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ABSTRACT

This work presents an algorithm for finding data dependencies in a discrete-event simulation system, from
the event graph of the system. The algorithm can be used within a parallel discrete-event simulation. Also
presented is an experimental system and event graph, which is used for testing the algorithm. Results
indicate that the algorithm can provide information about which vertices in the experimental event graph
can affect other vertices, and the minimum amount of time in which this interference can occur.

Keywords: parallel discrete-event simulation, event graphs, data dependencies, synchronization algorithm

1 MOTIVATION AND INTRODUCTION

This novel algorithm uses an event graph representation of a system to discover data dependencies between
vertices, which may later be used in a parallel discrete event simulation (PDES) simulation executive. Given
the event graph of the system, it is possible to determine the amount of time in which any one vertex can
affect any other vertex, i.e. specifically the amount of time in which the execution of any one vertex can
affect the state variables (SVs) that any other vertex (1) updates and/or (2) uses for decision-making. Figure 1
illustrates the execution of two events, A and B, in a serial simulation. N.B. in the context of this work, the
terms “event” and “vertex” are used interchangeably, though for fig. 1, fig. 2, and fig. 3, event graphs and
vertices corresponding to these events are not presented. In fig. 1, event A has a set of state variables SA
that it updates and/or uses for logical operations, and event B has a set of state variables SB that it updates
and/or uses for logical operations. In fig. 1(a), these sets SA and SB are not mutually exclusive for update
operations, i.e. event A updates some SVs that event B also updates and/or uses for logical operations, and
event B updates some SVs that event A also updates and/or uses for logical operations. In fig. 1(b), event
A does not update any SVs shared by event B, and event B does not update any SVs shared by event A.
For a serial simulation, either scenario is okay regarding the correctness of the simulation, but these serial
examples are presented in order to better explain safe and unsafe parallel execution in fig. 2, and fig. 3.
Figure 2 features the same events A and B as the previous example, but now they are selected to run in
parallel with each other, as indicated by the ellipses. In fig. 2(a), events A and B are in conflict with each
other because there is a data dependency, i.e. event A depends on some SVs that event B updates, and event
B depends on some SVs that event A updates. In fig. 2(a), these events cannot execute in parallel safely
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because they will interfere with each other’s updates and cause an incorrect simulation result. In fig. 2(b),
there is no such data dependency and therefore they will run safely in parallel together, assuming that event
A does not schedule any new events that update SVs in SB before simulation time tB.

tsim

event timeline
serial

state variables

Event A Event B

tA tB

SA

SB

(a) Interaction.

tsim

event timeline
serial

state variables

Event A Event B

tA tB

SA

SB

(b) No interaction.

Figure 1: Serial simulation. A dashed arrow ending in a pointed tip on the SV timeline of another event
indicates the executing event updates some SVs that the other event also updates and/or uses for logical
operations. A dashed arrow ending in an ex indicates there is no such interaction.
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(a) Unsafe parallel execution.
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(b) Safe parallel execution.

Figure 2: Parallel simulation. Each thread or process i has its own event execution timeline and correspond-
ing simulation time tsimi . A green or red border indicates that parallel execution is safe or unsafe.
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(a) Unsafe parallel execution with a new event scheduled.
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(b) Safe parallel execution with a new event scheduled.

Figure 3: Parallel simulation with new events scheduled, depicting consequences of interference time.

Figure 3 depicts two possible outcomes of event A scheduling a new event. In fig. 3(a), event A schedules a
new event, event C, that executes before simulation time tB, and event C updates some SVs in SB. Because of
this data dependency, if A and B execute in parallel together, depending on the simulation implementation,
event C either can or will interfere with event B and cause an incorrect simulation result. Event A interferes
with event B, meaning A causes some updates to SB before event B executes, in simulation time. Contrast
this with fig. 3(b), in which event A schedules a new event, event D. Similar to fig. 3(a), event D updates SB,
but this is inconsequential for event B at simulation time tB because this update occurs at simulation time
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tD, which is after tB. Event A does not interfere with event B because it does not cause updates to SB before
event B executes. The interference time interval from the execution of event A to the execution of event D is
greater than the time interval of the execution of event A to event B. In this case there is no data dependency,
and events A and B will run safely together in parallel.

These simple examples illustrate the concepts of data dependency and interference time interval in the
context of PDES and motivate this work. More generally, if two scheduled events A and B in the event set,
tA < tB, (1) have a scheduled timestamp difference d that is less than the interference time δAB from event A
to event B, and (2) event B cannot immediately update SA, events A and B are data-independent and safe to
run together in parallel. Now that that is explained, further discussion of parallel event execution is beyond
the scope of this work, but it motivates the discussion of the interference time interval table construction
algorithm. For an entire simulated system, each possible interference time interval δ is computed from
the event graph G and organized into an interference time interval table (ITIT), which defines δ between
each pair of vertices. The primary contribution of this work is the algorithm that constructs the ITIT. The
remainder of this paper is organized as follows: section 2 briefly summarizes foundational PDES and event
graph knowledge, section 3 defines the ITIT construction algorithm, section 4 introduces the example system
used in this work to demonstrate the algorithm in section 5, and section 6 concludes.

2 BACKGROUND

Schruben, Sargent, and Buss provide foundations for representing discrete-event simulation models with
event graphs (Schruben 1983), (Freimer and Schruben 2001), (Sargent 1988), (Buss 1996), (Buss 2001).
Fujimoto presents conservative and optimistic synchronization algorithms that are commonly used in PDES
(Fujimoto 1989), (Das, Fujimoto, Panesar, Allison, and Hybinette 1994), (Fujimoto 2000). For large-scale
applications, the optimistic Time-Warp algorithm is generally preferred over the conservative “lookahead”
algorithm for performance advantages, but for Time-Warp, the number of rollbacks can increase super-
linearly compared with the number of processes (Plagge, Carothers, Gonsiorowski, and Mcglohon 2018),
(Hou, Yao, Wang, and Liao 2013), (Carothers and Perumalla 2010), (Carothers, Bauer, and Pearce 2002).
Xia et al. present an extension to the event graph modeling formalism called extended event graph (EEG)
and explore developing domain-specific modeling languages for PDES, specifically a language based on
event graphs (Xia, Yao, and Mu 2012). Other works have also discussed how to use event graphs for
PDES application development (Wang, Deng, Xing, Wang, and Yao 2015), (Yao, Yao, Bao, Bao, and Zhang
2018). Some works have explored how to use logical processes to model physical processes and how to use
event scheduling for modeling interactions between physical processes (Zhu, Yao, Tang, and Tang 2017),
(Poshtkohi, Ghaznavi-Ghoushchi, and Saghafi 2019). Pelligrini and Quaglia introduce cross-state events,
which can reduce application development complexity and improve performance in PDES (Pellegrini and
Quaglia 2019). Jefferson and Barnes present a hybrid conservative-optimistic synchronization algorithm
framework called unified virtual time UVT (Jefferson and Barnes Jr 2023), (Jefferson and Barnes 2023).

3 ITIT CONSTRUCTION ALGORITHM

Algorithm 1 defines the construction of the ITIT. Given an event graph G with n number of vertices, the
algorithm compares each vertex v j in G with each vertex vk in G, to determine how quickly secondary
vertex vk can affect the SVs that primary vertex v j uses for decision-making and/or the SVs that v j updates.
In section 5, use of the algorithm is demonstrated with an example system and event graph, after the example
system is introduced in section 4.
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Algorithm 1: ITIT Construction Algorithm
Input: Event Graph G with n number of vertices
Result: n×n Interference Time Interval Table ∆(v1,v2)

1 for each vertex v j in G, j← 1..n do
2 Identify the SVs Pj that primary vertex v j updates and uses for decision-making.
3 Identify the vertices UPj from all vertices in G that can update SVs in Pj.
4 for each vertex vk in G, k← 1..n do
5 Identify the vertices Sk from all vertices in G that secondary vertex vk can reach.
6 Define Ijk as UPj ∩Sk.
7 if Ijk ̸= /0 then
8 Identify the time intervals Tjk of the shortest paths from vk to each vertex in Ijk.
9 Define the minimum interference time interval ∆(v j,vk)← δv j,vk ←min(Tjk).

10 else
11 Define the minimum interference time interval ∆(v j,vk)← δv j,vk ← ∞.
12 end
13 end
14 end

4 EXAMPLE SYSTEM
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Figure 4: EFMS, the physical system, with ω

stages and nβ processing stations per stage,
where β identifies the stage number.

For testing the ITIT construction algorithm, an event
graph is borrowed from Sargent’s paper, “Event Graph
Modeling for Simulation with an Application to Flex-
ible Manufacturing Systems" (Sargent 1988). Sargent
models a simple flexible manufacturing system. For
this work, Sargent’s system has been extended to cre-
ate a new system that offers greater parallelism and rig-
orous testing of the algorithm. This heavily modified
system is called the Extended Flexible Manufacturing
System (EFMS). Briefly, the most significant modifica-
tions are that now: (1) there are multiple (N) manu-
facturing stages, through which each part traverses se-
quentially for processing, (2) a global transporter ferries
parts between the manufacturing stages, (3) there can be
more than two processing stations in each manufacturing
stage, (4) parts can be rejected and sent to the previous
stage for re-processing, (5) each machine station has a
rejected parts buffer, and (6) each station zero has a load-
ing buffer, an unloading buffer for processed parts, and
an unloading buffer for rejected parts. Figure 4 depicts
the physical system modeled by EFMS.

To quickly summarize the meanings of the state variables, GS, Gb, and GP define states for the global
transporter; Lβ , Uβ p, and Uβ r define states for the station zero loading and unloading buffers; Tβ s and
Tβb define states for the local transporters; and Mβ j, Iβ j, Oβ j, and Rβ j define states for each processing
station. Complete definitions of state variables, delays, conditions, updates, and scheduling are omitted
due to consideration for space and for the focus of this work, which is the introduction of the algorithm,
which does not require a fine-grained understanding of EFMS. Figure 6 depicts the EFMS event graph,
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which briefly describes the functionality of each vertex. The simulation application is object-oriented and
structured in such a way that there are simulated system components containing pieces of the complete
event graph. These simulated system component objects communicate with each other to get SV values
that are needed for vertex updates. For this EFMS event graph, each of the N manufacturing stages has one
station zero system component and nβ machine station system components. In fig. 6, vertices are colored
according to functionality. A station zero system component contains the base station zero functionality
(blue vertices) captured from Sargent’s orginal system and the additional functionality needed for the global
transporter (green vertices) in EFMS. A machine station system component contains Sargent’s machine
station functionality (red vertices) and the added functionality needed for rejected parts (yellow vertices) in
EFMS. There is only one arrive vertex system component, and it functions to generate new parts and send
newly-arrived parts to the first-stage loading buffer LA. In fig. 6, dashed magenta lines group the vertices
owned by the type of simulated system component in the simulation application.

5 ITIT GENERATION FOR EXAMPLE SYSTEM

Figure 5, fig. 8, and fig. 10 show ITIT output for a N=2,nA=2,nB=2 EFMS system at different scales.
Figure 5 shows the highest-level interactions, where manufacturing stages are delineated by dark blue lines
and system components within a manufacturing stage are delineated by bright blue lines. Darker heatmap
colors indicate more immediate interference between vertex pairs, compared with lighter colors. The large
diagonal squares showing each manufacturing stage interacting with itself show darker colors and quicker
interference than the squares showing a stage interacting with the other stage. Within these large dark-blue
diagonal squares, the darkest colors and most immediate interference times are found within the smaller
bright-blue diagonal squares. These diagonal bright-blue squares show a system component’s internal vertex
interactions, e.g. machine station 1 in stage B interacting with itself. This behavior is expected because
the vertices within a system component update and use a common set of SVs belonging to that system
component. Rows or columns that are blank (white) in the ITIT heatmap figures correspond to vertices that
only do scheduling and do not update SVs or use SVs for decision-making.
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Figure 5: Interference time interval heatmap for a full system, N=2,nA=2,nB=2.
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Machine Station Rejected Parts:
15(β,j) : Start unloading machine to rejected buffer.
16(β,j) : Finish unloading machine to rejected buffer.
17(β,j) : Start loading transporter from rejected buffer.
18(β,j) : Finish loading transporter from rejected buffer. 

Machine Station:
4(β,j) : Start unloading transporter to input buffer.
5(β,j) : Finish unloading transporter to input buffer.
6(β,j) : Start loading transporter from output buffer.
7(β,j) : Finish loading transporter from output buffer. 
10(β,j) : Start loading machine from input buffer.
11(β,j) : Finish loading machine and start processing.
12(β,j) : Finish processing part at machine.
13(β,j) : Start unloading machine to output buffer. 
14(β,j) : Finish unloading machine to output buffer. 

Station Zero:
1(β) : Part arrival to loading buffer.
2(β) : Start loading transporter from loading buffer.
3(β) : Finish loading transporter from loading buffer. 
8(β,ℓ) : Start unloading transporter to ℓ unloading buffer.

9(β,ℓ) : Finish unloading transporter to ℓ unloading buffer. 

Global Transporter: 
19(β,ℓ): Start loading transporter from ℓ unloading buffer. 
20(β,ℓ): Finish loading transporter from ℓ unloading buffer.  
21(β) : Start unloading transporter to loading buffer. 
22(β) : Finish unloading transporter to loading buffer.
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Figure 6: EFMS event graph. Dashed pink lines separate simulated system components, and vertex color
refers to functionality within system component type. Edges have different colors for visualization purposes.



Jensen

The non-diagonal large dark-blue squares show generally slower interference times. Darker colors in the
large lower-right square, compared with the large upper-left square, indicate that manufacturing stage B
generally affects manufacturing stage A (lower-right square) somewhat differently from how manufacturing
stage A affects manufacturing stage B (upper-left square). Figure 8 and fig. 10 and accompanying text
explain the causes of some of these differences. The following subsections take some vertices shown in
fig. 8 and fig. 10 and demonstrate how algorithm 1 generates the stated interference time intervals, interfering
vertices, and interfering SVs for those vertices.

5.1 ITIT Construction Algorithm Demonstrations

The following subsections present demonstrations explicitly showing how the ITIT construction algo-
rithm generates some of the data shown in fig. 5, fig. 8, and fig. 10. For specific pairs of primary
vertex = v j, secondary vertex = vk vertices, demonstration 1 explains why for v j = 18(β=A, j=1) and
vk = 18(β=B, j=1) the interference time interval in fig. 8 is 7 time units, and demonstration 2 explains why
for v j = 18(β=B, j=1) and vk = 18(β=A, j=1) the interference time interval in fig. 10 is 11 time units.

5.1.1 Algorithm Demonstration 1

For this demonstration of the ITIT construction algorithm, the primary vertex is 18(β=A, j=1) and the
secondary vertex is 18(β=B, j=1). The stated interference time is 7, as emphasized by the blue circle in
fig. 8. Table 1 shows that primary vertex v j = 18(β=A, j=1) has three SVs that it updates and/or uses for
decision-making in the set Pj, and there are 21 vertices in UPj that can update those SVs. The secondary
vertex vk = 18(β=B, j=1) can reach all vertices in EFMS event graph G, except for vertex 0: those vertices
make the set Sk. Ijk, which is the intersection of UPj and Sk, contains exactly the same vertices as UPj
because Sk contains all vertices in G except vertex 0, and vertex 0 is not in UPj . Tjk contains the shortest-
path times from secondary vertex vk = 18(β=B, j=1) to each vertex in Ijk, ordered corresponding to the
ordering of vertices in Ijk. Therefore, δ (v j,vk) is 7, meaning that secondary vertex vk = 18(β=B, j=1) can
reach interfering vertex 1(β=A,P) in 7 simulation time units, and that is the shortest path to interfere with
primary vertex v j = 18(β=A, j=1).

Table 1: ITIT construction algorithm intermediate and final values for primary vertex v j = 18(β=A, j=1)
and secondary vertex vk = 18(β=B, j=1).

Set/Var. Alg. Line Value(s)

v j line 1 18(β=A, j=1)
Pj line 2 MA1, RA1, TAs

UPj line 3 1(β=A,P), 3(β=A), 9(β=A,ℓ=1), 9(β=A,ℓ=2), 20(β=A,ℓ=1), 5(β=A, j=1),
7(β=A, j=1), 10(β=A, j=1), 11(β=A, j=1), 12(β=A, j=1), 13(β=A, j=1),
14(β=A, j=1), 15(β=A, j=1), 16(β=A, j=1), 18(β=A, j=1), 5(β=A, j=2),
7(β=A, j=2), 11(β=A, j=2), 14(β=A, j=2), 16(β=A, j=2), 18(β=A, j=2)

vk line 4 18(β=B, j=1)
Sk line 5 all vertices in G minus vertex 0
Ijk line 6 exactly the same vertices as UPj

Tjk line 8 7, 8, 13, 13, 10, 10, 11, 10, 11, 15, 11, 12, 11, 12, 11, 11, 11, 12, 12, 13, 12
δ (v j,vk) line 9 7

This shortest path from secondary vertex vk = 18(β=B, j=1) to interfering vertex 1(β=A,P) is:
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Figure 7: SVs that each vertex updates, uses for logical operations, or both. The set of SVs Pj is highlighted
for algorithm demonstrations 1 (green) and 2 (pink). Anywhere the highlighted SV in Pj intersects a row
with a red or purple cell, the vertex corresponding to that row is in UPj . Note for each system component,
only the first and last vertices are labeled, and the values of Pj and UPj depicted here match those SVs and
vertices listed in table 1 (green) and table 2 (pink).

1. vertex 18(β=B, j=1) to
2. vertex 8(β=B, ℓ=2) in 1td = 1 time unit, to
3. vertex 9(β=B, ℓ=2) in tU = 1 time unit, to
4. vertex 19(β=B, ℓ=2) in 0 time units, to
5. vertex 20(β=B, ℓ=2) in tGL = 2 time units, to
6. vertex 21(β=A) in tD = 1 time unit, to
7. vertex 22(β=A) in tGU = 2 time units, to
8. vertex 1(β=A,P) in 0 time units.

Summing each edge on the path, 1+ 1+ 0+ 2+ 1+ 2+ 0 = 7, which is the value for the interference
time interval presented in fig. 8. Figure 10 indicates in the table entry for “12,12”, where 12 and 12 are the
corresponding system component vertex indices of the primary and secondary vertices in this demonstration,
that the interfering vertex is 1(β=A,P) and the interfering SV in that vertex is TAs. Vertex 1(β=A,P) as
the shortest-distance interfering vertex is confirmed from the output of the ITIT construction algorithm in
table 1. Defining the updates in fig. 9 for the primary vertex v j = 18(β=A, j=1) and interfering vertex
1(β=A,P) illustrates how vertex 1(β=A,P) interferes with primary vertex 18(β=A, j=1). The interfering
vertex updates SV TAs, and the primary vertex also updates TAs, as indicated by the red boxes around those
SV updates. It is problematic for both vertices to update TAs in parallel because it cannot be guaranteed
which vertex will update TAs first and at which simulation time, according to the updating vertices, that
update will occur.
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Figure 8: Interference time interval heatmap at the system component scale, in a N=2,nA=2,nB=2 system,
for stage A, machine station 1 primary vertices, and stage B, machine station 1 secondary vertices. Shortest-
distance interfering vertices and SVs are defined for each primary vertex,secondary vertex vertex pair, in
the range of vertices containing that pair. Ranges are specified in row labels. The bottom table defines the
minimum delay time for each scheduling delay.

5.1.2 Algorithm Demonstration 2

For this second demonstration, the vertices are switched so that now vertex 18(β=B, j=1) is the primary
vertex and vertex 18(β=A, j=1) is the secondary vertex. The stated interference time is 11, as emphasized
by the blue circle in fig. 10. Table 2 shows the values in the ITIT construction algorithm for this case.

The shortest path from secondary vertex vk = 18(β=A, j=1) to interfering vertex 1(β=B,P) is:

1. vertex 18(β=A, j=1) to
2. vertex 8(β=A, ℓ=2) in 1td = 1 time unit, to
3. vertex 9(β=A, ℓ=2) in tU = 1 time unit, to
4. vertex 2(β=A) in 0 time units, to
5. vertex 11(β=A, j=1) in 0 time units, to
6. vertex 12(β=A, j=1) in tAp 4 time units, to
7. vertex 19(β=A, ℓ=1) in 0 time units, to
8. vertex 20(β=A, ℓ=1) in tGL = 2 time units, to
9. vertex 21(β=B) in tD = 1 time unit, to
10. vertex 22(β=B) in tGU = 2 time units, to
11. vertex 1(β=B,P) in 0 time units.

Summing each edge on the path, 1+1+0+0+4+0+2+1+2+0 = 11, which is the value for the inter-
ference time interval presented in fig. 10. Note this path differs significantly from the path in section 5.1.1.
Figure 10 indicates in the table entry for “12,12”, where 12 and 12 are the corresponding system compo-
nent vertex indices of the primary and secondary vertices in this demonstration, that the interfering vertex is
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Figure 9: Vertex update definitions for primary vertex 18(β=A, j=1) and interfering vertex 1(β=A,P).

Vertex 18(β=A, j=1): (Finish loading the A-stage local transporter from rejected part output buffer RA1)
Required condition definitions:

c22A1 MA1 =−2.
1. Update RA1← RA1−1,
2. update TAs← 0 ,
3. schedule Vertex 8(β , ℓ) with attributes (A,2) after delay 1td .
4. If (c22A1), then: (a) Schedule Vertex 15(β=A, j=1).

Vertex 1(β=A,P): (Part arrival to manufacturing stage β=A loading buffer LA)
Required condition definitions:
c1A LA > 0 ∧ ∃k ∈ {1 . . .nA} ∋ IAk <Cmach ∧ TAb = 0 ∧ TAs = 0.
c2A LA > 0 ∧ ∃k ∈ {1 . . .nA} ∋ IAk <Cmach ∧ TAb = 0 ∧ TAs > 0.

1. Update LA← LA +P.
2. If (c1A), then: (a) Update TAb← 1, (b) schedule Vertex 2(β=A).

3. If (c2A), then: (a) Update TA0← TAs, (b) update TAb← 1, (c) update TAs← 0 ,
(d) schedule Vertex 2(β=A) after delay Tβ0td .

1(β=B,P) and the interfering SV in that vertex is TBs. Vertex 1(β=B,P) as the shortest-distance interfer-
ing vertex is confirmed from the output of the ITIT construction algorithm in table 2. The updates for the
primary vertex v j = 18(β=B, j=1) and interfering vertex 1(β=B,P) are the same as the updates defined
for the vertices 18(β=A, j=1) and 1(β=A,P) in the previous demonstration in section 5.1.1, except that
for any SV or vertex where β=A in those updates, β=B for these updates. The result is that the interfering
vertex 1(β=B,P) updates the SV TBs, and the primary vertex v j = 18(β=B, j=1) also updates TBs. This is
problematic for the same reason as in the previous demonstration in section 5.1.1.

Table 2: ITIT construction algorithm intermediate and final values for primary vertex v j = 18(β=B, j=1)
and secondary vertex vk = 18(β=A, j=1).

Set/Var. Alg. Line Value(s)

v j line 1 18(β=B, j=1)
Pj line 2 MB1, RB1, TBs

UPj line 3 1(β=B,P), 3(β=B), 9(β=B,ℓ=1), 9(β=B,ℓ=2), 20(β=B,ℓ=2), 5(β=B, j=1),
7(β=B, j=1), 10(β=B, j=1), 11(β=B, j=1), 12(β=B, j=1), 13(β=B, j=1),
14(β=B, j=1), 15(β=B, j=1), 16(β=B, j=1), 18(β=B, j=1), 5(β=B, j=2),
7(β=B, j=2), 11(β=B, j=2), 14(β=B, j=2), 16(β=B, j=2), 18(β=B, j=2)

vk line 4 18(β=A, j=1)
Sk line 5 all vertices in G minus vertex 0
Ijk line 6 exactly the same vertices as UPj

Tjk line 8 11, 12, 17, 17, 14, 14, 15, 14, 15, 19, 15, 16, 15, 16, 15, 15, 16, 16, 17, 16, 15
δ (v j,vk) line 9 11
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Figure 10: Interference time interval heatmap, similar to that in fig. 8, for stage B, machine station 1 primary
vertices, and stage A, machine station 1 secondary vertices.

6 DISCUSSION AND CONCLUSIONS

After explaining the concepts of data dependency and interference time interval in the context of PDES in
section 1 with simple illustrative examples, section 3 defines an algorithm that identifies the interference
time for each vertex pair in an event graph. The example system introduced in section 4 is used in section 5
as a means to demonstrate the algorithm working to generate interfernce times. The demonstrations selected
show that interference times are not necessarily symmetric for a given pair of vertices, i.e. δAB ̸= δBA. In
conclusion, the ITIT construction algorithm exhibits the ability to find data dependencies and the set of
interference times for an event graph. This information may later be used to select safe parallel events in a
PDES. Future work includes the development of PDES simulation executive algorithms that incorporate the
ITIT for the selection of safe parallel events and execution time speedup.
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