automatic vegetation identification plays an important role
in many applications including remote sensing and high per-
formance flight simulations. This paper presents a method
to automatically identify vegetation based upon satellite im-
agery. First, we utilize the ISODATA algorithm to cluster pix-
els in the images where the number of clusters is determined
by the algorithm. We then apply morphological operations
to the clustered images to smooth the boundaries between
clusters and to fill holes inside clusters. After that, we com-
pute six features for each cluster. These six features then go
through a feature selection algorithm and three of them are
determined to be effective for vegetation identification. Fi-
nally, we classify the resulting clusters as vegetation and non-
vegetation types based on the selected features using a multi-
layer percetron (MLP) classifier. We tested our algorithm by
using the 5-fold cross-validation method and achieved 96%
classification accuracy based on the three selected features.

Index Terms— clustering, classification, vegetation iden-
tification, texture synthesis, feature selection.

1. INTRODUCTION

High performance flight simulations require realistic terrain
textures. For example, vegetation is required to change along
with different seasons. However, current synthesis methods
do not allow quick seasonal adaptations. An advanced texture
synthesis technique with the capability of automatic seasonal
adaptation for vegetation usually consists of the following two
steps: 1) it identifies vegetation land cover from the imagery
and 2) automatically synthesizes texture to adapt the identi-
fied vegetation area to a different season. We focus on the first
step in this paper. Vegetation area identification from satellite
imagery includes image pixel clustering and cluster classifi-
cation. We use the ISODATA algorithm [1] for the clustering
task and utilize an MLP classifier to classify the clustered ar-
eas as vegetation and non-vegetation areas, based upon a set
of selected features computed from the imagery. Note that
the ISODATA algorithm is an unsupervised learning process
and land cover types of the resulting clusters are unknown.
Therefore, the classification step is necessary.

ISODATA is a divisive process which divides data into
homogeneous clusters. There are two data passes in each
iteration of the ISODATA algorithm. The first pass (multi-
ple interactions are usually needed) finds the means for each
of the predefined number of clusters. The clusters are then
split and merged in the second pass, depending upon their
standard deviations, distance between means, cluster size and
total number of clusters. Once the stop criterion has been
met, each data point is clustered into one of the predetermined
clusters in terms of their distances to the cluster means. Usu-
ally, a post-processing step for smoothing cluster boundaries
is needed due to noise in the image [2]. We apply morpholog-
ical operations on the clustered images to smooth the bound-
aries between clusters and to fill holes inside clusters.

The next step is to identify the land cover type for each
of the clusters. We compute a set of statistics for each of the
clusters and train a classifier to classify the clusters into one of
the land cover types. The statistics include mean and standard
deviation from each spectral channel of the image. Note that
not all the statistics are useful for the classification, we thus
utilized a feature selection algorithm to identify most effec-
tive features for the classification. Finally, the classification
results (vegetation or non-vegetation) are coded into the least
significant bit of each pixel, and the coded image is passed to
the next stage where vegetation adaptation is performed.

The paper is organized as follows. In section 2, we in-
troduce the ISODATA algorithm. Several morphological op-
erations used for post-processing, feature selection and clas-
sification algorithms are also addressed. Section 3 presents
some of the clustering and classification results. We discuss
the results in section 4 and conclude this paper in section 5.

2. METHODS

2.1. ISODATA Clustering Algorithm

Commonly used clustering algorithms in remote sensing in-
clude the K-means algorithm and the ISODATA algorithm
[1]. ISODATA stands for Iterative Self-Organizing Data Analy-
sis, an advanced algorithm that can automatically adjust the
number of clusters to be clustered. Both algorithms follow
iterative procedures. In general, a clustering algorithm first



assigns data points to arbitrary initial clusters. After that,
the cluster means are recomputed and data points are reas-
signed. This process is repeated until the “change” between
two consecutive iterations is negligibly small. The “change”
can be defined in several different ways, either by measuring
the mean distances difference from one iteration to another or
by the percentage of pixels that change cluster membership in
consecutive iterations.

The ISODATA algorithm is similar to the K-means al-
gorithm that ISODATA dynamically adjusts cluster numbers
while K-means assumes that the number of clusters is fixed
and is known a priori. The ISODATA algorithm adaptively
adjusts the number of clusters by splitting and merging clus-
ters. Clusters are merged if either the number of pixels in
a cluster is less than a certain threshold or if the centers of
two clusters are closer than a certain threshold. A cluster is
split into two different clusters if the cluster’s standard de-
viation exceeds a predefined value and the number of pixels
is as twice as the threshold set for the minimum number of
members.

We found that clustering imagery based on YCbCr color
space can give a better result than that on the RGB color
space. The RGB color space of the image is therefore con-
verted to YCbCr color space [3] which represents luminance,
blue and red components before applying the Isodata algo-
rithm.

The ISODATA algorithm requires a set of pre-defined pa-
rameters to control its behavior [1]. These parameters were
chosen experimentally in this paper. We list those parameters
and the algorithm as follows,

K = Number of clusters desired
I = Maximum number of iterations allowed,
P = Maximum number of pairs of clusters which can be merged,
ΘN = Minimun no. of samples in each cluster (used for dis-
carding clusters),
ΘS = Maximum standard deviation for each cluster (used for
split operation),
ΘC = Minimum piarwise distances between cluster centers
(used for merge operations).

The following steps explain the Isodata algorithm in de-
tail.

Step 1:
We choose arbitrarily k (not necessarily equal to K) initial
cluster centers: m1,m2, . . . , mk for the data set xi, i = 1, 2, ..., N .
Here N represents the total number of samples in the image
to be clustered. In this step the cluster centers are selected
randomly from the samples of the image.

Step 2:
In this step each of the N individual samples is assigned to
the closest cluster center. This step can be explained by the

following equation,

xεωj ifDL(x,mj) = minDL(x,mi), i = 1, 2, . . . , k
(1)

where wj denotes the jth cluster and DL(x,mj) represents
distance between pixel x and mj , mean of the jth cluster.

Step 3:
Discard clusters whose pixel members are less then ΘN , i,e.,
if for any j, Nj < ΘN , then discard ωj and set k ← k − 1.

Step 4:
Update each cluster center as

mj =
1

Nj

∑
xεωj

x, j = 1, 2, ..., k. (2)

Step 5:
Compute average distance Dj of samples in cluster ωj from
their corresponding cluster center

Dj =
1

Nj

∑
xεωj

DL(x,mj), j = 1, 2, ..., k (3)

This step helps us in splitting a cluster when the cluster con-
tains less number of pixels.

Step 6:
Compute the overall average distance of the samples from
their respective cluster centers as

D =
1
N

k∑

j=1

NjDj (4)

which is also used for splitting operation.

Step 7:
If k ≤ K

2 ,which is the case when the number of clusters are
far less than the required number of clusters K,then there is a
need to split the clusters with more number of samples (step 8
to step 10). If k > 2K, which is the case when the number of
clusters are far greater than the required clusters K, then we
merge the clusters which are closer to each other, (step 11 to
step 13). Otherwise go to step 14.

Step 8:
Find the standard deviation vector σj = [σj

1, ..., σ
j
n]T for all

clusters with each element given by,

σj
i =

√
1

Nj

∑
xεωj

(xi −mj
i )2 (5)

where (i = 1, .., n, j = 1, .., k), mj
i is the ith component of

mj and σi is the standard deviation of the samples in ωj along



the ith coordinate axis, and Nj is the number of samples in ωj .

Step 9:
Find maximum component of each σj as σj

max for j = 1, ...k.

Step 10:
For any σj

max, j = 1, ...k, if all of the following are true,
σj

max>ΘS ,
Dj > D,
Nj>2ΘN

then split the cluster mj into two new cluster centers m+
j and

m−
j by adding ±δ to the component of mj corresponding to

σj
max, where δ can be ασj

max, for some α > 0. Then delete
mj and let k ← k + 1 and go to step2.
Else go to step 14.

Step 11:
Find pairwise distances between every two cluster centers as
Dij ,

Dij = DL(mi,mj), (6)

for all i 6= j. Arrange these k(k−1)
2 distances in ascending

order.

Step 12:
Find no more than P smallest Dij’s those are also smaller
than Θc and keep them in ascending order.
Di1j1 ≤ Di2j2 ≤ ... ≤ DiP jP

These are the P small clusters to be merged.

Step 13:
Perform pairwise merge for l = 1, ..., P . If neither of mil

nor
mjl

has been used, then merge the above centers to form a
new cluster with mean given by,

m =
1

Nil
+ Njl

[Nil
mil

+ Njl
mjl

] (7)

Delete mil
and mjl

, set k ← k − 1 and got to step 2.

Step 14:
Terminate if maximum number of iterations I is reached. Oth-
erwise, go to step 2.

The above algorithm was successfully applied to satellite
images to cluster images as different land cover types.

2.2. Morphological Operations

When we classify images using the above algorithm, we no-
tice that the resulting clusters are not uniform. Instead, they
have holes inside clusters due to the fact that pixels inside one
area can represent different types of land cover. For example,
pixels representing bare soil (especially humid one) or trees
can have values close to those of pixels representing tarmac
road. These two types of pixels can be classified into the same

cluster. The same problem may appear in case of mixed pixels
(where one pixel value may represent more than one type of
object). On the other hand, one object (e.g. vegetation cover)
may be covered by other objects like vehicles, houses nearby
and their shadows. In this case it is not possible to classify
all pixels “geographically” representing tree as tree and grass
as grass. Therefore, “holes or gaps” in clustered image may
appear. This type of problems are well known and were pre-
sented in literature [4]. For those cases, we need to uncover
the real structure of images by applying morphological oper-
ations on the clustered images.

Closing and opening [5] are well known operations in
image morphology to remove/fill the gaps in an image. In
our experiments, closing operation is performed with size of
the structuring element equal to the maximum size of the
hole or gap in one cluster. There are other regions in the
image where there may exist small gaps between vegetation
regions. To fill these small gaps, opening operation is per-
formed on the image obtained in the previous stage with the
size of structuring element equal to the maximum size of the
gap or hole. By using these operations the clustered image
also gets smoothened. The sequence of operations and size of
structuring elements may vary depending upon the types of
the clustered images.

2.3. Feature Selection and Classification

A cluster in a clustered image is a group of pixels having sim-
ilar characteristics. However, vegetation type of a cluster is
unknown, i.e., we do not know if a cluster is grass or sand. In
this paper, we use supervised learning to recognize the iden-
tity of the clusters. We classify the clusters into two types:
vegetation and others. We compute six features for each of
the clusters including mean and standard deviation of Y, Cb
and Cr channels. Therefore, we have six features for each
cluster.

Those six features are derived heuristically and they are
not equally important. Irrelevant features can lead to several
problems in modeling: 1) Training an unnecessarily large net-
work requires more computational resources and memory, 2)
high dimensional data may have the curse of dimensionality
problem if the available data is limited, and 3) training algo-
rithms for large networks can also have convergence difficul-
ties and poor generalization. We utilize a feature selection
algorithm developed in our previous work [6] to select a com-
pact set of features that leads to an accurate model based on
the available data.

The feature selection algorithm 1) determines an appro-
priate piecewise linear network (PLN) model for the given
data set, 2) applies the orthonormal least squares procedure
to the PLN model and searches for useful feature subsets us-
ing a floating search algorithm. The floating search prevents
the nesting effect. The feature selection algorithm is compu-
tationally efficient because only one data pass is required.



The feature selection algorithm is explained in detail as
follows.

Step 1 Design a piecewise linear classifier for given data:
Piecewise linear classifier approximates the general Bayes dis-
criminant. The available data is divided into a set of clusters
where a local linear model is obtained for each cluster, by
solving a set of linear equations. Neural classifiers includ-
ing the PLC are usually designed by minimizing the standard
training error,

E =
Nc∑

i=1

E(i) =
1

Nv

Nc∑

i=1

Nv∑
p=1

[tp(i)− yp(i)]2 (8)

where Nc is the number of classes and E(i), the mean-squared
error for the ith output. Here tp(i) denotes the ith desired out-
put for the pth input pattern, yp(i) denotes the ith observed
output for the pth input pattern, and Nv denotes the total num-
ber of data patterns. In the PLC, yp(i) is the output from the
piecewise linear network,

yp(i) =
N+1∑

j=1

w(q)(i, j)x(q)
p (j) (9)

where N is the number of features, w(q)(i, j) denotes the
model weight to the ith output from the jth feature in the
qth cluster, x

(q)
p (j) is the jth feature in the qth cluster, and

x
(q)
p (N + 1) is the bias term which equals one. The avail-

able data is divided into a set of clusters where a local linear
model is obtained for each cluster, by solving a set of linear
equations. We assume that tp(ic) = b and tp(id) = −b where
ic denotes the correct class number and id any incorrect class
number for the current data pattern. If ic = arg maxi yp(i),
we say the PLC classifies the current pattern correctly. Other-
wise, a classification error is counted.

Step 2 Search a list of good feature combinations using
the floating search algorithm
We design a floating search method through Piecewise Linear
Orthonormal Least Square (PLOLS) procedure in this sec-
tion. The PLOLS procedure utilizes the modified Schmidt
procedure to make each features in each cluster orthonormal.
This procedure passes through the data set once, and all infor-
mation needed for searching good combination of features is
stored in the auto-correlation and cross-correlation matrices.
Therefore, our feature selection algorithm is very efficient.
Based on equations (8) and (9), the modified desired output
may be represented in a matrix form as

t′ = x(q)w(q) + Ξ(q) (10)

where each row in matrix x(q) represent one feature vector
that was assigned to the qth cluster, w(q) denotes weight ma-
trix in the qth cluster, and Ξ(q) are residual errors in the qth

cluster. We apply the modified Schmidt procedure to each
cluster, yielding the piecewise linear orthogonal (PLO) sys-
tem

t′ = Θ(q)A(q)w(q) + Ξ(q) = Θ(q)w(q)
o + Ξ(q). (11)

We need the following four definitions to describe our pro-
posed feature selection algorithm. Let X(d) = {x(i) : 1 ≤
i ≤ d, x(i) ∈ Z} be a subset of d features from the set
Z = {z(i) : 1 ≤ i ≤ N} of N available features. Suppose
we partitioned the feature space into Nc clusters and obtained
its PLO system as (11),
Definition 1:
The individual fitness of one feature, x(i), is

S0(x(i)) =
M∑

k=1

Nc∑
q=1

(w(q)
o (k, i))2, (12)

which is the total variance explained for all outputs due to the
ith feature.
Definition 2:
The fitness of a set of X(d) is measured as,

J(X(d)) =
d∑

i=1

M∑

k=1

Nc∑
q=1

(w(q)
o (k, i))2, (13)

which is the total variance explained for all outputs due to all
features in the set X(d).
Definition 3:
The fitness Sd−1(x(i)) of the feature x(i), 1 ≤ i ≤ d, in the
set X(d) is defined by

Sd−1(x(i)) =
M∑

k=1

Nc∑
q=1

(w(q)
o (k, i))2, (14)

where x(i) is the last feature in the set X(d) that is made or-
thonormal to the other bases in the modified Schmidt proce-
dure.
Definition 4:
The fitness Sd+1(x(i)) of the feature x(i) with respect of
X(d), where x(i) ∈ Z− X(d), is

Sd+1(x(i)) =
M∑

k=1

Nc∑
q=1

(w(q)
o (k, i))2, (15)

where x(i) is made orthonormal to X(d), to get wo(k, i), k =
1, 2, · · · ,M . These four definitions are fitness measures for
one feature or feature combinations that will guide the feature
selection process.

Algorithm Description
We are now ready to describe the proposed feature selection
algorithm for selecting Ns features from N available features.

--



1. Using the error and trial method to determine an appro-
priate number of clusters, Nc, which will be used in the
PLC.

2. Design an Nc cluster PLC for the data by solving a set
of linear equations for each cluster.

3. Change desired output using the OR algorithm.

4. Search a list of good feature combinations using the
floating search algorithm, based on the above four def-
initions.

Advantages of the proposed algorithm are as follows: 1)
It selects features rather than a combination of all the fea-
tures such as those selected by transformation based meth-
ods (PCA, Wavelet), 2) It considers interactions among fea-
tures and measures the correlations via the amount of ex-
plained variance by features, 3) It is computationally effi-
cient, 4) It automatically handles the extremely unbalanced
data sets where the number of instances in some classes are
significantly more than those in other classes, and 5) The al-
gorithm produces a list of best combinations that contain dif-
ferent numbers of features, users then have the flexibility to
choose one based on performance.

After the compact set of features are selected, we use
an MLP classifier to classify the cluster to one of the two
classes [7][8]. The classifier utilized a new objective func-
tion that had more free parameters than the classical objec-
tive functions, and used an iterative minimization technique to
solve multiple sets of numerically ill-conditioned linear equa-
tions. An enhanced feedforward network training algorithm
was also used to reduce a separate error function with respect
to hidden layer weights. The MLP classifier is explained in
detail as follows.

We are given a set of Nv training patterns (xp, tp) where
the pth input vector xp and pth desired output vector tp have
dimension N and Nc respectively. A three layer, fully con-
nected MLP networks with sigmoid activation function for
the hidden layer is used. For the pth pattern, the jth hidden
unit net and activation functions are

netp(j) =
N+1∑

k=1

w(j, k) · xp(k) (16)

Op(j) = f(netp(j)) =
1

1 + exp(−netp(j))
(17)

the ith observed output is

yp(i) =
N+1∑

k=1

woi(i, k) · xp(k) +
Nh∑

j=1

woh(i, j) ·Op(j) (18)

where woi(i, k) and woh(i, j) are weights connecting to the
ith output unit from the kth input and jth hidden unit respec-
tively. For the jth hidden unit and pth pattern, the desired net

function netpd(j) is constructed as

netpd(j) ∼= netp(j) + Z · δp(j) (19)

Z is the learning rate and δp(j) is the delta function of the jth
hidden unit and is defined as

δp(j) = f ′(netp(j))
Nc∑

i=1

δpo(i)wo(i, j) (20)

where δpo(i) is the delta function of the ith output layer,

δpo(i) = tp(i)− yp(i) (21)

The hidden weights are updated as

w(j, k) ← w(j, k) + Z · e(j, k) (22)

where e(j, k) is the hidden weight change. With the basic
operations and (19-21), we can use the following equation to
solve for the changes in the hidden weights,

netpd(j)+Z ·δp(j) ∼=
N+1∑

k=1

[w(j, k)+Z ·e(j, k)]·xp(k) (23)

we obtain

δp(j) ∼=
N+1∑

k=1

e(j, k) · xp(k) (24)

Before solving (24) in the least squares sense, an objective
function for the jth hidden unit is defined as

Eδ(j) =
Nv∑
p=1

[δp(j)−
N+1∑

k=1

e(j, k)xp(k)]2f ′(netp(j)) (25)

which is minimized with respect to e(j, i) using the conjugate
gradient method and we obtain the hidden weights change
e(j, k), we then update the hidden weights by performing
(22).

Refer to our previous publications [6, 7, 8] for more de-
tails of the feature selection and the MLP classifier training
algorithms.

2.4. Data Acquisition

The satellite imagery has been obtained from the Google Earth.
The images we used in the paper encircle a range of vegeta-
tion such as trees and grass and also include other areas like
road, soil, cars and buildings. To overcome the resolution
problems, the images were captured at optimum height and
the captured images were stored in standard image formats
using snagit image capturing software. We collected 120 im-
ages and present several examples at the end of this paper.



3. RESULTS

To study the effectiveness of the ISODATA algorithm, we
have applied it to the 120 satellite images1. As mentioned
earlier, morphological operations are needed to fill the holes
or gaps formed due to mixed pixels. Fig. 1 and Fig. 2 show
the results of our experiments where the first column includes
original images, the second column contains clustered images
produced by the ISODATA algorithm, and the third column
consists of outputs from morphological operations. Note that
both “grass” and “tree” clusters in the Figures are treated as
“vegetation” type in the classification followed, though the
ISODATA algorithm clustered them into different clusters.

We computed the six features for each of the clusters and
assigned one class type (vegetation or non-vegetation) to each
of the clusters by inspection. The feature selection algorithm
selected three of the features (means of the Y and Cb channels
and standard deviation of the Cb Channel) and the other three
features were turned out to be not useful. To test if a classifier
can automatically identify vegetation type, we used the 5-fold
cross-validation method on the 120 images and achieved 96%
classification accuracy based on the three selected features.
The classifier involved in the 5-fold cross-validation was an
MLP classifier with 3 inputs, 1 hidden unit and 2 outputs, and
the classifier was trained by the method proposed in [7, 8].

4. DISCUSSION

By comparing the ISODATA clustered images in the second
column of Fig. 1 and Fig. 2 with the original images in the first
column, we conclude that ISODATA correctly clustered areas
having similar characteristics in most cases. However, there
are small holes and gaps in some of the clustered images. Af-
ter morphological operations, it is obvious that all the gaps
have been filled/removed and the boundaries are smoothened
without affecting the natural shape of the clustered image (see
the third column in Fig. 1 and Fig. 2).

The 5-fold cross-validation results showed that it is possi-
ble to automatically identify vegetation from other land cov-
ers. The classifier can discriminate the two types with an ac-
curacy of up to 96% in the cross-validation. Note that this
paper focus on the first part of a flight simulation project.
The second part of the project, vegetation adaptation, will au-
tomatically adapt the identified vegetation areas to different
seasons. We reported the second part in [9].

5. CONCLUSION

In this paper we presented a method to automatically identify
vegetation based upon satellite imagery. The identified vege-
tation area can be then adapted to different seasons by texture

1We utilized a fast implementation of the ISODATA algorithm by pro-
fessor David Mount from the University of Maryland. See online code:
http://www.cs.umd.edu/ mount/Projects/ISODATA/

synthesis techniques [9]. We first used the ISODATA algo-
rithm to cluster pixels in an image to similar clusters; we then
applied morphological operations to remove holes or gaps in-
side the clusters. We then used the feature selection algorithm
to select the most relevant features which can discriminate the
vegetation regions from other regions. Finally, we utilized a
classifier to classify the resulting clusters into one of the two
land cover types: vegetation and “others” from the selected
features. Experiments showed that the proposed algorithm
can effectively cluster pixels in an image to the two types of
land covers and the classifier can identify them with an accu-
racy of 96%.

6. REFERENCES

[1] James B. Campbell, Introduction to Remote Sensing,
The Guilford Press, Fourth edition, 2007.

[2] J. P. Wayman, R. H. Wynne, J. A. Scrivani, and G. A.
Burns, “Landsat tm-based forest area estimation using
iterative guided spectral class rejection,” Photogram-
metric Engineering and Remote Sensing, vol. 67, pp.
1155–1166, 2001.

[3] G. Sharma and H. J. Trusell, “Digital color imaging,”
IEEE Transactions on Image Processing, vol. 6, pp.
901–932, 1997.

[4] Stephen S. Wilson, “Theory of matrix morphology,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 14, no. 6, 1992.

[5] Su Chen and Robert M. Haralick, “Recursive erosion,
dilation, opening, and closing transforms,” IEEE Trans-
actions on Image Processing, vol. 4, no. 3, 1995.

[6] Jiang Li, Michael T. Manry, Pramod L. Narasimha, and
Changhua Yu, “Feature selection using a piecewise lin-
ear network,” IEEE Transaction on Neural Network,
vol. 17, no. 5, pp. 1101–1105, 2006.

[7] Jiang Li, Michael T. Manry, Li-Min Liu, Changhua Yu,
and John Wei, “Iterative improvement of neural clas-
sifiers,” Proceedings of the Seventeenth International
Conference of the Florida AI Research Society, May
2004.

[8] R. G. Gore, Jiang Li, M. T. Manry, L. M. Liu, and
Changhua Yu, “Iterative design of neural network classi-
fiers through regression,” Special Issue of International
Journal on Artificial Intelligence Tools, vol. 14, no. 1-2,
pp. 281–302, 2005.

[9] Srinivas Jakkula, Vamsi K. R. Mantena, Ramu Pedada,
Yuzhong Shen and Jiang Li, “Seasonal adaptation of
vegetation color in satellite images,” IPCV Conference,
2008, submitted.



(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Fig. 1. (a). Input Image. (b) Result of ISODATA algorithm.
(c) Result of morphological operations.

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Fig. 2. (a). Input Image. (b) Result of ISODATA algorithm.
(c) Result of morphological operations.


	Vegetation Identification Based on Satellite Imagery
	Original Publication Citation
	Authors

	Microsoft Word - Vamsi_Title_page.doc.doc

