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The factorization theorems of QCD apply equally well to most simple quantum field theories that require
renormalization but where direct calculations are much more straightforward. Working with these simpler
theories is convenient for stress testing the limits of the factorization program and for examining general
properties of the parton density functions or other correlation functions that might be necessary for a
factorized description of a process. With this view in mind, we review the steps of factorization in a real
scalar Yukawa field theory for both deep inelastic scattering and semi-inclusive deep inelastic scattering
cross sections. In the case of semi-inclusive deep inelastic scattering, we illustrate how to separate the small
transverse momentum region, where transverse momentum dependent parton density functions are needed,
from a purely collinear large transverse momentum region, and we examine the influence of subleading
power corrections. We also review the steps for formulating transverse momentum dependent factorization
in transverse coordinate space, and we study the effect of transforming to the well-known b� scheme.
Within the Yukawa theory, we investigate the consequences of switching to a generalized parton model
approach and compare it with a fully factorized approach. Our results highlight the need to address similar
or analogous issues in QCD.

DOI: 10.1103/PhysRevD.107.074031

I. INTRODUCTION

It is often the goal of hadronic scattering experiments to
gain an increased understanding of the intrinsic properties
of the scattered hadrons. To this end, the parton model [1],
wherein hadrons are viewed as collections of nearly free
pointlike constituents, is indispensable as a framework for
constructing models of intrinsic structure and relating them
to high-energy scattering observables. However, in theories
that require renormalization, the operators that count the
number of elementary particles in a target are beset by
divergences, and the steps for dealing with them sometimes
require modifications of the intuitive expectations that
arise from a purely parton model framework. A recently

discussed example concerns the question of whether parton
density functions must be strictly positive definite [2]; a
literal probability density interpretation would imply strict
positivity, but it turns out that the parton density functions
(pdfs) in a typical renormalizable quantum field theory can
violate positivity, depending on the choice of renormaliza-
tion scheme and the scales [3]. While issues such as these
are naturally relevant when interpreting measurements in
terms of partonic constituents, they also have important
practical and phenomenological consequences. For exam-
ple, with regard to the positivity question, it is important to
know if strict positivity should be imposed directly on fit
parametrizations. This is relevant to, among other things,
recent debates about the evidence for an intrinsic charm
component in the proton pdf [4–6]. Indeed, charm quark
pdf extractions do appear to require that negative pdfs be
allowed (see, for example, Fig. 1 of [4]). Other examples of
the role of positivity-related constraints can be found in
Refs. [7–9].
In quantum field theory (QFT), the parton model gets

placed on firmer footing through the factorization theorems
[10–12]. Nowadays, however, generalizations of a basic
partonic picture play a role in scenarios far beyond the
original leading power descriptions of inclusive processes
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like inclusive deep inelastic scattering [13,14]. They
appear, for example, in the factorization theorems for
semi-inclusive processes where transverse momenum
dependent (TMD) pdfs and fragmentation functions
(ffs) are important. The parton model also accounts for
spin dependent effects, and there are partonic descriptions
of higher-twist behavior [15–22]. In all such cases, it is
important to stress test the limits of any assumptions that
are rooted in a parton model picture. Confinement, non-
Abelian gauge invariance, and the general complexity of
strongly coupled nonperturbative quantum field theory
makes this difficult in real QCD. However, many of the
steps in standard factorization derivations are not specific
to QCD but instead apply rather generally to most of the
simpler relativistic renormalizable quantum field theories
found in the introductory chapters of textbooks. By
retracing the steps of factorization in those theories, where
contributions from all spacetime scales can be handled
perturbatively, it becomes straightforward to confirm the
most basic consequences of factorization while also
probing their limits. Indeed, it is possible to find depar-
tures from parton model expectations arising from the
need for renormalization alone. A recently discussed
example is the use of a scalar Yukawa theory [3], already
mentioned above, to illustrate the possibility of positivity
violations in pdfs defined with the MS renormalization
scheme. Simple field theories are useful more generally
for stress-testing other aspects of factorization and related
assertions regarding pdfs and notions of intrinsicness in
the presence of renormalization.
This motivates us in the present paper to further explore

the factorization of simple QFTs in deep inelastic scattering
(DIS). We will present calculations of the cross sections for
both DIS and semi-inclusive deep inelastic scattering
(SIDIS) in a scalar Yukawa model theory with nonzero
masses for all fields first without factorization. By keeping
the coupling small, we ensure that all parts of these
calculations can be handled simply with low order
Feynman diagrams. Next, we will retrace the basic steps
involved in factorizing the graphs in the large-Q, fixed
Bjorken-x deep inelastic limit. It then becomes possible to
compare the unfactorized, unapproximated results with
standard collinear and TMD factorization treatments.
Sensitivity to the mass scales in the Lagrangian serves
as a measure of sensitivity to intrinsic large distance
dynamics, analogous to the sensitivity to confinement scale
physics in QCD. We will compare factorized and unfac-
torized versions of the same calculations and note how the
sizes of the differences between them can provide guidance
on questions relevant to implementations of both TMD and
collinear factorization at moderate hard scales. We stress
that the analogies we make with QCD should not be
interpreted as valid ways to replace the more complex
theory with a toy model, but this is only for stress-testing
the techniques and assumptions that are used in actual
QCD, since they equally apply to any renormalizable
theory that allows for factorization.

Some of the questions to be addressed are these:
(1) What are typical sizes of subleading powers (or

higher twist) at moderate Q and how important are
they for maintaining reasonable agreement with the
unfactorized cross section?

(2) What are typical consequences of switching between
different precise definitions for objects like pdfs? For
example, what is the effect of using a collinear pdf
defined as the cutoff integral of a TMDpdf as opposed
to the usual renormalized definition for the pdf?

(3) What are the relative sizes of contributions from
large and small transverse momentum in TMD
parton densities, and how important are the large-
qT corrections to TMD factorization in transverse
momentum dependent cross sections?

(4) In TMD factorization, it is standard to transform
from transverse momentum space to coordinate bT
space. Then, one identifies small-bT contributions
with collinear factorization contributions and the
large-bT contributions with the intrinsic or non-
perturbative properties of hadrons. In standard ap-
proaches to TMD factorization, the large-bT is
sequestered in the exponential of functions labeled
g. What is the typical impact of implementing this
separation, and how sensitive are results to the
choice of large-bT modeling?

Wewill begin in Sec. II by reviewing basicDIS and SIDIS
kinematics for the general case and by describing our
notation and conventions. In Sec. III, we will define the
specific version of the scalar Yukawa theory that wewill use
throughout the rest of this paper. In Sec. IV, we will review
the operator definitions of pdfs and TMD pdfs, discuss their
basic properties, and show how they are calculated in the
Yukawa theory. In Sec. V, we will step through the basic
procedure for factorizing the inclusive DIS structure func-
tions in collinear factorization into a hard part and a pdf, and
in Sec.VIwe do the same for SIDISwithTMDfactorization.
In both cases, we will compare factorized and unfactorized
calculations of the same quantities. We will also discuss the
steps for recovering collinear factorization by integrating
TMD factorized expressions over all transvere momentum,
and we will compare this with an approach that only uses
TMD pdfs [the generalized parton model (GPM)]. In
Sec. VII, we will comment on the lower boundary in Q
where agreement between factorized and unfactorized
expressions begins to break down. In Sec. VIII, we will
convert the TMD factorization treatment into transverse
coordinate space and consider the effect of switching to the
b�method for isolating large and small transverse coordinate
contributions. We will summarize our results in Sec. IX,
where we will also comment on the limitations and risks of
comparing them with real QCD.

II. CROSS SECTIONS AND STRUCTURE
FUNCTIONS

Before turning to DIS for the specific case of the Yukawa
theory, we review the notation and conventions of DIS
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cross sections and structure functions in the general case in
this section. In later sections, we will work with both DIS
and its extension to SIDIS. In both cases, a proton (or, more
generally, any hadron) moves in the þz direction with four
momentum p. Except where specified, it is to be assumed
that we are working in the Breit frame, where the photon
four-momentum is q ¼ ð0; 0; 0;−QÞ [see Fig. 1(a)]. In the
SIDIS case, the observed final state hadron carries momen-
tum PB [see Fig. 1(b)]. The kinematical variables are
mostly standard:

q ¼ ðl − l0Þ; q2 ¼ −Q2; xbj ¼
Q2

2p · q
;

y ¼ p · q
p · l

; zh ¼
PB · p
p · q

; xN ¼ −
qþ

pþ ;

zN ¼ P−
B

q−
; ð1Þ

where l and l0 are the initial and recoil leptons. The light
cone ratios xN (Nachtmann-x) and zN are expressed in
terms of q�, pþ, and P−

B; for fragmentation, the light-cone
ratio zN is the analog of xN, and in the massless limit they
equal zh and Bjorken xbj, respectively. Our conventions for
the light cone variables for a four vector V are defined by

Vμ ¼ ðVþ; V−;VTÞ; ð2Þ

where

Vþ ¼V0þVzffiffiffi
2

p ; V− ¼V0−Vzffiffiffi
2

p ; VT ¼ðVx;VyÞ: ð3Þ

Our conventions for separating cross sections into structure
functions match those of Ref. [23], which mostly follow
typical DIS and SIDIS notation (see also Ref. [21]). The
differential cross section for DIS is

dσDIS
dxbjdydψ

¼ α2emy
Q4

LμνW
μν
DIS; ð4Þ

where ψ is the azimuthal angle of the scattered lepton. For
SIDIS it is

dσSIDIS
dxbjdydψdzNd2PBT

¼ α2emy
4Q4zN

LμνW
μν
SIDIS: ð5Þ

The hadronic tensors are

Wμν
DIS≡4π3

X
X

δð4Þðpþq−PXÞhp;Sjjμð0ÞjXihXjjνð0Þjp;Si

ð6Þ
for standard DIS, and

Wμν
SIDIS ≡

X
X

δð4Þðpþ q − PB − pXÞhp; Sjjμð0ÞjPB; Xi

× hPB; Xjjνð0Þjp; Si ð7Þ
for SIDIS. The usual decomposition into structure func-
tions is

Wμν¼
�
−gμνþqμqν

q2

�
F1þ

�
pμ−

p ·q
q2

qμ
��

pν−
p ·q
q2

qν
�

F2

p ·q
þiεμναβqαSβ

g1
p ·q

þiεμναβqα½ðp ·qÞSβ−ðS ·qÞpβ�
g2

ðp ·qÞ2þ���;

ð8Þ

and we will use this for both the DIS and SIDIS cases. In
the DIS case, the arguments of the structure functions are
xbj and Q2, while in the SIDIS case there are additional zh

and PBT arguments. The “� � �” indicate that there are
structure functions in SIDIS beyond what are shown
explicitly in Eq. (8) (see Ref. [21]). These vanish after

FIG. 1. An illustration of the kinematic configuration of DIS (a) and SIDIS (b) events in the Breit frame (photon frame). The incoming
(l) and outgoing (l0) lepton momenta form the lepton plane (shown in blue). (a) The dashed lines represent the unobserved DIS
particles. (b) PB is the momentum of the produced hadron (B). The azimuthal angle of the hadron plane (shown in yellow) is measured
counterclockwise with respect to the lepton plane.
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an integration over azimuthal angle, and we will not
consider them further in this paper. The leptonic tensor is

Lμν ¼ 2ðlμl0ν þ l0μlν − gμνl · l0Þ: ð9Þ

The SIDIS and DIS structure functions are related
though integrals over all zN and transverse momentum.
Specifically,

X
B

Z
d2PB;TdzN

4zN
F1;2ðxbj; Q2; zh;PBTÞ

¼ hNiF1;2ðxbj; Q2Þ: ð10Þ
Note the normalization 1=ð4zNÞ on the left-hand side and
the multiplicity hNi on the right-hand side (see Sec. VI in
Ref. [23] for details). Also, by convention, the structure
function arguments are zh and xbj rather than zN and xN.
The sum is over all types B of final state particles. The
unpolarized structure functions are projected from the
hadronic tensor as follows:

F1;2ðxbj; QÞ ¼ Pμν1;2Wμνðp; qÞ; ð11Þ

where the projectors for the structure functions are given by

Pμν1 ¼ −
1

2
gμν þ 2Q2x2N

ðQ2 þm2
px2NÞ2

pμpν

≈ −
1

2

�
gμν − 4x2bj

pμpν

Q2

�
; ð12aÞ

Pμν2 ¼ 12Q4x3NðQ2 −m2
px2NÞ

ðQ2 þm2
px2NÞ4

�
pμpν −

ðQ2 þm2
px2NÞ2

12Q2x2N
gμν

�

≈ −xbj
�
gμν − 12x2bj

pμpν

Q2

�
: ð12bÞ

The SIDIS versions of the structure functions are
obtained by projecting on the integrand of the hadronic
tensor Wμν

SIDIS,

F1;2ðxbj; Q; zh;PBTÞ ¼ ðP1;2ÞμνWμν
SIDIS: ð13Þ

III. THE THEORY

Our test case for factorization in DIS is the real scalar
Yukawa field theory with the following interaction term,

Lint ¼ −λΨ̄Nψqϕþ H:c. ð14Þ

A ΨN particle is taken to be the spin-1=2 target, and we
will refer to it as a “nucleon” with mass mp. In addition,
there is a spin-1=2 “quark” field ψq with mass mq, and a
chargeless scalar “diquark” or “scalar gluon” field ϕ with
a massms. See Chapter 6 of [12] for similar illustrations of
principle using a Yukawa theory. The numerical value of λ
fixes the strength of this interaction. It is useful to use the
notation

aλ ≡ λ2

16π2
; ð15Þ

by analogy with similar notation as ¼ g2s=ð16π2Þ,
common in QCD. We will choose λ to be so small that
the fixed order perturbative calculation of the graphs in
Fig. 2 give an arbitrarily good approximation to the
inelastic (xbj < 1) single photon structure tensors Wμν

DIS

and Wμν
SIDIS. Like QCD, the theory is renormalizable,

though it is not asymptotically free. Also like QCD, it
is a finite range interaction, characterized by time and
distance scales less then order ∼1=ðintrinsic mass scalesÞ.
The “intrinsic” scales analogous to nonperturbative effects
in QCD are the masses, mp, mq, and ms that appear in the
Lagrangian density, and these correspond to any “m” in
the error terms:

m ∈ fmp;mq;msg: ð16Þ

We will handle all ultraviolet divergences with
dimensional regularization. In d spacetime dimensions,
we take ϵ to be defined through d≡ 4 − 2ϵ. We also define
the factor

(a) (b) (c)

FIG. 2. Contributions to DIS from Eq. (14) at OðaλÞ. Graph (a) is the handbag diagram that contributes at leading power and small
transverse momentum. k labels the struck quark momentum. Graphs (b) and (c) contribute at leading power to large kT [the Hermitian
conjugate for (c) is not shown]. The momenta of the virtual photon is (q) and the target nucleon is (p).
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Sϵ ≡ ð4πÞϵ
Γð1 − ϵÞ ; ð17Þ

which multiplies 1=ϵ poles in implementations of MS
renormalization. Renormalization of the Lagrangian should
be understood to have been performed in the MS scheme
with a dimensional regularization scale μ. Keeping the
lowest nonvanishing order beta function and neglecting
scalar self-interactions gives for the running coupling,

aλðμÞ ≈
aλðμ0Þ

1 − 10aλðμ0Þ ln μ
μ0

ð18Þ

relative to a reference scale μ0. For this paper, we will
assume aλðμ0Þ is small enough that the running can be
entirely neglected.
As just mentioned, the graphs that contribute to Wμν

DIS
away from the xbj ¼ 1 elastic limit at the first nonvanishing
order in aλ are all shown in Fig. 2. These graphs also give the
SIDIS structure tensor Wμν

SIDIS if we identify the “observed
final state particle” PB with the final state “quark” q.
Calculating the structure functions in Eq. (8), with no
approximations on the graphs in Fig. 2, is straightforward
in theYukawa theory, though the steps are somewhat tedious
when all the masses are allowed to be general. To avoid
breaking the flow of our discussion we have provided these
steps and other useful results in Appendix A.
The factorization theorem for DIS states that, in the

asymptotic m=Q → 0 limit with fixed 0 < xbj < 1, the
cross section separates into a process-specific short dis-
tance (or high virtuality) factor and one or more universal
large distance factors. The short distance factors are
insensitive to the dynamics that govern large distance

dynamics, so we should find that they are insensitive to
the m scales from Eq. (16). The large distance factors do
depend on m, but they are universal in the sense that they
are defined by explicit operator matrix elements (see
Sec. IV) for objects like pdfs and do not reference DIS
or any other specific physical process. The well-known
steps for deriving factorization in a gauge theory carry over
straightforwardly to the scalar Yukawa theory, and indeed
are much simpler due to the absence of large coupling,
confinement, gauge degrees of freedom and the need for
Wilson lines. Moreover, since there are no large coupling
parts involved in the calculation of Fig. 2, both the long and
short distance parts are calculable in perturbation theory if
we just choose aλ to be very small. By comparing
calculations for various values of Q=m, before and after
factorization, we hope to obtain a sense of the size of the
errors induced by factorization. We will do this for both the
DIS and SIDIS cases in the next few sections.
Notice that the graphs in Fig. 2 have no divergences at all,

neither in the ultraviolet (UV) nor the infrared (IR)/collinear
regions. The divergences that do appear in our calculations
of those graphs at intermediate stages are, therefore, artifacts
of factorization approximations. Thus, our calculations will
help clarify the nature of those divergences.
As a prelude to the later discussion of factorization

approximations, we may anticipate the result by examining
the structure functions as they appear before there are any
approximations. We show examples in Fig. 3 for a selection
of values for Q and with mp ¼ ms ¼ 1.0 GeV and mq ¼
0.3 GeV chosen to mimic typical small mass scales in
QCD. Vertical dashed lines show the kinematical maximum
[see Eq. (A25)] of xbj for each Q, given the specific values
of the intrinsic mass scales we have chosen. AsQ increases,
the curves for F1 and F2 become relatively smooth over the

(b)

0
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8

10

12 10-3

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12 10-3

(a)

FIG. 3. The unfactorized (a) F1ðxbj; QÞ and (b) F2ðxbj; QÞ corresponding to Fig. 2 with mp ¼ ms ¼ 1.0 GeV and mq ¼ 0.3 GeV.
The vertical dashed lines indicate the kinematical upper limits on xbj for each value of Q [see Eq. (A25)].
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full range of 0 < xbj < 1. We should expect that, once we
obtain the factorized approximations in later sections, the
corresponding curves will match those of Fig. 3 with high
accuracy for the larger Q cases.

IV. PARTON DENSITIES

At various stages in the discussion it will be necessary to
identify contributions to pdfs. Therefore, we postpone the
treatment of factorization and focus momentarily on
reviewing the properties of the operator definitions for
pdfs, now specializing to the Yukawa theory from Sec. III.
The bare parton density for a fermion of flavor i inside a

fermion p is defined by the usual matrix element of bare
number density operators:

f0;i=pðξÞ ¼
Z

dw−

2π
e−iξp

þw−hpjψ̄0;ið0; w−; 0TÞ

×
γþ

2
ψ0;ið0; 0; 0TÞjpi: ð19Þ

Without aUV regulator, the bare pdf is divergent. Ultimately,
we work with a renormalized collinear parton density

fi=pðξ; μÞ ¼ Zi=i0 ⊗ f0;i0=p

≡X
i0

Z
dz
z
Zðz; aλðμÞÞi=i0f0;i0=pðξ=zÞ; ð20Þ

where Zi=i0 is a renormalization factor. Expanding the DIS
cross section in a factorized form through order aλ will

require fð0Þp=p and fð1Þq=p, with the superscripts indicating the
order in perturbation theory. The last line uses the standard
convolution integral notation,

½A ⊗ B�ðxÞ≡
Z

1

x

dξ
ξ
Aðx=ξÞBðξÞ: ð21Þ

Note carefully that our use of the term “bare” for the pdf is in
the track A sense of Ref. [3]. Notice also the absence of a
Wilson line operator in Eq. (19) as compared to what we
would need in a gauge theory like QCD.
Implementing dimensional regularization, expanding

Eq. (20) through order aλ, and applying MS renormaliza-
tion by subtracting the Sϵ=ϵ pole gives

ð22Þ

ð23Þ

where in the last line we have used the abbreviations

ΔðξÞ2 ≡ ξm2
s þ ð1 − ξÞm2

q − ξð1 − ξÞm2
p; χðξÞ2 ≡ ðmq þ ξmpÞ2; ð24Þ

and where the MS counterterm is

MS C:T: ¼ −aλðμÞð1 − ξÞ Sϵ
ϵ
: ð25Þ

Equation (23) is obtained in dimensional regularization after we calculated the integral

aλðμÞ
π

ð2πμÞ2ϵð1 − ξÞ
Z

d2−2ϵkT
k2T þ χðξÞ2

½k2T þ ΔðξÞ2�2 þMS C:T:; ð26Þ

with the counterterm added, and where we set ϵ ¼ 0.
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The bare quark TMD pdf for a flavor i in hadron p is
similarly defined as

f0;i=pðξ;kTÞ¼
Z

dw−d2wT

ð2πÞ3 e−iξp
þw−þikT·wT

×hpjψ̄0;ið0;w−;wTÞ
γþ

2
ψ0;ið0;0;0TÞjpi: ð27Þ

To get a renormalized TMD pdf in the Yukawa theory, we
only need to switch to the renormalized field

f0;i=pðξ; kTÞ ¼ Z2

Z
dw−d2wT

ð2πÞ3 e−iξp
þw−þikT·wT

× hpjψ̄ ið0; w−;wTÞ
γþ

2
ψ ið0; 0; 0TÞjpi

¼ Z2fi=pðξ; kT; μÞ: ð28Þ

Since the wave function renormalization has the form
Z2 ¼ 1þOðaλÞ, there is noOðaλÞ self-energy contribution
in theOðaλÞ graphs in Fig. 2, so we will have no explicit Z2

contribution to our OðaλÞ quark-in-hadron TMD pdf.
Therefore, the expression for the TMD pdf fq=pðξ; kT; μÞ
is obtained by simply dropping the counterterm in Eq. (26),
keeping the integrand of the first term, and taking the limit
to four dimensions:

fð1Þq=pðξ; kT; μÞ ¼
aλðμÞ
π

ð1 − ξÞ k2T þ χðξÞ2
½k2T þ ΔðξÞ2�2 : ð29Þ

We will need these expressions in later sections.
Dealing with divergences and evolution in the Yukawa

theory is far simpler than in a gauge theory due to the
absence of Wilson lines or light-cone divergences. In the
Yukawa theory above, TMD evolution equation for
the quark-in-hadron TMD pdf is also very simple because
it only involves the wave function normalization Z2 in
Eq. (28). The TMD evolution equation (Sec. 8.71 in [12])
is just

d
d ln μ

ln fq=pðξ; kT; μÞ ¼ −2γ2ðaλðμÞÞ; ð30Þ

where

γ2ðaλðμÞÞ≡ 1

2

d lnZ2

d ln μ
: ð31Þ

At lowest order,

γð1Þ2 ðaλðμÞÞ ¼ −
aλðμÞ
2

: ð32Þ

The general solution to the TMD evolution equation is

fq=pðξ;kT;μÞ¼ fq=pðξ;kT;μ0Þexp
�
−2

Z
μ

μ0

dμ
μ
γ2ðaλðμÞÞ

�
;

ð33Þ

where evolution is from a reference scale μ0 up to a generic
large scale μ.
There are alternative ways to provide an exact

definition to a collinear pdf free of UV divergences.
One way that very closely coincides with parton model
intuition is to define it as the TMD pdf integrated up to a
cutoff kc,

fcq=pðξ; μ; kcÞ≡ π

Z
k2c

0

dk2Tfq=pðξ; kT; μÞ: ð34Þ

Normally, kc is set equal to μ, but this need not be the case.
This approach is preferred in some areas of small-x physics,
e.g. [24–27], where the relation is taken as a definition for
the TMD pdf, and is usually called an “unintegrated” pdf.
With the TMD pdf calculated in Eq. (29), the cutoff
definition for the collinear pdf is

fcq=pðξ;μ;kcÞ¼ aλðμÞð1−ξÞ
�
ln

�
ΔðξÞ2þk2c
ΔðξÞ2

�

−
k2c

k2cþΔðξÞ2þ
k2cχðξÞ2

ΔðξÞ2½ΔðξÞ2þk2c�
�
: ð35Þ

This definition of the collinear pdf only equals the
standard MS definition in Eq. (23) if kc ¼ μ and
Oðm2=μ2Þ corrections are neglected. Beyond lowest
order, the connection between the cutoff and the renor-
malized definitions can also involve non-power-
suppressed terms, and in gauge theories there are com-
plications with the Wilson line in relations like Eq. (34)
that we will not address here (see, however, the detailed
discussion in [28]).

V. COLLINEAR FACTORIZATION

Now that we have identified the pdf contributions, we
may build up the factorized expressions for structure
functions starting from the exact results for Fig. 2 and
applying the approximations appropriate to the deeply
inelastic regime. We seek the form of the standard collinear
factorization theorem for inclusive DIS,

Wμνðp;qÞ¼
X
i;i0

Z
1

xbj

dξ
ξ
Ŵμν

i=i0 ðxbj=ξ;q;μÞfi0=pðξ;μÞþO
�
m2

Q2

�
;

¼
X
i;i0

Ŵμν
i=i0 ⊗fi0=pþO

�
m2

Q2

�
; ð36Þ

where Ŵμν
i=i0 ðxbj=ξ; qÞ is a partonic structure tensor (with

suitable subtractions, to be discussed below) for a massless,
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on-shell partonic target of flavor i0, fi0=pðξ; μÞ is a pdf for a
parton flavor i0 in target p, μ is the renormalization group
scale, and

P
i;i0 is a sum over all flavors. The analogous

expressions for structure functions are

F1ðxbj; Q2Þ ¼
X
ii0

Z
1

xbj

dξ
ξ
F̂1;i=i0 ðxbj=ξ; μ2=Q2; μÞfi0=pðξ; μÞ

þO
�
m2

Q2

�
;

¼
X
i;i0

F̂1;i=i0 ⊗ fi0=p þO
�
m2

Q2

�
; ð37Þ

F2ðxbj;Q2Þ¼
X
i;i0

Z
1

xbj

dξF̂2;i=i0 ðxbj=ξ;μ2=Q2;μÞfi0=pðξ;μÞ

þO
�
m2

Q2

�
;

¼
X
ii0

ξF̂2;i=i0 ⊗ fi0=pþO
�
m2

Q2

�
: ð38Þ

In the limit that theOðm2

Q2Þ terms are negligible, the structure

functions have process-specific hard parts, F̂1;2, that are
insensitive to large spacetime distances. But the collinear
pdfs fi0=p account for the intrinsic properties of the target,
so we should expect them to retain sensitivity to m.
In this section, we will systematically step through the

approximations necessary to factorize the graphs in Fig. 2
as in Eqs. (37) and (38) for the Yukawa theory. The specific
task is to expand in small m2=Q2 and confirm that
factorization is satisfied order by order in aλ. For example,
a structure function (say F1) becomes

F1ðxbj; QÞ ¼
X
ii0

ðF̂ð0Þ
1 þ F̂ð1Þ

1 þ � � �Þi=i0

⊗ ðfð0Þ þ fð1Þ þ � � �Þi0=p þO
�
m2

Q2

�
;

¼
X
ii0

F̂1;i=i0 ⊗ fi0=p þO
�
m2

Q2

�
; ð39Þ

where the superscript “(n)” refers to the order in aλ, and the
“� � �” refers to higher orders in aλ.

A. Outline of steps

Building up all the terms in Eq. (39) entails a mixture
of different approximations, each corresponding to a
different region of momentum. Together, they are a simple
example of the method of matched asymptotic expansions
(Chapter 4 of [29]). There is a nested chain of increasingly
larger kinematical regions, and different approximations
apply in each one. We will step through the procedure
below for the case of the F1 structure function.
First, consider the zeroth order term in Eq. (39), which

corresponds to elastic scattering and is just the convolution
of a zeroth order pdf [Eq. (22)] with a zeroth order partonic
F̂1, in which p is the target,

ð40Þ

The hooks at the bottom of the graph notate the approxi-
mation that all lines above them are to be treated as
massless and on shell. Thus,

ð41Þ

The second line above introduces additional graphical
conventions that we will use throughout this paper. The

hard part F̂ð0Þ
1;p=pðξ=xbj; QÞ from Eq. (40) is placed above the

graph inEq. (22) for the integrandof the pdf. This symbolizes

the convolution integral, Eq. (21). The F̂ð0Þ
2;i=i0 ðξ=xbj; QÞ

contribution is similarly

F̂ð0Þ
2;p=pðξ=xbj; QÞ ¼ δð1 − xbj=ξÞ: ð42Þ

The form of Eq. (40) is the same for the zeroth order
structure function of any fermionic parton target, including a
quark,

ð43Þ
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Turning now to xbj < 1 and the graphs in Fig. 2, the
smallest region that we need to approximate corresponds
to a neighborhood of kT ¼ 0 extending to not much larger
than OðmÞ. In that region, graphs 2(b) and 2(c) are
subleading in maxðm2; k2TÞ=Q2, so part of the approxima-
tion is to keep only graph (a) and neglect graphs (b) and
(c). In the upper part of graph (a), it is only the kþ

component of k that is important in the small transverse
momentum region, so the small k− and kT components can
be neglected there. The details of the small kT approx-
imations are reviewed extensively in many other places
[12] so we will not repeat them here. The important
point is that they separate graph (a) into a zeroth order
hard part and an OðaλÞ quark-in-hadron pdf, up to
Oðmaxðm2; k2TÞ=Q2Þ corrections.
To symbolize the small-kT approximation, we will use

the “approximator” notation Tsmall. This is an instruction to
replace the internal k line of the object on its left by an
approximate version and to drop power suppressed errors.
Applied to Fig. 2(a),

F1ðxbj; Q; kTÞ ¼ TsmallF1ðxbj; Q; kTÞ þO
�
maxðm2; k2TÞ

Q2

�
:

ð44Þ

The approximation with the error term made explicit is

F1ðxbj; Q; kTÞ ¼ TsmallF1ðxbj; Q; kTÞ
þ ½F1ðxbj; Q; kTÞ − TsmallF1ðxbj; Q; kTÞ�:

ð45Þ

The error in braces is the Oðmaxðm2; k2TÞ=Q2Þ-suppressed
contribution from Eq. (44), so the Tsmall approximation
is no longer accurate once kT is comparable to Q. The
Tsmall approximator does not yield the expansion for
the full integral over kT necessary for fully inclusive
scattering.
To fix this, we next consider the larger kT ≈Q region.

Specifically, we consider the region where the ratio kT=Q is
fixed and expand the graphs in Fig. 2 in powers of m=kT.
The approximation is accurate in a neighborhood of
m < kT ≲Q, and it exploits the smallness of the mass
scales (ms, mq, mp) relative to the large transverse
momentum kT. We call the corresponding approximator
Tlarge and write

F1ðxbj; Q; kTÞ ¼ TlargeF1ðxbj; Q; kTÞ þO
�
m2

k2T

�
: ð46Þ

In the Yukawa theory model calculations of Fig. 2, the large
kT approximation amounts to simply setting all small
masses to zero.
The error term in Eq. (45) is only significant when kT is

large relative to m, so the final step is to apply Tlarge to the
entire contribution in the braces in Eq. (45). Since that term
is already Oðk2T=Q2Þ, the resulting overall error is now
Oðm2=Q2Þ point by point in kT

1:

F1ðxbj; Q; kTÞ ¼ TsmallF1ðxbj; Q; kTÞ þ Tlarge½F1ðxbj; Q; kTÞ

− TsmallF1ðxbj; Q; kTÞ� þO
�
k2T
Q2

×
m2

k2T

�
;

¼ W termþ Y termþO
�
m2

Q2

�
: ð47Þ

In a common jargon, the first term on the second line is
labeled the “W term” and the second term is the “Y term,”
as indicated on the last line. Now we may integrate Eq. (47)
over the whole kinematically accessible region of kT and be
assured that the overall error in our calculation of the
inclusive F1ðxbj; QÞ vanishes like m2=Q2 in the large
Q limit.
Integrating the W term over transverse momentum gives

the contribution to F1ðxbj; QÞ with an Oða0λÞ hard part and
an Oða1λÞ pdf, while integrating the Y term produces the
contribution to F1ðxbj; QÞ with an Oða1λÞ hard part and an
Oða0λÞ pdf. So, to order Oða1λÞ the fully factorized approxi-
mation is

Fð1Þ
1 ðxbj; QÞ ¼xbj≠1

X
i

F̂ð0Þ
1;q=i ⊗ fð1Þi=p þ

X
i

F̂ð1Þ
1;q=i ⊗ fð0Þi=p

þO
�
a2λ ;

m2

Q2

�
: ð48Þ

We will illustrate the above with explicit expressions in the
next few subsections.

B. Small transverse momentum

Retracing the steps of the last subsection, the first is to
apply the Tsmall directly to graph Fig. 2(a). The result is

TsmallF1ðxbj; Q; kTÞ ¼
aλðμÞ
2π

ð1 − xbjÞ
k2T þ χðxbjÞ2

½k2T þ ΔðxbjÞ2�2
:

ð49Þ

Up to a factor of 1=2 from the hard coefficient, this is just
the TMD pdf in Eq. (29). Integrating it over all transverse
momentum gives

1Note that the Tlarge approximation sets all masses to zero in
F1, so the Tsmall approximation ultimately contributes an error of
size Oðk2T=Q2Þ instead of Oðmaxðm2; k2TÞ=Q2Þ.
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ð50Þ

A side effect of the Tsmall approximation is that there is a
UV divergence in the integral over kT that did not exist in
the original unapproximated graph. To deal with it, we have
taken ϵ ≠ 0 and applied MS renormalization to the pdf, as
in Eq. (26), before returning to four dimensions. Note that
we could have chosen to instead use the cutoff definition in
Eqs. (34) and (35) for the pdf, but the difference between
the two choices amounts only to power-suppressed errors in
the cross section calculation.
The graphical notation in Eq. (50) is analogous to that of

Eq. (41). As before, hooks on the target quark lines
symbolize the approximations on the k momentum that
flows into the top of the graph. As the diagrammatic

notation in Eq. (50) emphasizes, this result is constructed
from pieces that we already know from earlier sections,
namely Eqs. (23) and (43). Placing the Eq. (43) graph over
the Eq. (23) integrand represents the convolution of the
hard part at the top with the pdf at the bottom.

C. Large transverse momentum

The Tlarge approximation sets all masses to zero in the
unapproximated Fig. 2, and convolutes the result with the
trivial zeroth order proton-in-proton pdf, Eq. (22). At large
kT, all the graphs in Fig. 2 are leading power, and none can
be neglected. The OðaλÞ hard part is

ð51Þ

The blobs on the left and right represents the sum of all
graphs in Fig. 2. We have used

κðξÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2T
k̂2mðξÞ

s
; ð52Þ

where

k̂2mðξÞ≡ ð1 − ξÞQ2

4ξ
ð53Þ

is the kinematical upper bound on transverse momentum in
the massless approximation. [The “hat” is to distinguish
this from the exact kinematical upper bound in Eq. (A17).]
The integral over kT in Eq. (51) diverges at kT ¼ 0, so we
have temporarily introduced a lower cutoff, kcut. (We will
find it unnecessary once we combine all terms.) The
“unsub” subscript means we have yet to apply the
TlargeTsmall subtraction in Eq. (47). The hooks in
Eq. (51) symbolize the Tlarge approximation that sets all
masses to zero in the lines above them.
Taking the convolution of Eq. (51) with Eq. (22) gives

ð54Þ
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The hooks in Eq. (54) now denote the separation between
the hard subgraph, where all masses are negligible relative
to the hard scale, from the pdf of Eq. (22).2

To complete the large-kT approximation we need to
subtract from Eq. (54) the term that corresponds to the
combined TlargeTsmallF1ðxbj; Q; kTÞ approximation in

Eq. (47). This amounts to the same low kT factorization
approximationwemade in Sec.V B, but nowwith all masses
set to zero in accordancewith the Tlarge approximation. Since
we already have Eq. (54), we simply need to apply to it Tsmall.
It amounts to the handbag approximation again, but nowwith
all particle masses set to zero, including in the pdf itself,

ð55Þ

The two sets of hooks indicate graphically that the two combined approximations are being applied simultaneously. When
integrating Eq. (55) over transverse momentum, the Tsmall is to be read as an instruction to apply MS renormalization in the
integration over k2T, just as we did when Tsmall was applied to the unapproximated graph (a). Thus,

TlargeTsmallF
ð1Þ
1 ðxbj; QÞ ¼ aλðμÞ

2
μ2ϵSϵ

Z
∞

k2cut

dk2Tðk2TÞ−ϵ
ð1 − xbjÞ

k2T
−
aλðμÞ
2

ð1 − xbjÞ
Sϵ
ϵ
: ð56Þ

The same lower k2cut cutoff in Eq. (54) needs to be imposed also in Eq. (56). It is simple to verify by direct calculation that
(for this low order graph) the MS subtraction in Eq. (56) is equivalent to applying an upper cutoff of μ2 on the k2T integral:

TlargeTsmallF
ð1Þ
1 ðxbj; QÞ ¼ aλðμÞ

2

Z
μ2

k2cut

dk2T
ð1 − xbjÞ

k2T
;¼ aλðμÞ

2

Z
k̂2mðxbjÞ

k2cut

dk2T
ð1 − xbjÞ

k2T
þ aλðμÞ

2
ð1 − xbjÞ ln

μ2

k̂2mðxbjÞ
: ð57Þ

Subtracting Eq. (57) from Eq. (54) gives the full collinear F̂ð1Þ
1 . Including the trivial convolution with the zeroth order pdf in

Eq. (22) produces the second term of Eq. (48),

F̂ð1Þ
1;q=p ⊗ fð0Þp=p ¼ aλðμÞ

2

Z
k̂2mðxbjÞ

0

dk2T

�ð1 − xbjÞð1 − κðxbjÞÞ
κðxbjÞk2T

−
xbjð2x2bj − 6xbj þ 3Þ
Q2ð1 − xbjÞ2κðxbjÞ

�
−
aλðμÞ
2

ð1 − xbjÞ ln
μ2

k̂2mðxbjÞ
: ð58Þ

Now the integral over kT is well behaved in both the UVand IR limits, confirming that no lower cutoff was needed, so we
have removed the kcut from Eq. (58). Equation (50) accounts for the zeroth order contribution to the hard partonic structure
function while Eq. (58) accounts for the first OðaλÞ contribution. Both must be present in order to have complete
factorization with only power suppressed and Oða2λÞ errors.

D. Fully factorized result

Combining Eqs. (50) and (58) gives all of the leading terms in Eq. (48), and evaluating the integrals explicitly gives

F1ðxbj; QÞ ¼ aλðμÞ
2

ð1 − xbjÞ
�ðmq þ xbjmpÞ2

ΔðxbjÞ2
þ ln

�
μ2

ΔðxbjÞ2
�
− 1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F̂ð0Þ
1;q=q⊗fð1Þq=p

þ
�
aλðμÞ
2

�
2ð1 − xbjÞ lnð2Þ −

2x2bj − 6xbj þ 3

2ð1 − xbjÞ
�
−
aλðμÞ
2

ð1 − xbjÞ ln
μ2

k̂2mðxbjÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F̂ð1Þ
1;q=p⊗fð0Þp=p

þO
�
m2

Q2
; a2λ

�
: ð59Þ

2Compared with textbook calculations of partonic scattering, these expressions may look somewhat odd since there are no “þ”-
distributions. In fact, we could combine these results with self energy graphs and reexpress them in terms of “þ” distributions, but this is
unnecessary for the xbj < 1 region of the graphs in Fig. 2. A nice feature of this toy model is that we are able to avoid using distributions.
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Equation (59) can be written in a more explicitly factorized way, with

F1ðxbj; QÞ ¼
X
i

Z
1

xbj

dξ
ξ

1

2

�
δ

�
1 −

xbj
ξ

�
δqi þ aλðμÞ

�
1 −

xbj
ξ

��
lnð4Þ −



xbj
ξ

�
2
− 3

xbj
ξ þ 3

2

1 − xbj

ξ

�
2

− ln
4xbjμ2

Q2ðξ − xbjÞ
�
δpi

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F̂1;q=iðxbj=ξ;μ=Q;aλðμÞÞ

×

�
δð1 − ξÞδip þ aλðμÞð1 − ξÞ

�
χðξÞ2
ΔðξÞ2 þ ln

�
μ2

ΔðξÞ2
�
− 1

�
δiq

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fi=pðξ;μÞ

þO
�
m2

Q2
; a2λ

�
: ð60Þ

The second line is now the (subtracted) hard partonic
structure function through OðaλÞ, and the third line is the
pdf through OðaλÞ.
Equation (60) is the factorization of Fig. 2 in the form of

Eq. (39) that we sought. It is an approximation whose
accuracy increases as m=Q → 0. More general treatments
of factorization show that the pattern continues to all orders
in aλ.
Several well-known features of factorization are recog-

nizable in Eq. (60). First, the hard factor F̂1;q=i on the
second line is a partonic DIS structure function, it is process
specific, and it depends on the process-specific kinematical
variable Q. However, it is independent of any of the small
mass scales like mq, ms, or mp that govern intrinsic
structure over large spacetime scales. Conversely, the pdf
fi=p on the third line does depend on intrinsic scales, but it
is universal in that it follows directly [Eqs. (22) and (23)]
from the operator definition in Eq. (19). Second, the
logarithmic dependence on μ cancels between the second

and third lines through order aλðμÞ, demonstrating the
renormalization group independence. Any residual μ
dependence is in the OðaλðμÞ2Þ running of parameters like
aλðμÞ, but this too would vanish with higher orders.
In an asymptotically free theory likeQCD, the goal would

be to ensure that higher order terms in the perturbative
expansion of the hard part remain small or finite asQ → ∞.
Thus, logarithms like those in F̂1;q=iðxbj=ξ; μ=Q; aλðμÞÞ
need to be kept under control by choosing to set μ ∝ Q.
With such a choice, all Q dependence in the hard part
resides in the running of the coupling, which vanishes in the
DIS limit. In the nonasymptotically free Yukawa toy theory
that we are using here, there are fewer advantages to doing
this, but the steps nevertheless very clearly illustrate the
procedure. Thus, we are generally interested in the pdf
defined with its scale of order Q, fq=pðξ;QÞ.
The steps above apply in the same way to the F2

structure function, giving

F2ðxbj; QÞ ¼
X
i

Z
1

xbj

dξ ×

�
δ

�
1 −

xbj
ξ

�
δqi þ aλðμÞ

xbj
ξ

�
1 −

xbj
ξ

��
lnð4Þ −

3


xbj
ξ

�
2
− 5

xbj
ξ þ 3

2

1 − xbj

ξ

�
2

− ln
4xbjμ2

Q2ðξ − xbjÞ
�
δpi

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F̂2;q=iðxbj=ξ;μ=Q;aλðμÞÞ

×

�
δð1 − ξÞδip þ aλðμÞð1 − ξÞ

�
χðξÞ2
ΔðξÞ2 þ ln

�
μ2

ΔðξÞ2
�
− 1

�
δiq

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fi=pðξ;μÞ

þO
�
m2

Q2
; a2λ

�
: ð61Þ

It is worth verifying graphically and numerically that the
factorized expressions for F1 and F2 match the unapproxi-
mated calculations of the graphs in Fig. 2 when m=Q
approaches zero. This is illustrated in Fig. 4. The solid
curves are the same as those in Fig. 3, but now overlaid on
top are the calculations with factorization, obtained from
Eqs. (60) and (61) and shown as dot-dashed lines. As
expected, the unapproximated and factorized calculations
agree as Q increases above ≈1 GeV. If we ignore the
running of aλðμÞ, as wewill in all plots here, then F1 and F2

are exactly independent of the numerical value used for μ,
though the relative contribution from each factor in
Eqs. (60) and (61) changes with μ. This is illustrated in
Fig. 5. Note that while the value of μ is arbitrary, certain
choices minimize or maximize the contribution from F̂1;2.
For instance, when μ is chosen to be equal to the hard scale
Q ¼ 20 GeV (dashed green curves) we recover the naive
parton model prediction in the low xbj region. On the other
hand, the nontrivial partonic contribution is dominant when
the renormalization scale is chosen to be of the order of the
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nonperturbative mass scales of the model (dotted yellow
curves). In fact, from Eq. (23) we see that there exists a
functional form of μ ∼OðmÞ that makes the nontrivial pdf
contribution vanish, namely

μðξÞ2 ¼ ΔðξÞ2e1−
χðξÞ2
ΔðξÞ2 ; ð62Þ

although ingeneralone lacksknowledgeof“nonperturbative”
quantities like χðξÞ and ΔðξÞ.
We will comment further on these plots in Sec. VII.

VI. TMD FACTORIZATION AND SIDIS

So far, we have focused on collinear factorization and
DIS, but we may regard the same set of graphs in Fig. 2
as contributions to SIDIS and use TMD factorization,
analogous to the Collins-Soper-Sterman (CSS) formalism
in QCD. For this, we will take the observed final state
particleB to be the “quark” of the Yukawa theory in Sec. III.
The TMD factorization formula for the hadronic tensor
is then
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FIG. 4. The same curves as in Fig. 3, but now with the factorized expressions for F1 and F2 from Eqs. (60) and (61) also shown as the
dot-dashed curves. The vertical dashed curves are the kinematical maximum [Eq. (A25)] corresponding to each value of Q.
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FIG. 5. The red solid and dot-dashed curves are the same Q ¼ 20 GeV curves as those appearing in Figs. 4(a) and 4(b). Now we also
show the terms F̂ð0Þ ⊗ fð1Þ (dashed) and F̂ð1Þ ⊗ fð0Þ (dotted), as in Eq. (59) (and similarly for F2) for μ ¼ 1 GeV (yellow), μ ¼ 20 GeV
(green), and μ ¼ ð20 GeVÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xbjÞ=4xbj

p
(blue).

BASICS OF FACTORIZATION IN A SCALAR YUKAWA FIELD … PHYS. REV. D 107, 074031 (2023)

074031-13

X 

<N 

--< 

-------
,...-..._ 

0 

X 

- / ----Q = 1 GeV 
- / ---- Q = 5 GeV 
- / ---- Q = 10 GeV 
- / ----Q = 20 GeV 

- I ····µ = I Ge V 
- / ···· µ = 20 GeV 

/ ····µ=20 fEii_ G V v----:rx;; e 

Dashed = Fio) 0 JC1) 

Dotted = FP) 0 JCD) 

···················································• 

X 

- / ----Q = 1 GeV 
- / ---- Q = 5 GeV 

IN 
...-'( - / ---- Q = 10 GeV 

---,..--..._ - / ----Q = 20 GeV 
0 

<N 

--< 

-------
,...-..._ 

0 



Wμνðxbj;Q;zh;PBTÞ¼
X
ij

Hijðμ=Q;μÞμν
Z

d2k1Td2k2Tfi=pðxbj;k1T;μÞDB=jðzh;zhk2T;μÞδð2ÞðqTþk1T−k2TÞþYμνþO
�
m2

Q2

�
;

¼
X
ij

Hijðμ=Q;μÞμν
Z

d2bT
ð2πÞ2e

−iqT·bT f̃i=pðxbj;bT;μÞD̃B=jðzh;bT;μÞþYμνþO
�
m2

Q2

�
;

¼
X
ij

Hijðμ=Q;μÞμν½fi=p;DB=j�þYμνþO
�
m2

Q2

�
: ð63Þ

The form of the first term on the first line is well known
from TMD parton model treatments. The transverse mo-
mentum PBT is with respect to the Breit frame, while the
momenta in the integrand are in the hadron frame. On the
second line, the transverse momentum convolution has
been reexpressed in transverse coordinate space, as is very
common in treatments that implement TMD evolution in
real QCD.We have used the transverse momentum variable

qT ≡ −
PBT

zN
; ð64Þ

which is the hadron frame transverse momentum of the
virtual photon. On the last line we have used a very
standard bracket notation (e.g. [20,30]) for transverse
convolution integrals, especially in the context of hadron
structure. The Yμν is the large-qT correction term to account
for qT ≈Q. The coordinate space correlation functions are

f̃i=pðξ; bT; μÞ ¼
Z

d2kTe−ikT·bTfi=pðξ; kT; μÞ; ð65Þ

D̃q=jðζ; bT; μÞ ¼
Z

d2k2TeikT·bTDq=iðζ; ζkT; μÞ: ð66Þ

Note the factor of ζ multiplying kT in the argument of the
TMD ff. The hard factor is

Hijðμ=Q; μÞμν ¼ zh
2
Tr½γνγþγμγ−�jHðμ=Q; μÞj2ij; ð67Þ

where jHðμ=Q; μÞj2 is a hard vertex factor that in pertur-
bation theory takes the form

jHðμ=Q; μÞj2ij ¼ 1þOðaλðμÞÞ: ð68Þ

The unpolarized quark structure functions follow from
Eq. (12),

Pμν1 Hijðμ=Q;μÞμν ¼H1ðμ=Q;μÞδiqδjq ¼ 2zhjHðμ=Q;μÞj2ij;
Pμν2 Hijðμ=Q;μÞμν ¼H2ðμ=Q;μÞδiqδjq

¼ 4zhxbjjHðμ=Q;μÞj2ij: ð69Þ

The above is general and applies equally to QCD
and to the Yukawa theory. However, the expressions
simplify considerably when we specialize to the low order
Yukawa theory graphs of Fig. 2. Then, there is only one
flavor of struck parton, so we may drop the sums over
flavor indices. Also, there is only one particle flavor that
can appear in the final state, namely the quark. So B ¼ q
and we may drop the sum over B. The TMD ff has the
trivial form in the current region of the W term,

Dðzh; zhkT; μÞ ¼ δð1 − zhÞδð2ÞðzhkTÞ: ð70Þ

Therefore, we may integrate the cross section over zN to
evaluate the δ function at zN ¼ 1. The cross section that we
will consider, therefore, is actually

Z
dzN

dσSIDIS
dxbjdydψdzNd2PBT

; ð71Þ

with zN approximated by zh in Eq. (70), as usual in a
leading power approximation. (The Y term comes with an
analogous δ function in the collinear ff that fixes the value
of zN.) Once Eq. (70) is substituted into the second line of
Eq. (63), two transverse momentum δ functions remain.
Therefore, we may evaluate both the k1T and k2T integrals
and the delta functions fix k2T ¼ 0 and k1T ¼ −qT ¼ PBT.
Finally, for the low order graphs considered here,

Pμν1 Hijðμ=Q; μÞμν → Pμν1 Hμν ¼ H1 ¼
1

2
;

Pμν2 Hijðμ=Q; μÞμν → Pμν2 Hμν ¼ H2 ¼ xbj: ð72Þ

Therefore, Eq. (63) is
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Wμνðxbj;Q;kTÞ

¼Hμνfq=pðxbj;kT;μÞþYμνþO
�
m2

Q2

�
;

¼Hμν

Z
d2bT
ð2πÞ2 e

ikT·bT f̃q=pðxbj;bT;μÞþYμνþO
�
m2

Q2

�
:

ð73Þ

Or,

F1ðxbj; Q; kTÞ ¼
1

2
fq=pðxbj; kT; μÞ þ Y1 þO

�
m2

Q2

�

¼ 1

2

Z
d2bT
ð2πÞ2 e

ikT·bT f̃q=pðxbj; bT; μÞ

þ Y1 þO
�
m2

Q2

�
; ð74Þ

F2ðxbj; Q; kTÞ ¼ xbjfq=pðxbj; kT; μÞ þ Y2 þO
�
m2

Q2

�

¼ xbj

Z
d2bT
ð2πÞ2 e

ikT·bT f̃q=pðxbj; bT; μÞ

þ Y2 þO
�
m2

Q2

�
: ð75Þ

We have used the shorthand kT ¼ PBT ¼ k1T to simplify
notation. The absence of a zN argument on the left sides of
Eqs. (73) and (74) indicates that these are the TMD
observables after the zN integral in Eq. (71). That is, it
is the integral

R
dzN=ð4zNÞ of the SIDIS hadronic tensor.

Is also useful to work other standard linear combinations
of the two structure functions F1 and F2 like the longi-
tudinal unpolarized structure function FL defined below

FLðxbj; kT; QÞ≡
�
1þ 4m2

px2bj
Q2

�
F2ðxbj; kT; QÞ

− 2xbjF1ðxbj; kT; QÞ; ð76Þ

which vanishes in accordance with the Callan-Gross
relation.
Since we have already obtained the TMD pdfs in

Eq. (19) when we set up collinear factorization, explicit
expressions for the W-term structure functions follow
automatically from Eqs. (74) and (75). Indeed, we already
have Eq. (49) for the first term of Eq. (74). For F2, the same
expression applies but multiplied by 2xbj.
For Y1, we need the second term of Eq. (47), which is the

integrand of Eq. (54) minus that of Eq. (57),

Y1 ¼
aλðμÞ
2π

�ð1− xbjÞð1− κðxbjÞÞ
κðxbjÞk2T

−
xbjð2x2bj − 6xbj þ 3Þ
Q2ð1− xbjÞ2κðxbjÞ

�
;

ð77Þ

and for the F2 Y term,

Y2¼
aλðμÞ
π

xbj

�ð1−xbjÞð1−κðxbjÞÞ
κðxbjÞk2T

−
xbjð6x2bj−10xbjþ3Þ
Q2ð1−xbjÞ2κðxbjÞ

�
:

ð78Þ

The plots in Fig. 6 show the interplay between theW and
Y terms in all three structure functions. They show that the
role of the Y term is necessary for describing the large kT
region independently of Q and especially for regions of
higher xbj.
The term in Eq. (55) that is used to form the Y term is an

important ingredient in treatments of transverse momentum
dependence. It is itself expressible as a version of collinear
factorization,

TlargeTsmallF1ðxbj; Q; kTÞ

¼ FASY
1 ðxbj; Q; kTÞ ¼

aλðμÞ
2π

ð1 − xbjÞ
k2T

¼
X
j

CF1

q=jðkTÞ ⊗ fj=p; ð79Þ

where CF1

q=jðkTÞ is a hard coefficient that depends on kT. In
Eq. (55), it is only the zeroth order p-in-p pdf from Eq. (22)
that enters, so the factorization is rather trivial. In the
literature on transverse momentum in QCD, it is often
called the “asymptotic term” because it describes the limit
where qT=Q is a small but fixed ratio and Q → ∞, so we
label it with an ASY superscript. Of course, the TMD pdf
has its own asymptotic term, which we can read off from
Eqs. (74) and (75),

fASYq=p ðxbj; kT; μÞ ¼
X
j

C
fq=p
q=j ðkTÞ ⊗ fj=p ¼ aλðμÞ

π

ð1 − xbjÞ
k2T

:

ð80Þ

The longitudinal TMD structure function FLðxbj; kT; QÞ
is subleading at small kT relative to F2 and F1, so its
dominant contribution is from the large kT region. Thus, it
is mostly described by its Y-term contribution. In the TMD
factorized version of the hadronic structure tensor, a non-
zero W-term contribution only arises from the subleading
mass term in the projector in Eq. (76),

FW
L ðxbj; kT; QÞ ¼ 4

m2
px2bj
Q2

FW
2 ðxbj; kT; QÞ; ð81Þ
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while

FW
2 ðxbj; kT; QÞ − 2xbjFW

1 ðxbj; kT; QÞ ¼ 0; ð82Þ

in line with the Callan-Gross relation in the naive parton
model picture.

Another way to illustrate the importance of both
the W and Y terms in factorization is to consider
how each contributes in the reduction to standard
collinear factorization when integrating over all qT to
get the standard integrated structure functions F1ðxbj; QÞ
and F2ðxbj; QÞ.
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FIG. 6. The TMD structure functions F1ðxbj; kT; QÞ (a) and (b), F2ðxbj; kT; QÞ (c) and (d), and their linear combination FLðxbj; kT; QÞ
(e) and (f) as defined in Eq. (76) are shown for a specific value of xbj ¼ 0.65 (left) and xbj ¼ 0.1 (right). The dotted yellow and green
curves show the contributions of the W and Y terms, respectively, while their sum (dashed blue curve), defined in Eqs. (74) and (75),
approximates the unfactorized (solid red) curve. The dashed gray line indicates the maximum kT that is kinematically allowed in the
exact theory. The choice of the masses is still mp ¼ ms ¼ 1 GeV and mq ¼ 0.3 GeV with a hard scale of Q ¼ 20 GeV.
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Past phenomenological approaches to TMD factoriza-
tion, particularly in the context of hadron structure studies,
ignore the role of the Y term. Thus, instead ofZ

dzNd2PBT

4zN
F1;2ðxbj; Q2; zh;PBTÞ ¼ F1;2ðxbj; Q2Þ; ð83Þ

one usesZ
dzNd2PBT

4zN
FW
1;2ðxbj; Q2; zh;PBTÞ ¼?? F1;2ðxbj; Q2Þ; ð84Þ

where the “??” on the equal sign is to emphasize
that this is a type of conjectured approximation. This
makes manipulating integrals of TMD functions very
simple. Equation (63) for a specific structure function is

F1;2ðxbj; Q; zh;PBTÞ

¼
X
ij

F̂ij
1;2

Z
d2k1Td2k2Tfi=pðxbj; k1TÞ

×DB=jðzh; zhk2TÞδð2ÞðqT þ k1T − k2TÞ; ð85Þ

where F̂ij
1;2 is the result of projecting with Eq. (12) on Hμν.

[Since Eq. (85) is a simplified parton model version of the
factorization theorem, we have dropped dependence on
auxiliary variables like μ in the pdf and ff.] Integrating as in
Eq. (84) and evaluating the δ functions gives

F1;2ðxbj; Q2Þ ¼?? 1

4

X
ij

F̂ij
1;2

�Z
d2k1Tfi=pðxbj; k1TÞ

�

×

�Z
dzh

Z
d2k2TzhDB=jðzh; zhk2TÞ

�
;

ð86Þ

where we have used zN ≈ zh. Then, using the parton model
relations Z

d2k1Tfi=pðxbj; k1TÞ ¼?? fi=pðxbjÞ; ð87Þ
Z

dzh

Z
d2k2TzhDB=jðzh; zhk2TÞ ¼?? 1 ð88Þ

gives the naive parton model expectation,

F1;2ðxbj; Q2Þ¼?? 1
4

X
ij

F̂ij
1;2fi=pðxbjÞ: ð89Þ

See Eqs. (59) and (60) of [31] for an example of an
application of the approximations in Eqs. (84)–(89). The
question marks over the equal signs in Eqs. (87) and (88)
are a reminder that in theories that require renormalization,

like QCD and the Yukawa theory, the integrals are UV
divergent. The equalities are only strictly valid in a literal
probability interpretation for the pdf and ff. The appearance
of UV divergences is an artifact of integrating transverse
momentum outside the region where the small transverse
momentum approximations hold. In other words, they
come from neglecting the Y term. Because they are in
line with expectations from a naive parton model, but
extended to TMD functions [32], the set of approximations
conjectured in Eqs. (84)–(89) are sometimes called the
GPM [33,34]. It continues to be common for the GPM and
its extensions to be used in applications to hadron structure
phenomenology. See, for example, Refs. [35–37] and more
recently Refs. [38,39]. One may examine the typical size of
the effect of the GPM approximation in the special case of
the Yukawa theory of Sec. III by using the above results
of this section. Then, Eq. (84) is simply what is obtained
from the W term when integrating Eqs. (74) and (75) over
all kinematically accessible transverse momentum to get
the full integrated cross section. Doing this integral gives

F1;2ðxbj;Q;μÞ¼FW
1;2ðxbj;Q;μÞþFY

1;2ðxbj;Q;μÞþO
�
m2

Q2

�
;

ð90Þ

where

FW
1;2ðxbj; Q; μÞ≡H1;2fcðxbj; μ; kc ¼ kmÞ; ð91Þ

FY
1;2ðxbj; Q; μÞ≡ π

Z
k2m

0

dk21TY1;2: ð92Þ

Equation (91) is just Eq. (89) specialized to the Yukawa
theory example and using the cutoff definition of the
collinear pdf from Eq. (34). The full collinear factorization
result in Eqs. (60) and (61) is the result of dropping the
power-suppressed terms in Eq. (90),

FFull Fact
1;2 ðxbj; Q; μÞ ¼ FW

1;2ðxbj; Q; μÞ þ FY
1;2ðxbj; Q; μÞ;

ð93Þ

while the GPM approximation of Eq. (84) is recovered if
we drop both the Oðm2

Q2Þ and the Y term FY
1;2ðxbj; Q; μÞ,

FGPM
1;2 ðxbj; Q; μÞ ¼ FW

1;2ðxbj; Q; μÞ: ð94Þ

The validity of the GPM, as compared with with full
factorization, can be tested by looking at the relative
contributions from FW

1;2ðxbj; Q; μÞ, FY
1;2ðxbj; Q; μÞ, and F1;2.

Examples, are shown in Figs. 7 and 8.
The statement that the W term yields the most contri-

bution would imply its ratio with the unfactorized expres-
sion to be in the neighborhood of 1 independently of xbj for
sufficiently large Q. In our examples in Fig. 7, where the
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hard scale has already been fixed to a value much larger
than the other nonperturbative mass scales, only the sum
of bothW and Y terms well approximates the unfactorized
structure functions while the small transverse momentum
contribution is very rapidly dominated by its large trans-
verse momentum counterpart already at xbj ∼ 0.5 for F1

and even earlier for F2. Similarly, in Fig. 8, the relative
contributions for fixed xbj over an extended range of Q are
shown to satisfy the factorization statement only when
both of them are accounted for. In fact, for relatively small
xbj the small transverse momentum contribution is
still a relatively good approximation to the full unapproxi-
mated F1, although less so for F2, which already
suffers from the neglected Y-term contribution, as it is
evident in the example with xbj ¼ 0.3 even at extremely
large hard scales. However, for increasingly larger xbj the
situation degrades even more rapidly and only the correct
prescription is able to approximate the unfactorized
expressions.
Finally, another topic of recent interest in TMD phe-

nomenology is the role of subleading power corrections to
the W term within QCD (see for example [40–42]). The
aim of these efforts is to improve precision by retaining
explicit subleading terms. In the Yukawa model one can
readily calculate the subleading terms explicitly by
expanding the full expression of the unfactorized TMD
structure functions shown in Fig. 6, and thereby examine
the numerical effect of nonleading qT=Q terms. We show
this in Fig. 9. Note that theW þ Y description provides an
excellent description of the full cross section, as expected

given the power counting, which guarantees accuracy up
to m2=Q2 point by point in qT. At moderate qT=Q,
retaining extra subleading powers in the W term does
indeed push the low qT approximations closer to the
true cross section. Of course, above a certain qT=Q the
power expansion fails and the full W þ Y is needed.
We emphasize again that the numerical values of sub-
leading corrections depends on the underlying theory,
and the detailed picture could be quite different in
QCD. Nonetheless, the trend is illuminating as regards
the relative contribution of subleading effects and the
Y term.

VII. THE INPUT SCALE Q0

The steps required to construct both the collinear and
TMD factorization expressions in the previous two sections
relied on expansions in m2=Q2, so the factorized expres-
sions are useful approximations only whenQ is sufficiently
large compared with intrinsic mass scales. Below some
value, the justification for any truncation in powers ofm=Q
fails. Therefore, applications of factorization generally
require one to specify a (possibly xbj dependent) minimum
Q ¼ Q0 below which the expansion is no longer trusted.
Typically, one tries to choose Q0 to be as small as can be
reasonably justified so as to maximally exploit factorization
techniques over the widest possible kinematical range.
Sometimes, this is achieved by including parametrizations
of subleading power behavior [43,44]. In standard treat-
ments of DIS, a typical Q0 is usually between approx-
imately 1 and 4 GeVs.
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FIG. 7. Comparison between small and large transverse momentum contributions to the collinear structure functions F1 and F2. The
ratios of the W and Y terms against the unfactorized structure functions F1 and F2 are shown for two values of the hard scale
Q ¼ 20 GeV (a) and Q ¼ 200 GeV (b). The dashed lines show the better approximation given by their sum for both F1 (dashed red)
and F2 (dashed blue).
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The sample curves from the Yukawa theory shown in
Fig. 4 demonstrate the limited validity of the factorization
method as Q decreases. With the values of mq, ms, and mp
chosen in those figures, the choice of Q0 should be no
smaller than around 1 GeV, although for small xbj is appears
to be possible to push Q0 lower.3

Notice that it is the only size of the external kinematical
variables Q and xbj relative to the intrinsic that determines

the level of agreement between the unfactorized and
factorized expressions. If we neglect the running of the
parameters, then there is no dependence at all upon the
auxiliary parameter μ [see Eq. (59) and Fig. 5]. In QCD,
that arbitrariness in the choice of renormalization scale is
exploited to minimize the size of higher order errors.
One way to introduce an extra adjustable parameter in a

way that might allow the factorized expression to be
improved along the lines of [43,44], for at least some
regions of kinematics, is to switch out the MS renormalized
definition for the pdf with the cutoff definition in Eq. (34).
The new parameter this introduces is the cutoff scale kc,
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FIG. 8. The solid lines represent the ratios of the W and Y terms of the unpolarized structure functions F1 and F2 against their
unfactorized expression for a wide range of the hard scaleQ. The dashed lines show their sum which is compared with the dashed black
line representing unity. The four figures share the same choice of the masses but each one of them represents the ratios taken at a
different xbj.

3The reason is that the errors in the power expansion go like
xbjm2=Q2 at small xbj, at least for these low order graphs.
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and one may attempt to adjust this to extend agreement
between the factorized and unfactorized expressions to
smaller Q.
For a generic unfactorized structure function F, the

percent errors introduced by factorization are

δFMS≡
����F − FMS

F

���� · 100; δFc≡
����F − Fc

F

���� · 100; ð95Þ

where the c and MS superscripts indicate if it is the MS or
the cutoff definitions of the collinear pdfs that are used in
the calculation. While kc ≈ μ is the natural choice in the
latter case, the size of δFc depends on the exact value of
the cutoff. Interesting scenarios are those where one can

find a kc such that δFc < δFMS for at least some range of
kinematics. Whether this is possible depends on the details
of the long-range dynamics of the specific theory like the
size of the intrinsic mass scales. However, it is interesting to
investigate how difficult it is to construct examples.
One example in the Yukawa theory is shown in Fig. 10.
The figure compares the result of using two definitions of
the collinear pdf by considering the disagreement with the
unfactorized F1 at a hard scale Q ¼ 2.5 GeV. The dotted
yellow curve is with the standard MS collinear pdf while
the dotted green curve is with the cutoff definition from
Eq. (35). Note that the largest mass is the “spectator mass”
ms ¼ 2 GeV and it has been modified from the previous
examples to introduce larger ∼m=Q errors at large xbj.
Along with the unfactorized and factorized versions of F1,
we plot the percent error defined as

%err≡
����F − Fr

F

���� · 100; ð96Þ
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FIG. 9. Comparison between suppressed power corrections in a ∼1=Q expansion and the W þ Y prescription. The W term (dashed
orange) is complemented with its next-to-leading power (NLP) (dashed red) and next-to-next-to-leading power (NNLP) (dashed green)
power suppressed contributions and compared against its W þ Y (dot-dashed blue) equivalent. The results are shown as ratios with
respect to the unfactorized TMD structure functions F1 (left) and F2 (right). The same numerical values for the mass parameters have
been adopted as in the previous plots while a hard scale of Q ¼ 50 GeV has been chosen along with xbj ¼ 0.65.
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FIG. 10. The factorized structure function F1 is shown in its
MS (dotted yellow) and cutoff (dotted green) versions compared
against its unfactorized (solid red) expression. The chosen
functional form of the cutoff reads kcðxbjÞ ¼ −35.9678þ
5.68514xbj þ 35.0979eðxbj−xmaxÞ2 . Its explicit expression corre-
sponds to a trial parametrization whose coefficients have been
found by fitting the solutions to jF1ðxbj; QÞ − Fc

1ðxbj; kc; QÞj ¼
0, i.e. the difference between the cutoff-factorized and unfactor-
ized structure function. Here the masses have been chosen
to be mp ¼ 1 GeV, ms ¼ 2 GeV, and mq ¼ 0.3 GeV with a
hard scale Q ¼ 2.5 GeV.
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where in the case of those examples it is F ¼ F1 and the
subscript r is a placeholder for the choices of the UV
scheme. In this particular example, it appears that the use of
a cutoff scheme reduces the error relative to the MS scheme
in the large xbj region. To relate the cutoff kc to external
kinematics, we try the following form,

kcðxbj; QÞ ¼ Q
Q0

ðaþ bxbj þ ceðx−xmaxÞ2=d2Þ; ð97Þ

and tune the parameters a, b, c, and d to improve agreement
with the exact F1 at Q ≈Q0. The plot in Fig. 10 is for the
caseQ0 ¼ 2.5 GeV. The form of the cutoff is quite ad hoc,
but the exercise shows that it is in principle possible to use a
pdf definition that extends the range of agreement between
the factorized expressions and the unapproximated struc-
ture functions. Of course, any such improvement is only
possible when Q is not especially large, i.e. near Q0. For

large Q, both δFMS and δFc vanish like a power of m=Q.
Using the cutoff definition for the pdf has the effect of
including power corrections to the standards renormalized.
It is worth noting that phenomenological treatments of pdfs
in real QCD at moderate Q frequently do parametrize such
“higher twist” contributions in pdf extractions [43,44].

VIII. WORKING IN TRANSVERSE
COORDINATE SPACE

To further extend the analogy with TMD factorization as
it is used in QCD, we now consider the W terms in
Eqs. (74) and (75), but in transverse coordinate space,

FW
1 ðxbj;Q;qTÞ¼

1

2

Z
d2bT
ð2πÞ2 e

−iqT·bT f̃q=pðxbj;bT;μÞ;

FW
2 ðxbj;Q;qTÞ¼ xbj

Z
d2bT
ð2πÞ2 e

−iqT·bT f̃q=pðxbj;bT;μÞ: ð98Þ

In the low order Yukawa theory, we can write down the
explicit transverse coordinate space version of the quark
TMD pdf in terms of Bessel functions. It is

f̃q=pðξ; bT; μÞ

¼ 2aλðμÞð1 − ξÞ
Z

dkTkT
k2T þ χ2ðξÞ

½k2T þ ΔðξÞ2�2 J0ðbTkTÞ;

¼ 2aλðμÞð1 − ξÞ
�
K0ðbTΔðξÞÞ −

bT½ΔðξÞ2 − χðξÞ2�
2ΔðξÞ

× K1ðbTΔðξÞÞ
�
: ð99Þ

A sample of the bT-space TMD pdfs is shown in Fig. 11 for
several values of the momentum fraction ξ. The coordinate
space TMD pdf satisfies an operator product expansion
(OPE) in the limit of small bT,

f̃q=pðxbj; bT; μÞ

¼
X
j

Z
1

xbj

dξ
ξ
C̃q=jðxbj=ξ; bT; μÞf̃j=pðξ; μÞ þOðm2b2TÞ;

ð100Þ
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FIG. 11. The coordinate space quark TMD pdf for several values of momentum fraction ξ. Mass scales are (a) mq ¼ 0.3 GeV,
mp ¼ 1.0 GeV, and ms ¼ 1.0 GeV; (b) mq ¼ 0.3 GeV, mp ¼ 1.0 GeV, and ms ¼ 1.5 GeV. Plots with this general shape are familiar
from work with the CSS formalism (see Fig. 4 of [45]).
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C̃q=jðx̂;bT;μÞ

¼ δð1− x̂Þδjq−aλðμÞð1− x̂Þ ln
�
μ2b2Te

2γE

4

�
δjpþ�� � :

ð101Þ

There is a term for Cq=s as well, but it does not contribute at
the order of the graphs in Fig. 2, so we do not write it here
explicitly. See Appendix B for a discussion of these
formulas. Thus,

f̃q=pðxbj; bT; μÞ

¼ fq=pðxbj; μÞ − aλðμÞð1 − xbjÞ ln
�
μ2b2Te

2γE

4

�
þ � � �

þOðm2b2TÞ;
¼ f̃OPEq=p ðxbj; bT; μÞ þOðm2b2TÞ; ð102Þ

where fq=pðxbj; μÞ is the OðaλðμÞÞ quark-in-hadron collin-
ear pdf from Eq. (23) and the second term uses Eq. (22). We
will call the approximation wherein the Oðm2b2TÞ terms in
Eq. (102) are dropped f̃OPEq=p ðxbj; bT; μÞ. Figure 12 compares
the OPE approximation with the unapproximated calcu-
lation in Eq. (99), and confirms that the two agree in the
small bT limit where the Oðm2b2TÞ contributions are
negligible. In the bT → ∞IR limit, the OPE calculation
has a (negative) divergence.
In QCD versions of this, one is motivated to isolate the

contributions from the small bT region, which is insensitive
to soft, large-distance mass scales, from the m-dependent
large bT contributions. Then the small bT part can be

calculated perturbatively in QCD using the OPE and
collinear factorization. If the remaining large bT contribu-
tion is sequestered from the perturbative part, it can be
treated as a universal nonperturbative contribution and
parametrized phenomenologically.
A standard scheme [46] for separating out the

m-dependent portion of the TMD pdf (what would be
the nonperturbative part in QCD) is the “b� method.” There,
one demarcates the regions of large and small bT by
replacing bT with a different transverse coordinate variable
b� with the property that

b�ðbTÞ ¼
�
bT bT ≪ bmax

bmax bT ≫ bmax
; ð103Þ

where bmax is a transverse size that is chosen to demarcate
the boundary between what are considered large and small
transverse coordinate regions. The most commonly used
functional form is

b�ðbTÞ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

p : ð104Þ

The only requirement on bmax is that it should be small
enough that bT ≲ bmax contributions to the W term are
small enough that the Oðm2b2TÞ in Eq. (102) are negligible.
Since the evolution factor in Eq. (33) is bT independent, we
can write
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FIG. 12. The unfactorized coordinate space quark TMD pdf and f̃OPEq=p ðxbj; bT; μÞ for xbj ¼ 0.2.The green line shows the approximate
maximum allowable value of bmax. Any value of bmax smaller than this approximate maximum allowable value is justified.
(a) mq ¼ 0.3 GeV, mp ¼ 1.0 GeV, ms ¼ 1.0 GeV, and bmax ≲ 1.5 GeV−1; (b) mq ¼ 0.3 GeV, mp ¼ 1.0 GeV, ms ¼ 1.5 GeV, and
bmax ≲ 0.25 GeV−1.
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f̃q=pðxbj; bT; μÞ ¼ f̃q=pðxbj; b�; μÞ
f̃q=pðxbj; bT; μÞ
f̃q=pðxbj; b�; μÞ

¼ f̃q=pðxbj; b�; μÞ expf−gq=pðxbj; bTÞg;
ð105Þ

and the function we have defined as

gq=pðxbj; bTÞ≡ − ln

�
f̃q=pðxbj; bT; μÞ
f̃q=pðxbj; b�; μÞ

�
ð106Þ

will be exactly scale independent because the μ dependence
is an overall bT-independent factor. Equation (99) sub-
stituted in Eq. (106) gives the explicit gq=pðxbj; bTÞ for the
Yukawa theory example. Note carefully that gq=pðxbj; bTÞ
depends on the detailed choice of b� and the value of bmax.
If bmax is small compared to ∼1=m, then we can use the

OPE approximation and write

f̃q=pðxbj; bT; μÞ ¼ f̃OPEq=p ðxbj; b�; μÞ
× expf−gq=pðxbj; bTÞg þOðm2b2maxÞ;

ð107Þ

and, if bmax is small enough, we can just drop the
Oðm2b2maxÞ errors. The maximum allowable bmax before
which the Oðm2b2maxÞ errors start to be important depends,
of course, on the “nonperturbative” scales like the masses
in Eq. (16). Comparing Figs. 12(a) and 12(b) shows that the
bmax dependence on those masses is quite strong.
In applications to QCD at high energies, it is often the

hope that expressions analogous to Eq. (107) can be used to
exploit the OPE part f̃OPEq=p ðxbj; b�; μÞ for the widest possible
range of bT, thereby minimizing the importance of the
m-dependent gq=pðxbj; bTÞ functions and maximally
exploiting the predictive power in collinear pdfs with

collinear factorization alone. Thus, one chooses bmax to
be as large as possible while still guaranteeing that it is
reasonably justified to drop the powers of m2b2max in
Eq. (107). In earlier sections, we defined Q0 to be the
scale below which it is no longer justified to neglect powers
of m=Q0, so we should set

bmax ≈ 1=Q0: ð108Þ

In analogous situations in QCD, the strategy would be to
minimize contributions from higher orders in the hard part
of the OPE of Eq. (101) as bT → 0 in the f̃q=pðxbj; b�; μÞ
factor of Eq. (105), so that f̃OPEq=p ðxbj; b�; μÞ ≈ fq=pðxbj; μÞ up
to a fixed number of calculable higher orders. To this end,
one chooses the scale μ to be order 1=b�. Let us thus define

μb� ¼ b0=b�; ð109Þ

where b0 ≡ 2e−γE . Using μb� in Eq. (101) eliminates the
logarithmic term in Eq. (102) (or, rather, moves it into the
collinear pdf). In QCD factorization, however, calculations
of the overall cross sections require μ ∼Q. Therefore, there
are two steps to the scale setting. In the Yukawa theory
example, we first apply the TMD evolution equation
[Eqs. (30)–(33)] and write

f̃q=pðxbj; b�; μÞ ¼ f̃q=pðxbj; b�; μb�Þ

× exp

�
−2

Z
μ

μb�

dμ0

μ0
γ2ðaλðμ0ÞÞ

�
; ð110Þ

to relate a generic scale μ to the choice μ ¼ μb� . Then,
substituting Eq. (110) into Eq. (105), repeating the step of
approximating with the OPE, and finally setting μ ¼ Q
gives

f̃q=pðxbj; bT;QÞ ¼ f̃q=pðxbj; b�; μb�Þ exp
�
−2

Z
Q

μb�

dμ
μ
γ2ðaλðμÞÞ − gq=pðxbj; bTÞ

�
;

¼ f̃OPEq=p ðxbj; b�; μb�Þ exp
�
−2

Z
Q

μb�

dμ
μ
γ2ðaλðμÞÞ − gq=pðxbj; bTÞ

�
þOðm2b2maxÞ: ð111Þ

From its definition in Eq. (106), gq=pðxbj; bTÞ vanishes like a power of b2T as bT → 0. Therefore, it mainly affects the low
transverse momentum behavior. Dropping the errors on the second line of Eq. (111) gives an approximation reminiscent to
what is done in QCD,

f̃Evolq=p ðxbj; bT;QÞ≡ f̃OPEq=p ðxbj; b�; μb� Þ exp
�
−2

Z
Q

μb�

dμ
μ
γ2ðaλðμÞÞ − gq=pðxbj; bTÞ

�
: ð112Þ

The “Evol” superscript here marks this as another approximation to the exact operator definition of the
TMD pdf in Eq. (27). It indicates that this is the “evolved” bT-space TMD pdf after the OPE is applied and the error
terms in Eq. (111) are dropped. Compare this form of the TMD pdf to Eq. (33) of Ref. [47]. Thus,
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f̃q=pðxbj; bT;QÞ ¼ f̃Evolq=p ðxbj; bT;QÞ þOðm2b2maxÞ: ð113Þ

Hence, the standard separation of a TMD pdf into an OPE
part and an exponential of g functions is accurate in the
limit that the arbitrary bmax is chosen to be very small.
Notice that

f̃Evolq=p ðxbj;bT;QÞ¼ fq=pðxbj;μb� Þ
×expf−gq=pðxbj;bTÞgþOða2λ ;m2b2maxÞ:

ð114Þ

If we restrict consideration to the graphs in Fig. 2, as
we do throughout this paper, then f̃Evolq=p ðxbj; bT;QÞ is just
fq=pðxbj; μb�Þ exp f−gq=pðxbj; bTÞg. We will use this
approximation in all figures below.
Transforming theW terms in the Yukawa theory example

of Eqs. (74) and (75) into coordinate space allows them to
be reexpressed in terms of f̃Evolq=p ðxbj; bT;QÞ,

F̃1ðxbj;Q;bTÞ¼
1

2
f̃q=pðxbj;bT;QÞþ Ỹ1þO

�
m2

Q2

�

¼ 1

2
f̃Evolq=p ðxbj;bT;QÞþ Ỹ1þO

�
m2

Q2

�
; ð115Þ

F̃2ðxbj; Q; bTÞ ¼ xbjf̃q=pðxbj; bT;QÞ þ Ỹ2 þO
�
m2

Q2

�

¼ xbjf̃
Evol
q=p ðxbj; bT;QÞ þ Ỹ2 þO

�
m2

Q2

�
:

ð116Þ

Restricting to the graphs in Fig. 2, we may examine
the effect of a nonzero bmax. Figure 13 compares
f̃Evolq=p ðxbj; bT;QÞ for several values of bmax with the original

unapproximated f̃q=pðξ; bT; μÞ of Eq. (99). The deviation of
the f̃Evolq=p ðxbj; bT;QÞ curves from the unapproximated curve
is a measure of the error induced by neglecting the
Oðm2b2TÞ terms in Eq. (111). For any set of intrinsic mass
scales, there exists a value of bmax below which the curves
are no longer distinguishable by eye. We can, for instance,
identify bmax ≲ 1.5 GeV−1 and bmax ≲ 0.25 GeV−1 for the
case with ms ¼ 1 GeV and ms ¼ 1.5 GeV, respectively. In
each case, the Oðm2b2maxÞ terms in Eq. (107) are negligible
so long as bmax is chosen to be smaller than these values.
Figure 13 also shows that once bmax is made acceptably
small, the bmax dependence in f̃Evolq=p ðxbj; bT;QÞ vanishes:

d
dbmax

f̃Evolq=p ðxbj; bT;QÞ → 0: ð117Þ

When bmax is small, changing it amounts to simply trans-
ferring m-independent contributions between the first
(OPE) factor and the second (“nonperturbaive” e−g) factor
in Eq. (107). A significant bmax dependence indicates either
that bmax is too large or that the model of gq=pðxbj; bTÞ is not
complete in the small bT region. In a theory, like QCD,
where explicit calculations over large time and distance
scales are nontrivial, Eq. (117) is the appropriate criterion
for checking if bmax is sufficiently small. For an example,
see Sec. IX of [48].

While the steps above are not helpful for calculating in
the specific case of the Yukawa theory, they are nonetheless
very useful for illustrating how the procedure works.
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FIG. 13. The unfactorized coordinate space quark TMD pdf and the coordinate space quark TMD pdf f̃Evolq=p ðxbj; bT;QÞ for several
values of bmax. The mass scales are (a) mq ¼ 0.3 GeV, mp ¼ 1.0 GeV, and ms ¼ 1.0 GeV; (b) mq ¼ 0.3 GeV, mp ¼ 1.0 GeV, and
ms ¼ 1.5 GeV. (Note the change in the horizontal axis.)
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Equation (112) with Eqs. (115) and (116) is analogous to
the way cross sections in QCD are often expressed when
one uses the CSS or similar formalisms in bT space. As just
emphasized, the b� strategy for isolating m-dependent
(“nonperturbative”) and massless OPE (“perturbative”)
contributions in the two separate factors of Eq. (105) is
only reliable if bmax is chosen small enough that it is
justfiable to neglect the Oðm2b2TÞ terms in Eq. (111).
In QCD, the functions that correspond to gq=pðxbj; bTÞ

contain information about the large distance physics, so
they are nonperturbative. In phenomenology, see for
instance Refs. [49–53], the usual strategy is to replace
them with Ansatz parametrizations that are fit to exper-
imental data.4 In the Yukawa theory example, we know the
explicit expression for gq=pðxbj; bTÞ through Eqs. (99) and
(106), so it is possible to directly examine the effect of
replacing it with an Ansatz approximation. Typical para-
metrizations of gq=pðxbj; bTÞ are linear or quadratic in bT:

gq=pðxbj; bTÞ ≈ g1bT or gq=pðxbj; bTÞ ≈ g1b2T: ð118Þ

In the Yukawa theory, one expects correlation functions to
vary roughly like ∼e−mbT=bT over large distances, and this
is reflected in the approximately linear behavior of
gq=pðxbj; bTÞ at large bT, in agreement with Refs. [56,57].
To ensure that the “perturbative” and “nonperturbative”

contributions are completely separated, we use bmax ¼
1.5 GeV−1 (for ms ¼ 1 GeV) and bmax ¼ 0.25 GeV−1 (for

ms ¼ 1.5 GeV), in accordance with the observations
of Fig. 13.
With an appropriately chosen g1, the linear Ansatz

can be made to give reasonable agreement with the true
gq=pðxbj; bTÞ over a wide range of bT, but it produces
significant errors in the tail region in transverse momen-
tum space. The quadratic Ansatz can also be made to
reproduce the qualitative behavior at large qT, but overall
it performs much worse than the linear Ansatz. This is
shown in Fig. 14 for two sets of values for masses. The
corresponding coordinate space TMD pdfs are shown
in Fig. 15.
Figure 16 shows the linear and quadratic versions of

gq=pðxbj; bTÞ that were used to obtain the f̃Evolq=p ðxbj; bT;QÞ
approximations in Figs. 14 and 15, compared with the true
gq=pðxbj; bTÞ obtained directly from Eqs. (99) and (106).
By increasing bmax well above 0.25 GeV−1 in the right-

hand panel of Fig. 14, it is possible to improve the matching
between f̃Evolq=p ðxbj; bT;QÞ and the true f̃q=pðxbj; bT;QÞ
while continuing to use linear and/or quadratic Ansätze.
However, when the Oðm2b2maxÞ errors in Eq. (111) are no
longer negligible, and the clear separation between a large-
bT region and a small-bT region fails. Thus, while it may be
tempting, in applications, to fit f̃Evolq=p ðxbj; bT;QÞ by using a
large bmax as a parameter, doing so undermines the original
motivation for the steps leading from Eqs. (100) to (112).
Specifically, f̃OPEq=p ðxbj; b�; μb� Þ is no longer an accurate

approximation to f̃q=pðxbj;b�; μb� Þ. The quality of such a
fit is just an artifact of the choice of bmax and b�, and not a
successful application of the OPE (see also, for instance,
discussions after Fig. 5 in Ref. [58]). It is preferable,
therefore, to keep bmax small and instead refine the

FIG. 14. The original unfactorized TMD pdf from Eq. (29) (solid red line) compared with the TMD pdfs in the f̃Evolq=p ðxbj; bT;QÞ
approximation from Eq. (112) and using the Ansätze in Eq. (118). These curves are the Fourier transforms of those in Fig. 15. In plot (a),
mp ¼ ms ¼ 1 GeV, mq ¼ 0.3 GeV with g1 ¼ 0.3 GeV for the linear case and g1 ¼ 0.1 GeV2 for the quadratic case. In plot (b),
mp ¼ 1 GeV, mq ¼ 0.3 GeV, and ms ¼ 1.5 GeV with g1 ¼ 1 GeV for the linear Ansatz and g1 ¼ 0.25 GeV2 for the quadratic case.

4Although there are rapidly improving lattice based methods
for calculating them. See for instance Refs. [54,55] and refer-
ences therein.
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parametrization of gq=pðxbj; bTÞ in a way that ensures that it
interpolates smoothly into the small-bT region.
In a literal parton model where the pdfs are exactly

number densities, the TMD and collinear pdfs are related
through the integral,

π

Z
∞

0

dk2Tfq=pðξ; kTÞ ¼ fq=pðξÞ: ð119Þ

As exact relations, integrals like these fail in theories that
require renormalization like QCD and the Yukawa toy
theory because the integral over k2T is UV divergent. After
the integral is regulated, Eq. (119) only holds in general in
an approximate sense. We saw an example of this with the

cutoff definition of the collinear pdf in Eq. (34); the integral
of the TMD pdf over k2T up to a cutoff k2c only equaled the
standard MS pdf up to subleading power corrections.
It is straightforward to recover the approximate collinear-

TMD pdf correspondence of Eq. (119) in the coordinate
space treatment of the TMD pdf and the f̃Evolq=p ðxbj; bT;QÞ
approximation, but by regulating the small-bT rather than
the large kT behavior. First, one writes the Fourier trans-
form of f̃Evolq=p ðx; bT;QÞ back to transverse momentum
space,

fEvolq=p ðx;kT;QÞ¼ 1

ð2πÞ2
Z

d2bTeikTbT f̃
Evol
q=p ðx;bT;QÞ: ð120Þ

FIG. 15. The TMD pdfs of Fig. 14 before the Fourier transform into momentum space. In (a), the chosen mass scales are
mq ¼ 0.3 GeV, mp ¼ ms ¼ 1.0 GeV. The gq=pðxbj; bTÞ function uses bmax ¼ 1.5 GeV−1 while g1 ¼ 0.3 GeV (linear Ansatz) and
g1 ¼ 0.1 GeV2 (quadradtic Ansatz). In (b),mq ¼ 0.3 GeV,mp ¼ 1.0 GeV, andms ¼ 1.5 GeV. The gq=pðxbj; bTÞ function uses bmax ¼
0.25 GeV−1 while g1 ¼ 1 GeV (linear Ansatz) and g1 ¼ 0.25 GeV2 (quadradtic Ansatz).

FIG. 16. Plots of the g functions used to obtain Figs. 15(a) and 15(b). The solid blue curves are the exact gðxbj; bTÞ from Eq. (106).

F. ASLAN et al. PHYS. REV. D 107, 074031 (2023)

074031-26

.., 
I > 002 
Cl) 

0 .____, 
N 

.:::'.:_ 0.015 
,--._ 

C)> 

.k 0.01 

2.5 

,--._ 

H 
..c 1.5 

. ...., 

.c 

~ 
,;,., 

--- 1 
"" c:,-, 

0.5 

0 
0 

.. 

- Unfactorized 

I 

I 

- True 9qfp(Xbj, bT) 
- Linear Ansatz 
- Quadratic Ansatz 

I 

I 

\ 

10 

- True 9q/p(Xbj, bT) 
- Linear Ansatz 
- Quadratic Ansatz 

.. .. 
.. 
0.5 1.5 2.5 

br (Gev- 1) 

(a) 

20 25 

I 
I 

I 
I 

I ,, .. 

3.5 4.5 

0.018 

.., 0.016 I' 
I I \ > 0.014 \ Cl) 

0 \ .____, 
O.D12 

N 

--< I 

--------
,--._ O.D1 I \ 
C)> 

I \ 

- Unfactorized 
- - True 9qfp(xbj, bT) 
- - Linear Ansatz 

.k 0.008 \ - - Quadratic Ansatz 
\ 

~ 0.006 \ 
~ 

..£::. 0.004 ·~ h 
0.002 ..0 

30 10 

I 
I 

- True 9q/p(Xbj, bT) 
,--._ - - Linear Ansatz 

H 4 ..c ....... Quadratic Ansatz .. ....., 
.c 

~3 
,;,., 

---"" c:,-, 

0 
0 0.5 1.5 3.5 4.5 



The divergence that comes from integrating over all
transverse momentum now appears as the divergence at
bT ¼ 0 in the integrand of Eq. (120). To regulate it, one
may replace bT inside f̃q=pðx; bT;QÞ with a function that
levels off at a constant lower bound bmin as bT → 0. An
example is [59],

bcðbTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2T þ b2min

q
; ð121Þ

but any well-behaved interpolating function is
acceptable. Replacing f̃Evolq=p ðx; bT;QÞ in Eq. (120) by

f̃Evolq=p ðx; bcðbTÞ;QÞ and integrating over all transverse
momentum gives

π

Z
∞

0

dk2Tf
Evol
q=p ðxbj;kT;QÞ→ f̃Evolq=p ðxbj;bmin;QÞ

¼ fq=pðxbj;b0=b�ðbminÞÞ

×exp

�
−2

Z
Q

b0=b�ðbminÞ

dμ
μ
γ2ðaλðμÞÞ−gq=pðxbj;bminÞ

�
;

¼ fq=pðxbj;b0=bminÞþO
�
b2min

b2max
;m2b2max;m2b2min;a

2
λ

�
:

ð122Þ

When m ≪ 1=bmax ≪ Q, and bmin ≈ b0=Q, the error terms
on the last line are negligible, and the result is the expected

π

Z
∞

0

dk2Tf
Evol
q=p ðxbj; kT;QÞ ≈ fq=pðxbj;QÞ: ð123Þ

One possibly misleading aspect of with this way of recon-
structing the integral relation in Eq. (119) is that it might
seem to suggest that there is no role for gq=pðxbj; bminÞ after
the transverse momentum integration. However, recall that
Q ≈Q0 is, by definition, an acceptably large Q to use with
factorization. But whenQ ≈Q0, we have both bmax ≈ 1=Q0

and bmin ≈ b0=Q0. Therefore, near Q ≈Q0, the ratio
bmin=bmax does not give a power suppression, and dropping
the errors in the last line of Eq. (122) is unjustified. We can
see this problem directly in the Yukawa theory calculation.
For example, factorization at xbj ≈ 0.1 describes the unfac-
torized cross section very well even for Q ≈ 2.0 GeV.
However, with bmax ¼ 0.25 GeV and bmin ¼ b0=ð2 GeVÞ,

fq=pðxbj ¼ :1; b0=b�ðbminÞÞ
fq=pðxbj ¼ :1; b0=bminÞ

≈ 1.4: ð124Þ

While it is true that the approximate integral relation in
Eq. (119) does hold very well even for these scales, it
requires that one keep an accurate gq=pðxbj; bminÞ in the
exponent on the second line of Eq. (122),

fEvolq=p ðxbj ¼ :1; bmin; 2 GeVÞ
fq=pðxbj ¼ :1; b0=bminÞ

≈ 1.0: ð125Þ

In these calculations, we have used mq ¼ 0.3 GeV, and
mp ¼ ms ¼ 1.0 GeV. Dropping the gq=pðxbj; bminÞ is only
acceptable in the limit whereQ ≫ Q0. In other words, near
the input scale where hadronic structure effects are most
likely to be relevant, and where it is desirable to preserve the
parton structure interpretation embodied by Eq. (119) as
closely as possible, the g functions cannot be neglected.

IX. DISCUSSION

We have shown that full calculations of DIS cross
sections in QFTs that are simpler than QCD, but which
nonetheless require renormalization, are useful for high-
lighting general but subtle properties of parton densities
and for examining the limits of factorization while side
stepping issues like confinement, large coupling, gauge
invariance, and other complicating features of QCD. We
have illustrated several examples in this paper, including
the demonstration in Sec. VI of how the large-qT “Y-term”
contribution to SIDIS is necessary to maintain a reasonably
accurate description after the inclusive integral over all qT,
and the importance of the gq=pðxbj; bTÞ function in
Eq. (107) for maintaining the usual parton model relation-
ship, Eq. (119), between the collinear and TMD pdfs near
the input scale Q ≈Q0. [Compare Eqs. (124) and (125).]
Our discussion of the GPM following Eq. (85) emphasizes
the importance of taking into account the UV divergences
in TMD functions when they are integrated over transverse
momentum, especially in applications that require higher
precision than a leading power parton model can provide.
See [60] for more on this.
The steps for factorizing the cross section, reviewed in

Secs. IV and V, exemplify the difference between what
in [3] are called “track-A” and “track-B” approaches. The
steps in this paper are in the track-A approach; they begin
with the bare pdf in Eq. (19), and no actual collinear
divergences ever arise.
Of course, a detailed description of the transition

between “perturbative” (m-independent) and “nonpertur-
bative” (m-sensitive) behavior depends entirely on the
nature of intrinsic mass scales like mq, ms, and mp.
Although many basic features of factorization are present

in both QCD and in the Yukawa toy theory, there are, of
course, major differences between the two theories, and
attempts to draw any conclusions about one from the other
should be made only with extreme caution. In the Yukawa
theory, the target “hadron” state we have considered is not a
bound state, all interactions are pointlike, and there is no
confinement or asymptotic freedom. In some sense, the
Yukawa theory is a version of the scalar diquark model
that is sometimes used in phenomenology (e.g. [61–63])
in the limit that the quark-hadron coupling is pointlike.
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One particularly noticeable difference comes from absence
of soft gluons and lightcone divergences in the Yukawa
theory as compared to the gauge theories. These soft gluons
are responsible for, among other things, the well-known
nonperturbative Collins-Soper evolution factor e−gK lnðQ=Q0Þ
that is present in QCD but not in Eq. (112). (See e.g.
Eq. (114) of [48].) They also lead to the TMD pdf turning
negative at large transverse momentum. See, for example,
Fig. 5 of [48]. Contrast this with the plots in Fig. 14 for
the Yukawa theory, which are strictly positive. Indeed,
in the Yukawa theory, the transition to the small transverse
momentum asymptote happen rather quickly as kT
decreases below Q—see Fig. 6, especially for smaller
xbj. In QCD, one generally must consider very small
kT before the asymptotic limit is reached. See, for
example, [64].
Despite these cautionary remarks, we nevertheless hope

that calculations like these will be useful for stress testing
other general assertions about factorization and the proper-
ties of pdfs in the future. To this end, we have made a
convenient Wolfram Mathematica package for generating
the cross sections and pdfs of this paper available at [65].
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APPENDIX A: DETAILS OF THE
UNAPPROXIMATED CALCULATION

1. Center-of-mass kinematics

Following Fig. 17, we define the momenta as

k1 ¼ kþ q; ðA1Þ

k2 ¼ p − k; ðA2Þ

k21 ¼ m2
q; ðA3Þ

k22 ¼ m2
s : ðA4Þ

Then, in the center of mass

s ¼ ðpþ qÞ2 ¼ m2
p þ

Q2ð1 − xbjÞ
xbj

; ðA5Þ

P ¼
�
p0; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 −m2

p

q �
; ðA6Þ

q ¼
�
q0; 0; 0;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 −m2

p

q �
; ðA7Þ

k01 þ k02 ¼
ffiffiffi
s

p ≡ 2E; ðA8Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k021 −m2

q

q
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k022 −m2

s

q
; ðA9Þ

p0 ¼ m2
p þQ2=ð2xbjÞ

2E
; ðA10Þ

k01 ¼ E −
m2

s −m2
q

4E
; ðA11Þ

k02 ¼ Eþm2
s −m2

q

4E
: ðA12Þ

ðA13Þ

q0 ¼

8>><
>>:

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 −m2

p −Q2
q

if x < 0.5

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 −m2

p −Q2
q

if x > 0.5
: ðA14Þ

For ϕ ¼ 0,

k1 ¼ ðk01; km sin θ; 0; km cos θÞ; ðA15Þ

k2 ¼ ðk02;−km sin θ; 0;−km cos θÞ; ðA16Þ

where

km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

m2
s þm2

q

2
þ ðm2

s −m2
qÞ2

16E2

s
; ðA17Þ

k2T ¼ km2ð1 − cos2 θÞ; ðA18Þ

FIG. 17. Center-of-mass kinematics of semi-inclusive DIS at
the order shown in Fig. 2.
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cos θ ¼

8>><
>>:

−
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q
if π=2 ≤ θ ≤ π

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q
if 0 ≤ θ ≤ π=2

: ðA19Þ

The Mandelstam variables are

t ¼ k2 ¼ m2
p þm2

s − 2p0k02

�
1þ kmpz

p0k02
cos θ

�
; ðA20Þ

u ¼ m2
p þm2

q − 2p0k01

�
1 −

kmpz

p0k01
cos θ

�
: ðA21Þ

Note that

p · k ¼ k2 −m2
s þm2

p

2
; ðA22Þ

q · k ¼ −k2 þm2
q þQ2

2
; ðA23Þ

p · q ¼ Q2

2xbj
: ðA24Þ

Also, there is a kinematical upper bound on the value of xbj:

xmax ¼
Q2

½ðmq þmsÞ2 −m2
p þQ2� : ðA25Þ

2. Organization of the calculation

We organize each graphical contribution to the hadronic
tensor by expressing it as

Wμν ¼ 1

2

1

4π

Z
d4k
ð2πÞ4

Nμν

D
ð2πÞδþððP − kÞ2 −m2

sÞ

× ð2πÞδþððkþ qÞ2 −m2
qÞ: ðA26Þ

Nμν is the collection of all numerator factors from Dirac
traces, etc. D is the collection of all propagator denomi-
nators. We can also write

Wμν ¼ 1

2

1

4π

Z
d2kT
ð2πÞ2W

μν
INT; ðA27Þ

where

Wμν
INT≡

Z
dkþdk−

Nμν

D
δþððP−kÞ2−m2

sÞδþððkþqÞ2−m2
qÞ:

ðA28Þ

To express Wμν in terms of the SIDIS hadronic tensor,
recall that

hNiWμν ¼
X
B

Z
d2kTdzN
4zN

Wμν
SIDIS: ðA29Þ

In all the graphs of Fig. 2, hNi ¼ 2. But the computation is
identical when B is the quark and when it is the scalar, so
the

P
B also gives a factor of 2. Thus, we can write simply

Wμν ¼
Z

d2kTdzN
4zN

Wμν
SIDIS; ðA30Þ

so

Wμν
INT

32π3
¼

Z
dzN
4zN

Wμν
SIDIS: ðA31Þ

Since z is always fixed by final state kinematics in the low
order graphs of Fig. 2, we will find it more convenient to

work with Wμν
INT

32π3
than with Wμν

SIDIS directly.
Switching variables from k to k2, Eq. (A26) becomes

Wμν ¼ 1

2

1

4π

Z
dk02djk2jjk2j2dΩ

ð2πÞ4
Nμν

D
ð2πÞδþðk22 −m2

sÞð2πÞδþððpþ q − k2Þ2 −m2
qÞ;

¼ 1

2

1

4π

Z
dk02djk2jjk2j2dΩ

ð2πÞ2
Nμν

D
1

2k02
δ

�
k02 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2j2 þm2

s

q �
δþððpþ q − k2Þ2 −m2

qÞ;

¼ 1

2

1

4π

Z
∞

0

djk2jjk2j2
2k02ð2πÞ2

Z
dΩ

Nμν

D
k02

4Ejk2j
δðjk2j − kmÞ;

¼ 1

128π2

Z
1

−1
dðcos θÞ km

E
Nμν

D
; ðA32Þ

where in the last line we have kept only azimuthally symmetric contributions.Nμν andD for each graph can be simplified by
writing
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k2 −m2
q ¼ m2

p þm2
s −m2

q − 2p0k02

�
1þ kmpz

p0k02
cos θ

�
;

¼ A − B

�
1� C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2T
k2m

s �
; ðA33Þ

where

A ¼ M2
p þm2

s −m2
q; ðA34Þ

B ¼ 2p0k02; ðA35Þ

C ¼ kmpz

p0k02
: ðA36Þ

The minus sign in Eq. (A33) is for the θ > π=2 contribution
and the plus sign is for θ < π=2. Changing variables back to

transverse momentum and using dθ sin θ ¼ dk2T
2k2m cos θ,

Wμν ¼ 1

32π2

Z
k2m

0

dk2T

8Ekm
ffiffiffiffiffiffiffiffiffiffiffi
1− k2T

k2m

q �
Nμν

D

����
θ>π=2

þNμν

D

����
θ<π=2

�
:

ðA37Þ

So,

Wμν
INT ¼ 1

8Ekm
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q �
Nμν

D

����
θ>π=2

þ Nμν

D

����
θ<π=2

�
; ðA38Þ

and

Jac ¼ 1

8Ekm
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q : ðA39Þ

In general we may also account for the azimuthal angle φ so
that it is

d2kT ¼ kTdkTdφ ¼ dφ
2
dk2T ¼ −dφk2m cos θd cos θ:

So,

Wμν≡1

2

1

4π

Z
d2kT
ð2πÞ2W

μν
INT;

¼ 1

128π2

Z
1

−1
dcosθ

Z
2π

0

dφ
ð2πÞ

km
E
Nμν

D
;

¼ 1

256π2

Z
2π

0

dφ
ð2πÞ

Z
k2m

0

dk2T
kmEjκðk2TÞj

�
Nμν

D

����
þκ

þNμν

D

����
−κ

�
;

¼ 1

32π3

Z
dφ
2
dk2T

1

8kmEjκðk2TÞj
�
Nμν

D

����
þκ

þNμν

D

����
−κ

�
;

where

κðk2TÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2T
k2m

s
:

In the end it is thus

Wμν
INTðk2T;φÞ ¼

1

8kmEjκðk2TÞj
�
Nμν

D

����
þκ

þ Nμν

D

����
−κ

�
:

3. Structure functions

For dealing with specific structure functions, we first
write another abbreviation,

Iμν ¼ Nμν

D
: ðA40Þ

And

Pμνj Iμν ¼ Ij; ðA41Þ

where j labels a projection tensor. For any j, the Ij for the
sum of graphs may be expanded in powers of the t-channel
propagator,

Ij ¼ Ij;2ðk2 −mq
2Þ2 þ Ij;1ðk2 −mq

2Þ þ Ij;0

þ Ij;−1
1

k2 −m2
q
þ Ij;−2

1

ðk2 −m2
qÞ2

; ðA42Þ

where the Ij;ns are independent of kT and depend only on
masses, xbj, and Q. All the unpolarized and azimuthally
symmetric structure functions can be expressed in terms of
linear combinations of the projection tensors

Pμνg ¼ gμν; PμνPP ¼ PμPν: ðA43Þ

So a natural next step is to determine

Wg ¼ Pμνg Wμν & WPP ¼ PμνPPWμν: ðA44Þ

First, write projections of Eq. (A37) as

Wj¼Pμνj Wμν¼
1

32π2

Z
k2m

0

dk2T

8Ekm
ffiffiffiffiffiffiffiffiffiffiffi
1− k2T

k2m

q ðIjjθ>π=2þIjjθ<π=2Þ

¼π

Z
k2m

0

dk2T
WINT;j

32π3
: ðA45Þ

Then all the integrals over k2T take one of the following
forms
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Γþ
2 ¼

Z
k2m

0

dk2Tffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q ðk2 −m2
qÞ2jθ<π=2

¼ 2k2m

�
A2 − ABðCþ 2Þ þ 1

3
B2ðCðCþ 3Þ þ 3Þ

�
;

ðA46Þ

Γþ
1 ¼

Z
k2m

0

dk2Tffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q ðk2 −m2
qÞ
������
θ<π=2

¼ 2k2m

�
A −

1

2
BðCþ 2Þ

�
; ðA47Þ

Γþ
0 ¼

Z
k2m

0

dk2Tffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q
������
θ<π=2

¼ 2k2m; ðA48Þ

Γþ
−1 ¼

Z
k2m

0

dk2Tffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q 1

ðk2 −m2
qÞ

������
θ<π=2

¼ 2k2m
BC

ln

�
B − A

BðCþ 1Þ − A

�
; ðA49Þ

Γþ
−2 ¼

Z
k2m

0

dk2Tffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2T

k2m

q 1

ðk2 −m2
qÞ2

������
θ<π=2

¼ 2k2m
1

ðB − AÞð−Aþ BCþ BÞ : ðA50Þ

The þ superscript here means these are the integrals for
θ < π=2 and so the C comes with a þ sign. Identical
expressions apply to Γ−

n but with C → −C. The subscripts
refer to the power on ðk2 −mq

2Þ.
Substituting Eq. (A42) into Eq. (A45) and using

Eqs. (A46)–(A50) gives an analytic expression

Wj ¼
1

256Ekmπ2
½Ij;2ðΓþ

2 þ Γ−
2 Þ þ Ij;1ðΓþ

1 þ Γ−
1 Þ

þ 2Γþ
0 Ij;0 þ Ij;−1ðΓþ

−1 þ Γ−
−1Þ þ Ij;−2ðΓþ

−2 þ Γ−
−2Þ�;
ðA51Þ

where

Γþ
2 þ Γ−

2 ¼ 4k2m

�
ðA − BÞ2 þ B2C2

3

�
; ðA52Þ

Γþ
1 þ Γ−

1 ¼ 4k2mðA − BÞ; ðA53Þ

Γþ
0 þ Γ−

0 ¼ 4k2m; ðA54Þ

Γþ
−1 þ Γ−

−1 ¼ −
2k2m
BC

ln

�
Bð1þ CÞ − A
Bð1 − CÞ − A

�
; ðA55Þ

Γþ
−2 þ Γ−

−2 ¼ 4k2m

�
1

ðA − BÞ2 − B2C2

�
; ðA56Þ

All that is needed to get explicit expressions for structure
functions is to get the Ij;n for Pμνg and PμνPP and specify
numerical values for the masses Q2 and xbj.

4. Simple case

The explicit expressions for the Is, A, B, and C are
cumbersome for general combinations of masses, so we
will write them here only for a special case. The expres-
sions for A, B, C, km, E, and the Is are especially simple for
mp ¼ m, ms ¼ 2m, and mq ¼ m. The results are

km ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Q2ðxbj − 1Þð8m2xbj þQ2ðxbj − 1ÞÞ

xbjðQ2ðxbj − 1Þ −m2xbjÞ

s
; ðA57Þ

E ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

Q2ðxbj − 1Þ
xbj

s
; ðA58Þ

A ¼ 4m2; ðA59Þ

B ¼ ðQ2ðxbj − 1Þ − 4m2xbjÞð2m2xbj þQ2Þ
2xbjðQ2ðxbj − 1Þ −m2xbjÞ

; ðA60Þ

C¼−
Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxbj−1Þð8m2xbjþQ2ðxbj−1ÞÞð4m2x2bjþQ2Þ

q
ðQ2ðxbj−1Þ−4m2xbjÞð2m2xbjþQ2Þ ;

ðA61Þ

Ig;−2 ¼ 0; ðA62Þ

Ig;−1 ¼ −
4ðQ2ðxbj − 1Þ2 − 8m2x2bjÞ

ðxbj − 1Þxbj
; ðA63Þ

Ig;0 ¼ 8; ðA64Þ

Ig;1 ¼
4xbj

Q2ð1 − xbjÞ
; ðA65Þ

Ig;2 ¼ 0; ðA66Þ

Ipp;−2 ¼ 0; ðA67Þ

Ipp;−1 ¼
32m4xbj
xbj − 1

−
2m2Q2ðxbj þ 3Þ

xbj
; ðA68Þ
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Ipp;0 ¼
4m2ð1 − 3xbjÞ

xbj − 1
þ 2Q2

xbj
; ðA69Þ

Ipp;1 ¼ 2 −
2m2xbj

Q2ðxbj − 1Þ ; ðA70Þ

Ipp;2 ¼ 0: ðA71Þ

Therefore, in this case we may write Eq. (A51) as

Wj ¼
km

64Eπ2

�
Ij;2

�
A2−2ABþ1

3
B2ð1þC2Þ

�

þ Ij;1ðA−BÞþ Ij;0− Ij;−1
1

2BC
ln

�
Bð1þCÞ−A
Bð1−CÞ−A

��
ðA72Þ

and substitute Eqs. (A57)–(A71) to get numerical values
for Wg and WPP. The standard structure functions F1 and
F2 are

F1 ≡ −
1

2
Wg þ

2Q2x2N
ðm2

px2N þQ2Þ2WPP; ðA73Þ

F2 ≡ 12Q4x3NðQ2 −m2
px2NÞ

ðQ2 þm2
px2NÞ4

�
WPP −

ðm2
px2N þQ2Þ2
12Q2x2N

Wg

�
:

ðA74Þ

Here, xN is Nachtmann x:

xN ¼ 2xbj

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2bjm

2
p

Q2

r : ðA75Þ

APPENDIX B: THE SMALL-bT OPERATOR
PRODUCT EXPANSION

In this appendix, we extract the small-bT limit of the
TMD pdf (or ff) in collinear factorization. We start with the
quark pdf in Eq. (65) and consider the limit where bT ≈ 1=μ
with μ=m → ∞, In the region of the integrand where
kT ≈m, we can expand it as

e−ikT·bTfq=pðx; kT; μÞ ¼ fi=pðx; kT; μÞ þOðk2Tb2TÞ

¼ fi=pðx; kT; μÞ þO
�
k2T
μ2

�
: ðB1Þ

Thus, we define the small-kT part of the approximation to
Eq. (65) as

f̃q=pðx;bT≈1=μ;μÞ≈
Z
UVR

d2kTfq=pðx;kT;μÞ≡fq=pðx;μÞ:

ðB2Þ

Dropping the e−ikT·bT factor causes the integral over kT to
become UV divergent, so we must introduce a UV
regulator and/or UV renormalization scheme that modifies
the kT ≫ m part of the integral to produce a well-defined
fðx; μÞ. We notate this with the “UVR,” for “UV regulator,”
on the integral sign. The specific choice of UV regulator is
arbitrary. Equation (B2) is a poor approximation because of
the UV divergence and the Oðk2T=μ2Þ correction in
Eq. (B1), which is unsuppressed when kT ≈ μ. However,
it can be corrected by using collinear perturbation theory
for large enough μ. To implement this, we rewrite Eq. (65)
in the small bT region as

f̃q=pðx; bT ≈ 1=μ; μÞ

¼ fq=pðx; μÞ þ
Z

d2kTfe−ikT·bTfq=pðx; kT; μÞ

− δð2ÞðkTÞfq=pðx; μÞg: ðB3Þ

The integrand of the second term in Eq. (B3) is the
contribution from the Oðk2T=μ2Þ ∼Oðk2Tb2TÞ error in
Eq. (B1) after we transform into bT space and use the
definition in Eq. (B2). The full integral in Eq. (B3) is both
UVand IR/collinear finite, so there is no need for a UVR in
the integral. By construction, its only unsuppressed con-
tribution comes form the region where kT is comparable to
μ. However, the kT ≈ μ behavior of fq=pðx; kT; μÞ is
expressible in collinear factorization,

k2Tfq=pðx; k T ≈ μ; μÞ

¼
X
i

k2T
1

k2T
½Cq=i ⊗ fi=p�ðx; k T=μÞ þO

m2

k2T
: ðB4Þ

See Eq. (80) for the Yukawa theory version of this. The
hard coefficient Cq=i can be expanded in collinear pertur-
bation theory. It is dimensionless, but it depends on
logarithms of kT=μ. The Oðm2=k2TÞ in Eq. (B4) combines
with the Oðk2Tb2TÞ error from Eq. (B1) to give an overall
error that is suppressed byOðm2b2TÞ. Up toOðm2b2TÞ terms,
therefore, the right side of Eq. (B3) only involves collinear
pdfs. This is the small-bT OPE for the unpolarized case.
Notice that the unsuppressed term in Eq. (B3) is not
completely unique because it depends upon the scheme
used in Eq. (B2) for treating the UV region.
The full statement of the transverse coordinate space

OPE for the quark TMD pdf is
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f̃q=pðx;bT; μÞ

¼
X
j

Z
1

x

dξ
ξ
C̃q=jðx=ξ;b T; μÞf̃j=pðξ; μÞ þOm2b2T

¼
X
n

X
j

C̃ðnÞq=j ⊗ fj=p þOm2b2T ; ðB5Þ

Reading off the first term from Eq. (B3) gives the zeroth
order hard coefficient

C̃ð0Þq=j ¼ δð1 − x=ξÞδqj: ðB6Þ

The higher order C̃ðnÞq=j with n ≥ 1 are calculable from the
second term in Eq. (B3). The steps are to (i) calculate the
integral, (ii) extract the small-bT limit, (iii) drop any bT-

suppressed corrections, and (iv) identify the C̃ðnÞq=j coeffi-
cients. The coefficients are independent of the target, so one
generally uses a massless parton target to calculate. Thus,
one calculatesZ

d2kTfe−ikT·bTfpartonicq=i ðx; kT; μÞ − δð2ÞðkTÞfpartonicq=i ðx; μÞg;

ðB7Þ

where i is a massless parton. With a massless parton target,
fpartonicq=i ðx; kT; μÞ can, in general, involve terms proportional

to δð2ÞðkTÞ.
In the Yukawa theory example, it is easiest to do the

calculation of C̃ð1Þq=j by dealing with each term in the integral
in Eq. (B7) separately. We will also make the replacement
k2T → k2T þm2 in propagator denominators to regulate any
collinear divergences at intermediate steps. Then we may
combine the two terms in Eq. (B7) and set m → 0. The
second term in Eq. (B7) is just the negative of the collinear
pdf [see Eq. (26)], and with MS renormalization it is

−
aλðμÞ
π

ð2πμÞ2ϵð1 − ξÞ
Z

d2−2ϵkT
k2T

½k2T þm2�2 −MS C:T:

¼ϵ→0 − aλðμÞð1 − ξÞ
�
−1þ ln

�
μ2

m2

��
: ðB8Þ

We may calculate the first term in Eq. (B7) in four
dimensions since it is finite. It is

aλðμÞ
π

ð1 − ξÞ
Z

d2kTe−ikT·bT
k2T

½k2T þm2�2

¼ 2aλðμÞð1 − ξÞ
�
K0ðbTmÞ − bTm

2
K1ðbTmÞ

�
;

¼ aλðμÞð1 − ξÞ
�
− ln

�
b2Tm

2e2γE

4

�
− 1

�
þOðm2b2TÞ:

ðB9Þ

Adding Eqs. (B8) and (B9) and setting m ¼ 0 gives for
Eq. (B7)

− aλðμÞð1 − ξÞ ln
�
b2Tμ

2e2γE

4

�

¼
X
j

Z
1

ξ

dz
z

�
−aλðμÞð1 − zÞ ln

�
b2Tμ

2e2γE

4

�
δjp

�
× δð1 − ξ=zÞδpp;

¼
X
j∈p

Z
1

ξ

dz
z
C̃ð1Þq=jðz; bT; μÞf̃ð0Þj=pðξ=z; μÞ: ðB10Þ

So we read off

C̃ð1Þq=jðz; bT; μÞ ¼ −aλðμÞð1 − zÞ ln
�
b2Tμ

2e2γE

4

�
δjp; ðB11Þ

which corresponds to Eq. (101).
The manipulations above work equally well if, instead of

the k2T → k2T þm2 replacement in Eq. (B8), we used
dimensional regularization to handle the collinear diver-
gences, as is more standard in QCD. But the use of m2

makes the separate rolls of UV and collinear behavior very
transparent. The full result for the OPE contains, in addition
to the term in Eq. (B11), another term for j ¼ s, but we do
not write it here since it does enter explicitly in the
calculations in the main body of the text.
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