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ABSTRACT  

Proper assessment of Operator Functional State (OFS) and appropriate workload modulation offer the potential 
to improve mission effectiveness and aviation safety in both overload and underload conditions. Although a wide 
range of research has been devoted to building OFS assessment models, most of the models are based on group 
statistics and little or no research has been directed towards model individualization, i.e., tuning the group statistics 
based model for individual pilots. Moreover, little emphasis has been placed on monitoring whether the pilot is 
disengaged during low workload conditions. The primary focus of this research is to provide a real-time engagement 
assessment technique considering individual variations in an aviation environment. This technique is based on an 
advanced machine learning technique, called enhanced committee machine. We have investigated two different 
model individualization approaches: similarity-based and dynamic ensemble selection-based. The basic idea of the 
similarity-based technique is to find similar subjects from the training data pool and use their data together with the 
limited training data from the test subject to build an individualized OFS assessment model. The dynamic ensemble 
selection dynamically select data points in a validation dataset (with labels) that are adjacent to each test sample, and 
evaluate all the trained models using the identified data points. The best performing models will be selected and 
maximum voting can be applied to perform individualized assessment for the test sample. To evaluate the developed 
approaches, we have collected data from a high fidelity Boeing 737 simulator. The results show that the 
performance of the dynamic ensemble selection approach is comparable to that achieved from an individual model 
(assuming sufficient data is available from each individual).  

 
Keywords: Operator Functional State, Engagement, EEG, Machine Learning, model individualization 

1 INTRODUCTION  

Research on Operator Functional State (OFS) assessment has attracted considerable attention in the recent 
decade. According to the North Atlantic Treaty Organisation (NATO), OFS is defined as the multidimensional 
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pattern of human psychophysiological condition that mediates performance in relation to physiological and 
psychological costs (Hockey 2003). In commercial flights (especially long-haul flights), pilots often experience 
short periods of high workload during pre-flight preparations, takeoff and landing, and long periods of very low 
workload as the aircraft cruises enroute toward the destination with autopilot. For high workload tasks, an operator 
has to deal with large amounts of information, make multiple decisions, or carry out critical actions within a short 
period of time. As a result, the OFS of the operator may not meet the task demand and human errors may lead to 
disastrous consequences. On the other hand, in commercial flights (especially long-haul flights), pilots often 
experience long periods of low workload as the aircraft cruises enroute toward the destination with the aircraft on 
autopilot. Pilots can easily become disengaged as they may be less attentive under low workload. The disengaged 
pilots may not be able to properly handle the unexpected events, such as turbulence, equipment failure/malfunction 
and even potential collisions with other aircraft. Thus, proper assessment of OFS and workload modulation offer the 
potential to improve mission effectiveness and aviation safety in both overload and underload conditions 
(Schmorrow & Kruse, 2002; Schmorrow et al., 2005).  

In the past decade, a wide range of research has been undertaken regarding OFS assessment. Many existing 
studies utilized psychophysiological measurements to index the level of cognitive demand associated with a task 
(Boucsein & Backs, 2000), fatigue (Smith et al., 1999 & Trejo et al., 2005), engagement (Stevens, 2007 & Pope et 
al., 1995) and other functional state dimensions (Hockey 2003). However, model individualization has not been well 
addressed. It is often difficult, if not impossible; to train an OFS assessment model for each individual pilot due to 
lack of sufficient training data. For each individual, there are individual differences, commonly referred to 
idiosyncratic regularities of the physiological reaction or Individual Response Specificity (IRS) (Engel, 1960; 
Marwitz & Stemmler, 1998). The consistency of the individual response specificity over time was also documented 
by Forster (Foerster, 1985).  

However, current methods pay little attention to individual variations. A generalized OFS assessment model is 
usually built based on the data from a large amount of training subjects and is then applied directly (or with a 
minimum adaptation) to a new subject of interest (test subject). However, due to large individual variations, the 
generalized model often yields poor performance. Olofsen et al. (2010) categorized two model individualization 
techniques. The first involves basic research, which aims to discover the individual differences of physiological 
responses reflecting the OFS. Based on the knowledge and understanding of the physiological response, model 
parameters can be adjusted accordingly to address individual variations. The second approach doesn’t rely on the 
understanding of the physiological differences and only involves statistical analysis/modeling approaches. Currently, 
the understanding of the nature of OFS is limited and many fundamental issues, including individual variations in 
physiological response, are not well understood. Thus, most of the current research focuses on the statistical 
approaches. Rajaraman et al. (2009) has developed a method for developing individualized biomathematical models 
for predicting cognitive performance impairment of individuals subjected to total sleep loss. Their method 
systematically customizes the parameters in the two-process model of sleep regulation for an individual by optimally 
combining the performance information with a priori performance information using a Bayesian framework. Zhang 
et al. (2009) presented a similarity-based approach for model individualization. This approach finds similar subjects 
from the training data pool and uses their data together with the limited data from the test subject to build an 
individualized OFS assessment model. The idea is based on the assumption that if the test subject’s data is similar to 
the data of a training subject in one or more specific conditions, he or she will have similar behaviors to the training 
subject in other conditions. Thus all the training data from this training subject can be used to build a model for the 
test subject.  

This paper presents a framework for real-time individualized OFS (engagement, more specifically) monitoring in 
an aviation environment. Two major components are included. The first component is a base OFS assessment 
component, which is based on an advanced machine learning technique, enhanced committee machine. A committee 
machine is a strategy to improve classification/regression performance by combining responses from multiple 
committee members. The enhanced committee machine integrates a bootstrapping technique, an advanced feature 
selection method and a Neural Networks-based classification method to build base classifiers/committee members 
(Zhang 2009). By aggregating outputs from the committee members, the final engagement decision can be more 
robust and accurate. The second component is the model individualization component, which performs 
individualized engagement assessment. We further explore the similarity-based individualization technique by 
comparing different similarity measures and investigate a novel dynamic ensemble selection-based approach for 
model individualization. 

The dynamic ensemble selection framework dynamically selects a subset of committee members/classifiers from 



tens/hundreds (or more) of committee members. The selection is based on the performance of the committee 
members on the limited validation data (with labels). The rational of this design is based on the assumption that if 
the test sample is similar to its local validation samples in the feature space and we select a subset of trained 
committee/members classifiers who perform well on the local validation samples, we may achieve a good 
engagement assessment results for the test data point. If there is limited data from the test subject with labels (known 
engagement states), it can also be included in the validation dataset to evaluate the performance of each classifier. 
The first few top classifiers are then selected to classify the test sample by majority voting (Giacinto, 2001).  

To evaluate the developed approach, we have collected data from a high fidelity Boeing 737 simulator, including 
flight technical data, psycho/physiological signals and behavioral measures. An extensive feature study has been 
performed to extract promising and robust features. The results show accurate engagement/disengagement 
detections, making it suitable for real-time assessment. Both of the model individualization techniques have been 
evaluated and the results show that the performance of the dynamic ensemble selection approach is comparable to 
that achieved using an individual model assuming sufficient data is available from each individual for training. We 
have also shown that the similarity-based technique has the potential to individualize the OFS assessment model. 
However, the performance achieved based on the limited subjects doesn’t show an improvement comparing to the 
results achieved from a generalized model. It may be due to the limited number of subjects available for 
performance evaluation. We will further investigate this method in the future.  

The remainder of the paper is organized as follows. Section 2 describes model individualization based on 
enhanced committee machine for real-time engagement assessment. Section 3 describes the flight simulation 
configuration and experiment design. Section 4 shows performance evaluation results. Section 5 concludes the 
paper.  

2 MODEL INDIVIDUALIZATION BASED ON ENHANCED COMMMITTEE MACHINE  

In this research, based on the enhanced committee machine framework (Zhang et al. 2009), we have developed 
two model individualization techniques: similarity-based and dynamic ensemble selection-based.  

2.1 Enhanced Committee Machine 

A committee machine is a strategy to improve classification/regression performance by combining responses 
from multiple committee members. Different algorithms can function as committee members, for example, Neural 
Networks (NNs), Gaussian Mixture Models (GMMs), and Support Vector Machines (SVMs). If committee 
members have the diversity property, i.e. they are unlikely to make errors in the same feature space, the errors from 
individual committee members will be canceled by each other to some extent. Furthermore, since the committee 
machine “averages” its individual member’s estimation, the variance of the committee machine can be significantly 
reduced. As a consequent, the performance of the combination of the estimation from each committee member is 
often superior to that of its committee members (Zhang et al., 2009).  

In order to obtain the diversity property, committee members are usually trained by bagging or boosting 
(Breiman, 1996) if training data size is fixed, or by independent datasets if they are available. We enhanced the 
committee machine method by combining it with an advanced feature selection algorithm to select different features 
for each committee member. Each of the members is trained on the features selected by the Piecewise Linear 
Orthogonal Floating Search (PLOFS) feature selection algorithm, which is a wrapper type of algorithm and is as fast 
as a filter approach. It consists of a piecewise linear network (PLN) and the floating search procedure through the 
orthogonal space (Li et al., 2006). 

In this paper, we implemented the committee machine using a Multi-Layer Perceptron (MLP) neural network 
trained by the standard Back Propagation (BP) algorithm as the base classification model. There exist many ways to 
combine the outputs of committee members. If only the label output is available for each member, a majority vote 
scheme is often used. It is also worth noting that we delete some of the committee members with a high bias, i.e., 
having low training accuracies, to enhance the OFS assessment performance. 

 
 



2.2 Model Invidualization 

It is known that physiological signals from different individuals usually have different characteristics. Therefore, 
a generalized model built on data from other individuals may not perform well. When an individual’s data is not 
sufficient to build an individual’s model, an alternative option is to individualize the generalized model for each 
individual. We have investigated two approaches for model individualization in this research: similarity-based and 
dynamic ensemble selection. 

The architecture of the two model individualization techniques based on enhanced committee machine for 
engagement assessment is shown in Figure 1. It is common that both methods perform model individualization by 
selecting a subset of committee members, from similar subjects (similarity based) or best performing committee 
members based on performance evaluation results using a validation dataset (dynamic ensemble selection). We will 
introduce both methods in this section.  

 

Figure 1 Model individualization based on enhanced committee machine: (a) similarity-based (left) and (b) dynamic ensemble selection 
(right).  

2.2.1 Similarity-based Model Individualization 

In many cases, training data for an individual is limited and is expensive to collect. It may be infeasible to train 
an individualized OFS monitoring model using only the individual training data. Therefore, we propose an approach 
to build an individualized OFS monitoring model by identifying training subjects that have similar physiological 
responses and extracting their data for model individualization.  

Ideally, for each individual being tested, we assume that we can find one or more “similar” subjects among all 
the subjects with training data. In each functional state that the individual has experienced, there may exist one or 
more subjects that have similar training data in the same functional state. The purpose of computing subject distance 
is to find such subject(s) in a specified functional state. After scanning all the functional states of the individual, we 
can select a subset of subjects that are similar to the individual in some functional states based on the similarity 
metrics. All the trained committee members from these subjects can be extracted to form an individualized 
committee machine. 

The similarity can be measured by different metrics. In this paper, we investigated five different similarity 
measures implemented in Matlab: t-test, entropy, Bhattacharyya distance, ROC and Wilcoxon test (MATLAB 
7.11, The MathWorks Inc., Natick, MA, 2010).  

• t-test: Absolute value two-sample t-test with pooled variance estimate. 
• Entropy: Relative entropy, also known as Kullback-Leibler distance or divergence. 
• Bhattacharyya: Minimum attainable classification error or Chernoff bound. 
• ROC: Area between the empirical receiver operating characteristic (ROC) curve and the random classifier 

slope. 
• Wilcoxon: Absolute value of the u-statistic of a two-sample unpaired Wilcoxon test, also known as Mann-
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Whitney. 
2.2.2 Dynamic Ensemble Selection 

To perform dynamic ensemble selection for model individualization, we first train a set of committee members 
using training data. Next, a validation dataset is selected, such as limited data from the test subject and a subset of 
data from other subjects. For each test sample, its nearest neighbors are selected dynamically in the validation 
dataset and all the trained committee members are evaluated using the identified data points. The best performing 
committee members are selected to form a committee machine for the test sample (Figure 1a). Therefore, the 
committee members in the generalized model are assigned to test samples in a dynamical manner.  

It is reasonable to assume that an individual's signals may carry similar patterns to other persons in a specific 
context when they are performing a similar task. For a particular person for whom we want to build an engagement 
assessment model, if we can find similar patterns in the validation data (with labels) and select the classifiers that 
perform the best on the validation data, we may obtain good results by using these selected classifiers. This 
technique is different from the similarity-based individualization technique, which is based on a static selection 
procedure. Comparing to the similarity-based approach, we utilized a dynamic ensemble selection framework to 
dynamically individualize a generalized model to adapt to an individual’s characteristics. The generalized model is 
built using available training datasets, which consists of a set of neural network classifiers as committee machine 
members. In dynamic ensemble selection, each classifier’s accuracy is estimated in the local feature space 
surrounding the data similar to an unknown test sample from the individual. The first few top classifiers are then 
selected to classify the test sample by majority voting (Giacinto, 2001). The rational of this design is based on the 
assumption that if the test sample is similar to its local validation samples in the feature space, we may achieve a 
good assessment result for the test data point by utilizing those classifiers which perform well on the adjacent 
validation data points.  

Dynamic ensemble selection tries to select the best 
set of classifiers in the committee that can optimally 
classify a given pattern. We can either select the best 
single classifier or a set of classifiers (ensemble) based 
on a validation data set to classify a given test sample. 
However, since data samples from a different feature 
space are, in general, associated with different 
classification difficulties, it is reasonable to expect 
better results from the selected ensemble rather than the 
best single classifier.   

Figure 3 shows details in the feature space. For the 
given test sample represented by the red cross, a set of 
nearest neighbors (blue circles) are found in the 
validation dataset. Note that there are several different 
decision boundaries (blue curves) formed by the 
available trained classifiers. Those blue circles are then 
used to evaluate all classifiers and a set of best 
classifiers will then be selected to classify the test 
sample.     

3 ENGAGEMENT ASSESSMENT EXPERIMENT DESIGN 

In order to study engagement, we conducted experiments in a fully equipped Boeing 737 simulator involving 
commercial pilots (Ellis, 2009). The functionality of the simulator can be described as a fully functional flight deck 
with full glass cockpit displays, five outside visual projectors, functioning mode control panel with autopilot and 
autothrottle, and standard Boeing 737 controls. Several subjects participated in the pilot engagement study. Pilots 
had varying levels of experience with different types of aircraft. The experiment involved a flight from Seattle 
Tacoma International Airport to Chicago O’Hare International Airport. The details of the flight have been extracted 
from an actual American Airlines flight which took place on May 10th, 2010 (Zhang, et al., 2011). Details can be 
retrieved from on flightaware.com.  

 

Figure 2. A detailed illustration for ensemble selection. 
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The experiment procedure has been previously described in our paper (Zhang et al., 2011). In order to study 
engagement, all pilots were scheduled to arrive at 5:30pm and were asked to avoid drinking caffeinated beverages 
such as coffee on the day of the experiment. An orientation video was shown to the subjects before the simulated 
flight. The video contained a description of the experiment as well as a Control & Display Unit (CDU) programming 
training section. The video included a description of the sensors and video recording devices used, as well as the 
responsibilities that the pilots would have during the experiment. The details shared with the subjects did not include 
information on the probes used to measure engagement levels so that pilots would not anticipate these probes 
throughout the experiment. During the flight simulation, one of the staff controlled the simulation computer to play 
pre-recorded audio files mimicking ATC transmissions. An experimenter was in charge of tagging the data to make 
sure that proper labels were added to the data sheets to identify the phases of the experiment as well as the times 
when the pilot responded to ATC. At the end of the experiment, the subjects filled out a subjective survey (such as 
NASA TLX) to assess their workload, fatigue and situational awareness during different phases of flight (Zhang, 
2011).  

In addition to the subjective surveys, objective data was collected from flight technical data (altitude, speed, 
etc.); three types of psycho-physiological sensors, including eye tracking cameras, an electroencephalogram (EEG) 
net, and electrocardiogram (ECG); and performance data such as response time to ATC calls or pump failure. 

4 EXPERIMENTAL RESULTS 

The developed techniques were evaluated with the experimental data collected through a Boeing 737 flight 
simulator. In this study, two engagement states and their time durations were first identified by evaluating videos of 
subjects. A pilot’s state during takeoff or while handling a pump failure was considered as ‘engaged' The pilot’s 
state during level flight without any manipulation or if napping was recognized as ‘disengaged’. Calculated features 
can then be labeled with these states by aligning with the identified time information.  

We focused on the EEG sensor signals in this research. The EEG data was first preprocessed, including removal 
of environmental and DC artifacts, removal of EEG datasets with unreasonable measurements based on standard 
deviation (such as 0 indicating no signal collected), selection of EEG channels of interest, identification of 
spikes/excursions/amplifier saturation, removal of eye blink/body movement induced artifacts, and calculation of 
Power Spectrum Density (PSD) (Li et al, 2011). Based on existing research studies on EEG (Berka et al. 2007; Trejo 
et al., 2007) we selected a subset of EEG signals, including Fz-Oz, Cz-Oz, C3-C4, F3-Cz, F3-C4, Fz-C3, P7-Oz and 
P8-Oz. In this study, EEG absolute PSD variables for each 1-s epoch were computed and for each bipolar pair, the 
power spectrum within each band was summed up as a feature. All the features were analyzed and selected based on 
the PLOFS feature selection algorithm (Li et al., 2006) before being fed into the committee machine.  

4.1 Similarity-based Model Individualization Evaluation 

To study the effectiveness of the similarity-based model individualization technique, we first investigated the 
effectiveness of each similarity measure: t-test, entropy, Bhattacharyya distance, ROC and Wilcoxon test using the 
function provided in MATLAB 7.11 (the MathWorks Inc., Natick, MA, 2010). The hypothesis is that, if we can 
identify a similar subject in the training data pool, we can use his/her data to build a model and achieve a good 
performance when applying to the test subject.  

We have evaluated the similarity–based individualization technique on 8 subjects. In Table 1, each row shows 
the testing performances for a subject using a model trained by the dataset of a subject indicated in the column. For 
example, the number shown in red represents the testing accuracy on subject 2 using the model trained by data from 
subject 3. This table will give us an overall cross subject performances. 

 

 
 
 
 
 
 



Table 1. Performance (accuracy) summary for cross subject testing 
Subject 

Models from 1 2 3 4 5 6 7 8 
1 100 97.93 75.15 82.48 97.88 67.17 49.31 71.77 
2 92.52 99.8 89.35 73.69 98 44.53 50.2 72.9 
3 61.84 90.9 99.7 72.37 95.24 38.26 27.9 54.86 
4 90.65 76.15 74.85 99.09 90.92 61.65 24.71 67.61 
5 93.61 99.42 88.76 82.14 100 54.63 48.78 76.11 
6 45.79 5 22.78 54.99 21.8 100 67.73 46.9 
7 48.75 79.49 26.04 23.38 46.5 42.94 100 66.01 
8 85.2 96.77 62.72 74.53 95.5 72.68 85.94 99.24 

 

 

 
For each subject to be evaluated, we ranked all available subjects in the pool based on the cross subject 

performance and all of the five similarity measures. Among the top 2 ranked subjects by the cross subject 
performance, if they are the same as those ranked by a similarity measure, the similarity measure receives 2 point 
credits. If there is only one in common, the similarity receives 1 point. Also, we investigated the similarity measures 
by just using the features from a single class, i.e., engaged or disengaged. As an example, the following table shows 
the points that all the similarity measures have achieved under disengaged. A larger number means a better 
similarity measure. Similar observations can be achieved for the engaged state.  

 
Table 2 Comparison of similarity measures 

Subject 2 4 5 6 18 20 21 22 Sum 
t-test 1 1 0 0 0 1 0 0 3 
Entropy 1 1 0 0 0 0 0 0 2 
Bhattacharyya Distance 1 0 0 0 0 0 0 1 2 
ROC 1 1 0 0 0 1 0 0 3 
Wilcoxon 1 1 1 1 1 1 0 1 7 

 
The results show that the Wilcoxon test is the best similarity metric to measure the subject similarity. We further 

use the data trained from the most similar subject and evaluate the engagement assessment performance and the 
results are shown below.  

 
Table 3 Comparison of performance: Generalized model vs. similarity-based model individualization  

Subject 1 2 3 4 5 6 7 8 Average 
Generalized 93.98 99.28 74.17 83.8 98.24 63.2 43.75 80.98 79.67 

Similarity-
based 90.65 97.93 88.76 82.48 97.88 61.65 49.31 71.77 80.05 

 
The performance by the model individualization does not show an improvement on the performance comparing 

to the performance achieved using a generalized model (trained using data from other subjects). Further 
investigation is needed with a large data corpus.  

4.2 Dynamic Ensemble Selection for Model Individualization 

We used eight subjects’ data collected from the Boeing 737 flight simulator and evaluated the dynamic ensemble 
selection technique for model individualization. There are seven scenarios, as described below, to test the 
engagement assessment performances.  
• Scenario 1: we utilized the first 20% of data from one subject for training (26 committee members in total) and 

the remaining 80% data for testing the same subject, thus obtaining the individual model performance.  

----
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• Scenario 2: Generalized model performance. For each subject, we trained 5 committee members/models using 
data from each of other subjects. Since there are 8 subjects in total, 5*7=35 committee members were trained 
for the testing subject. This will give us the baseline generalized model performance. 

• Scenario 3: The same as Scenario 2 except that the dynamic ensemble selection technique was applied using 
data from other subjects for validation. 

• Scenario 4: The same as Scenario 3 except that the validation dataset for dynamic ensemble selection was from 
the testing subject (first 20%).  

• Scenario 5: For each testing subject, there were committee members trained using the testing subject's first 20% 
of the data and another 5*7 models trained using data from other subjects. 

• Scenario 6: The same as Scenario 5 except that we used the dynamic ensemble selection technique and 
combined the data from other subjects and the first 20% of data from the testing subject as the validation 
dataset. 

• Scenario 7: The same as Scenario 6 except that the validation data only contained the first 20% of dataset from 
the testing subject. 

The 7 scenarios are summarized in Table 4and the performance of engagement assessment for all the subjects are 
shown in Table 5.  
 

Table 4 Experiment setup 

Scenario No. of Models Ensemble Method Validation dataset 
1 26 Majority vote N/A 
2 5*7 Majority vote N/A 
3 5*7 Dynamic From all other subjects 
4 5*7 Dynamic Top 20% of data from the testing subject 
5 26 + 5*7 Majority vote N/A 
6 26 + 5*7 Dynamic From all other subjects 
7 26 + 5*7 Dynamic Top 20% of data from the testing subject 

 
Table 5 Experiment results 

Scenario  
 
 
 
Subject 

1 
(Individual 
Model) 

2 
(Generalized 
Model) 

3 
(Dynamic 
Ensemble 
Selection) 

4 
(Dynamic 
Ensemble 
Selection) 

5 
(Individual 
Model) 

6 
(Dynamic 
Ensemble 
Selection) 

7 
(Dynamic 
Ensemble 
Selection) 

2 88.74 93.98 89.51 96.31 94.56 91.26 92.82 
4 96.12 99.28 96.55 97.99 97.55 96.26 96.98 
5 86.35 74.17 79.7 85.24 85.98 81.55 90.04 
6 90.51 83.8 79.27 86.24 93.21 85.37 91.29 
18 92.84 98.24 94.82 97.36 97.47 91.85 96.04 
20 99.53 63.2 75.82 82.48 94.86 81.54 99.65 
21 94.41 43.75 61.04 84.44 87.9 74.87 94.41 
22 88.09 80.98 79.48 80.66 88.33 84.32 87.38 
Average 92.07 79.67 82.02 88.84 92.48 85.87 93.57 

 
We found that 20% of the data from each subject is sufficient to train a reasonably good model for engagement 

assessment (Scenarios 1 & 5), which performs better than the generalized model (Scenario 2). The dynamic 
ensemble selection strategy boosts the performance of the model even without data from the individual (Scenario 3). 
If we use data from a test subject to dynamically select committee members, the performance can be further 
improved (Scenarios 4, 6 and 7).  

 

~ 



5 DISCUSSIONS 

In this research, we have explored two different model individualization techniques for engagement assessment 
in aviation environments. Future tasks include enhancing the model with additional sensory information (flight 
technical data and ECG, for example), further improving the model individualization technique and continuing to 
further verify and validate the real-time assessment technique with additional participants’ data.  
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