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Sparse Coding for Hyperspectral Images  
using Random Dictionary and Soft Thresholding 

 
Ender Oguslu, Khan Iftekharuddin and Jiang Li 

Department of Electrical and Computer Engineering 
Old Dominion University, VA, USA 23529            

ABSTRACT   

Many techniques have been recently developed for classification of hyperspectral images (HSI) including support vector 
machines (SVMs), neural networks and graph-based methods. To achieve good performances for the classification, a 
good feature representation of the HSI is essential.  A great deal of feature extraction algorithms have been developed 
such as principal component analysis (PCA) and independent component analysis (ICA). Sparse coding has recently 
shown state-of-the-art performances in many applications including image classification. In this paper, we present a 
feature extraction method for HSI data motivated by a recently developed sparse coding based image representation 
technique. Sparse coding consists of a dictionary learning step and an encoding step. In the learning step, we compared 
two different methods, L1-penalized sparse coding and random selection for the dictionary learning. In the encoding step, 
we utilized a soft threshold activation function to obtain feature representations for HSI.  We applied the proposed 
algorithm to a HSI dataset collected at the Kennedy Space Center (KSC) and compared our results with those obtained 
by a recently proposed method, supervised locally linear embedding weighted k-nearest-neighbor (SLLE-WkNN) 
classifier. We have achieved better performances on this dataset in terms of the overall accuracy with a random 
dictionary. We conclude that this simple feature extraction framework might lead to more efficient HSI classification 
systems.   

Keywords: Sparse coding, sparse representation, dictionary learning, feature extraction, remote sensing, hyperspectral 
imagery, hyperspectral classification.  

1. INTRODUCTION  
Hyperspectral sensors are the devices that obtain ground reflectance measurements across hundreds of very narrow 
spectral bands throughout the visible, near-infrared and mid-infrared portions of the electromagnetic spectrum. By 
measuring radiation over several small wavelength ranges, the sensor builds up a hyperspectral image (HSI) with a very 
high spectral resolution, making it a useful modality for fine differentiation between ground objects [1]. It also has the 
potential for more accurate and detailed information extraction than any other types of remote sensing data for 
determining terrain properties such as material classification, geological feature identification and environmental 
monitoring [2].  

The spectral features in hyperspectral data contain significant structures and a proper characterization of these structures 
may result in improved data analysis. HSI data contains hundreds of bands and they are often highly correlated. It is 
usually assumed that low-dimensional manifolds are embedded in the high dimensional space. To extract the low-
dimensional manifolds for further processing, both linear and nonlinear methods were investigated in the literature [3-9].  
Linear techniques such as principal component analysis (PCA) [3] and locality preserving projections (LPP) [4] seek to 
reveal linear hidden low-dimensional manifolds in a high-dimensional space globally and locally, respectively. 
Nonlinear manifold such as isometric feature mapping [5], locally linear embedding (LLE) [6], local tangent space 
alignment (LTSA) [7] and Laplacian eigenmaps (LE) [8] try to unfold nonlinear manifolds embedded in high-
dimensional space. Traditional manifold learning is usually performed in an unsupervised manner but recent work 
demonstrated excellent performances by incorporating supervised learning into the framework of manifold learning [9].  

To achieve good performances for HSI classification, a good feature representation of the HSI is essential. Recent 
research on sparse coding shows that it can improve classification accuracies significantly and achieved state-of-the-art 
performances in many computer vision applications [10-15]. In sparse coding, the original data is converted to a new 
representation by projecting it onto a set of over-completed basis functions. Each basis function contains local or low 
level features and is a building block for data. Traditional feature extraction techniques, like frequency analysis and 
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where X is the HSI image consists of M pixels with B bands, X BxMR∈ , D is the dictionary consists of K basis functions 
(atoms of materials) with a length of B, D BxKR∈ , A is the coefficient matrix representing the mixture of dictionary 
functions, A KxMR∈  and N is additive noise.  

2.2 Sparse coding 
As a new feature extraction method, sparse coding attracted a great deal of attentions in image classification [15, 18 - 
21]. In this section, we will briefly review the two steps involved in sparse coding: basis functions learning and 
encoding.  

2.2.1 Basis function learning 
The goal of sparse coding is to represent raw data (i.e., an image) as a linear combination of few basis functions from a 
dictionary learned from data. Given a training dataset, M

i
ixX 1
)( }{ == , a dictionary, K

i
idD 1
)( }{ == , consisting of a set of 

basis functions, d(i)
, can be learned based on a L1-penalized sparse coding formulation by optimizing the following cost 

function, 
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where x(i) represents the i-th data sample in X, a(i) denotes the reconstruction weight for x(i) using the basis function in D 
and λ is a trade-off parameter. Because the L1 norm penalty is involved, the resulting weights a(i) will be sparse meaning 
that most of them are zeros. The solution of equation (2) can be obtained using alternating minimization over the sparse 
codes and dictionary while holding the other fixed [15]. Equation (2) seems to be consistent to the HSI data model due to 
its high spatial resolution of latest imagery technology, i.e.,  only a few land cover materials  may be present in one pixel 
and thus each pixel can be approximated by a few basis functions. Initial research on HSI data in this direction shows 
promising results [17, 22 - 24].  

Dictionary learning plays an important role in the sparse coding framework because it will identify those building blocks 
from data. However, the learning process is difficult and time consuming. Fortunately, recent research showed that 
randomly selected dictionaries can also perform well. For example, Jarrett et al. [18] has found that features from a one-
layer convolution pooling architecture with a random dictionary could achieve a sufficient recognition rate for image 
classification. In [15], Coates et al. have experimentally proved that the choice of basis functions does not affect much 
on classification performances as long as it is over complete.   

2.2.2 Encoding 
Once a dictionary is learned, an encoding step is performed to transform the input data samples into desirable 
representations based on the learned dictionary. For a data sample x(i)

, its representation a(i) can be obtained either by 
solving equation (2) with D fixed using the orthogonal matching pursuit (OMP-k) [25] or by the soft thresholding 
method. The soft thresholding technique [15, 26-28] achieves the sparse representation by applying the following 
operation,  

 ),0max()( )()()( tzzsigna iii −=  (3) 

where t is an adjustable threshold and z(i)= DT x(i). This simple and efficient method was utilized for encoding in this 
paper.  

3. PROPOSED METHOD 
The proposed method for HSI data classification consists of three steps:  (i) patch constructing, (ii) dictionary learning 
and (iii) encoding and classification.  
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the final representation vector for each pixel, we apply a linear support vector machine (SVM) classifier to classify the 
HSI data to different land cover categories.  

4. EXPERIMENTAL RESULTS 

4.1 Data description  
A hyperspectral data set collected by NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Kennedy 
Space Center (KSC) in March 1996 [30] was used in this paper. One single band image from this data set is shown in 
Figure 3. This sensor can acquire 224 bands with an 18-m spatial resolution and a 10-nm spectral resolution over the 
range of 400-2500 nm. There are 5211 out of 314,368 (512x614) pixels labeled. Details of the land cover classes are 
given in Table 1. After removing the water absorption and noisy bands, there are 176 bands left for this study.  
  

 
Figure 3. A sample band of Kennedy Space Center HSI data. 

 
Table 1. Class names and number of labeled KSC data. 

Class 
b

Class Number/Percentage of Labeled 
1 Scrub 761 (14.6%) 
2 Willow swamp 243 (4.66%) 
3 Cabbage palm hammock 256 (4.92%) 
4 Cabbage/oak hammock 252 (4.84%) 
5 Slash pine 161 (3.07%) 
6 Oak/broadleaf hammock 229 (4.38%) 
7 Hardwood swamp 105 (2.0%) 
8 Graminoid marsh 431 (8.27%) 
9 Spartina marsh 520 (9.9%) 

10 Cattail marsh 404 (7.76%) 
11 Salt marsh 419 (8.04%) 
12 Mud flats 503 (9.66%) 
13 Water 927 (17.8%) 
 TOTAL 5211 

 
4.2 Experiment setup 
For a fair comparison, we utilized the same configuration as that in [9] for our experiments. The parameters involved in 
our algorithm were tuned based on three-fold cross-validation using 50% of the labeled data. There were four parameters 
in the proposed method:  (i) the number of basis functions, K, (ii) split number, k, (iii) receptive field length, b, and     
(iv) threshold, t, for encoding. After parameter selection, 30% and 40% of the data are randomly selected for testing and 
training, respectively. The testing dataset is disjoint from the data used for cross-validation. In our experiments, 
dictionary was learned or randomly selected from unlabeled pixels. 
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In the followings, we first present the effects of those four parameters on the classification performances. We then 
compare the two dictionary learning methods and finally, the final classification results will be compared with a recent 
successful algorithm, supervised locally linear embedding weighted k nearest neighbor (SLLE-WkNN) classifier [9].  

4.3 Dictionaries learned  
We obtained basis functions either by sparse coding or random selection. In Figure 4, two set of normalized basis 
functions resulting from sparse coding and randomly sampled patches are illustrated, respectively.  

  

(a) (b) 
Figure 4. Dictionaries obtained by (a) sparse coding (b) randomly selected patches. 

4.4 Effects of the number of basis functions and the splitting number  
We investigated the effect of the number of basis functions on classification performances by varying K from 50 to 350 
with a step size of 50. Effect of the splitting numbers (k = 4 to 10) was also tested and results are listed in Table 2. It is 
observed that increasing the number of basis function will improve the classification performance until a maximum 
value is reached. The splitting number, k, which is used in pooling step, also increases the accuracy though it is less 
sensitive. The best performance can be obtained with different combinations of K and k. It should be noted that this table 
was generated based on a random basis function dictionary. Similar results were observed from sparse coding. For the 
other parameters in this comparison, we set the receptive field b as120, and the value, t, as 0.1 for soft thresholding.  

Table 2. Effect of number of futures and splitting number on performance. 

Splitting  
Number (k) 

Number of            
bases (K) 

4 5 6 7 8 9 10 

Three-fold Cross-validation results (%) 
(Numbers in parenthesis indicates the length of final vector)  

50 93.20 
(400) 

93.34 
(500) 

93.70 
(600) 

93.84 
(700) 

93.95 
(800) 

93.80 
(900) 

93.69 
(1000) 

100 94.01 
(800) 

94.27 
(1000) 

94.30 
(1200) 

94.36 
(1400) 

94.29 
(1600) 

94.21 
(1800) 

94.13 
(2000) 

150 94.17 
(1200) 

94.32 
(1500) 

94.32 
(1800) 

94.32 
(2100) 

94.26 
(2400) 

94.21 
(2700) 

94.21 
(3000) 

200 94.36 
(1600) 

94.41 
(2000) 

94.48 
(2400) 

94.57 
(2800) 

94.32 
(3200) 

94.26 
(3600) 

94.26 
(4000) 

250 94.41 
(2000) 

94.50 
(2500) 

94.57 
(3000) 

94.47 
(3500) 

94.47 
(4000) 

94.38 
(4500) 

94.41 
(5000) 

300 94.41 
(2400) 

94.42 
(3000) 

94.52 
(3600) 

94.56 
(4200) 

94.56 
(4800) 

94.38 
(5400) 

94.41 
(6000) 

350 94.43 
(2800) 

94.40 
(3500) 

94.52 
(4200) 

94.54 
(4900) 

94.52 
(5600) 

94.41 
(6300) 

94.41 
(7000) 
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4.5 Effect of the receptive field length 
One of the important parameters in the algorithm is the receptive field length, b. It is observed that a larger receptive 
field could allow recognizing more complex patterns in the image [19]. On the other hand, a larger receptive field will 
extract less number of patches for each input HSI pixel decreasing the discriminating power.  

Let the number of overlapped patches that can be extracted for each input pixel is (B-b+1), where B is the number of 
bands and b is the receptive field length, it yields (B-b+1)-by-b matrix to represent each input pixel before encoding. 
Table 3 illustrates the evaluation results with different receptive field lengths (varying from 20 to 160 with a step size of 
20). It is observed that the best accuracy can be obtained if the receptive field length is 120. Note that this table was 
generated based on a randomly selected dictionary. Similar results were observed using a dictionary learned by sparse 
coding. For the other parameters, we used K=250 for the number of basis functions, k=6 for the splitting number and 
t=0.1 for the soft thresholding value in encoding. 

Table 3. Effect of receptive field length 

Receptive field length (b) 20 40 60 80 100 120 140 160 

Number of patches for each pixel 
(B-b+1) 157 137 117 97 77 57 37 17 

Number of elements to represent a 
pixel.        (B-b+1)-by-b 3140 5480 7020 7760 7700 6840 5180 2720 

Performance (%) 92.56 93.25 94.26 94.51 95.18 95.21 94.92 93.93 

 

4.6 Effect of the threshold value in soft thresholding  
The last parameter of the algorithm is the threshold, t, used in the soft thresholding step for encoding. As pointed out 
earlier, the soft threshold function was successfully used in some algorithms to mimic the sparse coding. This function is 
also called shrinkage function since it eliminates the insignificant representations of pixels. Table 4 illustrates the effect 
of threshold value t, used in encoding with the other parameters set as K=250, k=6 and b=120. It is observed that the 
performance is not sensitive to the threshold and t=0.1 gives the best accuracy for this dataset. 

Table 4. Effect of fixed threshold point, t. 

Threshold for Encoding  (t) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

Performance (%) 94.37 94.70 94.67 94.58 94.46 94.43 94.34 94.30 

 

4.7 Final classification results  
As stated in the previous sections, one of our goals is to compare the random selection method and the sparse coding 
technique for dictionary learning in remote sensing classification. With the best parameters (k=6, b=120 and t=0.1) we 
obtained in cross-validation, we performed 10 replications of experiments with different number of basis functions in the 
dictionary to compare these two approaches. It should be noted that 40% of labeled pixels were used for training and 
30% of labeled pixels were used for testing in each of the experiments. As seen in the Table 5, the randomly selected 
dictionaries can achieve similar or slightly better results than those obtained by sparse coding. The success of the 
randomly selected dictionaries implies that we can implement a very efficient system for remote sensing. 

Table 5. Comparison of dictionary learning algorithms 

Number of basis functions (K) 50 100 150 200 250 300 

Performance of sparse coding (%) 94.18 94.64 94.73 94.87 94.85 94.69 

Performance of random functions (%) 94.27 94.80 95.09 95.15 95.21 95.12 
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We also compared our results with those obtained by a recently proposed method for HSI classification, supervised 
locally linear embedding weighted k nearest neighbor (SLLE-WkNN) classifier [9], in terms of overall accuracy. In 
SLLE-WkNN classifier, a kernel function of locally linear embedding (LLE) algorithm is employed to determine the 
weights of a weighted kNN classifier. In other words, the local structure of the distribution of the manifold is learned by 
employing LLE algorithm in conjunction with the kNN classifier [31].  

In the comparison, we used the same training and testing datasets for different classifiers. The parameters of the 
proposed algorithm were K= 250, k=6, b=120 and t=0.1. The parameters of SLLE-WkNN were set the same as those 
reported in [9]. Results from the 10 replications of experiments are shown in Table 6. It is observed that the proposed 
algorithm with random dictionary is significantly better than the SLLE-WkNN method (p = 8.78x10-8) and the system 
with a learned dictionary is also significantly better than the SLLE-WkNN method (p = 9.43x10-7).  The system with a 
learned dictionary performs similarly to that with a randomly selected dictionary (p = 0.1522).   

Table 6. Comparison of proposed algorithm and SLLE-WkNN classifier. 

Classifier Classification Accuracy 
(%) 

Standard Deviation p value with respect 
to SLLE-WkNN 

Linear SVM  using sparse coding for 
dictionary learning 

94.83 0.59 9.43x10-7 

Linear SVM  with random dictionary 95.21 0.45 8.78x10-8 

SLLE-WkNN  (k=35) 93.13 0.52  

 

Since the quantity of the training data has critical importance in classification tasks, experiments were performed using 
different number of training data samples, where the ratios of data used for training varied from 10% to 70% and that 
rate for testing was fixed to 30%. In Table 7, it is clearly that the proposed framework has better overall accuracies than 
those from the SLLE-WkNN algorithm.  

Table 7. Comparison of proposed algorithm with the SLLE-WkNN classifier with different training rates. 

Training Rate  
Classifier 

10% 20% 30% 40% 50% 60% 70% 

SVM  with learned dictionary  91.01 93.29 94.15 94.85 95.13 95.55 95.62 

SVM  with random dictionary  91.53 93.88 94.59 95.21 95.33 95.56 95.65 

SLLE-WkNN  (k=35) 89.40 91.48 92.62 93.13 93.67 93.91 94.34 

5. CONCLUSION 
We applied the sparse coding framework to HSI classification and experimentally showed that a randomly selected 
dictionary can achieve slightly better results than the dictionary learned by sparse coding. Both sparse learning 
techniques outperformed a recently proposed advanced algorithm, SLLE-WkNN, on a well-known HSI data set 
collected at KSC. To best of our knowledge, this is the first time to apply the sparse coding framework to this 
hyperspectral dataset for land cover classification and experimentally proved that a randomly selected dictionary can 
achieve very good results making a simple and efficient HSI data classification system possible.     
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