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Abstract. In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting
of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and
saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to
remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are
calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the
classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally,
experiment results showed that there exist significant differences in the extracted features among different subjects, and we have
implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment

performance.

1.0INTRODUCTION

Operator Functional State (OFS)
assessment is important in aviation to
ensure mission success and improve

mission performance. According to North
Atlantic Treaty Organization (NATO) [1],
OFS is defined as the multidimensional
pattern of human psychophysiological
condition that mediates performance in
relation to physiclogical and psychological
costs. The application of EEG signals for
human mental states assessment, such as
mental fatigue, operator engagement, and
workload, has been widely studied.

In this paper, we present methods to
analyze and improve an EEG-based
engagement assessment approach. The
developed methods were evaluated with
EEG signals collected from four pilots. More
specifically, the raw EEG recordings were
first cleaned up by removing spikes,
baseline drift and other artifacts in a data
preprocessing step. We then computed 1-
Hz bin PSDs from 1 Hz to 40 Hz as
features. Those extracted features were
subsequently fed into a committee machine
classifier to identify if the pilots were
engaged. To train the committee classifier,
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engagement ground truth for each subject
was identified using the methods described
in the accompanying paper [11].

We also presented feature analysis results
using the Fisher score measure and the
one-way ANOVA method. Fisher score is a
measure describing how good a feature is
for differentiating one category from
another, i.e., engaged vs. disengaged, while
the ANOVA method performs hypothesis
tests to verify if features coming from
different categories are statistically different.
We found that features identified for each
subject by Fisher score can effectively
discriminate different engagement states for
the subject. However, significant differences
in EEG signal features among different
subjects were found by the ANOVA method.

To mitigate the feature differences among
subjects, we performed a normalization
procedure on the extracted features for
each subject to be tested. WWe assume that
there was a small set of EEG recordings
available for the subject, ie., from a
baseline experiment [2]. The means and
standard deviations were then computed for
features from the small available dataset



and were subsequently used to normalize
all remaining data for that subject. Finally,
we evaluated the proposed methods for
engagement assessment on the data of four
subjects using a 5-fold cross validation
method.

The remainder of the paper is organized as
follows: section 2 presents our methods to
assess the pilot's engagement state.
Section 3 illustrates the achieved results
and section 4 concludes this paper.

2.0METHODS

2.1 Data collection
In order to study engagement, experiments
in a fully equipped Boeing 737 simulator
were conducted [11]. Participants involved
pilots with commercial/private/ATP (Airline
Transport Pilot) licenses. Each experiment
simulated a flight from Seattle Tacoma
International Airport to Chicago O'Hare
International Airport. Video, audio and
physiological information, including EEG,
ECG and eye tracking were recorded during
the whole simulated flight.

2.2 Engagement ground truth
finding

Although there was no sensor to provide
online engagement ground truth, the ground
truth can be assessed by incorporating
pilots’ self-evaluation and behavioral
measurements etc. as we described in the
accompanying paper [11]. For example, in
the phase of taking off, landing or a
simulated failure, a pilot was more likely to
be engaged, while in the phase of flight or
the pilot was napping, it is likely that he was
disengaged. By using the method described
in [11], we identified several data segments
for the “engaged” and “disengaged” states
as listed in Table 1 in this study to validate
the proposed methods.

2.3 EEG artifact removal
Although it has been found that EEG signals
from certain sensor locations and EEG
features in different frequency bands are
highly correlated to OFS [1]-[4], EEG
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recordings are known to be often

Table 1: Pilots’ engagement states
(1: disengaged; 2: engaged)

Subject | Time duration | State | comments
1 19:08~19:18 | 2 taking off
21:08~21:17 | 1 flat flight
5 19:52~20:03 | 2 taking off
21:19~21:29 | 1 flat flight
3 19:13~19:23 | 2 taking off
21:54~22:04 | 1 flat flight
4 20:58~21:08 | 2 taking off
23:25~23:35 | 1 flat flight

contaminated by physiological artifacts from
various sources, such as eye
blinking/movement, heart beating and
movement of other muscle groups [5]
Artifacts are often mixed together with brain
sighals, making interpretation of EEG
signals difficult [6]. To perform OFS
assessment using EEG recordings, it is
critical to exclude EEG artifacts contained in
the signals. Many methods, such as
Principle Component Analysis (PCA) [7] and
Independent Component Analysis (ICA) [8]-
[9] have been developed to remove the
EEG artifacts. Wavelet-based methods
have also received significant attentions [10]
for EEG artifact removal.

In this paper, the proposed procedure for
artifact removal is shown in Fig. 1. We
started with the removal of environmental
artifacts by applying a 60-Hz notch filter
followed by the removal of the baseline drift
by utilizing a high-pass filter with a cutoff
frequency of 05-Hz. Due to subject
movements in the experiments, some EEG
sensors failed because of lose connections
between the sensors and scalp for a
specific time duration. To remove signals
from those sensors, we checked the
standard deviations of each EEG channels,
and those with zero or values much larger
than the average standard deviation,
computed from other valid channels, were



discarded. According to the criteria used in
the ABM's model [2], EEG segments were
identified as spikes or baseline drifts if the
EEG amplitude changed abruptly (100uv
over a short duration of 30 ms in this paper).

Once the environmental and baseline drifts
were removed, the remaining EEG signals
were segmented to epochs using a 3-
second window. Our EEG signals were
sampled at the frequency of 200 Hz and
each epoch contains 600 data-points. In our
study, two consecutive epochs had 2
seconds or 400 data points of overlapping.
To remove ocular and muscular adifacts,
each epoch was decomposed using a six
level's stationary wavelet transformation,
yielding a set of wavelet bands: 0-1.56,
1.56-3.13, 3.13-6.25, 6.25-12.5, 12.5-25,
25-50, and 50-100 Hz. For each wavelet
band, the mean and standard deviation of
the coefficients were calculated.
Coefficients in the band were set to its
mean if the absolute difference between the
coefficient and the mean was larger than
1.5 times of the standard deviation in that
band. Finally, the EEG signals were
reconstructed from the modified coefficients.

Remove environment and DC artifacts

!

Select reasonable EEG data sets based on
stand deviation of each channel

Select Concerned EEG Sensors based on
Literatures

Y

Identify SpTkes, Excursions and Amplifier
Saturation

Remove Artifacts by Wavelet Transform

Figure 1: EEG signal preprocessing
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2.4 Feature extraction
For each decontaminated epoch, 1-Hz bins
of Power Spectral Densities (PSD) from 1
Hz to 40 Hz were calculated as features. In
our study, we utilized eight channels of EEG
recordings, which vielded 312 (8*39)
features for each epoch.

2.5 Feature analysis
We employed two methods, Fisher score
and one-way ANOVA, to analyze the
extracted features for the subjects. Fisher
score was calculated based on the following

m, —m,)?
formula:% where m,, and oy, are

g,240,

the means and standard deviations of the
data points belonging to state 1 or 2
(engagement or disengagement),
respectively. The Fisher score is the
hormalized distance between data points
belonging to different states. The larger the
fisher score, the more powerful the feature
is. By sorting features based on the Fisher
score, we can identify the most effective
ohes that can differentiate the two states.
On the other hand, the one-way ANOVA
analysis provides an intuitive way to
compare data points belonging to difference
groups/states. This method can help us
verify the effectiveness of those features
ranked by the Fisher score for each
individual or across subjects.

2.6 Committee machine
classifier

We utilized a committee machine as the
classification model, which was developed
previously [12]. A committee machine is an
ensemble classifier consisting of multiple
classifiers whose responses are combined
as a single response. Fig. 2 shows the main
procedures:

¢ Use the bootstrapping technique to
‘disturb’ the training data, resulting
different sets of training data,

e Train a Multi-layer perceptron (MLP) on
each set of training data. The trained
model is regarded as a base
classification model/committee member.



To , to make each of the committee
members diversified, we apply an
advanced feature selection algorithm,
Piecewise Linear Orthogonal Floating
Search (PLOFS) [13],

e Delete the committee members having
high biases (accuracy < 50%),

¢ Utilize the majority vote scheme to fuse
decisions from committee members.

Bootstrapping

4

‘ Feature Selection ‘

!

‘ BP Training ‘

!

Testwith Training Data and Delete the Committee Members with high bias

&

‘ Volting ‘

Figure 2: Diagram of the committee machine

2.7 Baseline normalization

It has been observed that there were
significant differences in the PSD features
among different subjects. To address the
individual variation, we assume that a small
set of data samples from the test subject
are available (i.e., from baseline
experiments), and normalize the features
based on the small dataset from the test
subject. Mean and standard deviation of the
subject were computed from his/her
available data samples and the remaining
data from the subject was normalized by the
computed mean and standard deviation.

2.8 Diagram of the proposed
approach

Combining the components described
above, we present an integrated approach
as shown in Fig. 3, where we assume that
our subjects are available for the
assessment. The purpose of the system is
to adapt the model trained on subjects 1, 2
and 3 to subject 4.

Datal Data2 Data3

h h 4 b

Datad Dat
Morm 1 Morm 2 Worm 3 tZO f
R
‘/ \
Mermi 2 Morm 3 Norm 1 NormZ Worm 3 Normtl
80 80 124 20 20

¥

Train 4

Validate 4 f Test4 ,:

15 Classffiers 5 Classifiers

Figure 3: System diagram for the committee
machine based engagement assessment

1. Data from subjects 1, 2 and 3 are
hormalized by their own mean and
standard deviations,

2. Forthe data set from subject 4, top 20%
data samples are extracted and
normalized by their own mean and
standard deviation, forming dataset
‘Normd_t20’. The mean and standard
deviation are then utilized to normalize
the remaining 80% of the data points,

3. From the three normalized data sets
from subjects 1, 2 and 3, 80% of them
are extracted and combined as the
training dataset (train4); the other 20%
are combined with the top 20% of data
samples from subject 4 as the validation
dataset (validate 4),

4. 15 classifiers are trained based on
‘Traind’; 5 other classifiers are trained
based on ‘Normd4_t20’,

5. 20 classifiers are applied to Validate 4’
and only those classifiers with accuracy
over 50% will be kept for testing,

6. The kept classifiers are then utilized to
form the final classification results by
majority voting.

3.0RESULTS

3.1 Data preprocessing
Fig. 4 (a) shows a raw segment recording in
which baseline drift and other artifacts are
presented. Fig. 4 (b) shows the signal after
the drift being removed and Fig. 4 (¢) shows
the “clean” data after the ocular artifact



being eliminated. It is observed that the
proposed methods can effectively remove

SODO

6000
4000
2000*
0 100 zOl ) 30u JOL: 500
(a) Raw EEG segment
100 T
50
of WMMH | \ wwﬁwnupn'
50 “Mﬂ
-100
0 WCIU 20! ) 300 400 500
{b) EEG Segment after the drift being removed
100
50+ 1
O’I‘\\ﬂ_ e, W\N\" W J\WWU \y N"\\UMW“WMWW
50F J
100 L — — L
0 100 200 300 400 500

(¢). EEG Segment after the Ocular or ECG artifact being removed

Figure 4: Artifacts removal

common artifacts contained in raw EEG
recordings.

3.2 Feature analysis by Fisher
score

To find the most valuable features, we firstly
calculated the Fisher score for each feature
of each subject. Then features were sorted
and finally we selected the common
features from the top 150 features for the
four subjects. In our study, we found 42
common features as shown in Table 2. Four
bi-polar sites, Cz-Oz, P7-Oz, P8Oz, and
Pz-Oz were involved and most of the
features were in the frequency range of
25~40 Hz.

Table 3 shows top 10 common features and
it is clear that the 39 Hz PSD bin from Cz-
Oz is the most valuable feature. Figures 5-8
show one common feature among the four
subjects, where the feature is large in
magnitude for the ‘engaged’ state and small
for the ‘disengaged' state. It is also
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observed that features from different
subjects are not in the same scale, implying
that the data from different subjects cannot
be combined directly and necessary
adaptation techniques are mandatory. In our
study, we normalized each feature from a
subject by its own mean and standard
deviation computed using a small dataset
from the subject.

Table 2. Distribution of high rank features

1~4 5~7 8~13 14~24 25~40

Hz Hz Hz Hz Hz

Cz-0z 0 0 0 0 8
P7-0z 4 1 0 9 11
P8-0z 0 0 0 1 7
Pz-0z 0 0 0 0 1

Table 3: Fisher scores for the top 10
common features

Sul:;:ect Suszect Sub;ect Sut::ect |
1.54 161 0.39 4.32 Cz-0z 39
0.31 2.27 0.57 1.41 P7-0z 35
0.22 1.78 0.69 1.60 P7-0z 32
0.29 1.67 0.60 1.59 P7-0z 29
1.19 1.50 0.35 0.94 Cz-0z 38
0.30 1.81 0.56 1.29 P7-0z 34
0.25 1.59 0.65 1.45 P7-0z 33
0.77 1.90 0.26 0.99 Pz-0z 33
0.32 1.61 0.52 1.45 P7-0z 31
0.29 1.60 0.68 1.34 P7-0z 28

PSU— singent 1 (Cz-02° 3960 Hz)

1 : : e
100+ D—
20
a0
70

\ ‘ ’| | \' ‘L ')\
1041 “ L W ||1 \'tJ"' Ui ‘

i M-.!E{JJ,L‘-‘&\-‘.lel'f&%j.“\;f_.\i,.\,:'-_ﬁl' ;

0 Ei) B30 80C 1000 1200

Figure 5: Feature Cz-Oz from 39-40 Hz for
subject 1
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3.3 Feature analysis by ANOVA
We also analyzed the features using the
one-way ANQVA tool and results confirmed
that for the feature ranked first by the Fisher
score, its PSD for the engaged state is
significantly larger than the PSD for the
disengaged state. Fig. 9 shows the result of
ANOVA analysis for subject 1 and results
for other subjects are similar. Fig. 10 shows
the ANOVA analysis for the four subjects all
together, where the features for each
subject were paired. It is clear that features
from different subjects are significantly

subject 2

FS0 — suajzct 3(C2-0z; 38-40 Hz)

Figure

isangag
engager

LAY e v
00

- 400 500 E 1300 1200

7: Feature Cz-Oz from 39-40 Hz for
subject 3

10|
FEC — sabject # (Cz-Oz; 30-40 Hz) o

m Mr .l" ﬂ W | ’

disengagad
| engaged

M

w m‘rf»w‘u_ﬁwm 'JW*J&M

200 400 B30 A00 1300 1200

different even if they were all engaged.

ANOVA — subjedt 1 (Cz-0z; 39-40 Hz)

Figure 9: ANOVA analysis for subject 1

One-way ANOVA analysis

dusengaged

Figure 10: ANOVA analysis for four subjects

Figure 8: Feature Cz-Oz from 38-40 Hz for

subject 4
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3.4 Classification results
We studied two scenarios of the individual
assessment model, in which training and
testing of the committee machine was
performed for each subject independently

and results are shown in Table 4. In
scenario 1, we used a 5-fold cross-
validation scheme to evaluate the

engagement assessment model and the
average accuracy is 98.55%. In scenario 2,
we trained the model by the top 20% data
samples from each subject and tested the
model on the remaining data. The average
accuracy is 94.01%. Both of them prove the
effectiveness of the extracted features.

In addition, two scenarios had been studied
for evaluating the proposed system if data
samples from a subject are not available or
very limited. For each of the four subjects,
we first trained an average model by using
the data from the other three subjects. In
scenario 1, we assumed that data samples
from the subject to be tested were not
available and we normalized the testing
data by the mean and standard deviation
computed from other subjects, producing
poor accuracies as shown in Table 5. In
scenario 2, we assumed that a small set of
data samples from the subject to be tested
were available (the top 20% of the testing
data) and used their mean and standard
deviation to normalize the remaining testing
data. It can be observed in Table 5 that the
results are significantly improved.

Table 4: Classification accuracy (%) of the
individual models

Scenario subject 1 subject 2 subject 3 subject 4 Average

1 98.76 97.18 98.43 99.82 98.55

2 90.35 95.32 90.49 99.89 94.01

Table 5: Classification accuracy (%) of the
average models

Scenario Subject1 | Subject 2 Subject 3 Subject 4 | Awverage

1 52.66 78.55 53.95 97.26 70.60

2 93.21 91.66 89.11 69.88 85.96
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4.0 CONCLUSIONS

In this research, we proposed methods for
engagement assessment based on EEG
signals. The methods include EEG artifacts
removal, feature analysis and ranking, and
a feature hormalization procedure.
Experimental results illustrated that the
artifact removal methods eliminated most of
the artifacts in the EEG recordings. Feature
analysis showed that engagement can be
effectively assessed using the identified
features but there existed large differences
in features from different subjects. Finally,
we demonstrated that the feature
hormalization procedure significantly
mitigated feature variations across subjects.
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