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12 Abstract

13 Despite many research efforts on ride-hailing services and taxis, limited studies have 

14 compared the safety performance of the two modes. A major challenge is the need for 

15 reliable mode-specific exposure data to model their safety outcomes. Moreover, crash 

16 frequencies of the two modes by injury severities tend to be spatially and inherently 

17 correlated. To fully address these issues, this study proposes a novel multivariate 

18 conditional autoregressive model considering measurement errors in mode-specific 

19 exposures (MVCARME). More specially, a classical measurement error structure is used 

20 to accommodate the uncertainty of mode-specific exposures estimated, and a multivariate 

21 spatial specification is adopted to capture potential spatial and inherent correlations. The 

22 model estimation is accelerated by an integrated nest Laplace approximation method. The 

23 census tracts in the city of Chicago are set as the spatial analysis unit. The mode-specific 
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1

1 exposures (vehicle-mile-traveled) in each census tract are estimated by trip assignments 

2 using ride-hailing and taxi trip data in 2019. The modeling results indicate that both ride-

3 hailing crashes and taxi crashes are positively associated with transportation factors (e.g., 

4 vehicle-mile-traveled, mode-specific vehicle-mile-traveled, and traffic signal numbers), 

5 land use factors (i.e., number of educational and alcohol-related sites), and demographic 

6 factors (e.g., median household income, transit ratio, and walk ratio). By comparison, the 

7 proposed model outperforms the others (i.e., negative binomial models and multivariate 

8 conditional autoregressive model) by yielding the lowest deviance information criterion 

9 (DIC), Watanabe-Akaike information criterion (WAIC), mean absolute error (MAE), and 

10 root-mean-square error (RMSE). According to the results of t-tests, ride-hailing services 

11 are found to be prone to a higher risk of minor injury crashes compared with taxis, despite 

12 no significant difference between the risks of severe injury crashes. Methodologically, this 

13 study adds to the literature a robust safety evaluation approach for comparing crash risks 

14 of different modes. At the same time, practically, it provides researchers, practitioners, and 

15 policy-makers insights into the safety management of various mobility alternatives.

16 Keywords: Ride-hailing crashes, Taxi crashes, Integrated nested Laplace approximation, 

17 Multivariate conditional autoregressive model, Measurement errors, Safety comparison

18

19 1. Introduction

20 Ride-hailing services (e.g., Uber, Lyft, and Didi Chuxing) and taxis are more convenient 

21 than public transit and more economical compared to private vehicles (Yang et al. 2022). 

22 As indicated by Jiao et al. (2020) and Yang et al. (2022), ride-hailing services and taxis 

23 would also reduce private vehicle use, car ownership, vehicle emissions, etc. Despite many 
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2

1 similarities between ride-hailing services and taxis, ride-hailing services tend to be more 

2 attractive than taxis (Rayle et al. 2016). For example, ride-hailing services outperform taxis 

3 by shorter and more reliable waiting times (Rayle et al. 2016), which might significantly 

4 decrease taxi demands and the corresponding labor incomes of taxi drivers. Ride-hailing 

5 users are also found to have lower car ownership and driving frequencies compared to taxi 

6 users, more likely to reduce their reliance on private vehicles (Rayle et al. 2016).

7

8 Some cities, such as Chicago, London, Beijing, and Shanghai, have implemented policies 

9 to suspend ride-hailing services temporarily or partially because of aggravated traffic 

10 congestion issues, repeated protests from local taxi drivers, and increased crashes and 

11 crimes related to ride-hailing services (Yang et al. 2022). Take the city of Chicago as an 

12 example. The congestion surcharge policy was only issued to suspend ride-hailing services 

13 partially from January 2020, mainly due to aggravated traffic congestion issues (Brown 

14 2022). Such policies have raised concerns about whether ride-hailing services and taxis 

15 should be regulated and treated differently, especially for the safety management of the 

16 two alternatives. For instance, taxi drivers are usually professionally trained and not 

17 allowed to use phones while driving. In contrast, ride-hailing drivers typically drive private 

18 vehicles and rely heavily on ride-hailing apps to pick up passengers while driving. Phone 

19 use while driving will induce driver distractions, thus increasing the likelihood of crash 

20 occurrences (Chen et al. 2022). 

21

22 The main challenge in comparing the safety performance of ride-hailing services and taxis 

23 is the need for reliable mode-specific exposure data, such as annual average daily traffic 
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1 (AADT) or vehicle-mile-traveled (VMT). Mode-specific exposures are considered the 

2 most indispensable explanatory factor in modeling mode-specific crashes (Ma et al. 2019, 

3 Xu et al. 2022). The ignorance of mode-specific exposures will induce severe omitted 

4 variable issues, affecting crash safety inference and management. The critical component 

5 for ride-hailing and taxi crash inference is to estimate mode-specific exposures by trip 

6 origin-destination (OD) pairs of ride-hailing services and taxis in this study. In addition, 

7 the estimated mode-specific exposures at the census tract level might have measurement 

8 errors. To be more specific, the estimated mode-specific exposure data are not the ground 

9 truth of the mode-specific exposures. For example, the actual routes between the same OD 

10 pair might differ slightly for different ride-hailing and taxi drivers spatially and temporally 

11 (Liu and Jiang 2022). For simplification, one could assume that all ride-hailing and taxi 

12 drivers select the same shortest routes for the same OD pair. However, the exact positions 

13 of trip origins and destinations for the two alternatives are usually unknown due to privacy 

14 protection. Although the centroids are typically set as good representations of trip origins 

15 or destinations in trip assignments at zone levels, measurement errors in mode-specific 

16 exposures still exist. More reliable estimates of mode-specific exposures should be 

17 incorporated into crash safety modeling to account for potential measurement errors in 

18 mode-specific exposures.

19

20 Further, conventional crash frequency modeling approaches, such as the Poisson models 

21 (Ma et al. 2019), Poisson-Gamma models (Zhai et al. 2022), and Poisson-lognormal 

22 models (Xie et al. 2015b), heavily rely on the assumption of independence of crash 

23 observations. However, such an assumption is frequently violated due to the potential 
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1 spatial correlations among different sites and inherent correlations across different types of 

2 crashes. Firstly, spatial correlations refer to the case that crashes occurring in one site will 

3 also affect crash observations in neighboring sites except for itself (Ziakopoulos and 

4 Yannis 2020). For example, crashes occurring at one site might result in rear-end secondary 

5 crashes at the corresponding upstream sites due to the disrupted traffic (Yang et al. 2018). 

6 Secondly, different types of crashes are found to be inherently correlated with each other 

7 because unobserved safety factors might simultaneously affect the frequencies of various 

8 crash types at one site. For instance, unobserved safety factors (e.g., safer driving behavior, 

9 high intensities of traffic law enforcement, good road lighting conditions) would generally 

10 reduce severe and minor injury crashes at one site (Xie et al. 2019). However, few studies 

11 have involved the unobserved safety factors above in modeling crash frequencies by 

12 severity (i.e., severe injury and minor injury crashes) because of the data availability. 

13 Therefore, traditional crash frequency modeling would get biased estimates if spatial 

14 correlations among different observation sites and inherent correlations across different 

15 types of crashes are not appropriately considered.

16

17 Because previous research that jointly addressed the three research gaps above is relatively 

18 limited, this study aims to compare the safety performance of ride-hailing services and 

19 taxis by developing a novel multivariate conditional autoregressive model considering 

20 measurement errors in mode-specific exposures (MVCARME), using data from Chicago 

21 as a case study. First, the shortest path for each OD pair at census tract levels is estimated 

22 by the OpenStreetMap-based Routing Service (Giraud 2022). Then, we could get the 

23 estimated mode-specific exposures (VMT) by aggregating the shortest paths within each 
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1 census tract for all ride-hailing or taxi trips in 2019. Secondly, the shortest paths refer to 

2 the expected routes on the actual road network between centroids of the OD pairs. Different 

3 ride-hailing or taxi drivers might have different preferences for routing choices. To 

4 consider the measurement errors between the estimated and actual mode-specific VMT, 

5 we integrate the classical measurement error structure into crash safety modeling for ride-

6 hailing and taxi crashes. Thirdly, multivariate conditional autoregressive components are 

7 developed to jointly account for spatial correlations among different crash observation sites 

8 and inherent correlations across various types of crashes (i.e., severe ride-hailing crashes, 

9 minor ride-hailing crashes, severe taxi crashes, and minor taxi crashes). It should be noted 

10 that an integrated nest Laplace approximation (INLA) method is used to accelerate 

11 parameter estimations in Bayesian inference.

12

13 The remainder is constructed as follows. The second section reviews contributing factors 

14 for ride-hailing crashes and taxi crashes and commonly used crash frequency modeling 

15 approaches. The following steps are to prepare the data and introduce the proposed crash 

16 frequency modeling approaches, followed by the modeling results and discussions. The 

17 final section concludes the findings and provides corresponding suggestions.

18

19 2. Literature Review

20 This section reviews safety factors for mode-specific crashes and commonly used crash 

21 frequency modeling approaches in previous studies. Mode-specific crashes mainly refer to 

22 ride-hailing or taxi crashes in this section.

23
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1 2.1. Safety factors for mode-specific crashes

2 Crash exposures (i.e., AADT and VMT) are the most important contributing factors to ride-

3 hailing or taxi crash frequency modeling, especially for mode-specific exposures. Without 

4 considering the actual exposures, prior studies used demographic characteristics (e.g., 

5 population, number of residents, and number of elderly) as proxy exposures in ride-hailing 

6 crash safety inference at the city level (Greenwood and Wattal 2017, Dills and Mulholland 

7 2018, Barrios et al. 2020). Of course, some studies considered exposures for all motor 

8 vehicles (VMT) in ride-hailing crash safety analyses (Brazil and Kirk 2016, Brazil and 

9 Kirk 2020, Kirk et al. 2020). However, few considered mode-specific exposures when 

10 modeling ride-hailing or taxi crashes at the city level. In addition, like mode-specific crash 

11 frequency modeling at the city level, only Ma et al. (2019) considered exposures and mode-

12 specific exposures for taxi crash modeling at the census tract level in the existing literature. 

13 More specifically, the mode-specific exposures for taxi crashes, taxi VMT, were estimated 

14 by trip assignments at the census tract level using the Euclidean distance between each taxi 

15 OD pair as the expected route. However, the actual route distance tended to be longer than 

16 the Euclidean route distance for the same OD pair because of the geometry characteristics 

17 of the actual road networks. Further, the relationships between mode-specific crashes and 

18 mode-specific exposures were also investigated at the individual level (Mao et al. 2021). 

19 More specifically, the vehicle-kilometer-traveled (VKT) being ride-hailing was involved 

20 in ride-hailing crash modeling. However, crash records and mode-specific exposures for 

21 ride-hailing services were unavailable to the public due to privacy and commercial reasons 

22 in Mao et al. (2021). 

23
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1 Besides the crash exposures above, other transportation factors are summarized more 

2 extensively from previous crash frequency modeling studies (Xie et al. 2019, Cui and Xie 

3 2021, Kabir et al. 2021, Xu et al. 2022) because of the limited studies on ride-hailing 

4 crashes and taxi crashes. For example, crash frequencies were found to be positively 

5 associated with the bus stop number (Wei and Lovegrove 2013, Xie et al. 2019), stop sign 

6 density (Ding et al. 2018a), traffic signal characteristics (Kabir et al. 2021), intersection 

7 number (Marshall and Garrick 2011), road length (Kamel et al. 2019, Cui and Xie 2021), 

8 and truck ratio (Hou et al. 2018).

9

10 In terms of land use factors, the number of points of interest (Ma et al. 2019), the number 

11 of education sites (Ukkusuri et al. 2012), and the number of bars (Mitra and Washington 

12 2012b) were found to be positively correlated to crash frequencies. However, ratios of 

13 residential areas, open space areas, and institutional areas were found to be insensitive to 

14 taxi crashes (Ma et al. 2019). Moreover, demographic factors are also summarized in a 

15 more extensive range to help understand mode-specific crash frequencies. For instance, 

16 crash frequencies are found to be positively associated with more population (Cui and Xie 

17 2021), higher employment density (Cai et al. 2016), and higher median household income 

18 (Xie et al. 2019). It should be noted that the ratio of commuters by public transit or walking 

19 was also crucial in understanding the potential traffic conflicts between ride-hailing 

20 services/taxis and public transits/pedestrians (Ding et al. 2018a, Xie et al. 2019).

21

22 It is worth mentioning that some studies have investigated ride-hailing crashes (Mao et al. 

23 2021) and taxi crashes (Ma et al. 2019), considering mode-specific exposures. However, 
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1 the corresponding mode-specific exposures are either inaccessible to the public (Mao et al. 

2 2021) or unreliably enough estimated by Ma et al. (2019). More reliable estimations of 

3 mode-specific exposures should be incorporated in modeling ride-hailing crashes and taxi 

4 crashes, except for other commonly used transportation, land use, and demographic factors.

5

6 2.2. Modeling approaches for crash frequencies

7 Traditional crash frequency modeling approaches, such as Poisson (Ma et al. 2019) and 

8 Poisson-Gamma (Brazil and Kirk 2020, Mao et al. 2021), have been used to understand 

9 ride-hailing or taxi crash frequencies. Such crash frequency modeling approaches assume 

10 that crash observations are independent. However, the assumption is often violated by 

11 spatial correlations of crash observation sites and inherent correlations across various types 

12 of crashes (Xie et al. 2019, Ziakopoulos and Yannis 2020).   

13

14 In terms of the spatial correlations of crash frequencies, observed or unobserved safety 

15 factors of one site might affect crash occurrences at neighboring sites (Xie et al. 2019). The 

16 correlation matrices among different sites were primarily designed to accommodate the 

17 potential spatial correlations in generalized estimating equations (GEEs) (Abdel-Aty and 

18 Wang 2006, Mohammadi et al. 2014), spatial autoregressive (SAR) models (Xie et al. 

19 2015a, Gaweesh et al. 2019), and conditional autoregressive (CAR) models (Ma et al. 2019, 

20 Xie et al. 2019, Xu et al. 2022). The CAR models are then reviewed to help further 

21 understand the crash frequency modeling approach used in this study (please refer to 

22 Mohammadi et al. (2014) and Xie et al. (2015a) for more details on GEEs and SAR models, 

23 respectively). In addition, SAR models are often considered special types of CAR models 
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1 (Cressie 2015). In particular, the CAR models enabled complicated model settings and 

2 faster computation speeds than SAR models, especially with larger datasets (Wang and 

3 Kockelman 2013). On the other hand, the CAR models have also been widely used in crash 

4 safety analyses at intersections (Xie et al. 2014), road segments (Yang et al. 2021), census 

5 blocks (Saha et al. 2018), census tracts (Ma et al. 2019), and traffic analysis zones (Kamel 

6 and Sayed 2020). Therefore, the CAR model specification is developed in this study to 

7 accommodate the spatial correlations across different crash observation sites.

8

9 The inherent correlations are usually caused by unobserved safety factors across various 

10 types of crashes. Multivariate models (Xie et al. 2015c, Bhowmik et al. 2019, Xie et al. 

11 2019) and the multinomial generalized Poisson models (Chiou and Fu 2013, Chiou et al. 

12 2014) were developed to accommodate the inherent correlations by shared error terms. For 

13 instance, Xie et al. (2015c) developed multivariate spatial count models to accommodate 

14 inherent correlations across different types of truck crashes. To jointly account for the 

15 potential spatial and inherent correlations above, multivariate conditional autoregressive 

16 (MVCAR) models have been proposed in previous crash safety studies (Wang and 

17 Kockelman 2013, Cheng et al. 2018, Xie et al. 2019, Yang et al. 2019). Besides the spatial 

18 and inherent correlations, the measurement errors of mode-specific exposures have also 

19 been widely considered to get more reliable crash safety estimations and inferences (Xie 

20 et al. 2015c, Kamel and Sayed 2020, Xu et al. 2022). 

21

22 To sum up, limited studies have jointly accommodated spatial correlations of different sites, 

23 inherent correlations across different types of crashes, and measurement errors in mode-
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10

1 specific exposures. Therefore, the MVCARME model is developed to investigate mode-

2 specific crashes (i.e., ride-hailing and taxi crashes) by injury severity in this study.

3

4 3. Data Preparation 

5 This study uses the operations of ride-hailing services and taxis in Chicago as a case study. 

6 We collected crash data, transportation, land use, and demographic factors in Chicago in 

7 2019. The census tracts ( ) in Chicago were used as spatial analysis units for ride-801N 

8 hailing and taxi crash frequency modeling.

9

10 3.1. Crash data

11 Only crash data in 2019 were used to model ride-hailing and taxi crash frequencies 

12 (Chicago Police Department 2019a) to avoid the potential impacts of COVID-19 and the 

13 congestion surcharge policy initiated in 2020. In addition, trip data of ride-hailing services 

14 were only available for the public from November 2018 (Chicago Department of Business 

15 Affairs & Consumer Protection 2019b), which were the critical components to estimating 

16 mode-specific exposures for ride-hailing services. 

17

18 One big challenge in mode-specific crash safety inference is the lack of identifiers for ride-

19 hailing crashes and taxi crashes. The crash vehicle data in Chicago provided opportunities 

20 to identify ride-hailing and taxi crashes by the term named vehicle-use (Chicago Police 

21 Department 2019b). More specially, one crash was regarded as a ride-hailing crash only if 

22 one of the vehicle-use in the same crash was the rideshare service; one crash was classified 

23 as a taxi crash only if one of the vehicle-use in the same crash was the taxi/for hire. By 
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1 severity, severe and minor crashes were identified by the most severe injury in crash data. 

2 Severe crashes involved fatal injury, incapacitating injury, and non-incapacitating injury 

3 crashes. Similarly, minor crashes included no indication of injury and no evident crashes.

4

5 3.2. Exposure estimation

6 Regarding exposures, VMT could be estimated by multiplying traffic volumes in 2019 and 

7 the corresponding road length in each census tract (Illinois Department of Transportation 

8 2019). Because vehicle trajectory data are unavailable for ride-hailing services and taxis in 

9 this study, we cannot obtain the actual mode-specific exposures in each census tract using 

10 the ride-hailing OD data (Chicago Department of Business Affairs & Consumer Protection 

11 2019b) and taxi OD data (Chicago Department of Business Affairs & Consumer Protection 

12 2019a). To get reliable estimations of the mode-specific exposures, we assume that the 

13 origins and destinations of all ride-hailing or taxi trips occurred at centroids of the 

14 corresponding census tracts. It should be noted that only 68.48% of ride-hailing trips and 

15 64.78% of taxi trips have census tract identifiers in both trip origins and destinations, 

16 mainly due to privacy concerns. We assume that trip distances of OD pairs with both 

17 origins and destinations for ride-hailing services and taxis are proportional to the actual trip 

18 distances. For instance, the trip distances of ride-hailing services with identifiers in both 

19 trip origins and destinations account for 68.48% of the total trip distances of ride-hailing 

20 services in Chicago in 2019. 

21

22 As indicated in Figure 1, the procedure to estimate mode-specific exposure, , k
iModeVMT

23 is described as follows:
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1 Step 1. Obtain the number of trips  and trip distances  for  where and k
ijN k

ijD ijOD i

2  are census tract identifiers,  denotes ride-hailing services or taxis.j k

3 Step 2. Classify  into  and  where only  for ijOD iiIntraOD  ijInterOD i j k
iid

4  is the actual trip distances for census tract .iiIntraOD i

5 Step 3. Estimate the expected shortest  and distance  for on the ijRoute '
ijd ijInterOD

6 actual road network with OpenStreetMap (OSM) Routing Services (Giraud 2022). 

7 Step 4. Assign  for  into census tract vector  by the k
ijd ijInterOD (1, 2,3,..., )NI

8 proportion of  in each census tract.'
ijd

9 Step 5. Calculate  by summing  for all  in census tract .k
id k

ijd ijInterOD i

10 Step 6. Calculate the mode-specific exposure  for ride-hailing services k
iModeVMT

11 or taxis by summing  from  and  from .k
iid iiIntraOD k

id ijInterOD

12

13 Figure 1. Estimation procedure of mode-specific exposures
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13

1 3.3. Safety factors

2 Besides VMT and mode-specific VMT, other transportation factors are aggregated into 

3 census tracts by the sf package in the programming language R (Pebesma 2018), such as 

4 bus stop numbers, metro station numbers, crosswalk numbers, stop sign numbers, and 

5 traffic signal numbers (OpenStreetMap 2019b). We also collected some land use factors 

6 (OpenStreetMap 2019a) for each census tract, such as commercial ratio, residential ratio, 

7 recreational ratio, green space ratio, number of education sites, and number of alcohol-

8 related sites by the sf package in the programming language R (Pebesma 2018). 

9 Demographic factors at the census tract level were also collected from the American 

10 Community Survey (ACS) released in 2019 by the tidycensus package of the programming 

11 language R (Walker et al. 2021). For instance, commonly used demographic factors 

12 included the number of populations, the number of populations younger than 18, median 

13 household income in USD, and the number of house units. Moreover, demographic factors 

14 for commuters were also involved, such as transit ratio, cycling ratio, and walk ratio.

15

16 3.4. Descriptive analysis

17 Table 1 summarizes crash data, transportation, land use, and demographic factors. For 

18 example, the average severe crash frequency involving ride-hailing services at the census 

19 tract level was 0.47, much higher than that of taxis (0.33). In contrast, the average number 

20 of minor ride-hailing crashes (3.40) was much lower than that of minor taxi crashes (3.55). 

21 In addition, Figure 2 suggests significant spatial correlations of crash occurrence at the 

22 census tract level. For instance, most ride-hailing crashes and taxi crashes are observed in 

23 the central areas of Chicago. More severe and minor ride-hailing crashes are distributed in 
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1 suburban and rural areas of Chicago. Ride-hailing services are more likely to operate in 

2 such areas than taxis, partially due to the high-efficiency matching algorithms between 

3 potential ride-hailing drivers and passengers (Acheampong et al. 2020). Further, there are 

4 inherent correlations for different types of crashes (ride-hailing and taxi crashes by severity) 

5 in Figure 2. For example, minor ride-hailing crashes are distributed similarly to minor taxi 

6 crashes, especially in the central and northwestern areas of Chicago.

7

8 The average number of the natural logarithm of VMT for all motor vehicles was 

9 approximately 15.54, much higher than that for ride-hailing services (10.77) and taxis (7.03) 

10 in Table 1. In particular, the mode-specific exposures for ride-hailing services and taxis 

11 also have different spatial distributions in Figure 3. More specially, ride-hailing services 

12 would operate in more extensive service areas than taxis, especially in suburban and rural 

13 areas. Besides the mode-specific exposures, other transportation, land use, and 

14 demographic factors were assumed to be the same for ride-hailing and taxi crashes in 2019. 

(a)  Severe ride-hailing crashes (b) Severe taxi crashes
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(c) Minor ride-hailing crashes (d) Minor taxi crashes

1 Figure 2. Spatial distributions of mode-specific crashes

2

(a) Ln(ride-hailing VMT) (b) Ln(taxi VMT)

3 Figure 3. Spatial distributions of mode-specific exposures

4
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1 Table 1 Descriptive analysis for the prepared data (N = 801)

Variables Definition Mean SD

Crashes    

Severe ride-hailing crashes Severe crashes involving ride-hailing services 0.47 1.24

Minor ride-hailing crashes Minor crashes involving ride-hailing services 3.40 10.36

Severe taxi crashes Severe crashes involving ride-hailing services 0.33 1.56

Minor taxi crashes Minor crashes involving ride-hailing services 3.55 17.45

Transportation factors

Ln (VMT)
Natural logarithm of exposures (vehicle. mile) 

for all motor vehicles 
15.54 1.30

Ln (ride-hailing VMT)
Natural logarithm of exposures (vehicle. mile) 

for ride-hailing services
10.77 1.74

Ln (taxi VMT)
Natural logarithm of exposures (vehicle. mile) 

for taxis
7.03 3.29

Bus stop number Number of bus stops 11.82 8.59

Metro station number Number of metro stations 0.20 0.63

Crosswalk number Number of crosswalks 2.84 8.37

Stop sign number Number of stop signs 2.95 6.19

Traffic signal number Number of traffic signals for vehicles 4.70 6.64

Land use factors

Commercial ratio Ratio of commercial areas to the whole area 0.09 0.21

Residential ratio Ratio of residential areas to the whole area 0.29 0.39

Green space ratio Ratio of green space areas to the whole area 0.35 0.43

Other ratio Ratio of other areas to the whole area 0.27 0.42

Number of education sites
Number of kindergartens, schools, colleges, 

and universities
0.59 0.95
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Number of alcohol-related 

sites

Number of bars, beverages, nightclubs, and 

pubs
0.61 1.68

Demographic factors

Population Number of populations in thousands 3.43 1.87

Population younger than 18
Number of population younger than 18 in 

thousands
0.72 0.47

Median household income Median household income (in USD) 410  3.39 1.81

Number of house units Number of house units 3.32 1.82

Transit ratio Ratio of commuters by transit 0.29 0.13

Bike ratio Ratio of commuters by bike 0.02 0.02

Walk ratio Ratio of commuters by walking 0.05 0.08

1   Note: SD denotes the standard deviation.

2

3 4. Methodology 

4 4.1. Model specification

5 4.1.1. Multivariate conditional autoregressive (MVCAR) model

6 The observed crash frequency  at the site  for the crash type  ( ,  denotes k
iy i k 1,2,...,i n n

7 the total number of census tracts in Chicago) is commonly assumed to follow a Poisson 

8 distribution with the mean value . It should be noted that there are four types of crashes, k
i

9 including severe ride-hailing crashes, minor ride-hailing crashes, severe taxi crashes, and 

10 minor taxi crashes. To be more specific, the probability of observed crash frequency  at k
iy

11 site  for crash type  can be given by Equation (1):i k

12 (1)( | )
!

k k
i iyk

k k i
i i k

i

eP y
y
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1 Let  at site  denotes the mode-specific exposures for ride-hailing crashes and k
iModeVMT i

2 taxi crashes, including  for ride-hailing crashes and  for taxi crashes. k
iRHVMT k

iTXVMT

3 The Poisson parameter  can be specified by the estimated mode-specific exposures k
i

4  and a series of other explanatory variables  (i.e., other transportation k
iModeVMT k

piX

5 factors, land use factors, and demographic factors) in Equation (2):

6 (2)  0 1
2

ln ln( )
P

k k k k k k
i i p pi i

p

ModeVMT X    


   

7 where, , is the total number of explanatory variables except for the 2,3,...,p P P

8 estimated mode-specific exposures . , , and  are the regression k
iModeVMT 0

k 1
k k

p

9 coefficients to be estimated. In addition,  is assumed to be gamma-distributed with  exp i

10 mean one and variance  across different sites to address the over-dispersion issues, 2

11 formulating commonly used negative binomial (NB) models in crash safety studies (Lord 

12 and Mannering 2010, Zhai et al. 2022, Zhang et al. 2022). 

13

14 The proposed MVCAR is developed to capture the potential spatial correlations of 

15 neighboring sites and inherent correlations across various types of crashes simultaneously 

16 by adding a multivariate spatial latent effect term,  into Equation (3) (Palmí-Perales et kiS

17 al. 2019, Xie et al. 2019):

18 (3)  0 1
2

ln ln( )
P

k k k k k k
i i p pi ki i

p

ModeVMT X S    


    

19 The full conditional distribution of  follows a K-dimensional  1 2, ,..., 'i i i KiS S SS

20 multivariate normal distribution (Thomas et al. 2004) in Equation (4):
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1 (4)Ω| ~ ,ij
i i K j

j i i i

w
MVN

w w
  

 
  
 
S S S

2 where,  is the set of  for any .  denotes the spatial correlations (weights) iS jS j i ijw

3 between site  and site . Specifically,  if site  and site  are adjacent and  i j 1ijw  i j 0ijw 

4 otherwise. is the aggregation of spatial weights for site , with .  is the iw  i
1

n
i ijj

w w 
  Ω

5 variance-covariance matrix for the spatial and inherent correlations in Equation (5):

6 (5)

2 2
11 1

2 2
1

S S K

SK SKK

 

 

 
 

   
 
 


  



7 Diagonal elements of  denote the conditional variance of the spatial correlations of Ω

8 neighboring sites, and the off-diagonal elements represent the conditional variance of the 

9 inherent correlations across various types of crashes for the same site (Thomas et al. 2004, 

10 Palmí-Perales et al. 2019).

11

12 4.1.2. Measurement errors in mode-specific exposures

13 Without detailed vehicle trajectory data for ride-hailing services and taxis, potential 

14 differences between actual and expected mode-specific exposures should be appropriately 

15 considered in the modeling process. The classical measurement error structure in log-scale 

16 mode-specific exposures is described (Muff et al. 2015) in Equation (6):

17 (6)   *ln lnk k
i i iModeVMT ModeVMT  

18 where   is the unknown actual mode-specific exposures of ride-hailing *k
iModeVMT

19 services and taxis. Because mode-specific exposures (i.e., ride-hailing VMT and taxi VMT) 
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1 are estimated in the same logic, the measurement error term, , is assumed to be normally i

2 distributed with zero mean and Gaussian noise  across different sites.
i

3

4 After integrating the measurement error structure into the MVCAR model, the proposed 

5 MVCARME model can be developed as Equation (7): 

6 (7)   *
0 1

2

ln ln
P

k k k k k k
i i p pi ki i

p

ModeVMT X S    


    

7

8 4.2. Model assessment 

9 The deviance information criterion (DIC) has been widely used to measure model fitting 

10 and complexity in Bayesian modeling assessments (Spiegelhalter et al. 2002). Specifically, 

11 the DIC can be estimated as Equation (8):

12 (8)  DDIC D p 

13 where, is the posterior mean of the deviance of the estimated parameters , which  D  

14 can be considered as a Bayesian measure about the goodness-of-fit.  denotes the Dp

15 effective number of parameters and can be taken as a measure of model complexity. As 

16 indicated by Lunn et al. (2013), the models with DIC values smaller than five are 

17 considered to have the same fitness and complexity. A smaller DIC is associated with better 

18 statistical performance. 

19

20 Besides DIC, the widely applicable information criterion (WAIC) is also used to assess 

21 Bayesian model fitness, with simpler estimates of predictive errors but requiring additional 

22 computational steps (Vehtari et al. 2017). The WAIC could be estimated by Equation (9) 
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1 where  denotes the log point-wise predictive density to measure the prediction lppd

2 accuracy and  sum the variance of individual terms in the log predictive density to 
2WAICp

3 adjust for overfitting (Gelman et al. 2021). Similarly, Models with smaller WAIC values 

4 tend to be preferred. 

5 (9)
2
)2( WAICWAIC lppd p  

6 In addition, the mean absolute error (MAE) and root-mean-square error (RMSE) are also 

7 considered to measure goodness-of-fit for the Bayesian inference in this study.  

8

9 4.3. Bayesian estimation with INLA

10 All the crash frequency models above (i.e., NB, MVCAR, and MVCARME) are estimated 

11 in the full Bayesian framework. The Bayesian method combines prior distributions with a 

12 likelihood function obtained to create posterior distributions as estimates (Cui and Xie 

13 2021, Gelman et al. 2021). The theoretical framework for Bayesian inference can be 

14 described as Equation (10):

15 (10)   ( | ) |p y L y p  

16 where,  is the vector of observed crash frequencies for ride-hailing crashes and taxi y

17 crashes by severity;  has been defined previously in Equation 8;  denotes the  ( | )p y

18 posterior distribution of  given ;  is likelihood function; and  is the prior  y  |L y   p 

19 distribution of . 

20

21 In practice, the Markov Chain Monte Carlo (MCMC) algorithm is commonly used to 

22 estimate parameters of Bayesian models (Thomas et al. 2004, Lunn et al. 2013). Despite 
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1 the flexibility of Bayesian inference, the computational burden of the MCMC algorithm is 

2 tremendous, especially when some variables are with no-Gaussian distributions (Cui and 

3 Xie 2021). Such an inefficient or time-consuming algorithm will not be applied to Bayesian 

4 estimation in this study.

5

6 Alternatively, the INLA method proposed by Rue et al. (2009) is more efficient in Bayesian 

7 inference than the MCMC algorithm, especially for complicated Bayesian models. The 

8 Laplace approximation technique is the most essential component of the INLA method, 

9 which can approximate any distributions with Gaussian distributions and thus improve 

10 estimation efficiency. Under the Bayesian framework, the posterior marginal distributions 

11 of interest can be expressed as Equation (11),

12 (11)       | , | exp log , |p y p y d p y d         

13 where,  is the vector of hyperparameters;  can be represented by a Taylor    log , |p y 

14 series expansion; thus  can be turned into Equation (12), |p y

15 (12)          2*
*

2*

, | , |
| exp log , | exp

2

p y p y
p y p y d

   
   



     
 
 

16 where, ; . At last, inside the integration   * log , |argmax p y   2* *
21/  




  


17 is normally distributed with mean  and variance , which significantly improves * 2*

18 estimation efficiency for Bayesian inference (Cui and Xie 2021). To be more specific, the 

19 MVCAR components are developed by the INLAMSM package (Palmí-Perales et al. 
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1 2019), and the classical measurement error effects are integrated into the MVCAR model 

2 by the latent effect named 'mec' in the INLA package (Muff et al. 2015).

3

4 5. Results and discussions

5 5.1. Modeling results

6 We developed three types of crash frequency models specified above to understand ride-

7 hailing crashes and taxi crashes, involving the NB models, the MVCAR model, and the 

8 MVCARME model. Specifically, the first (NB) models were developed by the INLA 

9 package (Rue et al. 2009) while the latter two models, MVCAR and MCVARME models, 

10 were estimated by the INLMSM package and the INLA package simultaneously (Rue et 

11 al. 2009, Muff et al. 2015, Palmí-Perales et al. 2019). For variable selections, insignificant 

12 variables were removed if the variables were insignificant at the 0.05 significance level for 

13 all types of crashes (i.e., severe ride-hailing crashes, minor ride-hailing crashes, severe taxi 

14 crashes, and minor taxi crashes). Variance inflation factors (VIFs) were used to examine 

15 the multicollinearity problems in modeling all types of crashes, respectively. Generally, a 

16 VIF value lower than five is acceptable in statistical models (O’brien 2007). Table 2 shows 

17 no multicollinearity issues are detected due to lower VIF values. 

18

19 For comparison, Table 3 summarizes the goodness-of-fit values for the crash frequency 

20 models above (i.e., NB, MVCAR, and MVCARME). The MVCARME outperforms the 

21 other models with the lowest DIC, WAIC, MAE, and RMSE values. In addition, the crash 

22 frequency modeling is improved by accounting for the spatial and inherent correlations 

23 because of the significantly reduced DIC, WAIC, MAE, and RMSE values from NB to 
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1 MVCAR, which validate the existence of the spatial and inherent correlations. Then, the 

2 crash frequency modeling is further improved after considering the measurement errors in 

3 mode-specific exposures due to slightly lower DIC, WAIC, MAE, and RMSE values of 

4 the MVCARME model compared to the MVCAR model. Such improvements in the 

5 goodness-of-fit should be attributed to the incorporation of measurement errors in mode-

6 specific exposures.

7 Table 2 Results of the multicollinear test for all types of crashes

VIF

Variables Severe ride-hailing 

crashes

Minor ride-hailing 

crashes

Severe taxi 

crashes

Minor taxi 

crashes

Transportation factors    

Ln (VMT) 2.15 1.89 2.35 1.59

Ln (mode-specific 

VMT) 3.59 2.80 3.96 1.73

Traffic signal number 2.59 1.95 4.20 1.85

Land use factors

Number of education 

sites 1.06 1.03 1.51 1.04

Number of alcohol-

related sites 2.36 1.72 3.08 1.64

Demographic factors

Median household 

income 2.25 1.94 2.39 1.55

Transit ratio 1.46 1.36 1.51 1.13

Walk ratio 2.34 1.65 3.44 1.45

8
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1 Table 3 Summary of model performance

Goodness-of-fit NB MVCAR MVCARME

DIC 7,199.90 6,812.06 6,739.61

WAIC 7,204.71 6,800.57 6,751.56

MAE 2.35 1.26 1.18

RMSE 51.11 8.95 7.99

2

3 Table 4 presents the modeling results of the MVCARME model. For transportation factors, 

4 a one-percent increase in VMT was found to be positively associated with a 0.30% increase 

5 in severe ride-hailing crashes, a 0.22% increase in minor ride-hailing crashes, a 0.31% 

6 increase in severe taxi crashes, and a 0.29% increase in minor taxi crashes. The positive 

7 correlations between crash frequencies and VMT can be commonly observed in previous 

8 studies (National Research Council 2010, Zhai et al. 2022). Mode-specific VMT was also 

9 found to impact severe ride-hailing and taxi crashes in similar intensity positively. A one-

10 percent increase in mode-specific VMT would increase severe ride-hailing crashes by 0.11% 

11 and severe taxi crashes by 0.10%. In contrast, a one-percent increase in mode-specific 

12 VMT would increase minor ride-hailing crashes by 0.17% while minor taxi crashes by 

13 0.07%. Such positive relationships are consistent with Ma et al. (2019), where taxi VMT 

14 was also positively associated with taxi crashes. In particular, a large variance (0.23) for 

15 measurement errors of mode-specific VMT emphasizes the importance (i.e., mitigating the 

16 impacts of the uncertainty of mode-specific VMT) of incorporating the measurement error 

17 structure in modeling ride-hailing and taxi crashes; otherwise, the modeling results may 

18 lead to biased inferences. Traffic signal numbers were also positively associated with ride-

19 hailing and taxi crashes. One possible reason is the complicated vehicle movements at 
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1 intersections with traffic signal controls, especially with higher numbers of signal phases 

2 (Chin and Quddus 2003). Another possible reason is the potential interactions between 

3 ride-hailing or taxi vehicles and vulnerable road users (such as pedestrians and cyclists) at 

4 intersections even controlled by traffic signals.

5

6 Regarding land use factors, educational sites were also positively correlated with ride-

7 hailing crashes and taxi crashes. A possible reason is that vulnerable road users, especially 

8 teenagers, are likely to interact more with motor vehicles at educational sites (Warsh et al. 

9 2009). High proportions of inexperienced drivers around the educational sites might induce 

10 more dangerous interactions with ride-hailing and taxi drivers (Mitra and Washington 

11 2012a). Similarly, more alcohol-related sites were positively associated with ride-hailing 

12 and taxi crashes. Intoxicated vulnerable road users (i.e., pedestrians and cyclists) and 

13 drivers are more likely to be observed in alcohol-related sites. A higher likelihood of crash 

14 occurrence is positively associated with the reduced ability to detect potential collision 

15 risks and decreased reaction time to unexpected events (Mitra and Washington 2012a). 

16

17 In terms of demographic factors, median household income was found to be positively 

18 correlated with ride-hailing crashes and taxi crashes. A higher median household income 

19 would positively affect private vehicle use and ownership, thus inducing more interactions 

20 between private vehicles and ride-hailing or taxi vehicles. The findings above were 

21 consistent with previous studies (Xie et al. 2019, Xu et al. 2022). Additionally, a higher 

22 transit or walk ratio for commuters would increase the likelihood of minor ride-hailing 
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1 crashes and taxi crashes because of the increased exposure to transit vehicles and 

2 pedestrians (Chen and Zhou 2016, Ding et al. 2018b, Mohammadi et al. 2018). 

3 Table 4 Modeling results of the MVCARME model

Severe ride-hailing 

crashes

Minor ride-hailing 

crashes

Severe taxi 

crashes

Minor taxi 

crashesVariables

Mean SD Mean SD Mean SD Mean SD

Intercept -8.49* 0.80 -6.61* 0.81 -9.06* 0.84 -6.53* 0.72

Transportation factors

Ln (VMT) 0.30* 0.05 0.22* 0.05 0.31* 0.05 0.29* 0.05

Ln (mode-specific 

VMT)
0.11* 0.03 0.17* 0.03 0.10* 0.03 0.07* 0.03

Traffic signal number 0.02* 0.01 0.02* 0.01 0.02* 0.01 0.03* 0.01

Land use factors

Number of education 

sites
0.12* 0.04 0.08* 0.04 0.08* 0.04 0.09* 0.04

Number of alcohol-

related sites
0.05* 0.02 0.07* 0.02 0.05* 0.02 0.06* 0.02

Demographic factors

Median household 

income
0.08* 0.03 0.05* 0.03 0.10* 0.03 0.10* 0.03

Transit ratio 1.30* 0.52 1.08* 0.45 1.09* 0.52 1.06* 0.44

Walk ratio 0.84 0.82 1.38* 0.65 3.38* 0.73 1.90* 0.66

4  Notes: 

5 1. Measure errors  2 ~ (0.23,0.11)
i

N




6 2. Dispersion ~ (0.14,0.04)N

7 3. SD denotes the standard deviation.

8 4. * denotes 95% Bayesian credible interval
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1 5.2. Safety comparison of ride-hailing crashes and taxi crashes

2 The statistical t-tests were conducted to assess the safety performance of ride-hailing 

3 services and taxis by comparing the coefficients of ln (mode-specific VMT). As presented 

4 in Table 5, no significant difference was found for the risks of severe injury crashes 

5 between ride-hailing services and taxis because of higher p-values (> 0.05): NB (p-value = 

6 0.30), MVCAR (p-value = 0.86), and MVCARME (p-value = 0.81). In particular, by 

7 accounting for the spatial correlations, the inherent correlations, and the measurement 

8 errors, we found that a one percent increase in mode-specific VMT would increase severe 

9 ride-hailing crashes by 0.11% and severe taxi crashes by 0.10%. In addition, Table 5 also 

10 indicates that taxis are exposed to lower risks of minor injury crashes than ride-hailing 

11 services due to lower p-values (<0.05) for the three models above (i.e., NB, MVCAR, 

12 MVCARME). For the modeling results of MVCARME, a one percent increase in mode-

13 specific exposures will induce a 0.17% increase in minor ride-hailing crashes and a 0.07% 

14 increase in taxi crashes. 

15

16 In summary, taxis are associated with lower risks of minor injury crashes than ride-hailing 

17 services, even though there is no significant difference in safety performance for severe 

18 injury crashes. There are three possible reasons. First, ride-hailing drivers must interact 

19 with passengers via ride-hailing apps while driving to receive ride-hailing orders, pick up 

20 the targeted passengers, and follow the pre-planned routes. Such behaviors might distract 

21 the driver's visual attention and reduce the situation awareness, even if the presence of 

22 compensatory behaviors, such as speed reductions (Chen et al. 2022). Second, taxi drivers 

23 are professionally trained and more experienced, while ride-hailing drivers are semi-
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1 professional or unprofessional drivers with less driving experience. For example, taxi 

2 drivers tend to have safer speed control because of their familiarity with road environments 

3 (Mi et al. 2021). Thirdly, taxi companies have implemented well-established regulations 

4 to improve the safety performance of taxi drivers. For instance, taxi drivers are guaranteed 

5 a minimum wage to reduce work-related stress, thus reducing the workload in driving and 

6 improving safety performance (Park et al. 2021). Taxi drivers are not allowed to work 

7 overtime to minimize the risks of fatigue driving and improve crash safety (Park et al. 

8 2021).

9 Table 5 Safety comparison of ride-hailing crashes and taxi crashes

Ln (mode-specific VMT)
Models Crash types 

Mean SD

T test 

p-value

Severe ride-hailing crashes 0.14 0.06

Severe taxi crashes 0.07 0.03
0.30

Minor ride-hailing crashes 0.26 0.03
NB

Minor taxi crashes 0.05 0.02
< 0.01

Severe ride-hailing crashes 0.12 0.03

Severe taxi crashes 0.11 0.03
0.86

Minor ride-hailing crashes 0.16 0.03
MVCAR

Minor taxi crashes 0.08 0.02
0.03

Severe ride-hailing crashes 0.11 0.03

Severe taxi crashes 0.10 0.03
0.81

Minor ride-hailing crashes 0.17 0.03
MVCARME

Minor taxi crashes 0.07 0.03
0.02

10  Note: SD denotes the standard deviation.

11
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1 6. Conclusions

2 This study proposed a novel multivariate conditional autoregressive model with 

3 accommodation of exposure uncertainty to compare the safety performance of ride-hailing 

4 services and taxis. The proposed model can jointly account for the spatial correlations 

5 among different sites, the inherent correlations across different types of crashes, and 

6 measurement errors in mode-specific exposures. Mode-specific exposures at each census 

7 tract were estimated by trip assignments, where the shortest route paths for different origin-

8 destination (OD) pairs are calculated based on the actual route networks in Chicago. The 

9 measurement error structure of the proposed model can mitigate the impact of the 

10 uncertainty in mode-specific exposures that stems from two sources: 1) ride-hailing or taxi 

11 drivers might have different preferences on routing choices spatially and temporally for the 

12 same OD pairs (Liu and Jiang 2022), and 2) the centroids of OD pairs were still not the 

13 actual trip origin or destination locations. Additionally, the proposed model has a 

14 multivariate spatial specification and can account for the spatial and inherent correlations 

15 among crash observations. The proposed model outperforms the other two alternatives (i.e., 

16 negative binomial models and the multivariate conditional autoregressive model) with the 

17 lowest deviance information criterion (DIC), Watanabe-Akaike information criterion 

18 (WAIC) value, mean absolute error (MAE), and root-mean-square error (RMSE). 

19

20 Our proposed approach suggests that ride-hailing services and taxis have no significant 

21 difference in safety performance in terms of severe crashes. A one percent increase in 

22 mode-specific VMT was associated with a 0.11% increase in severe ride-hailing crashes 

23 and a 0.10% increase in severe taxi crashes. However, ride-hailing services are found to be 
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1 prone to a higher risk of minor injury crashes compared with taxis. More specially, a one 

2 percent increase in mode-specific VMT would increase minor ride-hailing crashes by 0.17% 

3 and minor taxi crashes by 0.07%. 

4

5 Three potential reasons are summarized to explain the better safety performance of taxis 

6 compared to ride-hailing services, such as professionally trained and experienced taxi 

7 drivers and well-established regulations to reduce work stress and driver fatigue. 

8 Correspondingly, transportation network companies should consider how to minimize the 

9 visual interactions between drivers and ride-hailing apps while picking up or dropping off 

10 passengers. Voice interactions might be a possible alternative to visual interactions with 

11 more intelligent speech identification and response algorithms. Transportation network 

12 companies could also assign orders to drivers more familiar with the road environment and 

13 restrict the work time of ride-hailing drivers to reduce fatigue driving. On the other hand, 

14 government agencies could set a minimum requirement of driving experience for potential 

15 ride-hailing drivers and develop regulations to ensure that ride-hailing drivers are 

16 professionally trained. 

17

18 There are also some limitations of this study. First, it was infeasible to obtain the actual 

19 mode-specific exposures because the high-resolution vehicle trajectory data are 

20 unavailable for privacy concerns. Instead, we estimated the mode-specific exposures by 

21 trip assignments and accounted for uncertain exposure in the proposed model. In addition, 

22 we only used one-year data to exclude the impacts of COVID-19 on driving behaviors 

23 (Dong et al. 2022) without looking into the safety performance of ride-hailing and taxi 
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1 drivers that might change over time. Thus, it would be valuable to revisit the problem when 

2 new data become available. Further, validating the findings in other study areas also 

3 deserves attention. 

4

5 Declaration of Competing Interest

6 The authors declare that they have no known competing financial interests or personal 

7 relationships that could have appeared to influence the work reported in this paper.

8

9 Author Contributions

10 Guocong Zhai: Methodology, Software, Validation, Data curation. Kun Xie: 

11 Conceptualization, Methodology, Software, Writing – review & editing. Hong Yang: 

12 Methodology, Writing – review & editing. Di Yang: Methodology, Writing – review & 

13 editing.

14

15 Acknowledgments 

16 The work is partially funded by the Transportation Informatics Lab, Department of Civil 

17 and Environmental Engineering at Old Dominion University (ODU). The contents of this 

18 paper present the views of the authors, who are responsible for the facts and accuracy of 

19 the data presented herein. The contents of the paper do not reflect the official views or 

20 policies of the agencies.

21

22

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



33

1 References

2 Abdel-Aty, M., Wang, X., 2006. Crash estimation at signalized intersections along 

3 corridors: Analyzing spatial effect and identifying significant factors. 

4 Transportation Research Record 1953 (1), 98-111.

5 Acheampong, R.A., Siiba, A., Okyere, D.K., Tuffour, J.P., 2020. Mobility-on-demand: An 

6 empirical study of internet-based ride-hailing adoption factors, travel 

7 characteristics and mode substitution effects. Transportation Research Part C: 

8 Emerging Technologies 115, 102638.

9 Barrios, J.M., Hochberg, Y.V., Yi, H., 2020. The cost of convenience: Ridehailing and 

10 traffic fatalities. Journal of Operations Management.

11 Bhowmik, T., Yasmin, S., Eluru, N., 2019. Do we need multivariate modeling approaches 

12 to model crash frequency by crash types? A panel mixed approach to modeling 

13 crash frequency by crash types. Analytic methods in accident research 24, 100107.

14 Brazil, N., Kirk, D., 2020. Ridehailing and alcohol-involved traffic fatalities in the united 

15 states: The average and heterogeneous association of uber. PLoS One 15 (9), 

16 e0238744.

17 Brazil, N., Kirk, D.S., 2016. Uber and metropolitan traffic fatalities in the united states. 

18 Am J Epidemiol 184 (3), 192-8.

19 Brown, A., 2022. Not all fees are created equal: Equity implications of ride-hail fee 

20 structures and revenues submitted to transport policy. Transport Policy.

21 Cai, Q., Lee, J., Eluru, N., Abdel-Aty, M., 2016. Macro-level pedestrian and bicycle crash 

22 analysis: Incorporating spatial spillover effects in dual state count models. Accid 

23 Anal Prev 93, 14-22.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



34

1 Chen, P., Zhou, J., 2016. Effects of the built environment on automobile-involved 

2 pedestrian crash frequency and risk. Journal of Transport & Health 3 (4), 448-456.

3 Chen, T., Oviedo-Trespalacios, O., Sze, N., Chen, S., 2022. Distractions by work-related 

4 activities: The impact of ride-hailing app and radio system on male taxi drivers. 

5 Accident Analysis & Prevention 178, 106849.

6 Cheng, W., Gill, G.S., Dasu, M., Jia, X., 2018. An empirical evaluation of multivariate 

7 spatial crash frequency models. Accid Anal Prev 119, 290-306.

8 Chicago Department of Business Affairs & Consumer Protection, 2019a. Taxi trips - 2019. 

9 In: Chicago, C.O. ed.

10 Chicago Department of Business Affairs & Consumer Protection, 2019b. Transportation 

11 network providers - trips - 2019. In: Chicago, C.O. ed.

12 Chicago Police Department, 2019a. Traffic crashes - crashes. In: Chicago, C.O. ed.

13 Chicago Police Department, 2019b. Traffic crashes - vehicles. In: Chicago, C.O. ed.

14 Chin, H.C., Quddus, M.A., 2003. Applying the random effect negative binomial model to 

15 examine traffic accident occurrence at signalized intersections. accident analysis & 

16 prevention 35 (2), 253-259.

17 Chiou, Y.-C., Fu, C., 2013. Modeling crash frequency and severity using multinomial-

18 generalized poisson model with error components. Accident Analysis & Prevention 

19 50, 73-82.

20 Chiou, Y.-C., Fu, C., Chih-Wei, H., 2014. Incorporating spatial dependence in 

21 simultaneously modeling crash frequency and severity. Analytic methods in 

22 accident research 2, 1-11.

23 Cressie, N., 2015. Statistics for spatial data John Wiley & Sons.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



35

1 Cui, H., Xie, K., 2021. An accelerated hierarchical bayesian crash frequency model with 

2 accommodation of spatiotemporal interactions. Accid Anal Prev 153, 106018.

3 Dills, A.K., Mulholland, S.E., 2018. Ride-sharing, fatal crashes, and crime. Southern 

4 Economic Journal 84 (4), 965-991.

5 Ding, C., Chen, P., Jiao, J., 2018a. Non-linear effects of the built environment on 

6 automobile-involved pedestrian crash frequency: A machine learning approach. 

7 Accid Anal Prev 112, 116-126.

8 Ding, C., Chen, P., Jiao, J., 2018b. Non-linear effects of the built environment on 

9 automobile-involved pedestrian crash frequency: A machine learning approach. 

10 Accident Analysis & Prevention 112, 116-126.

11 Dong, X., Xie, K., Yang, H., 2022. How did covid-19 impact driving behaviors and crash 

12 severity? A multigroup structural equation modeling. Accident Analysis & 

13 Prevention 172, 106687.

14 Gaweesh, S.M., Ahmed, M.M., Piccorelli, A.V., 2019. Developing crash prediction models 

15 using parametric and nonparametric approaches for rural mountainous freeways: A 

16 case study on wyoming interstate 80. Accident Analysis & Prevention 123, 176-

17 189.

18 Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2021. Bayesian data analysis, the third 

19 edition Chapman and Hall/CRC.

20 Giraud, T., 2022. Osrm: Interface between r and the openstreetmap-based routing service 

21 osrm. The Journal of Open Source Software.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



36

1 Greenwood, B.N., Wattal, S., 2017. Show me the way to go home: An empirical 

2 investigation of ride-sharing and alcohol related motor vehicle fatalities. MIS Q. 41 

3 (1), 163-187.

4 Hou, Q., Tarko, A.P., Meng, X., 2018. Analyzing crash frequency in freeway tunnels: A 

5 correlated random parameters approach. Accid Anal Prev 111, 94-100.

6 Illinois Department of Transportation, 2019. Traffic volumes. In: Idot ed.

7 Jiao, J., Bischak, C., Hyden, S., 2020. The impact of shared mobility on trip generation 

8 behavior in the us: Findings from the 2017 national household travel survey. Travel 

9 Behaviour and Society 19, 1-7.

10 Kabir, R., Remias, S.M., Lavrenz, S.M., Waddell, J., 2021. Assessing the impact of traffic 

11 signal performance on crash frequency for signalized intersections along urban 

12 arterials: A random parameter modeling approach. Accident Analysis & Prevention 

13 149, 105868.

14 Kamel, M.B., Sayed, T., 2020. Cyclist-vehicle crash modeling with measurement error in 

15 traffic exposure. Accid Anal Prev 144, 105612.

16 Kamel, M.B., Sayed, T., Osama, A., 2019. Accounting for mediation in cyclist-vehicle 

17 crash models: A bayesian mediation analysis approach. Accid Anal Prev 131, 122-

18 130.

19 Kirk, D.S., Cavalli, N., Brazil, N., 2020. The implications of ridehailing for risky driving 

20 and road accident injuries and fatalities. Soc Sci Med 250, 112793.

21 Liu, S., Jiang, H., 2022. Personalized route recommendation for ride-hailing with deep 

22 inverse reinforcement learning and real-time traffic conditions. Transportation 

23 Research Part E: Logistics and Transportation Review 164, 102780.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



37

1 Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: A review 

2 and assessment of methodological alternatives. Transportation Research Part A: 

3 Policy and Practice 44 (5), 291-305.

4 Lunn, D., Jackson, C., Best, N., Thomas, A., Spiegelhalter, D., 2013. The bugs book. A 

5 Practical Introduction to Bayesian Analysis, Chapman Hall, London.

6 Ma, Q., Yang, H., Xie, K., Wang, Z., Hu, X., 2019. Taxicab crashes modeling with 

7 informative spatial autocorrelation. Accid Anal Prev 131, 297-307.

8 Mao, H., Deng, X., Jiang, H., Shi, L., Li, H., Tuo, L., Shi, D., Guo, F., 2021. Driving safety 

9 assessment for ride-hailing drivers. Accid Anal Prev 149, 105574.

10 Marshall, W.E., Garrick, N.W., 2011. Does street network design affect traffic safety? 

11 Accident Analysis & Prevention 43 (3), 769-781.

12 Mi, X., Dong, C., Li, N., Lin, Y., Shao, C., Fan, B., 2021. Operating safety evaluation of 

13 battery-electric taxi based on spatio-temporal speed parameters. Sustainability 13 

14 (23), 13446.

15 Mitra, S., Washington, S., 2012a. On the significance of omitted variables in intersection 

16 crash modeling. Accident Analysis & Prevention 49, 439-448.

17 Mitra, S., Washington, S., 2012b. On the significance of omitted variables in intersection 

18 crash modeling. Accid Anal Prev 49, 439-48.

19 Mohammadi, M., Shafabakhsh, G., Naderan, A., 2018. Effects of modal shares on crash 

20 frequencies at aggregate level. Accident Analysis & Prevention 120, 295-303.

21 Mohammadi, M.A., Samaranayake, V., Bham, G.H., 2014. Crash frequency modeling 

22 using negative binomial models: An application of generalized estimating Equation 

23 to longitudinal data. Analytic Methods in Accident Research 2, 52-69.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



38

1 Muff, S., Riebler, A., Held, L., Rue, H., Saner, P., 2015. Bayesian analysis of measurement 

2 error models using integrated nested laplace approximations. Journal of the Royal 

3 Statistical Society: Series C (Applied Statistics) 64 (2), 231-252.

4 National Research Council, 2010. Highway safety manual AASHTO.

5 O’brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. 

6 Quality & quantity 41 (5), 673-690.

7 Openstreetmap, 2019a. Land use characteristics. In: Openstreetmap ed.

8 Openstreetmap, 2019b. Points of Interest (POI).

9 Palmí-Perales, F., Gómez-Rubio, V., Martinez-Beneito, M.A., 2019. Bayesian multivariate 

10 spatial models for lattice data with inla. arXiv preprint arXiv:1909.10804.

11 Park, J., Lee, S., Oh, C., Choe, B., 2021. A data mining approach to deriving safety policy 

12 implications for taxi drivers. Journal of safety research 76, 238-247.

13 Pebesma, E.J., 2018. Simple features for r: Standardized support for spatial vector data. R 

14 J. 10 (1), 439.

15 Rayle, L., Dai, D., Chan, N., Cervero, R., Shaheen, S., 2016. Just a better taxi? A survey-

16 based comparison of taxis, transit, and ridesourcing services in san francisco. 

17 Transport Policy 45, 168-178.

18 Rue, H., Martino, S., Chopin, N., 2009. Approximate bayesian inference for latent gaussian 

19 models by using integrated nested laplace approximations. Journal of the royal 

20 statistical society: Series b (statistical methodology) 71 (2), 319-392.

21 Saha, D., Alluri, P., Gan, A., Wu, W., 2018. Spatial analysis of macro-level bicycle crashes 

22 using the class of conditional autoregressive models. Accident Analysis & 

23 Prevention 118, 166-177.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



39

1 Spiegelhalter, D.J., Best, N.G., Carlin, B.R., Van Der Linde, A., 2002. Bayesian measures 

2 of model complexity and fit. Journal of the Royal Statistical Society Series B-

3 Statistical Methodology 64, 583-616.

4 Thomas, A., Best, N., Lunn, D., Arnold, R., Spiegelhalter, D., 2004. Geobugs user manual. 

5 Cambridge: Medical Research Council Biostatistics Unit.

6 Ukkusuri, S., Miranda-Moreno, L.F., Ramadurai, G., Isa-Tavarez, J., 2012. The role of 

7 built environment on pedestrian crash frequency. Safety science 50 (4), 1141-1151.

8 Vehtari, A., Gelman, A., Gabry, J., 2017. Practical bayesian model evaluation using leave-

9 one-out cross-validation and waic. Statistics and computing 27 (5), 1413-1432.

10 Walker, K., Herman, M., Eberwein, K., Walker, M.K., 2021. Package ‘tidycensus’. MIT.

11 Wang, Y., Kockelman, K.M., 2013. A poisson-lognormal conditional-autoregressive 

12 model for multivariate spatial analysis of pedestrian crash counts across 

13 neighborhoods. Accid Anal Prev 60, 71-84.

14 Warsh, J., Rothman, L., Slater, M., Steverango, C., Howard, A., 2009. Are school zones 

15 effective? An examination of motor vehicle versus child pedestrian crashes near 

16 schools. Injury prevention 15 (4), 226-229.

17 Wei, F., Lovegrove, G., 2013. An empirical tool to evaluate the safety of cyclists: 

18 Community based, macro-level collision prediction models using negative 

19 binomial regression. Accident Analysis & Prevention 61, 129-137.

20 Xie, K., Ozbay, K., Yang, H., 2015a. Spatial analysis of highway incident durations in the 

21 context of hurricane sandy. Accident Analysis & Prevention 74, 77-86.

22 Xie, K., Ozbay, K., Yang, H., 2019. A multivariate spatial approach to model crash counts 

23 by injury severity. Accid Anal Prev 122, 189-198.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



40

1 Xie, K., Ozbay, K., Yang, H., Holguín-Veras, J., Morgul, E.F., 2015b. Modeling safety 

2 impacts of off-hour delivery programs in urban areas. Transportation research 

3 record 2478 (1), 19-27.

4 Xie, K., Ozbay, K., Yang, H., Holguín-Veras, J., Morgul, E.F., 2015c. Modeling safety 

5 impacts of off-hour delivery programs in urban areas. Transportation Research 

6 Record: Journal of the Transportation Research Board 2478 (1), 19-27.

7 Xie, K., Wang, X., Ozbay, K., Yang, H., 2014. Crash frequency modeling for signalized 

8 intersections in a high-density urban road network. Analytic methods in accident 

9 research 2, 39-51.

10 Xu, P., Bai, L., Pei, X., Wong, S.C., Zhou, H., 2022. Uncertainty matters: Bayesian 

11 modeling of bicycle crashes with incomplete exposure data. Accid Anal Prev 165, 

12 106518.

13 Yang, D., Xie, K., Ozbay, K., Yang, H., 2021. Fusing crash data and surrogate safety 

14 measures for safety assessment: Development of a structural equation model with 

15 conditional autoregressive spatial effect and random parameters. Accid Anal Prev 

16 152, 105971.

17 Yang, D., Xie, K., Ozbay, K., Yang, H., Budnick, N., 2019. Modeling of time-dependent 

18 safety performance using anonymized and aggregated smartphone-based 

19 dangerous driving event data. Accident Analysis & Prevention 132, 105286.

20 Yang, H., Wang, Z., Xie, K., Ozbay, K., Imprialou, M., 2018. Methodological evolution 

21 and frontiers of identifying, modeling and preventing secondary crashes on 

22 highways. Accident Analysis & Prevention 117, 40-54.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



41

1 Yang, H., Zhai, G., Yang, L., Xie, K., 2022. How does the suspension of ride-sourcing 

2 affect the transportation system and environment? Transportation Research Part D: 

3 Transport and Environment 102, 103131.

4 Zhai, G., Xie, K., Yang, D., Yang, H., 2022. Assessing the safety effectiveness of citywide 

5 speed limit reduction: A causal inference approach integrating propensity score 

6 matching and spatial difference-in-differences. Transportation Research Part A: 

7 Policy and Practice 157, 94-106.

8 Zhang, Z., Zhai, G., Xie, K., Xiao, F., 2022. Exploring the nonlinear effects of ridesharing 

9 on public transit usage: A case study of San Diego. Journal of Transport Geography 

10 104, 103449.

11 Ziakopoulos, A., Yannis, G., 2020. A review of spatial approaches in road safety. Accid 

12 Anal Prev 135, 105323.

13

14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4334669

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed


	Are Ride-Hailing Services Safer Than Taxis? A Multivariate Spatial Approach with Accomodation of Exposure Uncertainty
	Original Publication Citation

	tmp.1683571618.pdf.J3Smy

