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Sparse Coding for Hyperspectral Images
using Random Dictionary and Soft Thresholding

Ender Oguslu, Khan Iftekharuddin and Jiang Li
Department of Electrical and Computer Engineering
Old Dominion University, VA, USA 23529

ABSTRACT

Many techniques have been recently developed for classification of hyperspectral images (HSI) including support vector
machines (SVMs), neural networks and graph-based methods. To achieve good performances for the classification, a
good feature representation of the HSI is essential. A great deal of feature extraction algorithms have been developed
such as principal component analysis (PCA) and independent component analysis (ICA). Sparse coding has recently
shown state-of-the-art performances in many applications including image classification. In this paper, we present a
feature extraction method for HSI data motivated by a recently developed sparse coding based image representation
technique. Sparse coding consists of a dictionary learning step and an encoding step. In the learning step, we compared
two different methods, L;-penalized sparse coding and random selection for the dictionary learning. In the encoding step,
we utilized a soft threshold activation function to obtain feature representations for HSI. We applied the proposed
algorithm to a HSI dataset collected at the Kennedy Space Center (KSC) and compared our results with those obtained
by a recently proposed method, supervised locally linear embedding weighted k-nearest-neighbor (SLLE-WANN)
classifier. We have achieved better performances on this dataset in terms of the overall accuracy with a random
dictionary. We conclude that this simple feature extraction framework might lead to more efficient HSI classification
systems.

Keywords: Sparse coding, sparse representation, dictionary learning, feature extraction, remote sensing, hyperspectral
imagery, hyperspectral classification.

1. INTRODUCTION

Hyperspectral sensors are the devices that obtain ground reflectance measurements across hundreds of very narrow
spectral bands throughout the visible, near-infrared and mid-infrared portions of the electromagnetic spectrum. By
measuring radiation over several small wavelength ranges, the sensor builds up a hyperspectral image (HSI) with a very
high spectral resolution, making it a useful modality for fine differentiation between ground objects [1]. It also has the
potential for more accurate and detailed information extraction than any other types of remote sensing data for
determining terrain properties such as material classification, geological feature identification and environmental
monitoring [2].

The spectral features in hyperspectral data contain significant structures and a proper characterization of these structures
may result in improved data analysis. HSI data contains hundreds of bands and they are often highly correlated. It is
usually assumed that low-dimensional manifolds are embedded in the high dimensional space. To extract the low-
dimensional manifolds for further processing, both linear and nonlinear methods were investigated in the literature [3-9].
Linear techniques such as principal component analysis (PCA) [3] and locality preserving projections (LPP) [4] seek to
reveal linear hidden low-dimensional manifolds in a high-dimensional space globally and locally, respectively.
Nonlinear manifold such as isometric feature mapping [5], locally linear embedding (LLE) [6], local tangent space
alignment (LTSA) [7] and Laplacian eigenmaps (LE) [8] try to unfold nonlinear manifolds embedded in high-
dimensional space. Traditional manifold learning is usually performed in an unsupervised manner but recent work
demonstrated excellent performances by incorporating supervised learning into the framework of manifold learning [9].

To achieve good performances for HSI classification, a good feature representation of the HSI is essential. Recent
research on sparse coding shows that it can improve classification accuracies significantly and achieved state-of-the-art
performances in many computer vision applications [10-15]. In sparse coding, the original data is converted to a new
representation by projecting it onto a set of over-completed basis functions. Each basis function contains local or low
level features and is a building block for data. Traditional feature extraction techniques, like frequency analysis and
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Gabor Filters, extract features by projecting data onto a set of predefined basis functions without adaptation to the data.
In contrast, basis functions in sparse coding are either learned or selected from data, making the feature extraction
process adaptive. Since basis functions are over-complete, the achieved representations for data samples in sparse coding
are usually sparse where a linear classifier is often sufficient for classification.

In this paper, we have applied the framework of sparse coding to HSI data collected at the Kennedy Space Center (KSC)
for land cover classification. We compared two dictionary learning methods: random selection and sparse coding solved
with the coordinate descent algorithm [16]. Both methods achieved similar results. Results from sparse coding were also
compared to those obtained by a recently proposed method, supervised locally linear embedding weighted k-nearest-
neighbor (SLLE-WKNN) [9] classifier. We have observed that dictionary learned even from randomly selected
dictionary is able to achieve much better performances on the KSC data. To best of our knowledge, this is the first time
to apply the sparse coding framework to this hyperspectral dataset for land cover classification and experimentally
proved that a randomly selected dictionary can achieve better results than those from many recent algorithms such as
SLLE-WkKNN. A randomly selected dictionary does not require much computational resources thus making a simple and
efficient HSI data classification system possible.

The remaining of this paper is organized as follows. In Section 2, we reviewed the HSI model and related work of sparse
coding. The proposed algorithm is presented in Section 3 followed by experimental results in Section 4. Section 5
presents concluding remarks.

2. RELATED WORK
2.1 Model of hyperspectral imagery

HSI data, which is obtained by airborne or spaceborne sensors, consists of hundreds of images captured in different

spectral channels. A typical structure of HSI is shown in Figure 1. Every pixel in the image, x;€ R” , is represented by a
B-dimensional feature vector throughout relevant portions of the electromagnetic spectrum, where B is the number of
spectral bands. This feature vector is called the spectrum of the material in this pixel. Though the abundant information
in each pixel increases the capability of distinguishing different materials, it is often difficult to exploit HSI data due to
the particular challenges in the remote sensing environment such as noise of measurement devices, energy interaction
between the targeted area and the spectrometer, and spectral mixing where each pixel is composed of a combination of
different materials [2]. All those challenges will jeopardize a precise material identification in HSI.

A

samples
-

reflectance

B bands

|||
lines l/ A

Figure 1. A typical data structure of HSI

To model HSI data, it is often assumed that the measured energy is proportional to the covered ground and the
reflectivity of its environment [17]. The most common approach is to use the following linear mixture model,

X=DA+N (1)
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where X is the HSI image consists of M pixels with B bands, X € R*™ | D is the dictionary consists of K basis functions
(atoms of materials) with a length of B, De R”* | A is the coefficient matrix representing the mixture of dictionary
functions, A € R and N is additive noise.

2.2 Sparse coding

As a new feature extraction method, sparse coding attracted a great deal of attentions in image classification [15, 18 -
21]. In this section, we will briefly review the two steps involved in sparse coding: basis functions learning and
encoding.

2.2.1 Basis function learning

The goal of sparse coding is to represent raw data (i.e., an image) as a linear combination of few basis functions from a

dictionary learned from data. Given a training dataset, X = {x""}”,, a dictionary, D ={d"’}X,, consisting of a set of

basis functions, d” can be learned based on a L;-penalized sparse coding formulation by optimizing the following cost
function,

. . SN2 .
mip 3'[Da® —], + 2],
i

D)

subject to Hcﬂ”“i =1,Vi )

where x” represents the i-th data sample in X, " denotes the reconstruction weight for x using the basis function in D
and 1 is a trade-off parameter. Because the L, norm penalty is involved, the resulting weights " will be sparse meaning
that most of them are zeros. The solution of equation (2) can be obtained using alternating minimization over the sparse
codes and dictionary while holding the other fixed [15]. Equation (2) seems to be consistent to the HSI data model due to
its high spatial resolution of latest imagery technology, i.e., only a few land cover materials may be present in one pixel
and thus each pixel can be approximated by a few basis functions. Initial research on HSI data in this direction shows
promising results [17, 22 - 24].

Dictionary learning plays an important role in the sparse coding framework because it will identify those building blocks
from data. However, the learning process is difficult and time consuming. Fortunately, recent research showed that
randomly selected dictionaries can also perform well. For example, Jarrett et al. [18] has found that features from a one-
layer convolution pooling architecture with a random dictionary could achieve a sufficient recognition rate for image
classification. In [15], Coates et al. have experimentally proved that the choice of basis functions does not affect much
on classification performances as long as it is over complete.

2.2.2 Encoding

Once a dictionary is learned, an encoding step is performed to transform the input data samples into desirable
representations based on the learned dictionary. For a data sample x(i), its representation ¢ can be obtained either by
solving equation (2) with D fixed using the orthogonal matching pursuit (OMP-k) [25] or by the soft thresholding
method. The soft thresholding technique [15, 26-28] achieves the sparse representation by applying the following
operation,

a = sign(z")max(0,

2~ 1) ®

(=

where 7 is an adjustable threshold and z”= D" x. This simple and efficient method was utilized for encoding in this

paper.

3. PROPOSED METHOD

The proposed method for HSI data classification consists of three steps: (i) patch constructing, (ii) dictionary learning
and (iii) encoding and classification.
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3.1 Patch constructing from HSI data

The first step of learning dictionaries is to extract patches from unlabeled HSI data as illustrated in Figure 2. We
constructed overlapping patches as b-dimensional (bands) vectors with a step size of 1 band along the spectral direction
for each randomly selected pixel and we called b as the receptive field length. If m is the number of generated patches,

M X x™1 where x? € R”.

s
HSI data i < :
| 1 :

Patches extracted Random patches
from each pixel
Figure 2. Extraction of patch blocks.

the patches can be denoted as X={x

Random pixels

3.2 Dictionary learning based on constructed patches

We utilized two methods for the dictionary learning. The first method is to solve equation (2) where X denotes the
constructed patches using the coordinate descent algorithm [16], which is often termed as “sparse coding”. The second
method for dictionary learning is relatively simple where a portion of constructed patches are randomly selected to
compose the dictionary.

In sparse coding, data patches are preprocessed before the dictionary learning. First, each patch x” is normalized to be
zero mean and unit variance. Then, the zero-phase components analysis (ZCA) whitening process [29], which is
commonly used in deep learning, is applied to each patch. According to [19], this process is decisive for the quality of
the learned feature representations. In this paper, we compared the two approaches for dictionary learning, sparse coding
[16] and random selection [15]. This step yields the dictionary D for the HSI data.

3.3 Encoding and classification
With the learned dictionary, D, we define the feature representation for each of the HSI pixels as follows,

Divide the pixel bands into patches the same way as we did in dictionary learning,

Normalize and whiten the patches as described above,

Obtain a new representation by applying the soft thresholding technique,

4. Sum those new representations from all patches from the pixel to form the final representation.

hadi i

The final step is called feature pooling. For each HSI pixel, we have extracted multiple patches and the feature pooling
step can reduce the dimensionality of the final representation. Note that different pooling methods have been
investigated for different applications [21] and any of them can be applied here. We applied sum pooling method which
we split the featured patches into k equal-sized blocks and compute the sum of the vectors in each block. Once we obtain
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the final representation vector for each pixel, we apply a linear support vector machine (SVM) classifier to classify the
HSI data to different land cover categories.

4. EXPERIMENTAL RESULTS

4.1 Data description

A hyperspectral data set collected by NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Kennedy
Space Center (KSC) in March 1996 [30] was used in this paper. One single band image from this data set is shown in
Figure 3. This sensor can acquire 224 bands with an 18-m spatial resolution and a 10-nm spectral resolution over the
range of 400-2500 nm. There are 5211 out of 314,368 (512x614) pixels labeled. Details of the land cover classes are
given in Table 1. After removing the water absorption and noisy bands, there are 176 bands left for this study.

Figure 3. A sample band of Kennedy Space Center HSI data.

Table 1. Class names and number of labeled KSC data.

Class Class Number/Percentage of Labeled
1 Scrub 761 (14.6%)
2 Willow swamp 243 (4.66%)
3 Cabbage palm hammock 256 (4.92%)
4 Cabbage/oak hammock 252 (4.84%)
5 Slash pine 161 (3.07%)
6 Oak/broadleaf hammock 229 (4.38%)
7 Hardwood swamp 105 (2.0%)
8 Graminoid marsh 431 (8.27%)
9 Spartina marsh 520 (9.9%)
10 Cattail marsh 404 (7.76%)
11 Salt marsh 419 (8.04%)
12 Mud flats 503 (9.66%)
13 Water 927 (17.8%)

TOTAL 5211

4.2 Experiment setup

For a fair comparison, we utilized the same configuration as that in [9] for our experiments. The parameters involved in
our algorithm were tuned based on three-fold cross-validation using 50% of the labeled data. There were four parameters
in the proposed method: (i) the number of basis functions, K, (ii) split number, £, (iii) receptive field length, b, and
(iv) threshold, #, for encoding. After parameter selection, 30% and 40% of the data are randomly selected for testing and
training, respectively. The testing dataset is disjoint from the data used for cross-validation. In our experiments,
dictionary was learned or randomly selected from unlabeled pixels.
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In the followings, we first present the effects of those four parameters on the classification performances. We then
compare the two dictionary learning methods and finally, the final classification results will be compared with a recent
successful algorithm, supervised locally linear embedding weighted & nearest neighbor (SLLE-WANN) classifier [9].

4.3 Dictionaries learned

We obtained basis functions either by sparse coding or random selection. In Figure 4, two set of normalized basis
functions resulting from sparse coding and randomly sampled patches are illustrated, respectively.
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Figure 4. Dictionaries obtained by (a) sparse coding (b) randomly selected patches.
4.4 Effects of the number of basis functions and the splitting number

We investigated the effect of the number of basis functions on classification performances by varying K from 50 to 350
with a step size of 50. Effect of the splitting numbers (k = 4 to 10) was also tested and results are listed in Table 2. It is
observed that increasing the number of basis function will improve the classification performance until a maximum
value is reached. The splitting number, k, which is used in pooling step, also increases the accuracy though it is less
sensitive. The best performance can be obtained with different combinations of K and . It should be noted that this table
was generated based on a random basis function dictionary. Similar results were observed from sparse coding. For the
other parameters in this comparison, we set the receptive field b as120, and the value, ¢, as 0.1 for soft thresholding.

Table 2. Effect of number of futures and splitting number on performance.

Splitting
Number (k)
Number of 4 5 6 7 8 9 10
bases (K)
Three-fold Cross-validation results (%)
Numbers in parenthesis indicates the length of final vector)

50 93.20 93.34 93.70 93.84 93.95 93.80 93.69
(400) (500) (600) (700) (800) (900) (1000)

100 94.01 94.27 94.30 94.36 94.29 94.21 94.13
(800) (1000) (1200) (1400) (1600) (1800) (2000)

150 94.17 94.32 94.32 94.32 94.26 94.21 94.21

(1200) (1500) (1800) (2100) (2400) (2700) (3000)

200 94.36 94.41 94.48 94.57 94.32 94.26 94.26

(1600) (2000) (2400) (2800) (3200) (3600) (4000)

250 94.41 94.50 94.57 94.47 94.47 94.38 94.41

(2000) (2500) (3000) (3500) (4000) (4500) (5000)

300 94.41 94.42 94.52 94.56 94.56 94.38 94.41

(2400) (3000) (3600) (4200) (4800) (5400) (6000)

350 94.43 94.40 94.52 94.54 94.52 94.41 94.41

(2800) (3500) (4200) (4900) (5600) (6300) (7000)
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4.5 Effect of the receptive field length

One of the important parameters in the algorithm is the receptive field length, b. It is observed that a larger receptive
field could allow recognizing more complex patterns in the image [19]. On the other hand, a larger receptive field will
extract less number of patches for each input HSI pixel decreasing the discriminating power.

Let the number of overlapped patches that can be extracted for each input pixel is (B-b+1), where B is the number of
bands and b is the receptive field length, it yields (B-b+1)-by-b matrix to represent each input pixel before encoding.
Table 3 illustrates the evaluation results with different receptive field lengths (varying from 20 to 160 with a step size of
20). It is observed that the best accuracy can be obtained if the receptive field length is 120. Note that this table was
generated based on a randomly selected dictionary. Similar results were observed using a dictionary learned by sparse
coding. For the other parameters, we used K=250 for the number of basis functions, k=6 for the splitting number and
t=0.1 for the soft thresholding value in encoding.

Table 3. Effect of receptive field length
Receptive field length (b) 20 40 60 80 100 120 140 160

Number of patches for each pixel

(B-b+1) 157 137 117 97 77 57 37 17

Number of elements to represent a
pixel. (B-b+1)-by-b

Performance (%) 92.56 | 9325 | 9426 | 9451 | 95.18 | 9521 | 9492 | 93.93

3140 5480 7020 7760 7700 6840 5180 2720

4.6 Effect of the threshold value in soft thresholding

The last parameter of the algorithm is the threshold, #, used in the soft thresholding step for encoding. As pointed out
earlier, the soft threshold function was successfully used in some algorithms to mimic the sparse coding. This function is
also called shrinkage function since it eliminates the insignificant representations of pixels. Table 4 illustrates the effect
of threshold value ¢, used in encoding with the other parameters set as K=250, k=6 and b=120. It is observed that the
performance is not sensitive to the threshold and /=0.1 gives the best accuracy for this dataset.

Table 4. Effect of fixed threshold point, .
Threshold for Encoding (7) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Performance (%) 94.37 | 94.70 | 94.67 | 94.58 | 94.46 | 94.43 | 94.34 | 94.30

4.7 Final classification results

As stated in the previous sections, one of our goals is to compare the random selection method and the sparse coding
technique for dictionary learning in remote sensing classification. With the best parameters (k=6, =120 and =0.1) we
obtained in cross-validation, we performed 10 replications of experiments with different number of basis functions in the
dictionary to compare these two approaches. It should be noted that 40% of labeled pixels were used for training and
30% of labeled pixels were used for testing in each of the experiments. As seen in the Table 5, the randomly selected
dictionaries can achieve similar or slightly better results than those obtained by sparse coding. The success of the
randomly selected dictionaries implies that we can implement a very efficient system for remote sensing.

Table 5. Comparison of dictionary learning algorithms

Number of basis functions (K) 50 100 150 200 250 300
Performance of sparse coding (%) 94.18 94.64 94.73 94.87 94.85 94.69
Performance of random functions (%) 94.27 94.80 95.09 95.15 95.21 95.12
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We also compared our results with those obtained by a recently proposed method for HSI classification, supervised
locally linear embedding weighted & nearest neighbor (SLLE-WANN) classifier [9], in terms of overall accuracy. In
SLLE-WENN classifier, a kernel function of locally linear embedding (LLE) algorithm is employed to determine the
weights of a weighted ANN classifier. In other words, the local structure of the distribution of the manifold is learned by
employing LLE algorithm in conjunction with the ANN classifier [31].

In the comparison, we used the same training and testing datasets for different classifiers. The parameters of the
proposed algorithm were K= 250, k=6, b=120 and #=0.1. The parameters of SLLE-WANN were set the same as those
reported in [9]. Results from the 10 replications of experiments are shown in Table 6. It is observed that the proposed
algorithm with random dictionary is significantly better than the SLLE-WANN method (p = 8.78x10®) and the system
with a learned dictionary is also significantly better than the SLLE-WKNN method (p = 9.43x107). The system with a
learned dictionary performs similarly to that with a randomly selected dictionary (p = 0.1522).

Table 6. Comparison of proposed algorithm and SLLE-WANN classifier.

Classifier Classification Accuracy | Standard Deviation | p value with respect
(%) to SLLE-WANN
Linear SVM using sparse coding for 94.83 0.59 9.43x10”7
dictionary learning
3
Linear SVM with random dictionary 95.21 0.45 8.78x10
SLLE-WANN (k=35) 93.13 0.52

Since the quantity of the training data has critical importance in classification tasks, experiments were performed using
different number of training data samples, where the ratios of data used for training varied from 10% to 70% and that

rate for testing was fixed to 30%. In Table 7, it is clearly that the proposed framework has better overall accuracies than
those from the SLLE-WANN algorithm.

Table 7. Comparison of proposed algorithm with the SLLE-WANN classifier with different training rates.

Training Rate | 100, 20% 30% 40% 50% 60% 70%
Classifier
SVM with learned dictionary 91.01 93.29 94.15 94.85 95.13 95.55 95.62
SVM with random dictionary 91.53 93.88 94.59 95.21 95.33 95.56 95.65
SLLE-WKNN (k=35) 89.40 91.48 92.62 93.13 93.67 93.91 94.34

5. CONCLUSION

We applied the sparse coding framework to HSI classification and experimentally showed that a randomly selected
dictionary can achieve slightly better results than the dictionary learned by sparse coding. Both sparse learning
techniques outperformed a recently proposed advanced algorithm, SLLE-WKNN, on a well-known HSI data set
collected at KSC. To best of our knowledge, this is the first time to apply the sparse coding framework to this
hyperspectral dataset for land cover classification and experimentally proved that a randomly selected dictionary can
achieve very good results making a simple and efficient HSI data classification system possible.
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