
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Electrical & Computer Engineering Faculty 
Publications Electrical & Computer Engineering 

2011 

2D Face Database Diversification Based on 3D Face Modeling 2D Face Database Diversification Based on 3D Face Modeling 

Qun Wang 
Old Dominion University 

Jiang Li 
Old Dominion University, jli@odu.edu 

Vijayan K. Asari 
University of Dayton 

Mohammad A. Karim 
Old Dominion University 

Manuel Filipe Costa (Ed.) 

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs 

 Part of the Biomedical Commons, Databases and Information Systems Commons, and the Theory and 

Algorithms Commons 

Original Publication Citation Original Publication Citation 
Wang, Q., Li, J., Asari, V. K., & Karim, M. A. (2011) 2D face database diversification based on 3D face 
modeling. In M. F. Costa (Ed.), International Conference on Applications of Optics and Photonics, 
Proceedings of SPIE Vol. 8001 (80010M). SPIE of Bellingham, WA. https://doi.org/10.1117/12.894605 

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital 
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an 
authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/267?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1117/12.894605
mailto:digitalcommons@odu.edu


2D Face Database Diversification Based on 3D Face Modeling 
 

Qun Wanga, Jiang Lia, Vijayan K. Asarib, Mohammad A. Karima 

aDept. of Electrical and Computer Engineering, Old Dominion University, VA, USA 23508; 
           bDept. of Electrical and Computer Engineering, University of Dayton, OH, USA 45469   

ABSTRACT   

Pose and illumination are identified as major problems in 2D face recognition (FR). It has been theoretically proven that 
the more diversified instances in the training phase, the more accurate and adaptable the FR system appears to be. Based 
on this common awareness, researchers have developed a large number of photographic face databases to meet the 
demand for data training purposes. In this paper, we propose a novel scheme for 2D face database diversification based 
on 3D face modeling and computer graphics techniques, which supplies augmented variances of pose and illumination. 
Based on the existing samples from identical individuals of the database, a synthesized 3D face model is employed to 
create composited 2D scenarios with extra light and pose variations. The new model is based on a 3D Morphable Model 
(3DMM) and genetic type of optimization algorithm. The experimental results show that the complemented instances 
obviously increase diversification of the existing database.   

Keywords: 3D face modeling, 3D morphable model, differential evolution, face recognition  
 

1. INTRODUCTION  
Pose and illumination are identified as major problems in 2D face recognition (FR) [1][2]. It has been theoretically 
proven that the more diversified instances in the training phase, the more accurate and adaptable the FR system appears 
to be [3]. In recent decades, researchers have developed various photographic face databases to meet the demands for 
face training (Figure 1).  However, these databases can only supply images with limited variations.  

In this paper, we propose an approach to diversify the photographic image database by using the representation and 
synthesis of 3D model of human faces. The new 3D face model associated with computer graphics techniques is able to 
accomplish the goal of providing augmented variances of pose and illumination.  

The remaining sections are organized as follows: The concept of morphable model is introduced in Section 2. Model 
matching method based on Differential Evolution is presented in Section 3. The final experimental results are outlined in 
Section 5 and Conclusions in Section 6. 

 

 
Figure 1. Face images taken from different subjects 

(Courtesy of Yale Face Database B) 
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2. 3D MORPHABLE MODEL 
2.1 3D Face Modeling  

3D face modeling has been one of the greatest challenges for researchers in computer graphics for many years. 3D 
Morphable Model (3DMM) proposed by T. Vetter [5][6] is a realistic 3D face modeling method which could be 
synthesized automatically by linear combination of exemplar faces. One of the applications of 3DMM in face 
recognition is to create the 3D face model of an individual from given 2D images [4][5].  

The reconstruction procedure is regarded as conducting iterations of the analysis-by-synthesis process, which are driven 
by fitting the 3D model to 2D images. Meanwhile, the parameters with respect to 3D environment such as focal length of 
the camera, illumination and color contrast, can also be modeled explicitly and estimated automatically.  

The morphable model has several advantages. Unlike other models, such as Shape-From-Shading (SFS) [7], it has no 
restriction on the requirement of illumination or reflectance functions though it has additional computational complexity.  

As valuable as it is, morphable model, therefore, could be utilized to expand the spectrum and create versatile variations 
for the original photographic database [8]. 

 

2.2 Model Construction 

The prototypical 3D faces are acquired by 3D laser scanners, whose range and texture data are digitalized with high 
precision. Preprocessed through registration and texture extraction, each face is represented in the form of a shape vector 
and a texture vector as: 

1 1 1 2( , , , ,..., , )T
n nS X Y Z X Y Z=           (1) 

1 1 1 2( , , , , ..., , )T
n nT R G B R G B=       (2) 

where n is the number of vertexes on the 3D face and (Bj Gj Rj) are the corresponding R, G, B color values of the vertex 
(Xj Yj Zj). Therefore, a morphable model can be generated by using the linear combination of shape vectors Si and texture 
vectors Ti of 3D training faces as [6]: 
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in which m is the number of training faces, Si and Ti are shape and texture of training faces and ai and bi are their 
corresponding weights contributed to the new face with 0 <  a, b < 1. 

In the practical consideration of computational effectiveness, a common technique as PCA (Principal Component 
Analysis) is employed to reduce the high dimensionality of 3D face data without the loss of potential face information. 
In particular, PCA performs a transformation of the original cloud data to an orthogonal coordinate system formed by the 
eigenvectors si and ti of the covariance matrices.  
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where Smean and Tmean are the average shape and texture vectors. Si and Ti are principal components. α= (α1, α2,…,αn) and 
β = (β1, β2,…,βn) are shape and texture combination coefficients, and α and β obeys Gaussian distribution as: 
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2.3 Model Matching  

Matching the 3D face morphable model to the given face images is a process of model parameter estimation, in which a 
bunch of coefficients involved are required to be determined. For example, camera and illumination model is adopted in 
the projection of the 3D face model into the image plane since 3D face model and 2D input facial images cannot be 
measured directly. Aiming at retrieving a 3D face the closest projective image to the input facial image, the error 
function between 3D model projective image Imod and input image Iinput is described as: 

2

mod,
( , ) ( , )I inputx y

E I x y I x y= −∑      (6) 

In order to create a realistic 2D output which is close enough to the target face image, we make use of the perspective 
projection and Phong illumination model in the rendering process. Given the kth vertex at (X,Y,Z) with texture value 
(R,G,B), the perspective projection on the image plane is represented as: 

( ), , ,( , ) ( , ), ( , ), ( , )
T

k r k g k b kI x y I x y I x y I x y=     (7) 

where , ( , )c kI x y is computed under the Phong illumination model as: 

( ), , , ,( , ) ( ) ( )n
c k a c dir c s dir cI x y R I I L N K I F V= + ⋅ + ⋅     (8) 

,a cI and ,dir cI are separately intensity of ambient light and direct light of the cth color component. sK  is the reflectance, 
L, N, F, V are light direction, normal, reflective direction and direction of viewer respectively and n is the mirror 
reflectance index. 

   

3. GLOBAL OPTIMIZATION 
The morphable model provides a new approach in solving difficult problems of facial recognition research with extreme 
illumination and pose variations. However, one of the issues lies in the process of image matching that performs error 
evaluation in the pixel-level measurement. This involves algorithms of image matching and a large-scale optimization. 
In our current research, stochastic gradient descent [6] method is used to evaluate the residual and global error as well as 
objective function optimization. 

In 3DMM, the estimation process of fitting shape and texture information into 2D images is considered as the issue of 
searching for the global minimum in a high dimensional feature space, in which optimization is apt to have local 
convergence. On the other hand, Differential Evaluation (DE) appears to be robust against stagnation in local minima 
and sensitiveness to initial values in face reconstruction. Considering its successful performance, we tentatively 
introduce DE to tackle the problem in 3D-2D matching.  

 

3.1 Differential Evolution (DE) 

Differential Evolution (DE) is a “parallel direct search method” [9], which was first proposed by Storn and Price in 1995 
[10]. It is characterized as a stochastic and population-based optimization that is simple and effective for implementation. 
DE repeatedly processes through operations which are, in turn, as “mutation, crossover and selection” until an optimal 
solution to the objective function ( )f x  is reached (Figure 2). 

The classic version of DE is defined as follows. Suppose we have N D-dimensional parameter vectors  
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[ ], 1 2, ,..., , 1, 2,...,T
i G Dx x x x i N= =      (9) 

representing the population for generation G. The algorithm starts by randomly initializing the vector populations with, 
as the author suggested, a uniform probability distribution [9]. We use a different distribution in our experiment due to 
the special feature of 3DMM, which we will present later in section 4.  

 

3.1.1 Mutation 

For each individual ix , a corresponding mutation vector iv is produced according to the equation: 

( ), 1, 2, 3,i G r G r G r Gv x F x x= + ∗ −       (10) 

in which random index { }1, 2, 3 1,2,...,r r r N∈ and 1 2 3r r r≠ ≠ . F is a real amplifier designed to control the offset of 

,i Gv to 1,r Gx by scaling the differential variation ( )2, 3,r G r Gx x− . 

 

3.1.2 Crossover 

Trial vectors are introduced in the phase of crossover to expand the range of global search. It is defined in the form as: 

( ), 1 , 2 , ,, ,...,i G i G i G Di Gu u u u=       (11) 

in which 

( )( )
( )( )

,
,

,

,

,
ji G br

ji G
ji G br

v if randb j CR j I
u

x if randb j CR j I

⎧ ⎫≤ ∨ =⎪ ⎪= ⎨ ⎬
> ∧ ≠⎪ ⎪⎩ ⎭

 1, 2,..., .j D=    (12) 

In equation (9), ( )randb ⋅ is a random generator with uniform distribution. brI is an integer randomly chosen from 
{1,2,…,D}, which prevents ,i Gx  from being equal to ,i Gu . 

 

3.1.3 Selection 

DE utilizes pair-wise comparison between ,i Gu and ,i Gx to survive the vectors with fewer objectives function values to 
the next generation.  

( ) ( )( ), , ,
, 1

,

,

,
i G i G i G

i G

i G

u if f u f x
x

x otherwise
+

⎧ ⎫<⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 
1, 2,...,i N=     (13) 

 

 

 

 

Figure 2. Classic Differential Evolution Procedure 

 Initialization Mutation Crossover Selection 
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5. CONCLUSIONS 
Pose and illumination are regarded as major problems for FR systems. In practice, photographic face databases are not 
able to provide as many variances as researchers expect. In this paper, we propose a novel scheme for 2D face database 
diversification, which supplies augmented variances of pose and illumination. The experimental results show that the 
complemented instances obviously vary representations of face images and diversify the database. Future research will 
be focused on the computation efficiency of DE optimization. 
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