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ABSTRACT 

We evaluate and improve an existing curvature-based region growing algorithm for colonic polyp detection for our CT 
colonography (CTC) computer-aided detection (CAD) system by using Pareto fronts.  The performance of a polyp 
detection algorithm involves two conflicting objectives, minimizing both false negative (FN) and false positive (FP) 
detection rates.  This problem does not produce a single optimal solution but a set of solutions known as a Pareto front.  
Any solution in a Pareto front can only outperform other solutions in one of the two competing objectives.  Using 
evolutionary algorithms to find the Pareto fronts for multi-objective optimization problems has been common practice 
for years.  However, they are rarely investigated in any CTC CAD system because the computation cost is inherently 
expensive.  To circumvent this problem, we have developed a parallel program implemented on a Linux cluster 
environment.  A data set of 56 CTC colon surfaces with 87 proven positive detections of polyps sized 4 to 60 mm is 
used to evaluate an existing one-step, and derive a new two-step region growing algorithm.  We use a popular 
algorithm, the Strength Pareto Evolutionary Algorithm (SPEA2), to find the Pareto fronts. The performance differences 
are evaluated using a statistical approach.  The new algorithm outperforms the old one in 81.6% of the sampled Pareto 
fronts from 20 simulations.  When operated at a suitable sensitivity level such as 90.8% (79/87) or 88.5% (77/87), the 
FP rate is decreased by 24.4% or 45.8% respectively. 

Keywords: CT colonography, Virtual colonoscopy, computer-aided diagnosis, polyp detection, Pareto front 

1.  INTRODUCTION 
 
Colonic polyps are abnormal growths originated from cells of the colonic mucosa, the inner wall of the colon.  The 
majority are elliptical protrusions of the mucosa which can be detected by curvature-based region growing algorithms1.  
Early reports on various CT colonography (CTC) computer-aided detection (CAD) systems suggest high sensitivity is 
possible2.  However, evaluation and optimization of these region growing algorithms remain manual and empirical. 
 

The performance of a polyp detection algorithm involves two conflicting objectives, minimizing both false negative 
(FN) and false positive (FP) detection rates.  This problem does not produce a single optimal solution but a set of 
solutions known as a Pareto front3-5.  Any solution in a Pareto front can only outperform other solutions in one of the 
two competing objectives.  Using evolutionary algorithms to find the Pareto fronts for multi-objective optimization 
problems has been common practice for years.  However, they are rarely investigated in any CTC CAD system because 
the computation cost is inherently expensive.  The cost of evaluating a CTC CAD algorithm comes mainly from two 
sources.  First, a typical algorithm has several adjustable operating parameters.  The dimensions of the searching space 
for optimal operations are equal to the number of these parameters.  Second, colonic polyps vary in shape and size.  
Consequently, an adequate evaluating data set has to be large enough to cover the broad spectrum of polyp variations.  
Combining high parametric dimensions with large evaluating data makes algorithm evaluation an extremely expensive 
computation task.  To circumvent this problem, we have developed a parallel program that is implemented on a Linux 
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Figure 1.  A 6mm adenomatous polyp appears like an elliptical protrusion.  N is the surface normal and E1 and E2 are the principal 
tangent directions at point p. 
 
 
cluster environment to make the computation time acceptable.  This parallel program is tested on an existing one-step, 
curvature-based region growing algorithm and helps to derive a new two-step, curvature-based region growing 
algorithm for colonic polyp detection.  We demonstrate that Pareto fronts are effective visual tools to evaluate and 
compare algorithms for CTC CAD systems.  

 
 

2.  METHODS 

 
2.1.  Polyp Candidate Segmentation 
 
Surface curvatures are local geometric properties which quantitatively describe how the surface curves or bends locally.   
Given air-distended colon surfaces, polyps appear like elliptical protrusions oriented inward toward the colon lumen 
(Fig 1).  This elliptical feature can be characterized by two principal curvatures which are the maximum and minimum 
normal curvatures along the principal tangent directions6.  Let k1 and k2 denote the maximum and minimum principal 
curvatures respectively and E1, E2 their corresponding principal directions which are perpendicular to each other.  By 
definition, curves that bend toward and away from the normal direction N have positive and negative curvature values 
respectively.  Consequently polyps can be identified as regions with negative k1 and k2

1. 
 

Before we elaborate on polyp candidate filtering criteria, we give definitions of three additional curvature-related 
properties.  Gaussian curvature K, mean curvature H, and sphericity index SI are derived from principal curvatures k1 
and k2 and are defined as: 
 

21kkK =       (1) 

2/)( 21 kkH +=      (2) 

12

122
kk

kk
SI

+

−
= , where 012 <≤ kk .    (3) 

 
K and H are simply product and mean of two principal curvatures.  SI describes how round an elliptical surface is and 
ranges from 0 (sphere) to 2 (ridge).  Any value in between represents an ellipsoid.  
 

In this paper two curvature-based region growing algorithms for polyp detection are implemented and compared.  
The first algorithm, denoted as RA, clusters the vertices satisfying one set of curvature-based criteria on a triangular  
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Figure 2.  A graph path (thick line) from p1 to p12 is noted as P1,12 = {p1, p4, p8, p12}. 
 
 
mesh surface; the second algorithm, denoted as RA+RB, clusters the vertices based on two separate sets of curvature-
based criteria.  The algorithms are described in more detail in the following two sections. 
 
2.1.1. One-step region growing algorithm RA 

After the colonic surface is segmented and principal curvatures are estimated by using a kernel method1, a one-step, 
curvature-based region growing algorithm, denoted as RA, is applied to screen through all surface vertices to identify 
polyp candidates.  A region growing algorithm typically consists of three procedural components: 1) identifying seed 
points based on desired characteristics, 2) sequentially adding qualified immediate neighbor points to grow clusters, and 
3) screening the clusters based on certain properties such as the member population and shape characteristics.  However, 
in order to facilitate our discussion on the algorithm properties, we outline RA in the form of sets instead of procedural 
descriptions.   

First, vertices satisfying 1) elliptical, 2) mean, and 3) Gaussian curvatures criteria are put in a set SA: 
 

SA = {pi |   1) k1(pi) < 0 and k2(pi) < 0; and      
             2) Hmin < H(pi) < Hmax; and          

3) Kmin < K(pi) < Kmax}            (4) 
 
where k1(pi), k2(pi), H(pi), and K(pi) are the maximum, minimum, mean, and Gaussian curvatures at vertex pi; Hmin, 
Hmax, Kmin, and Kmin are adjustable operating parameters for selectivity. 
 

Second, neighboring vertices in SA are then clustered to form n disjoint regions RAk, k = 1 to n, based on 
connectivity using regular region growing methods.  Let Pi,j represent a graph path between two vertices pi and pj ,  
 

Pi,j = {pi, px, …, pj}        (5)  
 
where its elements are connected in the order of pi, px, …, and pj and Pi,i = {pi}.  Fig 2 illustrates a graph path on a 
triangular mesh.  Regions RAk are defined as: 
 

RAk = { pi |   Let ps be a seed point, that is, ps∈SA and ps∈  RAk; 
pi∈RAk if there exists a graph path Pi,s such that Pi,s⊂ SA}          (6) 

            
In addition, RAk satisfy the following two properties: 
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φ=ji RARA I , if i ≠ j.       (8) 
 

Third, the initial clusters RAk are screened based on their vertex population and average SI to remove noise-induced 
small bumps and ridge-like folds respectively, that is, 
 

|| RAk || ≥  NA      (9) 
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 || . || represents the cardinality of a set, that is, the number of elements in a set.  NA and SIA are two additional operating 
parameters. 
 

In summary, surface point clusters, grown from vertices in set SA, satisfying shape and size criteria SIA and NA are 
valid polyp candidates by algorithm RA.  The resultant set is represented as 
 

SRA = { RAk | || RAk || ≥  NA and Average SI (RAk)< SIA }.   (11) 
 
2.1.2  Two-step region growing algorithm RA+RB 
 
We introduce another algorithm by adding a second region growing step, denoted as RB, to the first algorithm RA.  The 
new two-step algorithm is denoted as RA+RB for brevity.  Procedurally speaking, the first step of algorithm RA+RB is 
identical to algorithm RA while the second step, algorithm RB, uses valid polyp candidates in SRA as bases to form new 
regions by a different set of curvature-based criteria.  Algorithm RB first selects new seed points from a valid candidate 
RAk and its immediate non-member neighboring vertices using a different set of curvature-based criteria.  Second, 
vertices that are not members of existing, valid polyp candidates RAi, ki ≠ , and satisfy the new set of criteria are added 
to form regions RBk.  Third, newly found RBk are screened based on their member populations.  In order to facilitate our 
discussion on the properties of algorithm RB, we rephrase the procedures in more formal set descriptions. 
 

First, any vertex satisfying a new, different set of curvature criteria is put in a new set SB: 
 

SB = {pi |     1)  k1(pi) < 0, k2(pi) < 0; and      
           2) H(pi) < HB; and          

3)  SI(pi) < SIB}        (12) 
 
where k1(pi), k2(pi), H(pi), and SI(pi) are the maximum, minimum, mean curvatures, and sphericity index at vertex pi; HB 
and SIB are adjustable operating parameters for selecting vertices which satisfy a different set of shape characteristics.  
For a valid polyp candidate RAk in (11), a set of new seed points, SEk, are extracted from members of RAk and their non-
member, immediate neighbors.  
 

SEk = {pi |  1)   pi∈SB and 
    2)   pi∈RAk or  

pi is an immediate neighbor of the boundary vertices of RAk where pi∉RAj, RAj∈  SRA }.    (13)                         
 

Proc. of SPIE Vol. 6514  651407-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 31 May 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

I= = I 



 

 

Second, region RBk is formed from SEk by using a regular region growing algorithm.  Let Pi,j, defined in (5), 
represent a graph path between two vertices pi and pj.  Regions RBk are defined as: 
 

RBk = { pi |  Let ps be any seed point, that is, ps∈SEk , 
      pi∈RBk if there exists a graph path Pi,s 

such that Pi,s⊂ SB and Pi,s I  (RAj U  RBj) = φ  if j ≠ k}.          (14) 
 
Note that RBk can consist of multiple disconnected vertex clusters since the curvature-based criteria in (4) and (12) are 
neither inclusive nor exclusive.   
 

Third, the clusters RBk are screened based on their vertex population, denoted as || RBk ||, that is, 
 

|| RBk || ≥  NB .      (15) 
 

In summary, surface point clusters in (11) form the initial regions of interest to apply the second region growing 
algorithm RB.  The final set of valid polyp candidates formed by the 2-step algorithm RA+RB is represented as: 
 

      SRA+RB(Hmin, Hmax, Kmin, Kmax, SIA, NA, HB, SIB, NB)  
   = { RAk U  RBk |  1) RAk∈  SRA and 

     2) RBk is the additional region initiated from RAk  and 
3) || RBk || ≥  NB }.                (16) 

 
2.2  Pareto Fronts 
 
The performance evaluation and optimization of a region growing algorithm in polyp detection involves two conflicting 
objectives, minimizing both false negative (FN) and false positive (FP) detection rates.  True polyps that are not 
detected are FN’s; detections localized on normal colon surfaces are FP’s.  This problem does not produce a single 
optimal solution but a set of possible solutions known as a Pareto optimal set, which results in a Pareto front in the 
objective space. A Pareto front is essentially an objective boundary such that any solution on the front can only be 
outperformed by another solution in at most one of the two competing objectives.  Therefore, a Pareto optimal set is 
also called a Pareto non-dominated set. 
 

Formally the optimization problem can be stated as minimizing a two-objective vector 
   

F(x) = (FN(x), FP(x))         (17) 
 

where x is the vector of algorithm operating parameters.  A solution x1 is said to dominate x2 if and only if 
 

         FN(x1) ≤  FN(x2) and 
FP(x1) ≤  FP(x2) and           (18) 

                                                                                {FN(x1) < FN(x2) or FP(x1) < FP(x2)}  
 
where x2 ≠  x1. 

   
The vector of operating parameters for algorithms RA and RA+RB can be explicitly expressed as 
 

xA =(Hmin, Hmax, Kmin, Kmax, SIA, NA)       (19) 
and 

xA+B =(Hmin, Hmax, Kmin, Kmax, SIA, NA, HB, SIB, NB) .       (20) 
 
Let the set of all true polyps be represented as 
 

Spolyp = { Sj | Sj = { pi | pi is a vertex marked as on polyp identify number j}},        (21) 
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the FN and FP can be expressed as 
 

FN(x) = ||{ Sj |   1) Sj∈Spolyp and 2) φ=kj RS I , ∀ Rk∈S }||    (22) 
and 

FP(x) = ||{ Rk |   1) Rk∈S and 2) φ=kj RS I , ∀ Sj∈Spolyp}||    (23) 
 
where x is xA or xA+B , S is SRA or SRA+RB for algorithms RA and RA+RB respectively.  || . || represents the cardinality of 
a set, that is, the number of elements in a set. 
 

As FN(x) and FP(x) are two conflicting objective functions with no closed form solutions, therefore, it is natural to 
look at this parameter setting problem as multiobjective evolutionary problem. 
  
2.3.  Multiobjective Evolutionary Algorithms 
 
Since the first studies on evolutionary multiobjective optimization in the mid-1980s, many algorithms have been 
proposed in the literature3, 5, 7 for finding or approximating the Pareto optimal set for multiobjective optimization 
problems.  In a standard genetic algorithm, there are usually four steps in the evolutionary procedure: 1) randomly 
initialize the solution population, 2) evaluate and assign a fitness value for each individual in the population according 
to its performance, 3) select individuals based on their fitness values such that better individuals are more likely to be 
selected for producing the next generation, and 4) use crossover and mutation to produce next generation from the 
selected individuals.  In this study, we use the SPEA25 algorithm to find the Pareto set for its fast convergence rate.  The 
SPEA2 algorithm differs from the standard genetic algorithm in the following three aspects. 
 
Environmental Selection:  Aside from the regular population in a genetic algorithm, there is an archive containing all 
the nondominated solutions from the previous generation.  An individual in the archive is removed only if 1) a solution 
has been found in the current generation that dominates it or 2) the maximum archive size is exceeded and its “fitness” 
is worse than that of other solutions in the archive. 
 
Fitness Evaluation:  The fitness evaluation for an individual is based on both the population and the archive.  A good 
individual is assigned a smaller fitness value.  Let tP  and tP  denote the population and archive respectively, each 

individual operating parameter set xi in tP  and tP  is assigned a strength value V(xi), the number of solutions it 
dominates, 

V(xi) = ||{ xj | xj∈ tP U tP  and xif xj}||    (24) 
 
where || . || represents the cardinality of a set and xif xj corresponds to the Pareto dominance relation, in which xi 
dominates xj.  Based on the value of V(xi), a raw fitness value R(xi) is given to the individual xi, 
 

R(xi) = ∑
∈ ijttj

jV
xxPPx

x
fU ,

)(       .     (25) 

 
The raw fitness assignment by (25) will fail if most individuals do not dominate each other.  Therefore, additional 
density information is incorporated to discriminate individuals with identical raw fitness values.  The density estimation 
technique used in SPEA2 in an adaptation of the k-th nearest neighbor method8.  Let k

iσ  denote the distance (in the 
objective space) from the k-th nearest neighbor to an individual xi;  the density estimation corresponding to xi is defined 
by 

2

1
)(

+
= k

i
iD

σ
x .         (26) 
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As a common setting, k is set as NN + , where N  and N  are the sizes of the population tP and archive tP  
respectively.  Last, adding D(xi) to the raw fitness value R(xi) of an individual xi yields the final fitness value F(xi): 
 

F(xi) = R(xi) + D(xi).          (27) 
 

Readers can refer to reference 5 for more details of the SPEA2 algorithm and references 4 and 9 for examples of 
implementations in colonic polyp detection. 
 
2.4.  Algorithm Implementation and Evaluation 
 
The SPEA2 algorithm is implemented in Matlab; region growing algorithms RA and RA+RB are implemented in C++ 
under Visual Studio for Windows.  To speed up computation, the region growing programs are recompiled in a Linux 
environment and multiple copies of the programs are run parallel in a Linux Beowulf computing cluster10.  In the Linux 
cluster, the SPEA2 program runs as the main process, dispatching jobs and collecting results generation after generation 
until the Pareto front converges or the generation number reach a preset upper limit.  The parallel computation is 
outlined as followed. 
 

1. Initialization.  The main program randomly generates a population 1=tP  of N = 100 operating vectors x as the 

first generation and an empty archive 1=tP , N  = 0. 

2. Region Growing.  Apply tP  to a given evaluating data set of 56 CTC colon surfaces with 87 proven polyp 
detections sized 4 to 60mm.  The data set is divided into n subsets and the region growing program is applied 
to each subset simultaneously on n machines.  (The number of available machines is administrated by the 
system management depending on the system workload.) 

 
3. Environmental Selection.  The main program waits until all the data is processed for the current generation t 

and the resultant FN and FP rates are available.  The SPEA2 algorithm updates the archive 1+=ttP  from tP  

and tP  based on Pareto Non-dominance.  If the size N  of the updated archive is large than 100, truncate the 

archive based on “fitness”, defined by (27), until N  = 100. 
 

4. Mating Selection.  Select 100 individuals in the current archive with replacement using a binary tournament 
procedure. 

 
5. Reproduce.  Reproduce the next generation (N = 100) using standard crossover and mutation procedures.  The 

crossover and mutation probability are set as 0.9 and 0.01 respectively in our experiments.  Terminate if the 
generation number reaches the upper limit, otherwise go to step 2. 

 
The upper generation limits of RA and RA+RB are 200 and 300 which are proportional to the number of operating 
parameters used as in xA and xA+B respectively. 

 
We used a statistical comparison program developed by Knowles and Corne3 to evaluate the performance 

difference between algorithms RA and RA+RB in the objective space (FN, FP).  The basic idea of this metric is as 
follows:  Suppose that two algorithms result in two non-dominated sets P1 and P2 respectively.  The lines that join the 
solutions in P1 and P2 are called attainment surfaces (which are curves in two-dimensional cases).  A number of lines 
are then drawn from the origin such that they intersect with the surfaces.  The comparison is then individually done for 
each sampling line to determine which one outperforms the other.  The method is illustrated in Fig 3.  In this study, each 
algorithm was run 20 times and 500 intersection comparisons were sampled on each possible pair of P1 and P2 surfaces. 
Comparing classes of algorithms in CAD is essential for efficient algorithm development.  Multiobjective evolutionary 
methods provide a tool for comparing classes of algorithms.  However, these methods do have potential limitations in 
the selection of an appropriate performance metric and in the blurring between training and test data.  While we are 
aware of these potential limitations, they are outside the scope of this paper. 
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3.  RESULTS 
 
In the 20 runs, the new algorithm RA+RB outperforms RA in 81.6% of sampled space; RA outperformed RA+RB in 
0% of the same space and in 18.4% the two methods were equivalent.  The average computation time is about 4 and 6 
hours for each algorithm, respectively.  This is a significant improvement compared to the time of more than 30 hours 
needed to run on a single machine. 
 

The average results of the 20 runs of both methods are shown in Fig 4.  By our problem definition, a better algorithm 
should have a lower Pareto front.  The mean Pareto front of the new algorithm RA+RB is clearly on the lower left side 
of the existing algorithm RA.  The average FP reduction in percentage by RA+RB at every sensitivity level is illustrated 
in Fig 5.  It shows that RA+RB outperforms RA at all sensitivity levels except 18.4% (FN=71) where the FP rate 
increases by 4%.  When operated at a suitable sensitivity level such as 90.8% (FN=8) or 88.5% (FN=10), the FP rate 
can be decreased by 24.4% or 45.8% respectively.  Operating parameter vectors xA and xA+B at FN=10 are: 

 
xA   = (-10, -1.05, 0.59, 10.94, 0.99, 15)     (28) 

and 
xA+B= (-10, -0.16, -50, 6.25, 1.21, 19, -1.05, 0.67, 18).   (29) 

 
The new method can distinguish a normal bump (Fig 6a) from a 6mm adenomatous polyp (Fig 6b) because the 

bump has fewer RBk members and is now found to be less round than actual polyp candidates.  Fig 7 illustrates another 
observation to help explain why the new algorithm performs better.  As algorithm RA uses only one set of curvature 
criteria, the level of selectivity has to be compromising. This results in multiple, small detections (Fig 7a) for a large, 
irregular shaped polyp.  The new algorithm consists of two sets of growing criteria such that one less selective set 
allows the detection to grow a larger cluster and one more selective set to guarantee that the detection has enough 
surface vertices which resemble the shape of an ellipsoid (Fig 7b). 

    
 

4.  CONCLUSION 
 
We have developed a new systematic scheme to design new algorithms for the optimization of polyp candidate 
segmentation for CTC CAD systems using curvature-based criteria.  We investigated the feasibility of applied 
multiobjective evolutionary algorithms to find the optimal operating parameters for an existing and a new two-stage 
region growing algorithm.  Evolutionary algorithms are inherently expensive and are rarely introduced into the CTC 
CAD research field.  To circumvent the problem, we have implemented the multiobjective evolutionary algorithm on a 
PC/Linux cluster environment.  The average time to run a training session for algorithms RA and RA+RB is roughly 4 
and 6 hours respectively. 
 

In conclusion, the solutions in a Pareto optimal set can give more information and confidence to evaluate the 
performance differences between new and old algorithms.  The results showed that the new algorithm can reduce the FP 
rate by 24.4 to 45.8% while operating at a high sensitivity level between 90.8 to 88.5%. 
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Figure 3.  Compare RA and RA+RB performances by sampling a pair of non-dominated sets (Pareto fronts) using lines of 
intersections.  Equally spaced radial lines originated at the origin are sent out to intersect both curves.  A sampling line has three 
possible results: intersecting RA curve first (RA outperforms RA+RB), intersecting RA+RB curve first (RA+RB outperforms RA), 
intersecting both curves simultaneously (equivalent).  
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Figure 4. The mean Pareto fronts of algorithms RA and RA+RB from 20 runs. The RA+RB curve shows superior performance 
(fewer FN and FP). 
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Figure 5. The improvement in reducing FP rates by using algorithm RA+RB when operated at the same FN rates using RA. 
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Figure 6. (a) A polyp-like bump. (d) A 6mm adenomatous polyp. (b, e) Resultant clusters of vertices using algorithm RA.  (c, f) 
Resultant clusters using algorithm RA+RB.  The clusters in (b, e) are valid candidates by a criterion set xA,  The cluster in (f) is a 
valid candidate by a different criterion set (xA)’+ xB but (c) is not because of a small population, ||RBk||.  In (c, f) light gray spheres 
represent vertices that satisfy a less selective criterion set (xA)’; dark gray spheres satisfy both selective criterion sets (xA)’ and xB.  In 
(e, f) small dots are manually marked vertices of the polyp. 
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Figure 7.  A partial view of a 4 cm irregular shaped polyp. (a) Multiple detections (clusters of light gray spheres) using RA.  (b) A 
large, single detection is formed by using RA+RB.  In (b) light gray spheres satisfy a less selective criterion set xA; dark gray spheres 
satisfy both selective criterion set xA and xB. 
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