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ABSTRACT 
MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies 

rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due 

to the fact that significant correlations exist among these images, we assume low-dimensional geometry data 

structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from 

radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the 

manifold is a critical step for successfully analyzing multimodal MR images. 

We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. 2013) for medical image 

analysis. This paper presents a comparative study of an incremental manifold learning scheme (Tran. et al. 2013) 

versus the deep learning model (Hinton et al. 2006) in the application of brain tumor progression prediction. The 

incremental manifold learning is a variant of manifold learning algorithm to handle large-scale datasets in which a 

representative subset of original data is sampled first to construct a manifold skeleton and remaining data points are 

then inserted into the skeleton by following their local geometry. The incremental manifold learning algorithm aims 

at mitigating the computational burden associated with traditional manifold learning methods for large-scale datasets. 

Deep learning is a recently developed multilayer perceptron model that has achieved start-of-the-art performances in 

many applications. A recent technique named "Dropout" can further boost the deep model by preventing weight 

coadaptation to avoid over-fitting (Hinton et al. 2012).  

We applied the two models on multiple MRI scans from four brain tumor patients to predict tumor progression 

and compared the performances of the two models in terms of average prediction accuracy, sensitivity, specificity 

and precision. The quantitative performance metrics were calculated as average over the four patients. Experimental 

results show that both the manifold learning and deep neural network models produced better results compared to 

using raw data and principle component analysis (PCA), and the deep learning model is a better method than 

manifold learning on this data set. The averaged sensitivity and specificity by deep learning are comparable with 

these by the manifold learning approach while its precision is considerably higher. This means that the predicted 

abnormal points by deep learning are more likely to correspond to the actual progression region.  

Keywords: Magnetic resonance imaging, Manifold learning, Deep learning, Brain tumor diagnosis 

1. INTRODUCTION

The assessment and prediction of cancer progress are conventionally divided into three phases (Brunetti et al. 
1996): (a) detecting and characterizing the lesion location; (b) assessing local extension of the disease and presence 
of metastasis and (c) tracing the tumor progress and changes over time, while responding to treatment. Both MRI 
and computed tomography (CT) images have been widely applied in detection and assessment of the local extension 
of the primary intracranial tumors and are routinely used for diagnosis of secondary tumors during staging 
procedures in patients with primary body tumors.  

Recent advancements in imaging technology result in much easier acquisition of multimodal, large-scale and 
heterogeneous medial datasets. For example, the current brain MR imaging incorporate MR DTI on a frequent basis 
for brain tumor diagnosis and treatment monitoring. Along with traditional T1, T2, or FLAIR weighted MRI scans,  
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these high-dimensional data provide rich information and potential for high qualitative brain tumor diagnosis and 

treatment management.  
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However, interpreting these large-scale and high-dimensional datasets is challenging (Araki et al. 1984). For 

example, to examine malignant brain tumors, ADC values, quantitative maps of apparent diffusion coefficient 

derived from DTI imaging, have been reported as useful indicators in distinguishing of tumor tissue from the 

surrounding edema by Sinha et al (Sinha, Bastin et al. 2002). Other researchers found that the differentiation has not 

always been successful (Kono, Inoue et al. 2001). Lam et. al reported that ADC values were not useful in identifying  

tumor types (Lam, Poon et al. 2002). These claims have been challenged by a number of researchers where results 

showed that high-grade gliomas have lower ADC values while low-grade ones are opposite (Kono, Inoue et al. 

2001; Sadeghi, Camby et al. 2003). Analysis performed on diffusion anisotropic (FA) values also showed 

contradictory results in its ability for differentiation of enhancing tumor from edematous brain cancer (Bastin et al. 

2002). Similar situations can also be found in meningiomas diagnosis. A significant difference in peritumoral ADC 

and FA values between low-grade meningiomas and high-grade gliomas has been reported by Bastin et al (Bastin, 

Sinha et al. 2002), possibly reflecting the presence of tumor-infiltrated edema in gliomas. On the other hand, Lu et 

al. showed that there is no statistically significant difference of ADC and FA values between intra- and extra-axle 

lesions (Lu, Ahn et al. 2004). No significant difference was found for ADC values between peritumoral hyperintense 

regions or peritumoral normal-appearing white matter and high-grade gliomas (Provenzale, McGraw et al. 2004).    
We suspect that one or few MRI scans may not have enough discriminating power to reliably differentiate 

various tissues. We have developed a large-scale manifold learning strategy to interpret the highly correlated 

multiple MRI scans for brain tumor diagnosis (Tran et al. 2011; Tran et. al., 2013). Our results indicate that though 

an individual MRI scan is probably insufficient to reliably distinguish different tissue types, taking advantage of 

multiple MRI images may lead to a successful classification. The assumption is that though these MRI scans or 

derived volumes such as ADC have different imaging parameters, these scans are highly correlated and the number 

of independent variables embedded in the data is less than the number of scans. Effective identification of the 

independent variables is critical for tumor diagnosis because the side effect from unrelated information can be 

mitigated. These independent variables are usually called manifolds in machine learning community and are 

identified by manifold learning. One challenge of manifold learning is that there is a matrix Eigen value 

decomposition step and the size of the matrix is n by n, where n is the number of data points, which is not feasible 

for large data sets. We have developed an incremental manifold learning system for brain tumor progression 

prediction to overcome this challenge (Tran et. al., 2013).  

Deep learning (Hinton et al, 2006) is a new algorithm in machine learning community. The primary purpose of 

deep learning is to automatically extract features for various applications including computer vision, speech 

recognition and many other pattern recognition tasks. In this paper, we will compare our incremental manifold 

learning algorithm with deep learning in the application for brain tumor diagnosis and progression prediction. We 

have collected patient data at the MD Anderson Cancer Center and retrospectively studied four brain tumor patients. 

The purpose of this study is to evaluate if deep learning can provide advantages over traditional manifold learning.       

 

2. OVERVIEW OF DEEP LEARNING AND MANIFOLD LEARNING MODELS 
 

In this section, we will review the two learning models including deep learning and incremental manifold learning. 

The incremental manifold learning model was developed by our group and we utilized the deep learning code 

developed by Hinton’s group in this study.  

 

2.1 Deep learning 

Deep learning is a method to effectively train a Multi-Layer Perceptron (MLP) with more than one hidden layer 

(deep structure). Compared to MLP with one hidden layer, the deep structure can approximate a complex nonlinear 

input/output mapping with fewer parameters. However, when training a deep structure with the traditional back 

propagation (BP) method, the training process often gets stuck in local minima if the network is randomly 

initialized. On the other hand, deep learning has a mechanism of layer-by-layer unsupervised training to provide an 

improved parameter initialization for the BP algorithm. It has been experimentally confirmed that the deep learning 

process often reaches better local minima (Dumitru et al. 2010; Bengio et al. 2013).  

Deep learning is motivated by intuition, circuit theory and neuroscience (Dumitru et al. 2010). One example is 

from circuit theory. A “shallow” circuit may represent the same function, but it will be exponentially wider than a 

“deep” circuit (lots of duplications of logical gates). Similarly, a shallow machine learning architecture would 

involve a lot of duplications of effort to express the learned objects and such architecture has been shown to suffer 
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from the problem of over-fitting, which leads to a poor generalization capability. Instead, deep architecture could 

more gracefully reuse previous computations and discover complicated relations of the input with a deep model 

structure. The deep learning framework is also mimicking what a human brain does for classification and 

recognition.  In human vision system, information is processed layer by layer. Each layer achieves different level of 

abstraction with the first layer detects low level characteristics such as edges in images and the highest layer extract 

abstract objects like faces by integrating lower level representations from previous layers.  Finally, our brain tries to 

identify them by comparing the integrated objects with those we saw before.    

With the motivation to utilize a deep architecture, to train a deep architecture, the standard way is to use a 

supervised learning algorithm. However, it is shown that feedback error messages from output layer become 

progressively noisier as it is passed to lower levels, and thus are less and less effective for weights adaptation 

(Dumitru et al. 2010). The difficult to train a deep architecture has been the major hurdle to the application of deep 

neural network structure in the machine learning community. In 2006, a breakthrough in deep learning has made the 

deep architecture training possible. To improve the signal-to-noise ratio at lower levels, there are two main features 

need to be performed: unsupervised learning and the creation of features one layer at a time (Hinton et al. 2006; 

Yoshua et. al 2009, Dumitru et al. 2010). With unlabeled data, the deep structure learns multiple layers of nonlinear 

representations for data in an unsupervised pre-training step and achieves a good initialization of parameters in a 

layer-by-layer manner (Fig. 1 left). The model parameters are then fine-tuned with labels for prediction or 

classification (Fig. 1 right, red dots on top). Enabled by these two features, deep learning can achieve better 

performance (better local minima) with a simple yet deep architecture. 

 

                          
Left)                         Right) 

 

Figure 1. Deep learning framework. Left: Layer by layer unsupervised pre-training.  

Right: weight fine-tune with labels shown as red. 

 

2.1.1 Unsupervised Learning  

With unsupervised learning, deep learning is trying to understand the data first, i.e., to obtain a task specific 

representation for the data so that a better classification can be achieved, which is similar to recognition in human 

brain. If the data label is provided, the deep learning framework has the ability to refine those representations 

making them task specific. It has experimentally proven that the unsupervised learning step in deep learning plays a 

critical role in the success of the training of deep learning (Dumitru et al. 2010).  

 

2.1.2 Creation of features one layer at a time 

In each lower level, the objective is to train a model such that outputs (features) can keep as much information as 

input. In this way, the features can be more and more abstract, while keeping the original sensor information as 

much as possible. At the highest level, the limited label information (known outputs) can be used to fine tune the 

parameters and further pass the feedback through the architecture layer by layer. With these two tricks, deep 

learning is able to train a deep architecture relatively easily and achieve a good generalization capability. It is also 

worth noting that the deep learning architecture can simultaneous model multiple outputs. When learning multiple 

tasks simultaneously, deep learning will achieve a set of shared data representations for the tasks that better handle 

correlations among them leading to a nature multi-task learning framework.  
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2.2 Incremental Manifold Learning  

The diagram of the incremental manifold learning system is shown in Fig. 2, left. We first select a subset of the 

datasets as landmarks based on statistical sampling methods. A skeleton of the manifold embedded in the high-

dimensional datasets is then identified from the landmarks, and out-of-bag samples are inserted into the skeleton 

(Tran et al. 2011; Tran et al. 2013). We briefly describe each component in the system as follows.   

2.2.1. Sampling based on Local Tangent Space Variation (LTV) 

To keep a faithful representation of the original manifold, landmarks should be carefully selected from the original 

data. Ideally, landmarks should be the smallest subset that can preserve the geometry in the original data. Fig. 2 right 

shows a toy dataset to illustrate the basic idea of LTV. Heuristically, to preserve the data structure after sampling, 

we should keep more data points near area ‘A’ rather than area ‘B’ in Fig. 2 right because data structures near ‘A’ 

change more abruptly. Based on this observation, we assign an importance value for each of the points based on its 

local tangent space variation, i.e., how quick the directions of the red arrows in Fig. 2 right change along the data 

manifold. The local tangent space variation can be computed by performing a PCA analysis in the local 

neighborhood of each data point (Tran, et al. 2013). The normalized importance values are then used to guide the 

subsequent statistical sampling for landmark selection.  

 

Left)       Right) 

 

Figure 2. Left: System diagram of the proposed method and Right: a detailed illustration of local linear embedding 

for the remaining data points, where the yellow dot represents one remaining data sample to be embedded.  

 

Figure 3. Local Linear Embedding. 
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2.2.2. Embedding by LLE  

Once the manifold skeleton is learned, we utilize the LLE algorithm (Roweis and Saul 2000; Donoho and Grimes 

2005) to insert the remaining data points into the manifold skeleton as shown in Fig. 3), where the red dots are 

landmarks consisting of the manifold skeleton, and the yellow square is a remaining data point to be embedded into 

the skeleton. There are three steps involved in this task. 1) Discover K nearest landmarks in the original data space 

for the yellow square, 2) Compute a linear model that best reconstructs the data point using the K landmarks and 3) 

insert the yellow square into the skeleton by reusing the reconstruction weights in the linear model (Tran et al. 2011; 

Tran et al. 2013).  

 
2.3. Feature selection and classifier training  

The learned low-dimensions are usually not equally important for the subsequent tumor growth prediction. Feature 

selection techniques such as the simple Fisher score was utilized to select relevant dimensions for the subsequent 

prediction. In the experiments, the Fisher scores for features beyond the third highest were found to be two orders of 

magnitude smaller than the highest score and were then discarded. Finally, the data set was applied to a Gaussian 

mixture model (GMM) for prediction/classification. A benefit of using GMM is that a posterior probability mapping 

can be generated. The training samples used were the same points that were selected in the LCV sampling step. And 

the trained GMM model was applied to all remaining points, a probability map can be produced for the MRI data 

set. The final classification can be computed by thresholding the GMM classification probability. 

 

3. EXPERIMENTS AND ANALYSIS 
3.1  Data Preparation 

 
MRI scans including FLAIR, T1-weighted, post-contrast T1-weighted, and DTI were collected from four patients 

with progressing brain tumors at MD Anderson Cancer Center. Five scalar volumes which include apparent 

diffusion coefficient (ADC), fractional anisotropy (FA), max eigenvalues, middle eigenvalues, and min eigenvalues 

were also computed from the DTI volume yielding a total of ten image volumes for each visit per patient. Each 

patient went through a series of clinical visits over the course of two years. Using the vtkCISG toolkit, a strict form 

of registration was applied to each patient that aligned all volumes to the DTA volume (Tran et al. 2011; Tran et al. 

2013). After registration, each pixel location can be represented by a ten-dimensional feature vector corresponding 

to the ten MRI scans. One visit was selected and labeled as "Visit 1," and a later visit that showed evidence of tumor 

progression was selected and labeled "Visit 2." A radiologist defined the tumor regions on the post-contrast T1-

weighted and FLAIR scans, respectively. For training purposes, normal regions far from the tumor regions have also 

been defined. Figure 4 shows the selected regions for one subject for both visits.  The yellow dotted region is the 

normal region while the red polygon is the abnormal region.  Note that the abnormal region is larger at Visit 2. The 

goal of this study is to predict the progressed region at Visit 2.  

 

 

        
   

Figure 4. Sample tumor and normal regions where the red tumor regions are labeled by a radiologist and the yellow 

region denotes a normal region. FLAIR images at visit 1 (left) showing a progressed tumor at visit 2 (right). 
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Figure 5. Cropped images of sample abnormal classification regions by the deep neural network. The red outlines 

denote radiologist marked tumor regions at Visit 2. 

 

3.2 Experiments and Results 

Both models were trained on a sampled set from both the abnormal and normal region at Visit 1. The output of the 

models will be the classification of normal and abnormal regions that will be mapped to Visit 1 and Visit 2 to 

compute sensitivity, specificity and precision at the two visits. There are three hidden layers in the deep structure 

having a configuration of [500 100 20] for hidden units in each layer. For manifold learning, a Gaussian mixture 

model (GMM) classifier is trained using the first three dimensions ranked by the Fisher score.  

Table 1 show quantitative performance metrics calculated as an average over 4 subjects.  The sensitivity 

measures the ratio between the numbers of pixels correctly predicted as abnormal versus the total number of marked 

abnormal pixels. This measure was calculated for both Visit 1 and Visit 2. Specificity is the ratio of the correctly 

predicted normal tissue samples inside the normal contours. The precision is the number of correctly predicted 

abnormal pixels divided by the total number of predicted abnormal points. The precision will be high if every pixel 

predicted as abnormal is within the marked abnormal region and conversely, the metric will be low for methods that 

have an over-estimated tumor region. The precision was calculated only at Visit 2 because the abnormal region was 

expected to expand between Visit 1 and Visit 2.  The results for Raw are found by directly applying a GMM 

classifier in the high dimensional space. For PCA, the dimensionality reduction is performed using principal 

component analysis and the dimension was reduced to three.  

Figure 5 shows some sample classification regions by the deep neural network.  The red outline is the marked 

abnormal regions at Visit 2. By comparing each method, it can be seen that the deep neural network method is an 

overall better method than the other techniques for this data set. The sensitivity and specificity are comparable with 

the manifold learning approach while the precision is considerably higher. This means that the predicted abnormal 

points are more likely to correspond to the actual progression region.  

 
Table 1. Sensitivity, specificity and precision comparison among different methods 

 

 Sensitivity 

at Visit 1 

Specificity 

at Visit 1 

Sensitivity 

at Visit 2 

Precision 

at Visit 2 

Average 

Deep Neural Network 0.948 1.000 0.653 0.858 0.864 

Manifold Learning 0.951 1.000 0.663 0.781 0.849 

PCA 0.945 1.000 0.649 0.473 0.766 

RAW 0.917 0.872 0.705 0.617 0.778 

4. CONCLUSION 

 
It is important to establish useful quantitative parameters to accurately diagnose tumor growth and radiation 

injury in patients who have undergone radiotherapy and subsequently manifested increased enhancement. Our 

preliminary results showed that both the manifold learning and deep neural network models produced better results 

compared to using raw data and PCA. We also showed that a more robust tumor progression model can be achieved 

based on deep learning compared to manifold learning. The recent technique named “Dropout” incorporated into 

deep learning illustrated super performances for many benchmark data sets (Hinton et al. 2012). We are 

investigating if the “Dropout” technique can also further improve the performance on our date set.  

Proc. of SPIE-IS&T Vol. 9399  93990W-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Jun 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



REFERENCES 

Araki, T.; Inouye, T.; Suzuki, H.; Machida, T.; Iio, M. (1984). Magnetic resonance imaging of brain tumors: 

measurement of T1. Work in progress, Radiology, vol. 150, no. 1, pp. 95-8.  

Bastin, M. E., S. Sinha, et al. (2002). "Measurements of Water Diffusion and T1 Values in Peritumoural 

Oedematous Brain." Neuroreport 13: 1335-40. 

Bengio, Y., Courville, A., Vincent, P., Representation learning: A review and new perspectives, PAMI, 35(8), 1798-

1828 (2013). 

Brunetti, Arturo, Bruno Alfuno, Andrea Soticelli, Enrico Tedeschi, Ciro Mainolfi, Eugenio M. Covelli, Luigi Aloj, 

Maria Rosaria Punico, Lucia Bazzicalupo and Marco Salwatore (1996). Functional characterization of brain 

tumors: an overview of the potential clinical value, Nuclear Medicine & Biology, vol. 23, pp. 699-715. 

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio, "Why 

Does Unsupervised Pre-training Help Deep Learning?", Journal of Machine Learning Research, vol. 11, pp. 

625-660, 2010. 

Donoho, D. L. and C. Grimes (2005). "Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-

dimensional Data." Proc. National Academy of Sciences (PNAS) 102(21): 7426-7431. 

Hinton, G. E. and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks" Science, 

313(5786): 504-507,  2006. 

Hinton, G.E., Srivastave, N., Krizhevsky, A.,Sutskever, I., and Salakhutdinov, R. R. Improving neural networks by 

preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012). 

Kono, K., Y. Inoue, et al. (2001). "The Role of Diffusion-weighted Imaging in Patients with Brain Tumors." Am J. 

Neuroradiol 22: 1081-8. 

Lam, W. W., W. S. Poon, et al. (2002). "Diffusion MR Imaging in Glioma: Does it Have Any Role in the 

Preoperation Determination of Grading of Glioma?" Clin. Radiol. 57: 219-25. 

Tran, Loc; Banerjee, Deb; Sun, Xiaoyan; Wang, Jihong; Kumar, Ashok J.; Vinning, David; McKenzie, Frederic D.; 

Li, Yaohang; Li, Jiang (2011). A large-scale manifold learning approach for brain tumor progression prediction, 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 

Notes in Bioinformatics), vol. 7009 LNCS, pp. 265-272.  

Tran, L., Banerjee, D., Wang, J., Li, J. et. al., “High-dimensional MRI data analysis using a large-scale manifold 

learning approach”, Machine Vision and Applications, vol. 24, no. 5, pp. 995-1014, 2013.  

Lu, S., D. Ahn, et al. (2004). "Diffusion-tensor MR Imaging of Intracranial Neoplasia and Associated Peritumoral 

Ecdema: Introduction of the Tumor Infiltration Index." Radiology 232: 221-8. Magazine 2(6): 559-572. 

Provenzale, J. M., P. McGraw, et al. (2004). "Peritumoral Brain Regions in Gliomas and Meningiomas: 

Investigation with Isotropic Diffusion-weighted MR Imaging and Diffusion-tensor MR Imaging." Radiology 

232: 451-60. Roweis, S. T. and L. K. Saul (2000). "Nonlinear dimensionality reduction by locally linear 

embedding." Science 290(5500): 2323-6. 

Roweis, S. T. and L. K. Saul (2000). "Nonlinear dimensionality reduction by locally linear embedding." Science 

290(5500): 2323-6. 

Sadeghi, N., I. Camby, et al. (2003). "Effect of Hydrophilic Components of the Extracellular Matrix on Quantifiable 

Diffusion-weighted Imaging of Human Gliomas: Preliminary Results of Correlationg Apparent Diffusion 

Coefficient Values and Hyaluronan Expression Level." Am J. Roentgenol. 181: 235-41. 

Sinha, S., M. E. Bastin, et al. (2002). "Diffusion Tensor MR Imaging of High-grade Cerebral Gliomas." Am J. 

Neuroradiol 23: 520-7. 

Yoshua Bengio “Deep Learning for Artificial Intelligence,” Foundations and Trends(R) in Machine Learning, 

ISBN-10: 1601982941, 2009.  

 

Proc. of SPIE-IS&T Vol. 9399  93990W-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Jun 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


	A Comparative Study of Two Prediction Models for Brain Tumor Progression
	Original Publication Citation
	Authors

	tmp.1686685561.pdf.NQUKl

