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Abstract

Objectives—To explore effective combinations of computational methods for the prediction of

movement intention preceding the production of self-paced right and left hand movements from

single trial scalp electroencephalogram (EEG).

Methods—Twelve naïve subjects performed self-paced movements consisting of three key

strokes with either hand. EEG was recorded from 128 channels. The exploration was performed

offline on single trial EEG data. We proposed that a successful computational procedure for

classification would consist of spatial filtering, temporal filtering, feature selection, and pattern
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classification. A systematic investigation was performed with combinations of spatial filtering

using principal component analysis (PCA), independent component analysis (ICA), common

spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using

power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern

classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance

classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP),

probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate

feature selection strategy using a genetic algorithm was employed.

Results—The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD

and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher

performance than those of other combinations. Utilizing one of the better combinations of ICA,

PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed

that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate

for discrimination of right and left hand movement intention.

Conclusions—Effective combinations of computational methods provide possible classification

of human movement intention from single trial EEG. Such a method could be the basis for a

potential brain-computer interface based on human natural movement, which might reduce the

requirement of long-term training.

Significance—Effective combinations of computational methods can classify human movement

intention from single trial EEG with reasonable accuracy.

Keywords

Movement intention; Self-paced movement; Combination; Computational methods; Classification;
Movement-related cortical potentials (MRCPs); Event-related desynchronization/synchronization
(ERD/ERS); Genetic Algorithm; Brain-computer interface (BCI)

Introduction

Brain-computer interfaces (BCI) may provide an alternate communication pathway for

patients with motor dysfunction, such as amyotrophic lateral sclerosis, stroke, or cerebral

palsy. Various neural signals have been used for invasive or non-invasive BCIs.

Electroencephalography (EEG), a non-invasive method, has been widely studied for BCI

implementation. Several successful EEG-based BCI methods have been reported: slow

cortical potential-based thought translation device (Birbaumer et al. 2000; Hinterberger et al.

2004), sensorimotor rhythm-based cursor control (Wolpaw et al. 1991), and P300-based

letter selection (Donchin et al. 2000). P300 is a positive event-related potential appearing

about 300 ms after presenting a rare visual or auditory stimulus. For BCI purposes, the users

can select a specific letter from a series of many different letters by producing a P300 when

that letter flashes. For P300-based BCI, the communication accuracy may decrease

significantly with time due to easy fatigue (Soyuer et al. 2006). Both slow cortical potential

and sensorimotor rhythm methods require long-term training before subjects can make

robust communication or control (Wolpaw and McFarland 2004). Recent clinical data

showed that patients had difficulty participating in long-term BCI training, in particular,

those with “locked-in” syndrome (Birbaumer 2006).
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It is preferable to achieve BCI control through human natural behavior, so that BCI users do

not have to perform long-term training. Internally cued (self-paced) or externally cued hand

and finger extensions or flexions are among the repertoire of human natural behavior. Both

anatomical and physiological evidence showed the nature of contralateral control of hand

movements (Haaland and Harrington 1994). Further, EEG also can demonstrate hemispheric

differences during movement production (Stancak and Pfurtscheller 1996; Haaland et al.

2000; Bai et al. 2005). For the purpose of BCI, we are interested in the brain signal

associated with movement intention preceding movement. The intention to move is

associated with at least two cortical activities over sensorimotor and supplementary motor

cortices: the movement-related cortical potential, which occurs about −1.5 s before the

movement (Shibasaki et al. 1993); and event-related desynchronization (ERD) or power

decrease in alpha and beta bands, which occurs as early as 2s before the movement (Toro et

al. 1994a). Furthermore, these activities are available even though no movement occurs

(Castro et al. 2005). In Castro’s study, subjects were instructed to get ready to flex and

extend their toes before they heard a tone provided externally. In one session, they needed to

respond to the stimulus by executing the movement, while in another session, the subjects

did not execute the movement with the stimulus. They observed cortical activity before the

stimulus in both sessions. This provided evidence that pre-movement activity was available

even without real movement. These features yield possible opportunities to classify human

intention to move the right or left hand before movement occurs. However, because EEG

records potentials from the scalp where intervening tissues may blur the neuronal signals

from the cortex, those features are evident only after averaging across a large number of

trials.(Toro et al. 1994b; Sochurkova and Rektor 2003; Bai et al. 2005). For single trial

EEG, signals relevant to movement are usually very small compared with ongoing

background activity. Studies have attempted to classify whether the subject intended to

move the right or left hand during the production of real or imagined movement from single

trial EEG (Burke et al. 2005; Blankertz et al. 2006; Congedo et al. 2006; Pfurtscheller et al.

2006). They suggested that advanced signal processing and pattern recognition techniques

are necessary to extract the relevant signal from single trial EEG. Although many signal

processing and pattern recognition techniques have been explored for improving the signal-

to-noise ratio for greater classification accuracy (Tie and Sahin 2005; Kim et al. 2006;

Rezaei et al. 2006; Townsend et al. 2006), it is still difficult to determine more effective

solutions for accurate classification because there are no systematic approaches. For

example, previous studies investigated either the performance of different spatial filters

(Muller-Gerking et al. 1999; Naeem et al. 2006), or the performance of different

classification methods (Garrett et al. 2003; Hinterberger et al. 2003) independently.

Therefore, additional investigation is required to explore more effective combinations of

spatial filter, temporal filter and classification methods. Furthermore, although one study has

investigated a large number of subjects to test different modalities of visual, auditory and

cross-modal visual-auditory stimuli for BCI (Pham et al. 2005), previous studies on the

comparison of computational algorithms were performed only with a relatively small

number of subjects. A larger sample of subjects may yield a better combination of

computation methods that are robust across subjects. A larger sample of subjects may yield a

better combination of computation methods that are robust among subjects. This is very
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useful for BCI applications because it may not be practical to rely on an engineering team to

test the entire range of computational methods for each prospective BCI user.

We performed a systematic study to explore better combinations of computational methods

for classifying self-paced movement on either right or left hand before movement occurred.

We recorded high-density 128-channel EEG from a relatively large sample of 12 subjects

with about 150 single trials for classification for each subject. Since typical BCI users are

unable to perform movements, only the signal preceding the movement was used for the

exploration Offline optimization procedures consisted of spatial filtering, temporal filtering,

feature selection and classification. We employed state-of-the-art neural signal processing

and pattern recognition techniques; spatial filtering using principal component analysis

(PCA), independent component analysis (ICA), common spatial patterns analysis (CSP),

surface Laplacian derivation (SLD); temporal filtering using power spectral density

estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear

Mahalanobis distance classifier (LMD), Quadratic Mahalanobis distance classifier (QMD),

Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic

neural network (PNN), and support vector machine (SVM). We also employed a robust

multivariate feature selection strategy using a genetic algorithm (GA). The analysis of

features from the optimal selection was performed.

Methods

Subjects

Twelve healthy volunteers (nine males and three females; mean age: 39.1±9.1 years)

participated in the study. Eleven subjects were right-handed according to the Edinburgh

inventory (Oldfield 1971) and one subject (subject 2) was left-handed. The protocol was

approved by the Institutional Review Board; all subjects gave their written informed consent

for the study.

Experimental protocol and data acquisition

Subjects were seated in a chair with the forearm semi-flexed and supported by a pillow; they

were asked to perform self-paced 3-key sequences on a computer keyboard with either their

right or left hand for the purpose of enhancing the MRCP and ERD, and to maintain the

subjects’ attention level. The data preceding the first keystroke was used for the following

analyses. Subjects were asked to execute a set of sequential key strokes every 10 s. After 10

min of training on each hand, subjects paced the movements, determining the time and

laterality in a pseudo-random manner. They were specifically asked not to count time

themselves because verbal feedback was provided by the investigator to maintain the target

rate (0.1 Hz). Furthermore, subjects were asked to keep all muscles, other than those in the

performing hand, relaxed. They were also instructed to remain relaxed between key strokes.

Eye movements, blinks, body adjustments, throat clearing, and other movements were to be

avoided during the interval at least 3 s prior and 2 s after the movement. The recording was

done in five 20-minute blocks with intermittent 3-min breaks to avoid fatigue with total

recording time about 2–3 hours.
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EEG was recorded from 122 (tin) surface electrodes, mounted on an elastic cap (Electro-Cap

International, Inc., Eaton, OH, U.S.A.) with reference of the right ear. The distance between

two adjacent electrodes was approximately 2.5 cm. Bipolar recordings of the vertical and

horizontal electrooculogram (EOG) and electromyogram (EMG) from the volar surface of

the right and left forearm, mostly sampling flexor carpi ulnaris and flexor digitorum

superficialis muscles, were also obtained. Signals from all channels were amplified

(Neuroscan Inc., El Paso, TX), lowpass filtered at 100Hz (third-order Butterworth filter with

at least −12dB/octave rolloff), and digitized (sampling frequency, 1000 Hz).

Data processing

Data processing was performed offline using home-made MatLab (MathWorks, Natick,

MA) scripts. We visually inspected all the continuous data and marked EMG onset

manually. Marking was done only for those movements where EMG burst onset was sharp

and clearly defined. EEG was down-sampled to 250 Hz, i.e., extracted one sample from four

continuous samples. Epoching was done with windows of −1.024 s to 0 s with respect to

EMG onset. The epoched 1 s data was used for classification. Any epochs contaminated

with face muscle artifacts were rejected. Epochs with bilateral EMG activity were also

discarded. Eye-movement related artifacts were corrected using an Auto-Regressive

Exogenous input (ARX) model, in which the vertical and horizontal EOG signals were used

as the exogenous inputs (Cerutti et al. 1988). Approximately 150 artifact-free epochs for

each side in each subject were obtained.

Computational methods for offline optimization

The artifact-free EEG epochs from −1.024 s to 0 s with respect to movement onset for each

subject were pooled into one dataset with corresponding right or left labels. One complete

experiment consisted of dataset generation, training and testing as illustrated in Fig. 1. The

exploration experiments were performed on each subject independently, i.e., the

performance of 90 combinations of spatial filter, temporal filter and classification method

was investigated on an individual basis, and better combinations of computational methods

were explored according to the statistical analysis of individual performance. Only the

testing results were used for subsequent statistical analysis. To reduce the bias in testing, the

complete experiment was repeated five times. The computational methods employed in this

study were described as follows. The detailed mathematical or theoretical background of the

computational methods was beyond the scope of this paper. We emphasized the algorithms

employed and ignored theoretical descriptions, and instead, provide necessary references.

Dataset generation procedure—The pooled dataset for each subject was pseudo-

randomly separated into training dataset (80%) and testing dataset (20%). The optimization

procedure was performed on the training dataset, while the testing dataset was left

untouched for the testing purpose only. The control parameters for neural network classifiers

were also determined from the training set. For each of the repeated measurements of testing

accuracy for each subject, the sampling for training and testing datasets was independent.

We repeated the training and testing procedures five times. In each experiment consisting of

both training and testing procedures, the pooled dataset was randomly split into the datasets
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for training and testing. Further, the numbers of samples (EEG trials) for right and left hand

movements were balanced for both training and testing procedures.

Training procedure—The training procedure consisted of filtering (spatial filtering and

temporal filtering), data preprocessing, feature selection and classification. The purpose for

the training was to provide robust computational models that could optimize testing

accuracy. We explored a number of state-of-the-art neural signal processing techniques for

data filtering and classification. The investigation was established on complete combinations

of spatial filter, temporal filtering and classification methods: for example, the

computational procedure of ‘ICA’-‘PSD’-‘PNN’, ‘CSP’-‘DWT’-‘MLP’, etc. The total

number of combinations was 90, i.e. 5 (‘None’, ‘PCA’, ’ICA’, ‘CSP’, and ‘SLD’) × 3

(‘VAR’, ‘PSD’, and ‘DWT’) × 6 (‘LMD’, ‘QMD’, ‘BSC’, ‘MLP’, ‘PNN’, and ‘SVM’).

Detailed explanations of computational algorithms explored in this study are given in the

Appendix.

Testing procedure—The testing dataset, which was independent of the training dataset,

was used in the testing procedure. The parameters and models determined in the training

procedure were applied in the spatial filtering, the temporal filtering, preprocessing, feature

selection and classification procedures. Similar to the training procedure, 90 combinations of

computational methods were performed.

Pre-temporal filtering—As the spatial filters of ‘PCA’ and ‘CSP’ are susceptible to

possible contaminations of physiological and non-physiological artifacts, a previous study

suggested to pre-filter signals for the ‘PCA’ and ‘CSP’ modeling (Muller-Gerking et al.

1999). In order to compare the performance of ‘PCA’ and ‘CSP’ with pre-filtering,

additional experiments were performed; a narrow bandpass filter (16–24 Hz) and a broad

bandpass filter (8–30 Hz) using fourth-order infinite impulse response (IIR) Butterworth

filter were applied before the procedure of the ‘PCA’ and ‘CSP’ spatial filtering. The

variance of the spatial filtered CSP components (‘VAR’) was used for the following feature

selection. The linear classifier ‘LMD’ was applied for the classification.

Summary of the combination methods using different computational algorithms

For the classification of the intention to move right and left hands, the single trial EEG data

from 1 s preceding movement to movement onset was extracted and the single trial data was

marked according to the EMG activity during right and left hand movement. The pooled

data were randomly sampled five times. In each time, the pooled data were randomly

extracted to produce a training dataset (80%) and testing dataset (20%) so that the testing

dataset was independent from the training dataset. Only the training dataset was used for

modeling. The final classification accuracy was obtained from the average of five testing

results. To summarize, the combination of five spatial filter algorithms (‘None’,

‘PCA’, ’ICA’, ‘CSP’, and ‘SLD’), three temporal filter methods (‘VAR’, ‘PSD’, and

‘DWT’), and five classification methods (‘LMD’, ‘QMD’, ‘BSC’, ‘MLP’, ‘PNN’, and

‘SVM’) together with ‘GA’-based feature selection were used. A total of 90 combinations of

computational algorithms were compared.
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Data Analysis

To investigate the neurophysiology associated with human voluntary movement, the

movement-related cortical potentials (MRCPs) and event-related desynchronization (ERD)

(Toro et al. 1994b) preceding and during the production of self-paced movement were

calculated. In order to observe the time course of MRCP and ERD, the data were epoched

from −4 to 1.5 s with respect to movement onset. The epoched data were averaged and low

pass-filtered at 10 Hz using a second-order Butterworth filter. The MRCP was obtained by

baseline correction from −4 to −3 s. To calculate ERD, each epoch data was linearly de-

trended and divided into 0.256 s segments. The power spectrum of each segment was

calculated using FFT with Hamming window resulting in a band width of about 4 Hz. ERD

was obtained by averaging the log power spectrum across epochs and baseline corrected

with respect to −4 to −3 s. The detailed calculation of MRCPs and ERD was previously

reported (Bai et al. 2006) and (Bai et al. 2005), respectively.

Statistics

To determine better combinations of spatial filter, temporal filter and classification methods,

an analysis of variance (ANOVA) for repeated measures with three within-subject main

factors was performed on the testing accuracy results. The three within-subject main factors

were: (1) spatial filter (‘None’, ‘PCA’, ’ICA’, ‘CSP’, and ‘SLD’ with 5 levels); (2) temporal

filter (‘VAR’, ‘PSD’, and ‘DWT’ with 3 levels); and (3) classification (‘LMD’, ‘QMD’,

‘BSC’, ‘MLP’, ‘PNN’, and ‘SVM’ with 6 levels). The total number of repeated

measurements for each subject was 5×3×6=90. Mauchly’s test was used to test the

assumption of sphericity and significance was found, i.e. the assumption of sphericity was

violated. As a result, we applied the Greenhouse-Geisser correction to adjust the degrees of

freedom (DF). A significance level of p < 0.05 was adopted for ANOVA analysis in this

study.

Additionally, multiple comparison tests were performed on each of the significant (p < 0.05)

main factors and interactions identified from the ANOVA test. To reduce the risk of false

positives, we used Bonferroni correction to compensate for multiple comparisons. The

statistical analysis was performed using SPSS (Ver. 15, Chicago, Illinois).

Implementation

The offline computation was scripted using MATLAB 7.2 and standard toolboxes

(MathWorks, Natick, MA); Neural Network Toolbox for ‘PNN’, System Identification

Toolbox for ARX modeling, Signal Processing Toolbox for ‘PSD’, and Wavelet Toolbox

for ‘DWT’. Three open-source MATLAB packages were used; ‘EEGLAB’ for ‘ICA’

(Delorme and Makeig 2004), ‘Netlab’ for ‘MLP’ (Nabney 2004), and ‘SVMLIB’ for ‘SVM’

(Fan et al. 2005). The statistical analysis was performed using SPSS.

Results

We performed five complete experiments. Each experiment included dataset generation,

training, and testing procedures. In each complete experiment, we investigated 90

combinations of computational methods on each of 12 subjects. The ANOVA was

Bai et al. Page 7

Clin Neurophysiol. Author manuscript; available in PMC 2014 September 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



performed on the averaged testing accuracy from five complete experiments as shown in

Table 1. In ANOVA, significant within-subject factors were: spatial filter, SF

(F(2.3,23.3)=15.2, P<0.01); temporal filter, TF (F(1.7,17.2)=6.5, P=0.01), and classification

method, CM (F(1.6,16.0)=12.3, P<0.01). Further, we observed significant interaction

between the spatial filter and classification methods, SF*CM (F(5.4,53.9)=3.8, P<0.01). No

other significant interactions were found.

Multiple comparison procedures were performed on the significant main effects and

interactions. The multiple comparison result for the spatial filter is illustrated in Fig. 2(a).

The bar plots showed the estimated value of means for five spatial filters and the error-bar

provided the standard errors. ‘ICA’ provided significantly higher accuracy than those of

‘None’, ‘PCA’ and ‘CSP’. No significant difference was found between ‘ICA’ and ‘SLD’.

The ‘CSP’ approach produced a significantly lower accuracy than ‘None’, ‘ICA’ and ‘SLD’

approaches. The estimated mean testing accuracy by ‘ICA’ approach was approximately 5%

higher than ‘None’ and ‘PCA’ approaches and 8% higher than ‘CSP’ approach. The

multiple comparison result for the temporal filter is shown in Fig. 2(b). The ‘DWT’

approaches provided significantly higher accuracy than the ‘VAR’ approach, which

provided about 3% mean difference. No significant difference was found between ‘PSD’

and ‘DWT’. Fig. 2(c) shows the multiple comparison results of classification methods.

Linear and quadratic statistical classification methods of ‘LMD’, ‘QMD’, and ‘BSC’

provided significantly higher accuracy than the neural network approach of ‘MLP’, but the

mean difference was small, i.e., about 1–2%. The ‘SVM’ approach produced similar

accuracy than those of statistical classification methods (i.e., no significant difference),

although the ‘SVM’ provided better accuracy than ’MLP’ approach. Fig. 3 shows the

multiple comparison results of the interaction between spatial filter and classification

method. There were 30 combinations of the spatial filter methods and classification

methods. From the multiple comparison, the ‘ICA’ and ‘SLD’ are better spatial filter

methods and ‘LMD’, ‘QMD’ and ‘SVM’ are better classification methods.

As shown in Table 2, the classification performance was improved slightly by applying a

temporal filter before the ‘CSP’ and ‘PCA’ spatial filter. For ‘PCA’, the classification

performance was marginally improved about 1.8% and decreased 3.9%, by applying

bandpass filter of 8–30 Hz and 16–24 Hz, respectively. For ‘CSP’, the average classification

accuracy from 12 subjects was improved 0.3% by applying a broad bandpass filter (8–30

Hz), and the average classification accuracy was also marginally improved by 1.2% when

applying a narrow bandpass filter of 16–24 Hz. These results supported that the ‘ICA’ and

‘SLD’ were better spatial filters providing an improved classification performance than the

performance of ‘PCA’ and ‘CSP’. Furthermore, the testing accuracy results of the

classification performance of spatial filters on bandpass filtered single trial EEG were

obtained using a 10-fold cross-validation method for feature selection. The results of the

testing accuracy using 5-fold and 10 fold cross-validation methods are given in Table 2 for

the purpose of comparing the classification performance between the two cross-validation

methods. For example, when using ‘CSP’ as the spatial filter on the bandpass (8–30 Hz)

signal trial EEG, the mean testing accuracy of 12 subjects using a 5-fold cross-validation

method for feature selection was 51.4% with standard deviation of 4.6%, whereas the mean

testing accuracy of 12 subjects using a 10-fold cross-validation method for feature selection
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was 53.1% with standard deviation of 4.6%. The difference of the classification performance

was small at 1.7% compared with the standard deviations. Similar results are seen in Table 2

with different spatial filter methods on different bandpass filtered single trial EEG. These

show that the 5-fold cross-validation method provides comparable classification results with

the 10-fold cross-validation method.

According to the statistical test reported in Fig. 2 and Fig. 3, the combination method of

‘ICA’ as the spatial filter, ‘PSD’ as the temporal filter and ‘SVM’ as the classification

method was a better combination to classify movement intentions. The number of trials and

the testing results using the above computational methods for each subject are given in

Table 3. The average of testing accuracy was obtained from the average from five

experiments, and the SD showed the standard deviation. Two subjects (3 and 5) had a mean

testing accuracy greater than 75%. However, the variance among subjects was large

(SD=7.5%). Four subjects had mean accuracy less than 60%.

We performed data analysis to investigate the neurophysiological features supporting the

classification of human movement intention. Subject 2, who was left-handed, was excluded

in the analysis for neurophysiological consistency. The grand averaged MRCPs and ERD

following right and left hand movements are shown in the right and left column,

respectively. Both MRCPs and ERD were baseline-corrected with the baseline range from

−4 to −3 s. The MRCP waveforms of channel C4 for right and left hand movements are

plotted in Fig. 4 (a) and (b). The negative slopes in MRCPs for both right and left hand

movements started about −1.2 s before movement onset. The negative peaks for both

movements were found just after movement onset. The peak amplitude of MRCPs following

left hand movement was larger than that of right hand movement. The head topography of

MRCPs at movement onset is illustrated in Fig. 4 (c) and (d). The MRCPs were observed

over sensorimotor cortex, and centered at medial-central area. The MRCPs were lateralized

to the contralateral left hemisphere before the right hand movement. In contrast, the MRCPs

were lateralized to contralateral right hemisphere before the left hand movement. However,

the contralateral lateralization was not distinct due to the widespread activity over the central

area. The alpha and beta ERD of left hand movement began about 1.8 s before movement,

whereas the ERD of right hand movement started about 1 s before movement onset. Both

alpha and beta ERD maximized at movement onset. During the window for classification

(−1 s to movement onset), ERD in both alpha and beta bands was larger for left hand

movement. The head topography of ERD in beta band (20–24 Hz) at 500 ms before

movement onset shows that the beta ERD lateralized to left sensorimotor cortex before the

right hand movement, in contrast, the beta ERD was present in both right and left

hemispheres before the left hand movement.

To obtain direct spatial and temporal information, feature analysis was performed on the

Bhattacharyya distance data obtained in the pre-feature selection procedure following the

filtering procedure. In this procedure, no spatial filter was employed and ‘PSD’ was

employed as the temporal filter. The produced Bhattacharyya distance matrix showed the

separability for each channel and frequency. Because the succeeding best-feature selection

was performed on the 100 best pre-features, for each subject, the Bhattacharyya distance

data smaller than the best 100th value was corrected to zero. The grand average of
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Bhattacharyya distance among eleven subjects is illustrated in Fig. 5. The first column

shows the channel-frequency plots of individual (subjects 3, 5 and 7) and grand average of

Bhattacharyya distance; the second and third columns show the alpha (8–12 Hz) and beta

band (16–24 Hz) head topography of Bhattacharyya distance. A larger value of the

Bhattacharyya distance indicated higher separability. We observed high separability on

features in the beta band in subjects 3, 5 and 7, and the grand average. Significant alpha

band Bhattacharyya distance was only observed in subject 3 so that the alpha band activity

was used for the classification in this subject. No obvious Bhattacharyya distance in DC was

observed in the Bhattacharyya distance plot perhaps because the difference was too small, or

the variance across trials was large, or both. The head topography of Bhattacharyya distance

in beta band shows that channels with higher separability were over the sensorimotor cortex

on the right hemisphere. The channel with the maximal separability was C4. In contrast, the

separability of the channels on the left sensorimotor cortex was small, which was consistent

with the beta ERD observation of the bilateral distribution preceding left hand movement.

Discussion

Exploration of computational methods

Signal processing and pattern recognition techniques have been considered a fundamental

requirement for BCI research and development. McFarland et al. reported the taxonomy of

the computational methods that had been employed in BCI laboratories, which was

summarized in a recent BCI meeting (McFarland et al. 2006). According to that taxonomy,

we considered that the current study was comprehensive because the majority of the

summarized methods had been explored. Comparison is important for optimizing

computational methods. Townsend et al. performed a comparison study of signal processing

methods for spatial and temporal filtering (Townsend et al. 2006). The comparison of

pattern recognition techniques for classification and feature selection was also reported

(Garrett et al. 2003; Hinterberger et al. 2003). To our knowledge, the current work is the

first to perform a complete comparative investigation on the combination of both signal

processing and pattern recognition methods. We aimed to explore better combinations of

computational algorithms. We do not conclude that we have identified an optimal method

because it was not practical to test every available algorithm. However, we wanted to

identify the best performing methods from a large number of options that have either been

used in the literature before or have theoretical advantage.

Classification of movement intention during human voluntary movement

Prediction of human movement intention during self-paced or memory-delayed movement

has been investigated by several BCI groups. The highest prediction accuracy of 84% was

reported in a BCI competition (Wang et al. 2004), in which a similar experimental paradigm

was used. This result was higher than the average accuracy obtained in the current study,

even when applying an optimized computational method. We considered two possible

reasons: subject and experimental paradigm. We investigated 12 naïve subjects in the

current study, whereas the result from the BCI competition only provided a dataset from a

single subject and it was unclear whether the subject was trained before recording. We

observed that the subjects’ variance was relatively large (7.5%) in the current exploration
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study. It is more likely that the prediction accuracy was subject-dependent so that it was

difficult to compare the two studies. Both studies extracted the EEG trials before movement

and focused on this period since there is often no EMG activity in potential BCI users and

therefore no ability to use actual movement-related signals. The major difference in

experimental paradigms between the two studies was the interval between two succeeding

keystrokes. The BCI competition was based on a 1s interval (Congedo et al. 2006), whereas

we used a 10s interval. Although simple keystrokes can be finished within 1 s, the existence

of post-movement activity, for example, event-related synchronization (ERS), might

contribute to the classification (Pfurtscheller et al. 1998). However, it is also not clear

whether ERS appears when no real movement occurs in BCI applications. In this study, the

subjects performed self-paced movement once per 10 s to avoid post movement activity in

our experiment. In contrast, faster tapping rates of 0.5 and 2 taps/s were employed in a

previous study (Blankertz et al. 2003). Because the window of [−450 −350] ms was used as

the baseline, there was a risk of using postmovement activity when the tapping rate was 2

taps/s. Because the subjects did not have enough time to decide which side to move in such

a short time, we considered that the post-movement activity improved the classification as

the subjects might perform in a rhythmic manner, for example, right and left alternatively.

In this study we aimed to predict human movement intention preceding the movement onset.

Therefore, we checked the EMG activity carefully and manually marked the data and

extracted the prediction window strictly before the movement onset. We found that the data

epoching method in our study was different from a previous study that reported a higher

classification accuracy in the prediction of movement intention (Blankertz et al. 2003). In

the previous study, the prediction window was extracted with respect to the keypad trigger

rather than movement or EMG onset. Although the delay between movement onset and

keypad trigger onset was taken into account and an earlier time window for the prediction

was set (−120 ms before keypad trigger onset), the prediction window would still pick up

the activities after movement onset because of the variance of delay among trials. The EMG

activity was found as early as −350 ms before the key stroke, and the error rate of

classification was about 30%, i.e. the classification accuracy was about 70% if using the

prediction window before −350 ms. This classification accuracy was similar to our results.

We would like explore more effective computational methods to classify human movement

intention, and to know what neurophysiological signals can be used for the classification.

Although there are many studies related to the single trial classification of movement

intention, the results were not identical. For example, Pfurtscheller et al. reported a very

high accuracy (89–100%) in an earlier study (Pfurtscheller et al. 1996), but more recently

their group reported that the average classification accuracies using different mental

strategies were from 56%–80% (Neuper et al. 2005). Although the subject-to-subject

variance is a possible reason, we consider the accuracies depend on what kind of signals was

used for the classification. We believe that careful study of the experimental design and

neurophysiological signal analysis is crucial for appropriate classification. For example, in

the pilot study performed in Pfurtscheller’s group (Pfurtscheller et al. 1996), the subjects

performed a sustained motor imagery task for 3s with external cues. Although the

classification accuracy was high, fatigue may be a problem in long-term BCI use due to
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sustained motor tasks. Because self-paced movement is a natural movement behavior,

humans have less mental load when performing the self-paced movement.

In summary, since BCI is intended to provide a new communication pathway for severe

neurological patients who lose voluntary movement, whether the developed BCI technology

is suitable for the targeted patients should be considered before the simple evaluation of

detection accuracy. There are two issues that should be addressed: one is the physiological

analysis of the brain signal used for BCI communication in order to avoid possible

contamination of EMG/EOG artifacts due to the well-known volume conduction effect in

EEG signal. This problem has also been addressed previously (McFarland et al. 2005;

Fatourechi et al. 2007). The second issue is the BCI paradigm design. It is preferable to

select a paradigm that requires less mental load and less training due to the compromised

condition of the targeted patients. Recent studies reported the fatigue problem when testing

on targeted patients with amyotrophic lateral sclerosis (ALS), who were also unable to

tolerate long-term training (Birbaumer 2006; Sellers and Donchin 2006). In this study, we

aimed to explore computation methods to detect human movement intention associated with

natural behavior on untrained subjects. Since the signal was associated with natural

behavior, the paradigm was involved with less mental load. Although the signal-to-noise

ratio can be improved through extensive training, the exploration of computational methods

is more crucial when working on data with a lower signal-to-noise ratio.

For the above reasons, we think that our results are at least as sensitive as earlier studies and

our data extraction method is more reasonable for the BCI purpose, where the actual

movement will usually be unavailable.

Evaluation of testing accuracy and computational loads

We intended to explore optimal computational methods for the classification. To balance the

repeated measurement of the testing accuracy, we designed an investigation on complete

combinations of possible computational methods, i.e., a total of 90 combinations. Nonlinear

optimization procedures were required for ‘ICA’, GA-based feature selections and nonlinear

neural networks. Optimization of these nonlinear methods was highly time-consuming. In

particular, for the GA-based feature selection, we investigated different numbers of best

features. As a result, one experiment of investigation on 90 combinations required about 90

hours to produce one set of testing accuracy, where we worked on a HP workstation with

Xeon 3.2GHz CPU and 2GB memory.

We recorded a relatively large size of samples (number of trials) for each subjects. With the

data generation procedure, the testing samples were independent of the training samples. We

wondered whether the testing accuracy from one experiment was unbiased since the testing

samples were randomly selected from the sample pool and testing sample size was relatively

small (20% of whole samples). Subgroup resampling, bootstrapping, and leave-one-out

cross-validation methods are among suggested testing methods for pattern recognition.

Usually, a bootstrapping method requires a large number of repetitions. The leave-one-out

cross-validation may have the minimal variance of the estimation, but it has the largest

computational expense. In particular, for this study, it was not practical because nonlinear

optimization was required for each training procedure. Considering computational loads, we
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repeated the experiment of complete investigation of methods five times using subgroup

resampling. In each experiment, the samples for training and testing were randomly selected

from the same sample pool. Table 3 shows that the variance of the testing accuracy was not

large (3.0% to 6.9%). The average of the testing accuracy from five experiments could be a

close estimation.

Optimal spatial filter methods

For all spatial filters, the transformation matrix was determined in the training procedure.

The testing data were rotated using the pre-determined matrix directly. Although the

determination for ICA rotation was time-consuming during the training procedure, in which

nonlinear optimization was required, the rotation in the testing procedure was fast and

possible in real-time.

Both ‘ICA’ and ‘SLD’ provided better outcomes than other methods, although there was no

significant difference between them. Consequently, we consider both as good spatial filter

methods. Since ‘ICA’ requires nonlinear optimization, ‘SLD’ is definitely simpler and time-

saving. We applied four orthogonal neighbor electrodes as the reference for ‘SLD’. This

simple method provides a reference-free solution for common reference problems and as a

result, may enhance local activities. However, the employed simple method might be

inaccurate due to the different spatial distribution of underlying neuronal sources

(McFarland et al. 1997). EEG inverse solutions might provide a more accurate estimation

(Kamousi et al. 2005; Congedo et al. 2006), but their effectiveness needs further comparison

study. From the comparison result of spatial filter, the average outcome using the ‘ICA’

approach was higher than that of ‘SLD’, although it was not significant. We considered that

the variance of the ‘ICA’ approach was large because of its nonlinear optimization

procedure. We might expect more accurate estimation of ICA rotation matrix from a large

number of samples, whereas inaccurate estimation might be generated from a small number

of samples. Therefore, we suggest the ‘ICA’ approach when the sample size (for training) is

large; otherwise, the ‘SLD’ is a good choice.

The ‘CSP’ approach provided the lowest average accuracy in this comparison study. A few

studies showed that the CSP method provided a better classification performance than other

spatial filters; for example, ‘SLD’ by (Muller-Gerking et al. 1999), or ‘ICA’ by (Naeem et

al. 2006), whereas we found that the CSP method was not better than the other methods in

this study. One possible reason may be that we used high-density electrodes over the whole

head, and the covariance matrix was 122×122, which might result in model over-fitting.

From our data, the training accuracy using CSP method was as high as 80%–90%; the

testing accuracy, however, was low. On the other hand, any artifacts or noise contaminated

in the electrodes would make the covariance matrix meaningless. Therefore, to improve the

generalization, some constraints, for example, reducing the matrix dimension, needs to be

provided according to empirical knowledge as suggested in (Muller-Gerking et al. 1999).

Feature selection

We intended to compare the performance of different combinations of spatial filters,

temporal filters and classifiers. The comparison of different feature selection methods was
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not the purpose of this study. For pattern recognition, there are many feature selection

methods, such as exhaustive search, genetic algorithm-based searching, forward searching,

and backward searching. Although the exhaustive search can avoid the local minima in the

searching procedure, it is not practical in most cases due to huge computational loads. Other

searching methods may have the problem of the local minima. The genetic algorithm has a

better performance in solving the local minima problem. To reduce the risk of the local

minima in the searching procedure, we employed the genetic algorithm-based feature

selection method, although the computational loads were still large.

We used a high-density EEG to explore the classification of movement intention so that the

feature dimension was very large. Although we could perform GA-based search from whole

feature space, it is impractical due to the length of searching time and it is also risky due to

the local minima problem in the searching so that we needed to determine an appropriate

number of the pre-selected features to reduce the search loads. We did a pilot study to

determine the pre-selection number of 100, 200 and 300. Although the features ranking

outside 100 were selected in 200 and 300 searching, the classification accuracy from 100

was comparable with those of 200 and 300 searching. Therefore, we determined 100 as the

number of the pre-selection feature size. The feature dimension can also be reduced

according to empirical knowledge. However, the empirical approach may have risked the

loss of useful features that may reduce the accuracy of this comparison study. This point in

particular applies when considering the inter-subject differences in the distribution of the

motor potentials. Due to the above differences, a careful inspection of individual motor

potential is required. However, this will increase more manual power for the optimization,

which is usually not preferred in a practical BCI. Furthermore, the information theory-based

feature selection was found to not be robust to classify the motor potential in a previous

study by (Yom-Tov and Inbar 2002). Based on the above considerations, we considered that

the proposed feature selection method using GA algorithm is adequate for feature selection

with less risk of losing useful features.

Optimal classification methods

It was not surprising that the ‘SVM’ approach provided a better solution than the other two

neural network approaches. The reason might be that ‘SVM’ provided a better control of

model complexity to avoid over-fitting. Because of this property, ‘SVM’ was the first choice

of neural network method in BCI development, e.g. (Schlogl et al. 2005; Thulasidas et al.

2006).

It was interesting that simple statistical approaches provided a performance similar to the

‘SVM’ approach. This result suggested that the linear or quadratic statistical approaches,

which provide a simple discriminant boundary, were sufficient to classify human movement

intention. This result was consistent with the previous comparison study of classification

methods, which also suggested simple linear approaches (Garrett et al. 2003; Rezaei et al.

2006).

We provided the individual classification results using a better combination of spatial filter,

temporal filter and classification methods. We selected the ‘SVM’ as the classification

method for reporting the individual classification accuracy because it was one of the better
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classification methods. However, we did not intend to use the ‘SVM’ as the ultimate

classification method because the performance of ‘SVM’ was not significantly better than

the performance of the statistical methods.

Feature analysis

Hemispheric asymmetry suggests that the contralateral hemisphere is predominantly

involved with dominant hand movement, whereas both contralateral and ipsilateral

hemispheres are involved with nondominant hand movement (Kawashima et al. 1993;

Volkmann et al. 1998; Jung et al. 2003). For right-handed subjects, only the left

sensorimotor cortex is activated during dominant right hand movement, whereas

sensorimotor cortices of both right and left hemispheres are activated during nondominant

left hand movement. Consequently, the major difference between right and left hand

movements would be expected in the right sensorimotor cortex. In this study, the univariate

analysis of Bhattacharyya distance was consistent with the above expectation. We observed

that the beta band activity in the right sensorimotor cortex had the largest separability.

We observed both MRCP and ERD in alpha band during right and left hand movements.

However, the separability of those two components was low, although the MRCP and alpha

ERD difference between right and left hand movements could be observed. Although the

mean difference of the MRCP preceding right and left hand movement was about 4 uV as

shown in Fig. 4, it is not necessarily going to be an effective feature for the classification

because we want to make the classification on a single trial basis so that the trial-to-trial

variance is also very important. The small values of the Bhattacharyya distance in Fig. 5

suggested a large trial-to-trial variance of the near DC component of the MRCP. A feature

with large inter-class difference but also with large trial-to-trial variance will not provide a

robust classification. The large variance of alpha ERD might suggest that central alpha

rhythm or Mu rhythm can be modulated by mental processes other than movement behavior.

This idea is supported by a BCI approach of mental regulation of Mu rhythm (Wolpaw and

McFarland 1994; Pfurtscheller et al. 2006). However, the mental regulation of Mu rhythm is

not a natural human behavior so that long-term training is usually required for effective

control.

We investigated high-frequency components above 40 Hz. We did not observe robust

ERD/ERS during right and left hand movements. Further, the separability of high-frequency

components measured from Bhattacharyya distance was also low. Our data did not support

the idea that very high-frequency components (30Hz–200Hz) discriminate human

movement intention, which was reported recently (Gonzalez et al. 2006). The reason might

be the paradigm difference: self-paced vs. visuomotor reaction time. From the results of the

current study, we considered that the high-frequency components observed by Gonzalez et

al. might be related to the visual evoked response. Further, the possible contamination of

EMG artifacts, which was noticed by (McFarland et al. 2005), would be another concern.

Further evidence is needed to validate the suggested high-frequency components.
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Movement intention and brain-computer interface

From this exploratory study, we confirmed that human intention to move either the right or

left hand could be discriminated from scalp EEG when employing appropriate signal

processing and pattern recognition methods. We consider that natural movements will

activate normal physiological processes that can then be taken advantage of by detection

techniques even in the absence of movement execution. We intend to achieve BCI control

using human natural signals associated with natural movement intention, where movement

intention will still be present even without movement execution. The natural movement

intention presumably does not require training or effort, and the subjects should tire less.

Therefore, the current outcome would provide a potential brain-computer interface under

human natural movement behavior where the subject does not require long-term training.

Although this exploratory study was time-consuming, we expect that the time for the

training procedure can be reduced significantly when optimal computational methods are

determined, because we need not investigate all the combinations. Furthermore, the

computational loads for the testing procedure are very small so that possible applications can

be done on line or in real-time.

We also noticed that the subject variance of the classification accuracy was also large. In

this study, the classification accuracy for four subjects was just higher than the random level

(50–60%). It suggests that other BCI approaches might be required for these subjects.

The major purpose of the current study was to test the performance of identifying movement

intention using different combinations of computational algorithms. The data analysis was

performed on naïve subjects who had no BCI experience. However, we did not assess

whether the performance can be improved after training, in particular, with feedback. This

will be of interest in future studies.
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Glossary

ARX auto-regressive exogenous input

BCI brain-computer interface

BSC Bayesian classifier

CSP common spatial patterns analysis

DWT discrete wavelet transforms

EEG electroencephalography

EMG electromyogram
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EOG electrooculogram

ERD event-related desynchronization

ERP event-related potentials

ERS event-related synchronization

GA genetic algorithm

ICA independent component analysis

IIR infinite impulse response

LMD linear Mahalanobis distance classifier

MLP multi-layer perceptron neural network

MRCPs movement-related cortical potentials

PCA principal component analysis

PNN probabilistic neural network

PSD power spectral density estimation

QMD quadratic Mahalanobis distance classifier

RBF radial basis function

SLD surface Laplacian derivation

SVM support vector machine

VAR variance

Appendix

1. Filtering

1.1 Spatial Filtering

The spatial filter applies a transformation matrix that is determined under certain constraints

to the EEG signal so that the filtered signal may have a better signal-to-noise ratio for

identifying the changes of the underlying neuronal sources. This procedure is similar to

beamforming, which can increase the gain in the direction of the task-related signals and

decrease the gain in the direction of interference and noise (Rodriguez-Rivera et al. 2003).

As a result, the spatial filter may improve classification accuracy. Five spatial filtering

methods were explored. No spatial filtering was applied for ‘None’ method, which was for

comparison purposes. The signal from electrodes was directly fed into the temporal filter.

‘PCA’ is a conventional data reduction method for pattern recognition. The high-

dimensional training dataset including both right and left instances were decomposed into

PCA components through linear orthonormal transformation, in which the eigenvectors with

largest eigenvalues explained the major variance of the dataset. The orthonormal matrix was

saved for the PCA transformation in the testing procedure. PCA has been successfully
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applied in identifying the waveform components of event-related potentials (ERP) (Carretie

et al. 2004; Dien et al. 2005) and BCI approach (Vallabhaneni and He 2004). However,

there is concern that eigenvectors with smaller eigenvalues may also provide crucial

contributions to pattern recognition (Marques 2001). We retained all components from PCA

transformation for the succeeding procedure. The components for constructing the

classification model were determined in the feature selection procedure.

‘ICA’ transforms EEG signal into latent components or sources with maximal statistical

independence. The rationale for ICA decomposition is more neurophysiologically sound,

because it is reasonable to assume that neuronal sources are mutually independent and

spatial projections of sources are not necessarily orthogonal, which is assumed for PCA-

based source estimation. Makeig et al. demonstrated that ICA provided a better image of

underlying neuronal sources than did PCA (Makeig et al. 1997). ICA had also been

employed in several BCI approaches (Delorme and Makeig 2003; Piccione et al. 2006). For

ICA decomposition, we need to select optimal components for further pattern classification.

Empirical knowledge of the scalp distribution is usually required for identifying

neurophysiologically meaningful components. However, the empirical approach might also

risk losing useful features due to the limits of previous knowledge. In this paper, we

employed the ‘data-driven’ or computational solution. Similar to PCA, the selection of ICA

components was performed in the feature selection procedure. The ICA weighting matrix

was achieved by an open source MATLAB routine using logistic infomax algorithm

(Delorme and Makeig 2004). The determined ICA weighting matrix in the training

procedure was used for the same decomposition in the testing procedure.

‘CSP’ can be considered as an optimal PCA approach, i.e., the common spatial patterns are

obtained through PCA decomposition followed by a varimax rotation (Koles et al. 1995;

Muller-Gerking et al. 1999). The CSP components are constrained to be as different as

possible in the two task conditions. For the EEG signal in this study, the first common

spatial pattern accounted for maximal variance in the right hand movement and minimal

variance in the left hand movement. Similarly, the last common spatial pattern accounted for

maximal variance in the left hand movement and minimal variance in the right hand

movement. As a result, different task conditions can be more accurately discriminated from

CSP components with larger inter-task variance (Guger et al. 2000). As a post hoc method,

CSP is highly data-dependent and is sensitive to noise contamination so that the

generalization of CSP-based classification needs to be validated. We retained all CSP

components, and feature selection procedure determined the components for classification

through cross-validation method.

‘SLD’ performs surface Laplacian transformation on multi-dimensional EEG signals.

Realistic Laplacian transformation usually requires a head shape model, which can be

constructed from brain imaging (Babiloni et al. 2003). We employed a simple method,

which is also called a ‘reference-free’ method (Hjorth 1975) so that the signal is independent

of which electrode is used as reference. The EEG signal from each electrode was referenced

to the averaged potentials from four orthogonal nearby electrodes. SLD operation enhanced

the spatial resolution of local EEG potentials by reducing the volume conduction effect.

SLD applies a high-pass filter to suppress low-spatial frequency components along with
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volume conduction components so that the local synchronizations, in particular, their radial

components, have increased spatial specificity (Pfurtscheller 1988) and as a result, the

spatial difference following hand movements might be more discriminable.

1.2 Temporal Filtering

Three temporal filtering methods were explored. The temporal filters were performed on

spatially filtered EEG trials. The signal power obtained from temporal filters was

represented in logarithmic form. ‘VAR’ calculated the variance of the spatial filtered signal,

i.e., whole frequency band power of the signal.

‘PSD’ estimated power spectral densities of the spatial filtered signal using the Welch

method. A Hamming window was employed to reduce side lobe effect. The FFT length was

set to 0.256 s resulting in a frequency resolution of approximately 4 Hz. Power spectral

densities were smoothed from segments with 50% overlapping. A number of PSD

estimation methods have been used in the signal processing literature, each of which varies

in resolution and variance of the estimation. Periodogram or modified periodogram has

higher spectral resolution, but the resulting variance is also larger than that of the Welch

method (Welch 1967). The multitaper method provides a solution to balance the variance

and resolution (Mitra and Pesaran 1999). However, an optimal multitaper method permits

the trade-off between resolution and variance to usually be data-dependent (Percival and

Walden 1993). We did not employ parametric methods, for example, using autoregressive

model coefficients (Huan and Palaniappan 2004). The parametric model requires

determining model order. Further, the model coefficients for classification are also indirect

to frequencies, which are difficult for general neurophysiological analysis.

‘DWT’ provides multi-resolution representation of EEGs signal or components for time-

frequency analysis. We adopted 8th-level one-dimensional decomposition using fourth-order

Daubechies mother wavelet (Daubechies 1992). The variances of the DWT components

were calculated. The corresponding central frequencies ranged from about 90 Hz to 1 Hz.

For the issue of computational loads, we did not explore optimal approaches, for example,

optimal filter bank design (Strang and Nguyen 1996).

3. Feature preprocessing

Features having large variances may dominate the learning process in the classifier training.

The filtered data (features) were scaled to zero mean and unit standard deviation of 1 for

numeric stabilization.

4. Feature selection

The spatially and temporally filtered EEG signals provided high-dimensional features; for

example, 122 EEG channels with 32 frequency bins produced 3904 features. Because of the

noisy nature of EEG, such high-dimensional features may bias the classification model

producing a low testing accuracy. A compact subset of features needs to be determined for

achieving a robust classification. The subset feature selection can be determined either

empirically or ‘data-driven’. Because of the high dependence among features, the empirical
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approach usually does not provide a good solution. The exhaustive search method is one of

the optimal feature selection methods, which evaluates all possible subsets to determine the

best subsets. For example, the exhaustive search of a subset of 3 features from 3904 features

results in more than 1 billion combinations. It is impractical to perform this due to the

computational burden. We adopted a sub-optimal method of genetic algorithm-based search,

which is a stochastic search in the feature space guided by the idea of inheriting, at each

search step, good properties of the parent subsets found in previous steps (Raymer et al.

2000). One important procedure in the genetic algorithm-based feature selection is the

evaluation of feature subsets. In this study, the feature subsets were evaluated on 5-fold

cross-validation accuracy using a Linear Mahalanobis Distance (LMD) classifier in order to

reduce the risk of over-training (Li et al. 2006). According to the evaluation of the feature

subset, a new generation was created from the best of them. By repeating this procedure, a

sub-optimal feature subset for the classification was determined. In this approach, the

dimension of feature subset should be provided previously. We performed a pilot study to

investigate an optimal dimension. Because of the difference in spatial and temporal filters, it

was difficult to determine an optimal dimension. We proposed the strategy of grid search

from 4 to 20 with step of 4 according to the finding in the pilot study. In GA approach, the

population size was 20, the number of generations was 100, the crossover probability was

0.8, the mutation probability was 0.01, and the stall generation was 20.

Because of the large number of features, the convergence speed under GA was still very

slow. For the purpose of faster convergence and less risk of local minima, we proposed an

approach of pre-feature selection to pre-select features having larger Bhattacharyya distance

between two task conditions. The Bhattacharyya distance is the square of mean difference

between two task conditions divided by the variance of the samples in two task conditions

(Marques 2001). The Bhattacharyya distance was calculated on each feature (univariate) in

feature pool indexing the feature separability between two task conditions, which was

somewhat similar to ANOVA statistic test by evaluating the volume of the pooled

covariance matrix of the class relative to the separation of their means. As Bhattacharyya

distance indexes the separability directly, it is preferable for feature selection with

comparison of other indexing methods, for example, the Fisher Score which indexes the

similarity. The features were sorted in descending order according to their Bhattacharyya

distance; the first 100 features were retained for subsequent multivariate feature selection.

5. Classification

We explored three statistical classification and three neural network classification

approaches. For pattern recognition, the simplest classification can be achieved by finding

the minimum distance to the prototypes, usually the sample means under different tasks. For

example, in the case of a two-feature two-class classification problem, the discriminant

boundary is a straight line perpendicular to the linking of means and passing at half distance.

Because the features are not necessarily mutually uncorrelated, we adopted linear and

quadratic Mahalanobis distance, which takes covariance into account (Marques 2001).

‘LMD’ computed a pooled covariance matrix averaged from individual covariance matrices

in two task conditions so that the discriminant boundary is hyper-planes leaning along the

regression. ‘QMD’ computed individual covariance matrix for two task conditions so that
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the discriminant boundary is quadratic surfaces. It should be noticed that the discriminant

boundary of ‘LMD’ passes through the midpoint of the line linking the means. In order to

use the ‘LMD’ or ‘QMD’ to classify a test sample as belonging to the classes of right or left,

the covariance matrix is estimated based on the training samples. Then, given a test sample,

the Mahalanobis distance to each class is computed, and classifies the test sample as

belonging to that class for which the Mahalanobis distance is minimal.

‘BSC’ also uses the Mahalanobis distance. It is categorized as the optimum classifier

because it takes into account the prior probabilities or prevalences and the specific risks of a

classification according to the well-known Bayes’ law. Similar to ‘LMD’, the covariance

matrix in ‘BSC’ was calculated from the average of the individual covariance matrices in

two task conditions. However, it is difficult to be optimal as prior probabilities are usually

unknown in practice. Our goal was to discriminate human intention to move either the right

or left hand. We expected the probabilities for right and left to be the same. From this prior

assumption, we balanced the number of samples for both right and left hand movements

during modeling and classification. Because of the same prior probabilities, we expected

similar outcomes from ‘LMD’ and ‘BSC’. Because of the random sampling procedure for

balancing samples, the outcomes would not be identical, but the difference would be

negligible.

We explored three nonlinear classification approaches using neural networks. The neural

network approaches provide more complicated discriminant boundaries, for example, by

using polynomial functions. Theoretically, it may provide higher accuracy in classification

tasks, at least in the training procedure. Successful applications in BCI development have

also been reported (Garrett et al. 2003; Hung et al. 2005).

We designed a feed-forward 2-layer (1 hidden layer) multi-layer perceptron neural network

in ‘MLP’ approach. The number of inputs was determined by feature selection. For

classification purposes, the number of outputs was one. This design had a parameter of the

number of hidden nodes, which determines the complexity of the neural network. In general,

higher complexity will provide lower generalization, i.e., we may obtain a low testing

accuracy although the training accuracy is high. Further, the neural network training, i.e.,

weight learning, is a nonlinear approach. The training error will be decreased with the

increase of number of training iterations when an appropriate learning rate is provided for

convergence issue. But, overtraining may also reduce the generalization of the classifier. We

employed the multilayer perceptron training algorithm described in Netlab (Nabney 2004).

We adopted log-sigmoid function as the activation function, and the scaled conjugate

gradient algorithm for neural network training (Bishop 1995). In this approach, early

stopping of training and the number of hidden nodes may control the risk of model over-

fitting. These two parameters were optimally determined from a 2-D grid search under 5-

fold cross-validation. The searching range for the early stopping was from 200 to 2000 with

step of 200. The searching range for the hidden nodes was from 2 to 20 with step of 2. A

pilot study was performed to determine the above ranges.

The probabilistic neural network is one type of radial basis function (RBF) network for

classification purposes. The ‘PNN’ has alternative feed-forward architecture to the two-layer
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MLP. The ‘PNN’ approach has an advantage that an RBF network may provide a minimum

approximating error, whereas the MLP approach does not (Girosi and Poggio 1990).

However, on the other hand, RBF approach’s generalization should be considered in order to

avoid over-fitting. We employed a probability neural network to classify human intention

(Wasserman 1993). In the training procedure, the spread of radial basis functions was

optimized from grid searching under 5-fold cross-validation. The searching range was 2K, K

from −20 to 20 with step of 2.

Support vector machines (SVM) tackle the principle of structure risk minimization with the

consideration of maximization of the margin of separation (Vapnik 1998). As a

consequence, SVM can provide a good generalization performance independent of the

sample distribution. As a promising method, SVM has been suggested in a number of BCI

applications (Lal et al. 2004; Olson et al. 2005; Thulasidas et al. 2006). We employed a

SVM approach provided in LIBSVM (Fan et al. 2005). We selected the RBF as the kernel

function since the RBF kernel can provide a similar classification outcome compared with

other kernels (Keerthi and Lin 2003). Two data-dependent parameters needed to be

determined in the training procedure; the penalty parameter for controlling model

complexity and the spread parameter for RBF functions. Similar to ‘MLP’ and ‘PNN’, a 2-D

grid searching with 5-fold cross-validation was performed; 2K, K from −5 to 15 with step of

2 for the penalty parameter and 2K, K from −15 to 5 with step of 2 for the spread parameter.
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Fig. 1.
The complete procedure of offline optimization: dataset generation, training, and testing.

The optimization of computational methods was explored using all combinations from

spatial filtering, temporal filtering and classification. The optimization experiments were

performed five times for each subject.
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Fig. 2.
Multiple comparison results of significant main effects from three-way ANOVA test on

testing accuracy. (a) Spatial filter: ‘ICA’ approach produced significantly higher accuracy

than those of ‘None’, ‘PCA’, and ‘CSP’ approaches, but comparable with ‘SLD’ approach.

The estimated mean difference between them was about 5–8%. (b) Temporal filter: ‘DWT’

approaches provided significantly higher accuracy than ‘VAR’ approach, but comparable

with ‘PSD’ approach. The estimated mean difference between them was about 3%. (c)

Classification: linear and quadratic statistical classification methods of ‘LMD’, ‘QMD’, and
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‘BSC’, and neural network approach of ‘SVM’ provided significantly higher accuracy than

two neural network approaches of ‘MLP’. The estimated mean difference between them was

about 1–2%.
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Fig. 3.
Multiple comparison results of significant interaction between spatial filter and classification

method from three-way ANOVA test on testing accuracy. The combinations of spatial filter

of ‘ICA’ and ‘SLD’, and classification method of ‘LMD’, ‘QMD’ and ‘SVM’ provided

higher classification accuracy.
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Fig. 4.
Movement-related cortical potentials (MRCP) and event-related desynchronization (ERD)

averaged from 11 subjects (excluding subject 2) preceding self-paced right (on the left

column) and left (on the right column) hand movements. The waveforms of the MRCP from

channel C4 are illustrated in (a) and (b). Peak MRCP amplitude of left hand movement was

larger than that of right hand movement. The head topography of MRCP at movement onset

is plotted in (c) and (d) for right and left hand, respectively. The MRCP over sensorimotor

cortex lateralized to contralateral left hemisphere preceding the right hand movement; the
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MRCP over sensorimotor cortex lateralized to the contralateral right hemisphere preceding

the left hand movement, however, activity on the ipsilateral left hemisphere was also

observed before the left hand movement. Time-frequency plots of ERD from channel C4 are

shown in (e) and (f). Both alpha and beta band activities were observed over sensorimotor

cortex before the movements. The lateralized ERD over left sensorimotor cortex was

observed at 500 ms before the onset of right hand movement (g), but bilateral ERD activities

on both hemispheres was seen before the left hand movement.
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Fig. 5.
Feature analysis for the classification of human movement intention. The channel-frequency

plots of Bhattacharyya distance, the head topography of Bhattacharyya of alpha band

activity (8–12 Hz), and the head topography of Bhattacharyya of beta band activity (16–24

Hz) are illustrated in the first, second and third column, respectively. The average of

Bhattacharyya distance from 11 subjects (excluding subject 2) is provided in the fourth row.

High separability for intention classification was observed in the beta EEG activity over

right sensorimotor cortex, whereas the beta band Bhattacharyya distance was small over left
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sensorimotor cortex from both individual and average plots. Only subject 3 showed high

Bhattacharyya distance in alpha band over contralateral sensorimotor cortex. Bhattacharyya

distance of both DC and alpha band components in the other subjects was small.
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Table 1

ANOVA Test of Classification Accuracy

Source Type III Sum of Squares Degrees of Freedom Greenhou se-Geisser Epsilon Corrected Degrees of Freedom Mean Square F Value P Value

SF 10099.5 4
0.58

2.3 4333.5
15.2 <0.01

Error (SF) 6630.5 40 23.3 284.5

TF 1743.8 2
0.86

1.7 1016.7
6.5 0.01

Error (TF) 2705.1 20 17.2 157.7

CM 574.8 5
0.32

1.6 341.0
12.4 <0.01

Error (CM) 441.5 50 16.0 27.6

SF*TF 750.0 8
0.41

3.2 231.1
2.2 0.10

Error (SF*TF) 3425.4 80 32.4 105.6

SF*CM 252.0 20
0.27

5.4 46.7
3.8 <0.01

Error (SF*CM) 661.7 200 53.9 12.3

TF*CM 68.1 10
0.39

3.9 17.7
1.8 0.15

Error (TF*CM) 377.9 100 38.7 9.8

SF*TF*CM 146.9 40
0.16

6.6 22.4
1.0 0.46

Error (SF*TF*CM) 1513.2 400 65.5 23.1

(SF: spatial filter; TF: temporal filter; CM: classification method)
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Table 2

Comparison of Classification Performance of Spatial Filters on Bandpass Filtered Single-Trial EEG

Spatial Filter PCA CSP

Bandpass Filter None 8–30 Hz 16–24 Hz None 8–30 Hz 16–24 Hz

Accuracy (%) (Mean±STD)* 56.7±5.7 58.5±5.3 52.8±4.9 51.1±2.6 51.4±4.6 52.3±4.1

Accuracy (%) (Mean±STD)** 54.2±4.0 59.5±5.3 53.5±4.3 51.9±3.5 53.1±4.6 51.5±3.3

*
5-fold cross-validation in feature selection

**
10-fold Cross-validation in feature selection
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Table 3

Testing accuracy for classification of movement intention*

Subject Index 1 2 3 4 5 6 7 8 9 10 11 12 Average

Number of Trials 156 195 153 146 291 403 277 195 197 104 95 292 209±91

(Right/Left) 136 219 154 123 224 321 282 192 192 115 79 356 199±86

Testing Accuracy 55.2 60.8 75.3 64.2 75.8 56.0 69.1 60.9 53.9 68.0 56.7 62.1 63.2±7.5

(Average/SD) 5.2 4.3 5.9 6.9 4.1 3.5 5.2 3.7 3.0 1.9 4.7 5.7

*
Spatial filter: ICA; Temporal filter: PSD; Classification: SVM
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