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ABSTRACT 
Clinical MRI images are generally corrupted by random noise during acquisition with blurred subtle structure features. 
Many denoising methods have been proposed to remove noise from corrupted images at the expense of distorted 
structure features. Therefore, there is always compromise between removing noise and preserving structure information 
for denoising methods. For a specific denoising method, it is crucial to tune it so that the best tradeoff can be obtained. In 
this paper, we define several cost functions to assess the quality of noise removal and that of structure information 
preserved in the denoised image. Strength Pareto Evolutionary Algorithm 2 (SPEA2) is utilized to simultaneously 
optimize the cost functions by modifying parameters associated with the denoising methods. The effectiveness of the 
algorithm is demonstrated by applying the proposed optimization procedure to enhance the image denoising results using 
block matching and 3D collaborative filtering. Experimental results show that the proposed optimization algorithm can 
significantly improve the performance of image denoising methods in terms of noise removal and structure information 
preservation. 
 
Keywords: Block matching, collaborative filtering, cost functions, multiobjective optimization, Pareto front 
 

1. INTRODUCTION 
Magnetic resonance imaging (MRI) is a medical imaging technique primarily used in radiology to visualize the structure 
of a body. In clinical practice, MRI is used to distinguish pathologic tissue from normal tissue. Clinical MRI images are 
generally corrupted by random noise during acquisition with blurred subtle structure features.[1] Many denoising methods 
have been proposed to remove noise from corrupted images at the expense of distorted structure features.[2] Therefore, 
there is always a trade-off between noise removal and structure information preservation for denoising methods. In order 
to effectively remove noise and to preserve structure information, it is crucial to tune denoising methods so that the best 
balance between the two conflicting objectives can be obtained. In this paper, we propose an optimization procedure that 
can automatically tune parameters involved in denoising algorithms. The procedure will produce a set of optimal 
parameters that  enable the designer to make the best trade-offs between noise removal and structure information 
preservation. We applied the proposed algorithm on a block matching and 3D collaborative filtering algorithm for MRI 
image denoising.[3]  
 
Image denoising using block matching and 3D collaborative filtering is a recently developed denoising algorithm based 
on an enhanced sparse representation in the transform domain. Block matching is used to stack 2D blocks of a given 
image that are similar to a reference block. The matched blocks are stacked together to form a 3D array. Collaborative 
filtering is a special procedure used to deal with these 3D groups. The major steps involved in collaborative filtering are 
applying a 3D transform to the formed groups followed by shrinkage of transform coefficients and inverse wiener 
filtering. The reason for using 3D filtering is that 2D transforms cannot achieve good sparsity for all kinds of images. 
Using 3D arrays instead of 2D blocks enhances the sparsity so that the noise can be well attenuated by shrinkage of 
transform coefficients. The main disadvantage of this denoising algorithm is that a lot of interesting structure information 
is lost during the process of denoising. Structure information should be preserved for effective image analysis. In this 
paper, we define several cost functions to assess the quality of noise removal and that of structure information preserved  
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in the denoised image. Strength Pareto Evolutionary Algorithm (SPEA2) is used to simultaneously optimize the cost 
functions by modifying parameters associated with the denoising method. Experimental results show that the proposed 
optimization algorithm can significantly improve the performance of image denoising methods in terms of noise removal 
and structure information preservation. 
 

2. AN EXISTING DENOISING ALGORITHM  
Before presenting the proposed optimization procedure, a brief review of a recently developed image denoising 
method[3,13] based on block matching and 3D collaborative filtering, is discussed in this section.  
 
2.1 Algorithm Background 
Many transformation based denoising methods rely on some explicit or implicit assumptions about the true image in 
order to separate it properly from the random noise. Thesemethods assume that the true signal can be well approximated 
by a linear combination of basis functions. That is, the signal is sparsely represented in the transform domain, but the 
shrinkage of transform domain coefficients is ineffective with sparse representation of an image. For example, 2D DCT 
cannot sparsely represent sharp transitions such as edges in an image. Generally, a 2D transform cannot achieve good 
sparsity because of the great variety of natural images. 2D orthogonal transforms can achieve sparse representation only 
for some particular image patterns. To achieve a good sparsity for any natural image, 3D data arrays can be used instead 
of 2D fragments. In this novel image denoising strategy, the enhanced sparse representation in the transform domain is 
achieved by grouping similar 2D fragments of the image into 3D arrays called “groups”. Collaborative filtering is a 
special procedure developed to deal with these 3D groups. 3D transformations are applied to the 3D groups followed by 
shrinkage of transform coefficients, and the inverse 3D transform subsequently.. Due to the similarity between the 
grouped blocks, the 3D transform can achieve a highly sparse representation of the true signal so that the noise can be 
well separated by shrinkage. 
 
2.2 Grouping and Collaborative Filtering 
Grouping is the concept of collecting similar d-dimensional fragments of a given signal to form a d+1 dimensional data 
structure. For an image, a 3D array is formed by stacking together similar 2D image fragments. A simpler and effective 
grouping strategy for images is matching - a method for finding fragments similar to a given reference.[4] This can be 
accomplished by pair-wise testing of similarities between the reference fragment and the other fragments located at other 
locations. A fragment is said to be matched with the reference fragment if the distance between these two is smaller than 
a specified threshold. The fragments satisfying this condition are considered as members of the group, and the reference 
fragment is considered as "centroid" for the group. The block-matching approach is used extensively for motion 
estimation in video compression techniques. An illustrative example of grouping by block-matching of two images is 
given in Fig. 1, where a reference block is denoted by "R" and the ones matched to it are denoted in rectangular boxes.  
 

(a) (b) 
Fig. 1: Block Matching 

 
After grouping the 2D image fragments to form a 3D array, collaborative filtering is applied to 3D arrays. Given a group 
of n estimates, the collaborative filtering of the group produces n estimates, one for each of the grouped fragments. 
Effective collaborative filtering can be realized as shrinkage in the transform domain. Given d + 1 dimensional groups of 
similar fragments, the first step in collaborative shrinkage is to apply a (d + 1)-dimensional linear transform to the group. 
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Then soft and hard-thresholding or Wiener filtering is used to shrink the transform coefficients to attenuate the noise. 
The final step in collaborative filtering is to apply an inverse transform to produce estimates of all grouped fragments. 
Generally, groups formed from natural images as shown in Fig. 1 are characterized by intra-fragment correlation 
(appears between pixels of each grouped fragment) and inter-fragment correlation (appears between the corresponding 
pixels of different fragments). The 3D transform can take advantage of both correlations and produce a sparse 
representation of the true signal in the group, which makes the shrinkage very effective when attenuating the noise.  
 
2.3 Outline of the Denoising Algorithm 
In the denoising algorithm, grouping is realized by block matching, and collaborative filtering is accomplished by 
shrinkage in a 3D transform domain. All the image fragments used in matching are square blocks of fixed size. The 
outline of the algorithm is described as follows: 
 
Step 1. Basic Estimate. 
a) Block-Wise Estimate. For each block in the noisy image 

i) Grouping. Apply the block matching technique to find similar blocks and stack them to form a 3D array. 
ii) Collaborative hard-thresholding. Apply a 3D transform to the formed groups and apply hard thresholding to 
attenuate the noise and invert the 3D transform to produce estimates of all grouped blocks to their original 
positions. 

b) Aggregation. Compute the weighted average of all the overlapping block-wise estimation results in the basic estimate. 
Step 2. Final Estimate. After obtaining the basic estimate from step 1, perform the following steps. 
a) Block-wise estimates. For each block, 

i) Grouping. Apply block matching for the basic estimate to find similar blocks and form two groups, one from 
the noisy image and one from the basic estimate. 
ii) Collaborative Wiener filtering. Apply a 3D transform on both groups. Perform Wiener filtering on the noisy 
one to produce estimates of all grouped blocks by applying the inverse 3D transform on the filtered coefficients, 
and return the estimates of the blocks to their original positions. 

b) Aggregation. The final estimate of the true image is computed by aggregating all of the local estimates obtained by 
using the weighted average. The reason for the second step in the above procedure is that, instead of a noisy image, using 
the basic estimate improves the grouping. The flow chart of the algorithm is illustrated in Fig. 2. In the figure, operations 
surrounded by dashed lines are repeated for each processed block marked with "R" [13]. 
 

 
Fig. 2: Flow chart of the algorithm 
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2.4 Algorithm Implementation 
There are a set of parameters associated with the described algorithm as follows,  
 

1. N2: Maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array). 
2. Ns: Size of the search neighborhood for full-search block-matching (BM). It must be odd. 
3. Tau_match: Threshold for the block distance (d-distance) 
4. Lambda_ thr2D: Threshold parameter for the coarse initial denoising used in the d-distance (distance between 

the      reference block and the matched block) measure. 
5. Lambda_ thr3D: Threshold parameter for the hard-thresholding in 3D transform domain. 
6. Beta: Parameter of the 2D Kaiser window used in reconstruction. Kaiser window is used to reduce the border 

effects that can appear due to the usage of certain 2D transforms. 
7. N2_Wiener: Maximum number of similar blocks for step 2. 
8. Ns _Wiener: Length of side of search neighborhood in step 2. 
9. Tau_ match_ Wiener: Threshold for block distance in step 2. 
10. Beta_Wiener: 2D Kaiser window used in step 2. 
11. Sigma: Standard deviation of noise. 
12. N1: N1 x N1 is the block size used for the hard-thresholding (HT) filtering. 
1. This is the block size of the Kaiser window used during the shrinkage of transform coefficients using hard-

thresholding. 
13. Nstep: Sliding step to process every next reference block. Rather than sliding by one pixel to every next 

reference block, use a step of Nstep pixels to move to the next reference block. 
14. N1 Wiener: N1 x N1 is the block size used for the HT filtering in step 2. 
15. Nstep Wiener: Sliding step to process every next reference block in step 2. 

 
The values of above parameters may vary between certain thresholds. For a given noisy image, a different set of 
parameters will result in a different denoised image. Based on several experiments, the authors have proposed a set of 
parameters that produce best results, used them as default parameters. Fig. 3(a) shows a noise free MR image obtained 
from brain web[5]. Additive white Gaussian noise with zero mean and standard deviation of 25% is added to the noise 
free image shown in Fig. 3(b). The result of the denoising algorithm with default parameter values is shown in Fig. 3(c).  
 
After applying the denoising algorithm to the noisy image shown in Fig. 3(b), many interesting features in the image are 
lost in the process of denoising. In Fig. 3(c), it is clear that many edges in the images are lost due to extra smoothing. For 
effective image analysis, edge information of an image should be preserved along with a good quality of denoising. The 
main drawback of the current denoising algorithm is that the interesting structures in the image are not preserved well. 
This problem exists not only with the current denoising algorithm but also with many other denoising algorithms. 
Optimal results can be obtained through parameter selection, which is described in the following section. 
 

(a) (b) (c) 
Fig. 3: (a) Noise free image, (b) Noise added image σ = 25, (c) Denoised image 

 
3. THE PROPOSED PARAMETER OPTIMIZATION METHOD 

The most common problem with existing denoising methods is that some interesting structures in the image will be 
removed from the image during the denoising process. Such interesting structures in an image often correspond to 
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discontinuities in the image that provide important information. In MRI image analysis, discontinuities are very 
important as they are used to differentiate the pathological tissue from the normal tissue. Optimizing the outcome of the 
denoising method is crucial for effective image analysis. In the proposed research, multiobjective evolutionary 
techniques are used for the optimization procedure.  
 
3.1 Multiobjective Optimization 
Many real world applications have several conflicting objectives. The objective functions are difficult to be expressed in 
a closed form. A practical solution is to look at this parameter setting problem as a multiobjective evolutionary 
problem.[6] Multiobjective optimization problems occur whenever optimal decisions need to be taken in the presence of 
trade-offs between conflicting objectives. Maximizing profit and minimizing the cost of a product, maximizing 
performance and minimizing fuel consumption of a vehicle are examples of multi-objective optimization problems. It is 
rare that there is a single solution that simultaneously optimizes all the objectives. Therefore, when dealing with 
multiobjective optimization problems, we normally look for a set of optimal solutions, and a designer can make trade-
offs within this set. The resulting solution set is said to be Pareto optimal and the solutions are said to be Pareto 
efficient[7].  The plot of the Pareto optimal solutions in the objective space is called the Pareto front. In this paper, we 
applied the SPEA2 algorithm[8] to obtain the Pareto optimal solutions for the denoising algorithm. 
 
3.2 Cost Functions 
We define two costing functions to assess the quality of noise removal and structure information preservation in this 
section.  
 
3.2.1 Mean Square Error (MSE) 
Mean square error (MSE) is one means to quantify the amount by which the denoised image differs from the original 
noise free image, and is used to quantify the quality of noise removal. For a denoising method, a low value of MSE is 
preferable since the denoised image will be as close as possible to the noise free image. In the current context, MSE is 
calculated between the denoised image and the ground truth (noise free) image. Let f(x,y) be the noise free image of size 

M x N and  ),(
^

yxf  the output of the denoising algorithm, MSE is calculated as follows: 
2

1 1

1 ˆ( ( , ) ( , ))
M N

i j
MSE f i j f i j

MN = =

= −∑∑                                                   (1)                      

 
3.2.2 Entropy 
Entropy is a statistical measure of randomness or information contained in an image. Let ),( yxD  be the difference 

between ),( yxf  and ),(
^

yxf for the case of white Gaussian noise, if the power spectrum of ),( yxD is white, the 
denoising is uniform for all frequency components and structure information in the original image is preserved. On the 
other hand, if the power spectrum is concentrated only in particular frequencies, this indicates that the features in the 
original image corresponding to those frequency components are lost during the denoising process. Therefore, we 
compute the entropy for the difference image’s power spectrum as a quality measure of structure information 
preservation and  lower entropy value is preferred. Assume  the information content in an image can be represented with 
N gray level values and x occurs with a probability of p(x), then the entropy is given as 

1
( ) log( ( ))

N

i i
i

Entropy p x p x
=

= −∑                                                          (2) 

Entropy is typically measured in bits per symbol (gray level). 
 
3.2.3 Second Derivative 

The second derivative of the output image ),(
^

yxf contains edge information in the image.  In some clinical practices, 
the edge information in images is desired to be preserved or enhanced. Standard deviation (SD) of second derivative of 
the denoised image gives clues on how much information is kept in the images. We use the SD of the second derivative 
of the denoised image to measure the structure information in the image. Since the edges are to be preserved, a higher 
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value of SD is preferred. Therefore, 1/SD should be minimized.  The second derivative of an image can be approximated 
by convoluting the image with a Laplacian mask,  

                                                    
1 1 1
1 8 1
1 1 1

− − −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

                                                                    (3) 

 
3.3 Problem Formulation 

We consider minimizing two cost functions at one time in this paper. Let 1( )f x
r

 and 2 ( )f x
r

 denote the defined cost 

functions, where x
r

is an n-dimensional threshold vector. The values of cost functions are obtained by modifying the 
parameters associated with the denoising algorithm. The value of n depends on the denoising algorithm being used. In 
order to minimize the two conflicting functions, we formulate it as a multiobjective optimization problem[9],  

                     
                                                    1 2min ( ) { ( ), ( )}f x f x f x=

r r r r
                                                                     (4)   

Subject to  

1
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⎪ ∈
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∈⎪⎩  
where 1x  to 15x  correspond to parameters 1 to 15 defined in Section 2.4 respectively,  

1 15 1 11 12 15{ ,..., ,..., , ,..., }x x x x x x x I= ∈ ∈
r R                                                         (5) 

The range of parameter values are chosen such that the final optimal set contains all solutions of interest.  The global 
optima of the multiobjective optimization problem is the Pareto front determined by evaluating each member of the 
Pareto optimal set.[10] The Pareto optimal set consists of solutions that are not dominated by any other solution. A 

solution, 1x
r

, is said to dominate, ( )f , 2x
r

 , if the objective vector, 1( )f x
r

  is less than or equal to 2 ( )f x
r

 in all 
attributes and strictly less than at least one attribute, 

                             1 2

1 2 1 2

,
{1,2}: ( ) ( ) {1,2}: ( ) ( ).i i j j

x x iff
i f x f x j f x f x

⎧
⎨∀ ∈ ≤ ∧∃ ∈ <⎩

r r
f

r r r r                                           (6)     
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The plot of the objective functions whose vectors are in the Pareto optimal set is called Pareto front. The decision maker 
can select the solution satisfying all the objectives from the Pareto optimal set .[11]   
3.4 SPEA2 Algorithm 
SPEA2[12] is a technique to find or approximate the Pareto optimal set for multiobjective optimization problems. In this 
section, we briefly describe the SPEA2 algorithm, which has four steps: 
 

1. Randomly initialize the solution population. 
2. Evaluate and assign a fitness value for each individual in the population according to its performance. 
3. Select individuals based on their performance so that better individuals are more likely to be selected for 

producing the next generation. 
4. Use crossover and mutation to produce the next generation from the selected individuals. 

 
In the current optimization procedure, lower fitness values of cost functions indicate better performance. Steps 2 through 
4 are repeated until the generation number is reached. SPEA2 differs from a standard genetic algorithm in the following 
aspects. 
 
Environmental Selection: Apart from regular population, which is used in the genetic algorithm, in SPEA2 an archive 
that contains all the nondominated solutions from the previous generation is maintained. A member of the archive is 
removed if the following conditions are satisfied. 
1. A dominant solution is found in the current generation or 
2. The archive maximum size is reached and the member's performance is worse than that of others. 
 
Fitness Evaluation: Let tP  and tP  denote the population and archive respectively; each individual i in tP   and tP  is 
assigned a strength value S(i) that denotes the number of dominant solutions, 

                                                                ( ) { } ,t tS i j j P P i j= ∈ + ∧ f                                                           (7) 

where ⋅  represents the cardinality of a set, + represents the multiset union and f  represents the Pareto dominance 
relation. The raw fitness value R(i) is given as 

                                                                    
,

( ) ( )
t tj P P j i

R i S j
∈ +

= ∑
f

                                                                        (8) 

The final fitness values for the ith individual is given as 
                                                                      ( ) ( ) ( ),F i R i D i= +                                                                         (9) 

where D(i) are the density values estimated as 

                                                                            
1( ) ,

2k
i

D i
δ

=
+

                                                                           (10) 

and k
iδ denotes the kth nearest distance for the ith individual among tP   and tP   in objective space. k is usually set as 

N N+ , where N represents the population size and N  represents the archive size. 
 
Mating Selection: In SPEA2, all candidates are chosen from the archive using a binary tournament selection procedure. 
In the binary tournament selection, we randomly select two individuals and only the better one survives. 
           
3.5 Algorithm Outline 
 
Step 1. Initialization: 
Initialize the population size, (N), archive size, ( ), and generation number, (T). The typical values are N = 100,    = 
100, and T = 200. Randomly generate solution set tP , set tP  empty. Set t = 0. 
 
Step 2. Termination: 
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Nondominated parameters in tP   are returned as the final result if t > T. 
 
Step 3. Fitness Evaluation: 
Evaluate each solution in tP  and tP  by running the denoising algorithm on a given image. The fitness value for each 
solution is then calculated as above.  
 
Step 4. Environmental Selection: 
Copy all the individuals in tP  and tP  to 1tP + . Delete the worst solutions in 1tP +  if the size of 1tP +  exceeds N. If the 

size is less than N, copy the dominant solutions in tP   that have smaller fitness values. 
 
Step 5. Mating Selection: 
Using the binary tournament procedure, select 100 individuals from tP  with  replacement. 
 
Step 6. Reproduce: 
The next generation is reproduced using mutation and standard crossover procedures. The probability values of crossover 
and mutation are chosen as 0.9 and 0.001 respectively. Store the results in 1tP +   and increment t by 1 and go to step 2. 
 

4. EXPERIMENT AND RESULTS 
We ran the proposed optimization procedure several times using images from the brainweb database5. We minimized 
two cost functions at one time, and produced a Pareto front for each run. We chose several points on the Pareto front, 
where each point on the curve corresponds to one parameter set of the denoising algorithm, and ran the denoising 
algorithm using the parameters. The results from different parameters, including that from the default parameter set, 
were compared.  
 
4.1 Simulated Brain Database 
All the images used for the testing optimization procedure are obtained from the brain-web, which contains a simulated 
brain database (SBD)[5]. SBD contains simulated brain MRI data based on two anatomical models: normal and multiple 
sclerosis (MS). This contains full 3-dimensional data volumes simulated using three sequences (T1-, T2-, and proton-
density- (PD-) weighted MRI images) and a variety of slice thicknesses, noise levels, and levels of intensity non-
uniformity. These data are available for viewing in three orthogonal views (transversal, sagittal, and coronal), and for 
downloading free of charge.  
 
4.2 Results from Default Parameters 
Before presenting the optimized results, the results of the denoising algorithm using default parameters are presented in 
this section. Fig. 4(a) is a simulated noise free image from brain-web. Noise with standard deviation of 6.0% is added as 
shown in Fig. 4(b). The result of the denoising algorithm using the default parameters is shown in Fig. 4(c). The 
difference between the denoised image and the noise free image is shown in Fig. 4(d), whose power spectrum is shown 
in Fig. 4(e). It is obvious that the power spectrum is not white as expected Entropy of the power spectrum image  is 
3.1955, MSE between the noise free image and the denoised image is 1.33 x 10-4, and 1/SD value is 0.9149. These points 
are shown in Fig. 5(a) and Fig. 5(b), denoted by black cross. In a later section, we will show that these solutions are 
dominated solutions. Therefore, they are not the best possible solutions. Better parameters sets can be obtained through 
the proposed multiobjective optimization method.  
 
4.3 Results of Proposed Algorithm 
We ran the proposed optimization procedure using two different pairs of cost functions: MSE vs. Entropy and MSE vs. 
1/SD. The Pareto fronts for both cases are shown in Fig. 5(a) and Fig. 5(b), respectively. Each of the Pareto fronts 
consists of 100 points that correspond to 100 non-dominated parameter sets.  To check the optimized denoising results, 
11 points on each Pareto fronts are chosen, and their corresponding values of cost functions are shown in Table 1(a) and 
Table 1(b), respectively.  Each value of the cost the functions in the table corresponds to one parameter set of the 
denoising algorithm. 
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4.4 Denoising Results Comparison 
The 11 points on each Pareto front correspond to 11 parameter sets. Each parameter set from the Pareto front of MSE vs. 
Entropy is applied to the denoising algorithm, and two of the results are shown in Fig. 6(b) and Fig. 6(c). Results 
obtained by using parameter set of pareto front of 1/SD vs. MSE are shown in Fig. 6(e) and Fig. 6(f). Difference images 
are shown in Fig. 7(a), Fig. 7(b) and Fig. 7(c), while their corresponding power spectrums are shown in Fig. 7(d), Fig. 
7(e), and Fig. 7(f), respectively. Comparing these results with those  obtained by using the default parameters shown in 
Fig. 6(d), it is clear that results obtained by the filtering algorithm using the optimized parameters have more noise 
removed and preserve better structure information.. The Pareto front provides a set of good candidate solutions for 
denoising, which dominate the default parameter set provided by the authors.   
 
4.5 Computational Time 
The SPEA2 algorithm takes around 10 hours to complete the optimization procedure. In practice, this does not impose 
time constraint because the optimization is done off-line.  

 
5. CONCLUSION 

We have defined several cost functions to assess the quality of noise removal and structure information preservation for 
image filtering algorithms. These cost functions are minimized using SPEA2 algorithm by adjusting parameters 
associated with filtering algorithms. The proposed optimization procedure is applied to image denoising based on block 
matching and 3D collaborative filtering. Experimental results show that the proposed procedure greatly enhances the 
outcome of denoising methods. This method can be applied to many other denoising methods, and can be extended 
further by defining more cost functions and optimizing all the cost functions simultaneously. 
 

 
(a) (b) (c) 

 

 

(d) (e)  
Fig. 4: (a) Noise free image, (b) Noised image, (c) Denoised image with default parameters, (d) Difference image between (a) and (c), 
(e) Power spectrum of (d) 
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(a) (b) 
Fig. 5: (a) Pareto front for Entropy vs. MSE,  (b) Pareto front for 1/SD vs. MSE 
 
 
 

 
(a) (b) (c)  

 
(d) (e)  (f)  

Figure 6:. (a) Noise free image, (b) and (c) Denoised images obtained by using parameters from pareto front of Fig.5 (a), (d) 
Denoised image with default parameters, (e) and (f) Denoised images obtained by using parameters from pareto front of Fig.5 (b) 
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(a)  (b) (c) 

 
(e) (f) (g) 

Figure 7: (a) Difference image obtained using default parameters, (b) and (c) Difference images obtained from Fig.6 (e) and Fig.6 (f), 
(e), (f) and (g) Corresponding power spectrums of (a), (b) and (c). 
 
 
 

Table 1: (a) Values of cost functions Entropy vs. MSE, (b) Values of cost functions 1/SD vs. MSE 

(a) (b) 
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Parameter Set Entropy of Power Spectrum Mean Square error x 10- 3 Parameter Set 1/ SD Mean Square errorx 10-3 

1 2.5844 0.1450 1 0.8825 0. 1750 

2 2.1943 0.1590 2 0.8645 0.2240 
3 1.9527 0.1640 3 0.8610 0.2320 

4 1.8323 0.1740 4 0.8544 0.2640 
5 1.6268 0.1830 5 0.8465 0.2920 
6 1.4774 0.2050 6 0.8395 0.3220 
7 1.6268 0.2220 7 0.8345 0.3450 
8 1. 2644 0.2540 8 0.8247 0.3910 
g 1. 2020 0.2710 9 0.8225 0.4050 
10 1.0176 0.3140 10 0.8174 0.4340 
11 0.8474 0.3910 11 0.8103 0.4720 
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