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Toward Automatic Subpixel Registration of Unmanned

Airborne Vehicle Images

Amr Hussein Yousef, Jiang Li and Mohammad Karim

Department of Electrical and Computer Engineering

Old Dominion University, Norfolk, VA 23529

ABSTRACT

Many applications require to register images within subpixel accuracy like computer vision especially super-
resolution (SR) where the estimated subpixel shifts are very crucial in the reconstruction and restoration of SR
images. In our work we have an optical sensor that is mounted on an unmanned airborne vehicle (UAV) and
captures a set of images that contain sufficient overlapped area required to reconstruct a SR image. Due to the
wind, The UAV may encounter rotational effects such as yaw, pitch and roll which can distort the acquired as
well as processed images with shear, tilt or perspective distortions. In this paper we propose a hybrid algorithm
to register these UAV images within subpixel accuracy to feed them in a SR reconstruction step. Our algorithm
consists of two steps. The first step uses scale invariant feature transform (SIFT) to correct the distorted images.
Because the resultant images are not registered to a subpixel precision, the second step registers the images
using a fast Fourier transform (FFT) based method that is both efficient and robust to moderate noise and lens
optical blur. Our FFT based method reduces the dimensionality of the Fourier matrix of the cross correlation
and uses a forward and backward search in order to obtain an accurate estimation of the subpixel shifts. We
discuss the relation between the dimensionality reduction factors and the image shifts as well as propose criteria
that can be used to optimally select these factors. Finally, we compare the results of our approach to other
subpixel techniques in terms of their efficiency and computational speed.

1. INTRODUCTION

Image registration is a process of aligning several images to a reference one or to a common reference coordinate
grid. Typically, the alignment process brings the input, or the reference image, into alignment with the base
image.1 In our research we have an optical sensor mounted on a moving platform that captures a sequence of
frames with some common area between them. During its flight the UAV experiences roll, pitch and yaw even
when it is flying at roughly the same altitude. We define yaw as the rotation of the UAV about an axis pointing
directly upwards from the body; roll is a rotation about the axis that connects the UAV tail to its nose; and pitch
is a rotation about an axis which is orthogonal to the axes of rotation for pitch and yaw. The change in these
parameters changes what falls within the field-of-view (FOV) of the camera2 which leads to slightly different
looks at the same scene. These looks contain similar, but not identical information and should be registered
within subpixel accuracy with respect to each others.

Usually, when the UAV experiences yaw, pitch and role the captured image will be affected by shear or it may
be tilted or it may have perspective distortion.3 So, spatial transformations like the affine and the projective
can be used to correct for those distortions. The registration step depends on the accurate determination of the
the spatial transformation parameters used in the alignment process of the unregistered images. In a previous
work,3 the landmark points that control these spatial transformations are selected manually which is subject to
errors and is not powerful. In addition, the corrected UAV images should be registered within subpixel accuracy
to minimize the artifacts within the reconstructed SR images and improve its visual quality.

In this paper, we propose a hybrid algorithm to register these UAV images within subpixel accuracy to
feed them in a SR reconstruction step. The pipeline of the algorithm consists of two steps. The first step
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automatically selects the landmarks points that control the spatial transformation using SIFT.4 Then, the second
step registers the corrected images using a fast Fourier transform (FFT) based method that is both efficient and
robust to moderate noise and lens optical blur and it works efficiently on small shifts between the acquired
frames. The improvements depend on reducing the dimensionality of the Fourier matrix of the up-sampled cross
correlation. In addition, it uses a forward and a backward search to reduce the required number of complex
matrix multiplications that are required to find the peak within the up-sampled cross correlation matrix.

The rest of the paper is organized as follows. In Section 2, An automatic spatial correction of UAV captured
images is presented. Frequency domain registration is discussed in Section 3. Section 5 present our simulations
and results. Conclusions are summarized in Section 5.

2. AUTOMATIC SPATIAL CORRECTION OF UAV CAPTURED IMAGES

The spatial transformations reallocate the coordinates in one image to new coordinates in another image. If the
unregistered image is f(x, y), its registered representation r(x, y) = T (f(x, y)) where T represents either the
affine or the perspective transformation. The affine mapping is usually utilized when the image is affected by
translation, rotation and scaling, i.e., the UAV experiences yaw. If the base image is b(x, y) and the unregistered
image is f(x′, y′) then, given three corresponding points in the two images, the transformation matrix can be
calculated from
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yi
1



 =
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a21 a22 a23
0 0 1









x′
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y′i
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, i = 1, . . . , 3. (1)

where (xi, yi) and (x′

i, y
′

i) are the coordinates of the control points in the base and the unregistered images
respectively; a11, a12, a21 and a22 control the scale, the rotation and the stretch; and a13 and a23 are the
translation in the x− and y− directions.

The projective mapping is usually utilized when the UAV experiences pitch or roll and the acquired images
have perspective distortion and are tilted. A mapping h is projective if, and only if, there exists a non-singular
3 × 3 matrix H such that h(p) = Hp, ∀p, where p = [x y] is the vector representation of a point. If the base
image is b(x, y) and the unregistered image is f(x′, y′) then the projective transformation can be written as

x′(h31x+ h32y + 1) = h11x+ h12y + h13 (2)

y′(h31x+ h32y + 1) = h21x+ h22y + h23 (3)

The landmarks points that are used in the extraction of the transformation parameters are selected automat-
ically using the SFIT. The effectiveness of SIFT comes from its robustness to affine changes, noise, illumination
change, and 3D view partial change. It consists of four major stages:4 (1) scale-space creation; (2) keypoint
allocation; (3) orientation designation; (4) keypoint descriptor. As shown by Koendernik5 and Lindeberg6 the
difference-of-Gaussian, (DOG) can be used efficiently in the detection of the stable features inside the image.
First, the sift is applied to the reference image and the extracted descriptors will be saved in a database. Then,
it’s applied to the unregistered images and the extracted descriptors will be matched to the saved database
through a nearest neighborhood search that minimizes the Euclidean distance between them.

2.1 Spatial transformations parameters extraction

In our studies, we need to correct the UAV captured images distortions to eliminate the effect of the yaw, pitch,
role, and altitude change. Once the SIFT is utilized, the affine transformation will have 6 degree of freedom
(DOF) so it needs 3 keypoint matches while the projective transformation has 8 degree of freedom so it needs
4 matches to derive the transformation parameters. With 3 keypoints match, the affine transformation given in
Equation (1) can be rewritten as:
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which can be written as a system of linear equations AX = B. The solution of this system can be obtained
through the least square method given by the normal equation X = [ATA]−1ATB which minimizes the sum of
the distance between the corresponding locations in the reference and the unregistered images. Similarly, the
projective transformation in Equation (3) can be rewritten as
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which can be solved using the normal equation such as in the affine case.

3. FREQUENCY-DOMAIN BASED REGISTRATION

Up to this point, the UAV images are restored form shear, tilt, and perspective distortions. The following
step is to align them within subpixel accuracy which is considered as a crucial step in any SR reconstruction
algorithm. Without accurate subpixel registration, severe artifacts will be present within the reconstructed SR
images. Many applications require the accuracy of the registration to be within a small portion of a pixel such
as in medical imaging, computer vision7,8 and remote sensing. In the latter, a pixel in Landsat images measures
approximately 80 m on the earth, so 0.1 pixel registration accuracy will lead to a resolution of 8 m.9

For the case of a translation between two images, the usual technique to address this problem is to compute
the cross-correlation between the unregistered and the base images by means of discrete Fourier transform (DFT),
and locate its peak.10 If the image to be registered is g(x, y) and the base image is f(x, y), then the normalized
mean square error (NRMSE) E2 between two images is defined as:11

E2 = min
α,x0,y0
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2 (6)

where rfg is the cross-correlation of f(x, y) and g(x, y) defined by:

rfg(x0, y0) =
∑

x,y

f(x, y)g∗(x− x0, y − y0)

=
∑

µ,ν

F̂ (µ, ν)Ĝ∗(µ, ν) exp

(

i2π

(

µx0

M1
+

νy0
M2

))

. (7)

M1 and M2 are the image dimensions; ∗ denotes complex conjugation; and F̂ (µ, ν) and Ĝ(µ, ν) are the DFTs of
f(x, y) and g(x, y) respectively. The 2D-DFT of an image f(x, y) is defined by

F̂ (µ, ν) =
1

M1M2

M−1
∑

x=0

M2−1
∑

y=0

f(x, y) exp−i2π

(

xµ

M1
+

yν

M2

)

(8)

The evaluation of the NRMSE requires solving the more general problem of sub-pixel image registration by
locating the peak of cross-correlation rfg(x, y). The usual DFT approach to find the cross-correlation peak to
within a fraction, 1/ǫ, of a pixel is to
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1. compute F̂ (µ, ν) and Ĝ(µ, ν),

2. embed the product F̂ (µ, ν)Ĝ∗(µ, ν) in a larger array of zeros of dimension (ǫM, ǫN),

3. compute the inverse DFT to obtain the up-sampled cross-correlation, and

4. locate its peak.

Although this approach is very accurate and robust to moderate noise but its computational complexity and huge
memory requirements make it unrealistic even for small dimension images with large upsampling factors. The
computational complexity of this approach is O {M1M2ǫ [log2(ǫM1) + ǫ log2(ǫM2)]}

10 where ǫ is the upsampling
factor and M1 and M2 are the image dimensions.

Two algorithms were reviewed and compared against the enhanced speedy proposed approach. The first
algorithm is non-linear Optimization gradient routine (NLOGR) and the other one is single step discrete Fourier
transform (SSDFT). Both algorithms start with an initial estimate for the location of the cross correlation peak
by means of usual FFT approach with upsampling factor ǫo of 2 which means that the location of the peak
is within ±0.5 pixel accuracy. Most of the time required for the registration process is consumed in this step
which is considered as the main drawback of these algorithms. The SSDFT approach is classified as one of the
most reliable and efficient subpixel registration algorithms12 and it is faster and computationally efficient than
NLOGR approach. A speeded-up version of the SSDFT approach is proposed without sacrificing the required
accuracy and it is roughly 5X times faster than the original SSDFT approach and can be used efficiently in the
case of large dimension images and small subpixel shifts.

3.1 Non-linear Optimization Gradient Routine

The algorithm refines the initial estimate obtained by the usual FFT2X approach using a nonlinear-optimization
conjugate-gradient routine to maximize |rfg(x0, y0)|

2. The partial derivative of rfg with respect to x0 is given
by

∂|rfg(x0, y0)|
2

∂x0
= 2I

(

rfg(x0, y0)
∑

µ,ν

2πµ

M1
F̂ ∗(µ, ν)Ĝ(µ, ν)

× exp

(

i2π

(

µx0

M1
+

νy0
M2

)))

(9)

with a similar expression for the partial derivative with respect to y0. The algorithm iteratively searches for
the image displacement (x0, y0) that maximizes rfg(x0, y0) and can achieve registration precision to within an
arbitrary fraction of a pixel. Assuming that the usual FFT2X initial estimate is X(0) = (x(0), y(0)), then the
steps to refine this estimate are:

1. compute the gradient of rfg at (x(0), y(0)) as given by

∇rfg(X(0)) = (
∂rfg
∂xo

,
∂rfg
∂yo

)|(x(0),y(0)) (10)

2. start with d(0) = r(0) = ∇rfg(X(0)).

3. find α(i) that minimizes ∇|rfg(X(i) + α(i)d(i))|
2

4. update:

(a) X(i+1) = X(i) + α(i)d(i),

(b) r(i+1) = ∇rfg(X(i+1))
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5. calculate β(i+1) as given by

β(i+1) =
rT(i+1)r(i+1)

rT(i)r(i)
(11)

6. calculate d(i+1) as given by
d(i+1) = r(i+1) + β(i+1)d(i) (12)

7. stop when the maximum iterations exceeded a certain number or
∥

∥r(i)
∥

∥ ≤ ǫ
∥

∥r(i+1)

∥

∥ with ǫ < 1.

The parameter α(i) can be obtained using general line search using Newton-Raphson Method. If we let∇|rfg(X(i)+
α(i)d(i))|

2 = f(x+ αd), then the Taylor expansion of the function f is given by

f(x+ αd) ≈ f(x) + α

[

d

dα
f(x+ αd)

]

α=0

+
α2

2

[

d2

dα2
f(x+ αd)

]

α=0

= f(x) + α [f ′(x)]
T
d+

α2

2
dT f ′′(x)d (13)

Differentiating this equation with respect to α yields

d

dα
f(x+ αd) ≈ [f ′(x)]

T
d+ αdT f ′′(x)d (14)

The function f(x+ αd) is minimized by setting d
dα

f(x+ αd) to zero and hence

α = −
f ′T d

dT f ′′d
(15)

where f ′′(x) is the Hessian matrix defined by

f ′′(x) =

(

∂2f
∂x1∂x1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2∂x2

)

(16)

3.2 Single step discrete Fourier transform approach

The second efficient subpixel algorithm was developed by Guizar-Sicairos et al.10 to register images with the same
accuracy obtained by the usual FFT approach but with a huge reduction in computational time and memory
requirements. Their technique was classified as one of the most reliable and best algorithms to register images
using phase correlation methods.12 The SSDFT works on two steps. The first step, which is similar to NLOGR,
finds an initial estimate for the location of the cross correlation peak between two images using the usual FFT
approach with upsampling factor of ǫ0 = 2. The usual FFT approach causes a tremendous waste of memory and
processing time as it must process the entire zero padded upsampled matrix of dimensions (ǫM1, ǫM2) to get the
accurate peak location. On the contrary, the SSDFT approach searches for the accurate peak in a small window
around the initial estimate by means of DFT instead of FFT. It utilizes the DFT implementation to obtain
an upsampled version of the cross correlation in a small window of size 1.5ǫ × 1.5ǫ around the initial estimate
without zero padding the product F̂ (ν, ω)Ĝ∗(ν, ω). This process is implemented by rewriting Equation (8) as
a product of three matrices of dimensions (1.5ǫ,M1), (M1,M2), and (M2, 1.5ǫ). Then a search for the peak is
done over the output matrix of size (1.5ǫ, 1.5ǫ). The computational complexity of this approach is O(M1M2ǫ)
which is a great improvement to the usual FFT approach.

Although the SSDFT approach is an efficient subpixel registration algorithm, its main disadvantage is that
most of the time needed for registration is consumed in searching for the initial estimate. This drawback will be
tremendously improved in our proposed approach which greatly reduces the time required for locating the initial
estimate and also reduces the time required for the refinement step.
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Table 1: Optimum sampling factors for different image sizes.

Image size Sampling factor K
128 4
256 8
512 16
1024 32
2048 64
4096 128
8192 256

3.3 Speeded-up SSDFT approach

We enhanced the SSDFT approach by reducing the required time for its two steps, i.e., the time required for the
initial estimation of the peak location; and the time needed for the refinement step. Our approach to reduce the
computational time for estimating the initial peak location depends on reducing the dimension of the Fourier
transform of the cross correlation matrix and by applying the inverse FFT, the initial estimate can be obtained
in a faster way than the SSDFT approach.

Suppose we replaced the Fourier transform of both the reference image F̂1(ν, ω) and the unregistered version
F̂2(ν, ω) by a sampled version of them then the right hand side of Equation (8) becomes

∑

µ,ν

∑

m,n

F̂ (µ, ν)Ĝ∗(µ, ν)δ(µ−K1m)δ(ν −K2n)

× exp

[

i2π

(

dxµ

M1
+

dyν

M2

)]

; (17)

where K1 and K2 are the sampling factors along the x− and y− directions respectively and δ is the Dirac delta
function. Rearranging the sums and by using the sifting property of the Dirac delta function, the last equation
can be written as

∑

m,n

F̂ (K1m,K2n)Ĝ
∗(K1m,K2n)

× exp

[

i2π

(

dxm

M1/K1
+

dyn

K2/M2

)]

; (18)

which represents the inverse Fourier transform of the product at the new reduced dimension. So, the idea here
is to sample the Fourier transform of the two images being registered and to apply the same SSDFT approach
in searching for the initial estimate of the peak location. The computational complexity of our enhancement is
O(K−1

1 K−1
2 M1M2ǫ) which is a great improvement over the SSDFT approach.

The selection of the sampling factors K1 and K2 will depend on the image size which are preferred to be of
base of 2 to gain the full power of the FFT. Table 1 shows the sampling factors for different images sizes. If
K128 is the sampling factor for an image of size 128× 128 then the sampling factor for an image of size M ×M
can be extracted as KM = M/128 ∗K128. These sampling factors can make the computational time required for
the initial estimate of the peak location to be roughly the same. To avoid aliasing, Ki with i = {1 or 2} must be
selected such that it’s less than M/(2d̃i) where d̃i is the expected subpixel shifts in the x− or y− directions that
depends on the application.

The second enhancement of the SSDFT approach reduces the number of matrix multiplications required
to find the accurate location in the upsampled cross correlation window by minimizing the number of matrix
multiplications required to obtain a partial inverse DFT matrix. Consider Equation (8) to be written as a
product of three matrices as given by

Cf1f2 = A1.5ǫ×M1
∗BM1×M2

∗ CM2×1.5ǫ, (19)
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then the SSDFT approach searches for the accurate location by multiplying the whole three matrices and then
search for the peak in the resultant matrix Cf1f2 which consumes sometime as not all the values inside the output
matrix are required.

In our approach we overcome this weakness by partially obtaining some rows or columns inside the resultant
matrix and accurately determine the peak location using a forward and backward search. Even the peak of the
up-sampled cross correlation is close to one of the borders of the resultant matrix or not, the proposed algorithm
reduces the number of complex matrix multiplications that are required to find the accurate estimation of the
peak location. Figure 1 shows an upsampled cross correlation version of a window of size 150× 150 (upsampling
factor =100) around the initial peak location and Figure 2 shows its level curves. By calculating partial parts
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Figure 1: Upsampled cross correlation with window size 150× 150.
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Figure 2: Level curves for the upsampled cross correlation.

of upsampled window, we can speed up the search for the accurate peak location. This can be done using the
following steps:

1. calculate the output matrix borders R1, RM1
, C1, and CM2

as defined by

Ri = (A(i, :) ∗B) ∗ C, i = 1orM1

Cj = A ∗ (B ∗ C(:, j)), j = 1orM2 (20)

where the use of “()′′ specify the order of matrix multiplication,

2. find the max value across these borders and assume for example it is across the first row R(1, :),

3. from R(1, :) the algorithm starts a forward search in steps of σ to find the next max value across the rows
R(σi+1, :) where i refers to the iteration number and it stops when the next maximum value drops below
the previous one.

4. from the last scanned row, the algorithm starts a backward search with a decrement of 1 until the next
maximum value is less than the previous one.

At the last scanned row, the algorithm accurately finds the maximum peak and its location.
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Table 2: Total time required to register images of dimension 512× 512 with different subpixel accuracy.

Subpixel accuracy (pixels) Enhanced SSDFT (seconds) SSDFT (seconds)
0.1 0.15 0.54
0.01 0.2 0.63
0.001 1.4 2.98
0.0001 75.13 151.56

4. SIMULATIONS AND RESULTS

In our simulations, we used 3 sets of images that are used to simulate the UAV captured images. These images
contain the same scene but with different views. Figure 3 shows the results of applying the SIFT to a set of
home images with different orientations to simulate the distortions of shear, tilt and rotations. Also, Figure 4
and 5 show the results of registering two different sets of aerial images.13 The left column in these three figures
show the corresponding keypoints or landmarks matches between the reference images and the unregistered ones
while the right column show the images after the registration with dark regions showing the areas of overlapping
between these processed images that can be used to reconstruct SR images. Once the appropriate transformation
is applied to the unregistered image, the reprojected images will be registered within subpixel accuracy using
the enhanced SSDFT approach.

To evaluate our improvements against the SSDFT approach in terms of the speed of computations, we
compare the performance of the two approaches against different image sizes ranging from 256 × 256 up to
8192 × 8192 in a multiple of 2. The images are corrupted by additive white Gaussian noise and blurred by a
Gaussian kernel to simulate the optical lens blur. Also, they are shifted by a lateral shifts of (3.48574,7.73837) in
pixels to obtain the unregistered versions of them. The simulations are performed using MATLAB 7.8 Release
2009a program on OPTIPLEX 780 (Intel(R) Core (TM)2 Quad 2.66 GHz CPU, 8.00 GB RAM, MS Windows
7 Professional 2009). The SSDFT technique and the enhanced one register images with accuracy of 0.01 pixel.
The estimated shifts for both algorithms are (3.49, 7.74) with estimation error δs = 0.00456 of a pixel where the
estimation error is given by the l2-norm between the actual shifts (dx, dy) and the estimated shifts (d̃x, d̃y) as
given by

δs =

√

(dx − d̃x)2 + (dy − d̃y)2 (21)

Figure 6 and 7 show the comparison between the SSDFT approaches (the original and the enhanced one) and
the NLOGR in terms of the estimated NRMSE Ê and the estimated error δs. The greater the upsampling
factor the better is the estimate for the subpixel shifts and the lower value of the NRMSE. A comparison of the
computational time required for the initial peak estimation, the refinement step, and the total registration time
are shown in Figure 8, Figure 9, and Figure 10 respectively. It can be seen that our approach greatly reduces the
amount of time required to obtain the initial estimate for the peak location compared to the SSDFT approach.
Also, our approach makes the time required for this step roughly the same regardless of the image size which can
be done by controlling the selection of the sampling factors K1 and K2. For example, for 8192 × 8192 image it
requires around 2 milliseconds using our approach while it needs around 200 seconds using the SSDFT approach.
In the refinement step, our method enhances the performance of the SSDFT approach as can be seen in Figure
9. Through out simulations, we set the forward step σ to 0.3ǫ. The total computational time required for the
whole registration process for both approaches is shown in Figure 10. Over all, our approach is approximately
5X faster than the SSDFT approach.

Also, we test the performance of both algorithms against changing the required subpixel accuracy which can
be seen in Table 2. Our enhancement increases the attainable subpixel accuracy with a large decrease in the
computational time.

5. CONCLUSIONS

In this paper we present a hybrid subpixel registration algorithm that can be applied efficiently on the UAV
captured images and it can also be used to register a set of images with a common overlap between them and have
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Figure 3: Corrected LR images after using the SIFT algorithm (Home images).
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Figure 4: Corrected LR images after using the SIFT algorithm (Aerial images 1).
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Figure 5: Corrected LR images after using the SIFT algorithm (Aerial images 2).
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Figure 6: The estimated NRMSE Ê against the actual one.
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Figure 7: The upsampling factor ǫ against the estimation error δs.

Figure 8: Computational time required for the initial estimate.
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Figure 9: Computational time for the refinement step.

Figure 10: Total time required for registration.
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arbitrary motion. The proposed algorithm works on two phases. The first phase correct the acquired images from
shear, tilt and scaling that result from the different rotational parameters. The second phase accurately register
the corrected frames within subpixel accuracy by reducing the dimensionality of the upsampled cross correlation
matrix and reduce the number of complex matrix multiplications that are required for correct estimation of
subpixel shifts. The proposed enhanced approach registers images that differ by translational shifts or scaled by
a constant and can be used in the presence of moderate noise. Our enhanced approach offers a great reduction
in computational time and memory requirements against the SSDFT and the usual FFT approaches without
sacrificing the required accuracy. It can register very large dimension images of size 8192 × 8192 in roughly 1
minute compared to 5 minutes using SSDFT approach with subpixel accuracy of 0.01 pixel. Other subpixel
registration techniques such as cross correlation surface fitting8 or stochastic sampling approaches14 can perform
faster but their registration accuracy is not as efficient.
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