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Abstract

Increasingly, geographic approaches to assessing the risk of tick-borne diseases

are being used to inform public health decision-making and surveillance

efforts. The distributions of key tick species of medical importance are often

modeled as a function of environmental factors, using niche modeling

approaches to capture habitat suitability. However, this is often disconnected

from the potential distribution of key host species, which may play an impor-

tant role in the actual transmission cycle and risk potential in expanding

tick-borne disease risk. Using species distribution modeling, we explore the

potential geographic range of Oryzomys palustris, the marsh rice rat, which

has been implicated as a potential reservoir host of Rickettsia parkeri, a patho-

gen transmitted by the Gulf Coast tick (Amblyomma maculatum) in the

southeastern United States. Due to recent taxonomic reclassification of

O. palustris subspecies, we reclassified geolocated collections records into the

newer clade definitions. We modeled the distribution of the two updated

clades in the region, establishing for the first time, range maps and distribu-

tions of these two clades. The predicted distribution of both clades indicates a

largely Gulf and southeastern coastal distribution. Estimated suitable habitat

for O. palustris extends into the southern portion of the Mid-Atlantic region,

with a discontinuous, limited area of suitability in coastal California. Broader

distribution predictions suggest potential incursions along the Mississippi

River. We found considerable overlap of predicted O. palustris ranges with the

distribution of A. maculatum, indicating the potential need for extended

surveillance efforts in those overlapping areas and attention to the role of hosts

in transmission cycles.
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INTRODUCTION

Zoonotic vector-borne disease systems are ecologically
complex due to the numerous interactions between path-
ogens, vectors, and hosts, in the context of the environ-
ment, that ultimately determine the risk of disease in
humans. The presence of competent arthropod vectors is
sometimes used as a proxy for pathogen exposure and
transmission risk, particularly when transmission cycles
and other risk factors are poorly understood or unknown
(Lippi, Gaff, White, & Ryan, 2021; Lippi, Ryan, et al.,
2021). This is the case for many tick-borne pathogen
transmission systems, where there can be major knowl-
edge gaps concerning wildlife reservoirs, environmental
associations, or even the etiology of disease.

Leveraging tick presence to estimate geographic risk
has logistical advantages, as existing data sources
(e.g., surveillance programs, museum collections, online
data repositories) can provide ample occurrence points
for spatial risk modeling and are typically easier to obtain
than protected human health data. Nevertheless, vector
presence alone is not sufficient to maintain transmission
cycles. Many medically important ticks are often habitat
generalists, with broad geographic distributions exceeding
known disease risk areas (Lippi, Gaff, White, St. John,
et al., 2021). Additionally, ticks with expanding ranges can
be associated with increases in the burden and diversity of
pathogens in newly established locations compared with
their historic range (Fornadel et al., 2011; Nadolny &
Gaff, 2018; Ogden et al., 2013). These instances highlight
the need to understand other components of transmission
cycles that drive the risk of exposure beyond vector
presence. Reservoir hosts are an important, yet in many
instances underexplored, component of zoonotic tick-borne
transmission cycles (Tomassone et al., 2018). When consid-
ering geographic risks of pathogen transmission, the distri-
bution of wildlife hosts may serve as another important
proxy for exposure risk. Therefore, while the use of ticks as
proxies of exposuremay be advisable in the absence of addi-
tional data, determining the distributions of reservoir hosts
needed for pathogen amplification and spillover may serve
as more nuanced indicators of risk and provide a focus for
public healthmessaging and resources.

Tick-borne diseases have garnered increased attention
from the medical community and public health practi-
tioners over the past decade (Lippi, Ryan, et al., 2021;
Rochlin & Toledo, 2020). This is largely a result of the
increasing incidence of diseases such as Lyme borreliosis
and spotted fever group (SFG) rickettsioses (CDC, 2021).
Tick-borne infections are often underdiagnosed and go
unreported, in part due to nondescript clinical presentations
(e.g., febrile illness) and a lack of accurate diagnostic testing
(Madison-Antenucci et al., 2020; Rosenberg et al., 2018).

Therefore, public health advisories aimed at preventing
exposure to potentially infective tick bites are an important
aspect of managing these diseases. The Gulf Coast tick
(Amblyomma maculatum) is a species of medical
and veterinary importance in the Americas (Paddock &
Goddard, 2015). Amblyomma maculatum is a competent
vector of Rickettsia parkeri, the causative agent of Rickettsia
parkeri rickettsiosis, a SFG disease (Paddock et al., 2004;
Paddock & Goddard, 2015). Amblyomma maculatum is a
habitat specialist found in open fields dominated by grasses
and shrubs, requiring high rainfall, temperature, and
humidity (Nadolny & Gaff, 2018; Paddock & Goddard,
2015). In the United States, A. maculatum has been under-
going a northward range expansion from its historic range
along the Gulf Coast, most recently establishing populations
in Connecticut, Illinois, and New York (Molaei et al., 2021;
Phillips et al., 2020; Ramírez-Garofalo et al., 2022).
Importantly, studies have shown that the prevalence of
R. parkeri infections is higher in A. maculatum collected
from some newly established locations, a possible result
of higher pathogen burden in new vertebrate host
populations (Fornadel et al., 2011; Nadolny & Gaff,
2018). Therefore, identifying competent reservoir hosts
that underpin transmission cycles and delineating their
distributions could provide better estimates of risk in
the face of vector range expansion.

The marsh rice rat (Oryzomys palustris) is a suspected
reservoir host for R. parkeri (Cumbie et al., 2020) and a
vertebrate host for A. maculatum (Nadolny & Gaff, 2018;
Wilson & Durden, 2003). Recent field studies have indi-
cated that O. palustris may be involved in the pathogen
transmission cycle of R. parkeri; the rats themselves have
tested positive for infection, and A. maculatum collected
from rats in the field have also tested positive for the path-
ogen (Cumbie et al., 2020). The distribution of O. palustris
has been previously described with observation-based
range maps, which are limited to the extent of field obser-
vations (Wolfe, 1982). Coarse species range maps are use-
ful in certain contexts but are prone to localized errors and
provide no information on spatial variation in the proba-
bility of species occurrences (Maréchaux et al., 2017).
Further, recently proposed taxonomic changes to the
O. palustris species complex are relevant to our under-
standing of where potential reservoirs are located, yet are
available only as range maps (Hanson et al., 2010). To our
knowledge, species distribution models (SDMs) have not
been used to estimate the suitable geographic range of
marsh rice rats. Frequently used in ecology and conserva-
tion research, SDMs have become an increasingly utilized
methodology in medical geography and public health for
estimating the geographic distribution of vector species.
A typical SDM workflow entails using occurrence records
for the species of interest with environmental predictor
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layers as inputs for an SDM algorithm, which produces
spatially continuous outputs of potential habitat suit-
ability throughout the study area. Here, we apply this
technique to estimate the geographic range of the marsh
rice rat to assess its potential role in tick-borne pathogen
transmission.

METHODS

Occurrence data

Occurrence records for O. palustris were downloaded
from the Global Biodiversity Information Facility (GBIF)
(www.gbif.org), an international network that collates
museum records and information on where and when
species were collected. The collection timeframe for GBIF
records extended from 1800 to 2021, though most occur-
rences were collected between 1888 and 1999, with few
records outside this range (Figure 1). The full dataset
(n = 7276) included many records that had not been

georeferenced (n = 2457) (i.e., collection records with no
associated latitude/longitude coordinates). The GEOLocate
platform (www.geo-locate.org) was used to recover
positional coordinates for records that had not been
georeferenced but had locality data (i.e., a text description
of the collection site was available) associated with records
(n = 1727) (Murphey et al., 2004). Returned point locations
with low precision, where locality data could be matched to
several potential sites, were not retained formodel building.
The spatial uncertainty of georeferenced data on GBIF and
coordinates recovered with GEOLocate varied substan-
tially, and we excluded records where spatial uncertainty
exceeded 10 km to maintain comparable resolution with
environmental covariates. A total of 819 locations were
recovered using the GEOLocate workflow.

Morphological and molecular evaluations of the
O. palustris species complex have led to proposed taxo-
nomic revisions over the past decade. Notably, Hanson et al.
(2010) conducted a taxonomic assessment of subspecies in
the O. palustris and O. couesi species complexes, utilizing
three genetic markers as lines of evidence. The subspecies

F I GURE 1 Collection record date ranges for Global Biodiversity Information Facility records of Oryzomys palustris subspecies used in

this study. Boxplots depict the distribution of collection record totals for each subspecies (i.e., minimum, mean, and maximum values, with

outliers shown as points).
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examined within the O. palustris clade were O. p. texensis,
O. p. palustris,O. p. coloratus,O. p. planirostris,O. p. sanibeli,
and O. p. argentatus (synonymous with O. p. natator; Baker
et al., 2003; Humphrey & Setzer, 1989). Two clades within
the O. palustris group showed considerable genetic diver-
gence: a western clade consisting largely ofO. p. texensis and
an eastern clade comprising Oryzomys palustris and the
remaining subspecies. ThoughHanson et al. support the ele-
vation of O. p. texensis to species following the Genetic
Species Concept, these proposed taxonomic updates were
not reflected in data obtained from GBIF, particularly for
older collection events. Therefore, we created three separate
spatial datasets of marsh rice rat occurrences for model
building: (1) all geolocated GBIF records identified as
O. palustris (n = 2195), plus two subsets derived according
to clades identified in Hanson et al. (2010); (2) the eastern
O. palustris clade; and (3) the western O. p. texensis clade.
The full dataset of O. palustris occurrences was partitioned
into subsets by combining records with valid subspecies pro-
vided and spatial assignation of records without subspecific
epithets. To conduct this spatial assignation, we rendered
the published images of the geographic distribution of
O. palustris and O. p. texensis as spatial layers, using
QGIS (ver 3.24.0), and georeferenced the collection points,

yielding 1251 and 570 occurrence locations, respectively
(Figure 2) (Hanson et al., 2010).

To prepare the geospatial occurrence data for model
input, occurrence records in each of the three datasets were
spatially thinned at a 10-km radius using spThin in R
(Aiello-Lammens et al., 2015), removing duplicates and
retaining one presence point per predictor pixel at the reso-
lution of the study. The final datasets for model building
included 336 occurrences in the full O. palustris dataset,
249 occurrences in the eastern dataset, and 90 occurrences
in the western dataset. Each dataset was randomly
partitioned into a 75% training/25% testing split for
calculation of external model accuracy metrics.

Environmental data

Environmental factors that have broad biological impli-
cations for landscape-level habitat suitability of small
mammals were considered for initial model development,
including indicators of precipitation, temperature, eleva-
tion, and soil conditions. A total of 22 environmental
covariates at 5 min (~10 km2) spatial resolution were
selected for variable screening (Table 1). Long-term

F I GURE 2 (A) Map of the United States and Central America and the spatial distribution of Global Biodiversity Information Facility

(GBIF) specimen data records recognized as Oryzomys palustris. (B) A 10-km spatial thinning of the eastern and western clades, following

Hanson et al. (2010).
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climate data were obtained from WorldClim (ver 1.4)
(Hijmans et al., 2005), which included 19 bioclimatic var-
iables for monthly temperature and rainfall values with
biologically derived products to represent annual trends,
seasonality, and extreme or limiting environmental
factors. WorldClim 1.4 incorporates climate averages
from the years 1960–1990 and was chosen to align with
the species occurrence data obtained for this study.
Bioclimatic variables considered for model building
included Annual Mean Temperature (Bio1), Mean
Diurnal Range (Bio2), Isothermality (Bio3), Temperature
Seasonality (Bio4), Max Temperature of Warmest Month
(Bio5), Min Temperature of Coldest Month (Bio6),
Temperature Annual Range (Bio7), Mean Temperature
of Wettest Quarter (Bio8), Mean Temperature of Driest
Quarter (Bio9), Mean Temperature of Warmest Quarter
(Bio10), Mean Temperature of Coldest Quarter (Bio11),
Annual Precipitation (Bio12), Precipitation of Wettest
Month (Bio13), Precipitation of Driest Month (Bio14),
Precipitation Seasonality (Bio15), Precipitation of Wettest
Quarter (Bio16), Precipitation of Driest Quarter (Bio17),
Precipitation of Warmest Quarter (Bio18), and Precipitation
of Coldest Quarter (Bio19). Gridded elevation data were also
obtained from WorldClim (ver 2.1) (Fick & Hijmans, 2017),
derived from the Shuttle Radar Topography Mission

(SRTM). Soil characteristics considered for model building
were acquired from the International Soil Reference and
Information Centre (ISRIC) and included organic carbon
stock at a 30-cm depth (Hengl et al., 2017) and volumetric
water content at 33 kPa in 0–5 cm range (Poggio et al.,
2021). The timeframe during which most records were col-
lected precluded the use of other descriptive land cover
products in our analyses, as these products did not align
with the collection period of most records, potentially
misrepresenting historically suitable habitats.

Multicollinearity in environmental covariates can
lead to known issues in SDMs, such as distortion of esti-
mated effects of predictors (Dormann et al., 2013). This is
a standard concern when modeling with numerous vari-
ables, particularly those derived from similar variables
(e.g., bioclimatic variables derived from WorldClim data).
While some SDM algorithms, such as boosted regression
trees (BRTs), exhibit moderate resilience to predictor col-
linearity, these methods can still be prone to failure as
collinearity increases (Dormann et al., 2013). To reduce
collinearity, the variance inflation factor (VIF) technique
was used, regressing predictors against each other. A VIF
value of 1 signifies no collinearity, with increasing values
indicating greater collinearity. The optimal threshold for
VIF is debated, though common rules of thumb are

TAB L E 1 Variables from WorldClim or the International Soil Reference and Information Center (ISRIC) considered for model

development (MOD), including those removed due to collinearity through variance inflation factor (R).

Variable Units Source Status

Annual Mean Temperature (Bio1) �C WorldClim ver 1.4 MOD

Temperature Seasonality (Bio4) �C WorldClim ver 1.4 MOD

Mean Temperature of Wettest Quarter (Bio8) �C WorldClim ver 1.4 MOD

Precipitation of Wettest Month (Bio13) mm WorldClim ver 1.4 MOD

Precipitation Seasonality (Bio15) % WorldClim ver 1.4 MOD

Elevation m WorldClim ver 2.1 MOD

Soil Organic Carbon Stock 30-cm depth tons/ha ISRIC MOD

Soil Volumetric Water Content 33 kPa 0–5 cm depth cm3/100 cm3 ISRIC MOD

Maximum Temperature of Warmest Month (Bio5) �C WorldClim ver 1.4 R

Minimum Temperature of Coldest Month (Bio6) �C WorldClim ver 1.4 R

Temperature Annual Range (Bio7) �C WorldClim ver 1.4 R

Mean Temperature of Driest Quarter (Bio9) �C WorldClim ver 1.4 R

Mean Temperature of Warmest Quarter (Bio10) �C WorldClim ver 1.4 R

Mean Temperature of Coldest Quarter (Bio11) �C WorldClim ver 1.4 R

Annual Precipitation (Bio12) mm WorldClim ver 1.4 R

Precipitation of Driest Month (Bio14) mm WorldClim ver 1.4 R

Precipitation of Wettest Quarter (Bio16) mm WorldClim ver 1.4 R

Precipitation of Driest Quarter (Bio17) mm WorldClim ver 1.4 R

Precipitation of Warmest Quarter (Bio18) mm WorldClim ver 1.4 R

Precipitation of Coldest Quarter (Bio19) mm WorldClim ver 1.4 R
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found in the literature (e.g., VIF = 10 is a commonly
implemented cutoff) (O’brien, 2007). In this study, we
adopted a conservative cutoff (VIF = 3) to minimize the
potential impact of multicollinearity on model output.
The resulting set of predictors used in baseline analyses,
before further variable reduction procedures, were Annual
Temperature (Bio1), Temperature Seasonality (Bio4), Mean
Temperature of Wettest Quarter (Bio8), Precipitation of
Wettest Month (Bio13), Precipitation Seasonality (Bio15),
Elevation, Soil Organic Carbon Stock, and Soil Volumetric
Water Content.

Species distribution modeling

SDM for all Oryzomys palustris, eastern and western clades,
was conducted over the contiguous United States using the
BRT approach. Briefly, BRT modeling is a machine learn-
ing genetic algorithm that produces a boosted ensemble of
simple regression trees for predicting species occurrence
using environmental covariates and presence (i.e., species
occurrences) and pseudo-absences (i.e., background points)
(Elith et al., 2008). For BRTs, boosting is the process of
developing an initial decision tree with inadequate predic-
tive error (e.g., shallow tree) and then sequentially adding
trees and their residuals together to improve predictive per-
formance. Each tree ensemble is considered one model,
which undergoes internal predictive evaluation by the
k-fold cross-validation method that splits the occurrence
dataset (i.e., presence and pseudo-absence localities) into
fixed subsets utilized for model testing once, and training
k − 1 times. An area under the receiver operator charac-
teristics (AUC-ROC) curve is produced to demonstrate
model predictive performance by exhibiting the true positive
rate (sensitivity) and false positive rate (1 − specificity) of
the model for predicting between presences (1) and
pseudo-absences (0). Values of AUC exceeding 0.5 indicate
that the model predicted presences better than random,
with 1 being a perfect prediction. Furthermore, each
model was evaluated using external and internal test
data randomly selected from thinned presences and
pseudo-absences prior to and during model develop-
ment, respectively.

The selection of pseudo-absence locations (i.e., back-
ground data) impacts model development as much
as species presence data. The use of target species for
pseudo-absences is generally considered the optimal
method, though a random selection of background data is
acceptable when target species are not available (Cerasoli
et al., 2017; Phillips et al., 2009; Stokland et al., 2011). It is
suggested that the number of pseudo-absences should be
approximately equal to the number of presence locations
in BRT analyses (Barbet-Massin et al., 2012). Therefore,

pseudo-absences (n = 400) were randomly selected for each
model from a shapefile with buffered 10-km holes around
each presence location (i.e., the Swiss-cheese method)
to prevent known location resampling and for model
convergence (Otieno et al., 2021). Replicate models were
ensembled for averaging to further account for model
stochasticity. These averaged models were then used to
predict the probability of occurrence on the landscape.

The family of “gbm” functions in the R “dismo”
package was used for BRT model production (“gbm.
step”) and simplification (“gbm.simplify”). BRT simplifi-
cation is backward elimination of low-contributing pre-
dictors using k-fold cross-validation (n-fold = 10) from
an initial model, reducing the number of final model
predictors. Fifty model replicates were generated for the
simplification process, so predictors with the lowest aver-
age contribution were removed. Model replicate count
and settings were preserved between the simplification
step and final model processes. The “gbm” function incorpo-
rates numerous settings to customize model development,
but the primary settings considered include model family,
tree complexity (tc), learning rate (lr), bag fraction (bf),
and maximum trees (mt). The “Bernoulli” family distribu-
tion was used because occurrence data were binary
(i.e., presence and absence). Tree complexity refers to how
many splits occur in a single regression tree, with each split
considering increasing covariate interactions. At the same
time, the learning rate determines the contribution amount
of each tree to the ensembled model. Maximum trees gen-
erally reflect tree complexity and learning rate, as reducing
these values requires additional trees to achieve model
convergence. Bag fraction is the subset of training data
randomly selected, without replacement, for tree con-
struction, which implements stochastic gradient descent
and reduces the opportunity for overfitting. Settings for
the three SDMs were chosen to support model conver-
gence and set as follows: tc = 3, lr = 0.0001, bf = 0.75,
and mt = 100,000.

Relative variable influence (RVI) and partial depen-
dency plots (PDPs) for predictor variables were used to
visualize average variable contribution and relationships
for model ensembles. The RVI is a measurement of
whether a variable was selected in tree development and
tree ensemble improvement (i.e., squared error decrease)
through variable inclusion. All variables in the model
contribute to tree construction, though some more than
others. PDPs illustrate the marginal effects of the predic-
tors on prediction outcomes of the model, including
potential complex relationships between the predictors
and response (Friedman, 2001; Molnar, 2020). The PDP
curve for each variable is produced while holding the
other variables at their average value, but can be skewed
due to collinearity, which we reduced through the
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VIF process. The resulting RVIs and PDPs were averaged
for each run of 50 ensembled models.

Averaged landscape-projected probabilities from each
model run (i.e., full dataset, eastern clade, and western
clade models) were recoded as binary geographic distribu-
tions to visualize and compare output across models.
Rasters of continuous model output were dichotomized at
three different probability thresholds of presence (0.5, 0.6,
and 0.7) in ArcMap (ver 10.7.1), where pixels with probabil-
ities exceeding a given threshold were recoded as present.
Recoded distributions were combined using the “Raster
Calculator” tool in ArcMap’s Spatial Analyst extension,
allowing for visualization of range overlaps acrossmodels.

RESULTS

The predicted geographic distribution of O. palustris pri-
marily spans the southeastern United States and along the
eastern Atlantic coastline. Mean landscape predictions for

the three models (Figure 3B,E,H) primarily occurred in
four US regions: the West Coast, the Southeast, the Gulf
Coast, and the East Coast. The West Coast, including
Washington, Oregon, and California, was primarily
represented in the full dataset model and eastern clade
model with maximum probabilities of 0.817 and 0.821, but
the western clade model projected lower probabilities
(maximum probability = 0.379) on the West Coast. The
western clade model also predicted a smaller area of suit-
ability on theWest Coast than the other models. In all three
models, the predicted Southeast range spanned Tennessee,
Arkansas, Mississippi, Louisiana, Alabama, and Florida,
extending north to the southern tip of Illinois and West
Virginia, and extending west into Texas, Oklahoma, and
Kansas. The full dataset (maximum probability = 0.834)
and western clade (maximum probability = 0.826) models
had the highest predicted suitable habitat in southeastern
states compared with the eastern clade (maximum
probability = 0.744). Although the western clade model
prediction probability does reduce eastward, the other

F I GURE 3 Potential distribution prediction of Oryzomys palustris full dataset (A–C), eastern clade (D–F), and western clade (G–I)
occurrence in the United States based on the mean prediction of an ensemble of 50 boosted regression tree experiments including lower

(2.5%; left) and upper (97.5%; right) confidence intervals.
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models maintain predictive consistency across the region.
Maximum predicted probabilities for the full dataset
(0.917) and eastern (0.916) models are the same for the
Gulf Coast and East Coast regions. These models also have
consistent prediction probabilities from the Gulf Coast of
Texas to Maryland and taper off further north. The western
clade model predicts the Texas and Louisiana sections of
the Gulf Coast with a maximum probability of 0.928, but
probabilities are not consistent towards Florida as in the
other models, and the maximum probability for the East
Coast is 0.708.

All three models had similar responses to the covariates
consistent with occurrence data partitioning and overlap
between models (Figure 4); however, differences in the
magnitude of relationships between predicted probabilities

and environmental predictors were apparent, especially
between the western clade and the other two models
(Figure 5). Elevation was the top contributing environmen-
tal predictor in all three models; prediction probability was
highest at sea level and rapidly decreased with increasing
elevation. The western clade model plateaued in prediction
probability reduction earlier than the other models.
Precipitation of the wettest month and annual mean tem-
perature were the next highest contributors. All models
generally exhibited positive relationships with increasing
precipitation and temperature beginning around
100 mm and 10�C, respectively. There were some distinc-
tions in the relationship with soil volumetric water con-
tent between the eastern and western models, as the
former maintained a negative relationship while the

F I GURE 4 Variable relative influence for the final variable set used to model the distribution for the full Oryzomys palustris dataset,

eastern clade, and western clade in the United States using boosted regression tree (BRT) experiments. Error bars represent variability across

an ensemble of 50 BRT experiments.
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latter had a positive relationship. However, this variable
contributed minimally to the eastern model. The BRT sim-
plification process excluded soil volumetric water content
from the full dataset model and soil organic carbon stock
from the western model (Figure 4). Temperature seasonal-
ity was excluded from the full dataset and eastern models
(Figure 4).

All three models performed well with cross-validation,
internal AUC values, and AUC values from external test

data that remained above 0.9. The mean value for the full
dataset model cross-validation AUC was 0.957
(SD = 0.007), internal test data AUC was 0.959
(SD = 0.015), and external test data AUC was 0.939
(SD = 0.005). The mean AUC of the eastern clade for
cross-validation AUC was 0.960 (SD = 0.008), internal test
AUC was 0.958 (SD = 0.013), and external test data AUC
was 0.983 (SD = 0.004). The western clade model did have
marginally higher standard deviations with AUCs of 0.965

F I GURE 5 Partial dependency plots showing marginal effects on the prediction probability of the potential distribution of Oryzomys

palustris models of the full dataset, eastern clade, and western clade by each variable across the 50 boosted regression tree experiments.
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(SD = 0.009) for cross-validation, 0.964 (SD = 0.018) for
internal test data, and 0.989 (SD = 0.011) for external test
data. The accuracy metrics for all three models were simi-
lar, although the AUC value for external testing data from
the full dataset model was the lowest of the three models.

Dichotomized probabilities (at 0.5, 0.6, and 0.7) of
mean landscape predictions for rice rat habitat suitability
indicate the East Coast region extending from Maryland
to Florida, peninsular Florida, the lower Mississippi
River Basin, and the Gulf Coast region extending from
Florida to Texas have the highest potential for rice rat
species occurrence in all models (Figure 6; Appendix S1:
Figures S1 and S2). The full dataset and eastern clade
models predict occurrence across this entire area, with
predictions of suitability extending further inland to
Arkansas, Tennessee, Missouri, and Kentucky, and a
small area on the West Coast (Figure 6; Appendix S1:
Figures S1 and S2). Modeled distribution of the western
clade is more restricted, by comparison, with predicted
suitability primarily centered in Louisiana, Texas, and
along the Mississippi River (Figure 6; Appendix S1:
Figures S1 and S2). Distribution models for each type of
data partitioning (full dataset, eastern clade, and western
clade) overlap in mean prediction along the western

portion of the Gulf Coast, primarily in Texas, Louisiana,
and southern peninsular Florida (Figure 6; Appendix S1:
Figures S1 and S2).

DISCUSSION

This work is the first effort to apply SDM techniques to
estimate the geographic distribution of the O. palustris
species complex. The predicted distributions of all
three taxonomic groupings were found to be predomi-
nantly restricted to coastal areas in the southeastern
United States. Additionally, the estimated suitable habitat
for both O. palustris taxonomic groupings (i.e., the full
dataset and the eastern subset) extends into the southern
portion of the Mid-Atlantic region, with a discontinuous,
limited area of suitability in coastal California. In con-
trast, habitat suitability for the western clade is primarily
highest along the Gulf Coast, extending west into coastal
Louisiana and Texas. Further, output across models indi-
cates a corridor of suitable habitat that extends north,
throughout Louisiana, and into Arkansas, Mississippi,
Tennessee, Kentucky, and southeastern Missouri, an area
that coincides with the lower Mississippi River Basin.

F I GURE 6 Overlap between mean dichotomized predictions of Oryzomys palustris suitability at a threshold for presence of 60% for

models produced with the three datasets used in the study (i.e., full dataset, eastern clade, and western clade).
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These spatial trends in estimated habitat suitability are
perhaps unsurprising, as O. palustris is a semiaquatic
rodent species that is primarily associated with both
freshwater and estuarine wetlands, including tidal
marshes, watersheds, and emergent wetlands (Eubanks
et al., 2011; Kruchek, 2004). Rice rats are heavily depen-
dent on the vegetation typically associated with coastal
wetlands, including common wetland plants such as
sedges (Carex spp.), rushes (Juncus spp.), cattails (Typha
spp.), panic grass (Panicum spp.), and salt grass (Spartina
alterniflora) (Eubanks et al., 2011; Rose & McGurk, 2006;
Svihla, 1931). Suitable vegetation is a critical microhabi-
tat feature for O. palustris, directly providing essential
resources as both cover and food (Eubanks et al., 2011;
Kruchek, 2004; Rose & McGurk, 2006). We were
limited in this study by the inability to directly include
environmental predictors related to land cover, as few
O. palustris collections were made after the year 2000 in
our datasets. Future work that ties contemporary rice rat
observations with current land cover will enable us to
assess reliance on vegetation type with greater resolution.

Elevation was the environmental predictor that con-
tributed the most to estimated rice rat distributions,
regardless of taxonomic clade. The highest probabilities
of occurrence coincide with areas of low elevation at or
near sea level, predominantly along coastlines in the
Southeast and Gulf states. Precipitation of the wettest
month and annual mean temperature were also influen-
tial factors in all three models, where higher precipitation
values and temperatures exceeding ~13�C were associated
with increasing habitat suitability. Together, elevation,
precipitation, and temperature are likely capturing quali-
ties of low-elevation marsh and wetland habitats that are
necessary to maintain wetland plant communities and
support rice rat populations. When considering other
potential environmental drivers of rice rat populations, we
start to see differences between the models for different
taxonomic groupings. Low precipitation seasonality and
soil organic carbon stock exceeding ~100 tons/ha are asso-
ciated with increased probability of occurrence in the full
O. palustris and eastern clade models. Again, these are fac-
tors that may support stable and robust plant communities
in wetlands. In contrast, precipitation seasonality did not
cause the same suitability drop-off in the western clade
model. Instead, soil volumetric water content and temper-
ature seasonality become important environmental predic-
tors, indicating that water availability and temperature are
more limiting factors for western rice rat populations.

Estimating the range of O. palustris is an important step
forward in delineating the general distribution of potential
hosts for A. maculatum and the rickettsial pathogens they
transmit. Reservoir hosts involved in tick-borne transmis-
sion cycles are targets for control efforts and may serve as

better indicators of risk than vector presence alone,
particularly for ticks with widespread distributions.
However, vertebrate hosts involved in many tick-borne
transmission cycles are poorly understood or unknown.
This is particularly true for SFG pathogens, many of which
have only recently garnered increased scrutiny frommedical
and public health authorities, relative to other tick-borne
diseases such as Lyme disease, where pathogen–host–vector
dynamics are extensively studied (Halsey et al., 2018;
Ostfeld, 2012). Components of the transmission cycle
for R. parkeri are not currently known, but several small
mammal species are suspected to play a role in the
pathogen’s ecological maintenance, based on field surveys
and laboratory experiments (Cumbie et al., 2020; Moraru
et al., 2013). Investigation of the potential role ofO. palustris
as a reservoir host for R. parkeri is warranted. In addition
to detection of R. parkeri in field-collected O. palustris,
other closely related species of the genus Oryzymys have
been established as competent hosts of rickettsial patho-
gens (Krawczak & Labruna, 2018; Padilha et al., 2013).
Although the marsh rice rat has suspected involvement,
further work is needed to establish the competency of
O. palustris as a host capable of supporting the R. parkeri
transmission cycle.

There is considerable geographic overlap with
O. palustris and A. maculatum in the southeastern
United States. Comparing the model of our full O. palustris
dataset to an SDM forA. maculatum produced by Flenniken
et al. (2022), most of the overlap seen in estimated distribu-
tions occurs along the Gulf Coast, peninsular Florida, and
along the East Coast into Virginia, Maryland, and New
Jersey, with some incursion along the lower Mississippi
River Basin (Figure 7; Appendix S1: Figures S3 and S4). The
availability of suitable hosts may be an important element of
successful range expansion of A. maculatum, which has
drastically expanded the northern extent of its range in
recent years (Molaei et al., 2021; Nadolny & Gaff, 2018;
Wojan et al., 2022). Notably, much of this northward expan-
sion has occurred along the East Coast, a potential indicator
of the role that underlying host species like O. palustris play
in the habitat suitability of tick vectors. The ranges of both
O. palustris and A. maculatum also coincide with much of
the estimated distribution of R. parkeri in North America, as
described in Moo-Llanes et al. (2021). Moo-Llanes et al.
built SDMs with records of ticks, comprised of several
Amblyomma species, that tested positive for R. parkeri
bacteria. The resulting model shows high predicted suitabil-
ity in North America along the Gulf of Mexico and portions
of the East Coast, withmoderate to high predicted suitability
extending inland throughout the eastern United States.

In addition to O. palustris, two other rodents in the
family Cricetidae have also been implicated as hosts of
A. maculatum, with potential involvement in the
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transmission cycle for R. parkeri: the hispid cotton rat
(Sigmodon hispidus) and the eastern meadow vole
(Microtus pennsylvanicus) (Cumbie et al., 2020). The geo-
graphic range of S. hispidus overlaps with much of our
estimated distribution for O. palustris, extending further
north into Nebraska and west into California, whereas
the range of M. pennsylvanicus has some overlap with the
northern extent of the O. palustris distributions, but
extends north into Canada and Alaska (Jackson &
Cook, 2020; USGS, 2018). Although S. hispidus has been
documented as an important blood-meal host for imma-
ture A. maculatum, lab experiments have demonstrated
that this species quickly clears R. parkeri infection, mak-
ing them unlikely reservoir hosts (Baker et al., 2003;
Johnson et al., 2022; Moraru et al., 2013). Likewise,
M. pennsylvanicus is not a likely reservoir host of
R. parkeri. While infected A. maculatum have been col-
lected from M. pennsylvanicus, the ranges of the rodent
and tick have minimal historical overlap (Cumbie et al.,
2020; Nadolny & Gaff, 2018). Nevertheless, these three
rodent species collectively span a vast area, potentially
facilitating the expansion of ticks that utilize these spe-
cies as hosts and providing opportunities for pathogen
spillover events.

The underlying distribution of reservoir hosts is
suspected to play a role in the geographic risk of tick-
borne disease transmission. Tick-borne pathogens can
exhibit geographically restricted ranges that are “nested”
within the larger distribution of competent vectors. For
example, within the eastern portion of the United States,
foci for Borrelia burgdorferi, the spirochete that causes
Lyme disease, are restricted within the range of its vectors,
primarily Ixodes scapularis (Fleshman et al., 2021). The
existence of an “infected” niche of ticks that tested positive
for R. montanensis infections within the full geographic
range of its vector, Dermacentor variabilis, has also been
supported with SDMs (Lippi, Gaff, White, St. John,
et al., 2021). The absence of pathogen transmission can be
due to many factors, and certainly, vector presence alone
is not sufficient for transmission. Absence of pathogens
could be a result of undersampling or a lack of robust
surveillance for tick-borne disease. Differences in suitable
environmental conditions for tick presence and pathogen
transmission may also contribute to range discrepancies
(Galletti et al., 2016). However, the importance of reservoir
hosts in maintaining vector-borne transmission cycles is
widely acknowledged, yet in the case of many tick-borne
diseases, not well understood. Even so, there is increasing

F I GURE 7 Overlap between mean dichotomized (threshold of 60%) full dataset model and predicted distribution Amblyomma

maculatum, adapted from Flenniken et al. (2022).
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evidence to support the key role that reservoir and ampli-
fying hosts play in the localized density of infected ticks,
and risk of transmission for an array of tick-borne diseases
(Krawczyk et al., 2020). This has notably been the case
with Lyme disease, where increasing burden and range
expansion of the disease have been linked to range
shifts and population changes in vertebrate hosts (Levi
et al., 2012; Thompson et al., 2001).

CONCLUSION

Conclusive identification of reservoir and amplifying hosts
is still needed to establish transmission cycles for many
tick-borne diseases, including the majority of those caused
by rickettsial agents. Given that many species of medically
important ticks have generalized habitat requirements, or
are actively expanding their geographic ranges, identifying
areas where tick presence overlaps with suitable reservoir
habitat may be necessary for refining risk maps and public
health advisories derived solely from tick presence. In this
study, we estimated the geographic range of O. palustris, a
suspected reservoir host of R. parkeri, and found consider-
able overlap with the distribution of A. maculatum. Though
future work is needed to investigate the definitive role of
O. palustris in transmission cycles, our findings highlight
the potential need for extended surveillance efforts in those
overlapping areas.

ACKNOWLEDGMENTS
Catherine A. Lippi, Holly D. Gaff, Samuel Canfield, and
Sadie J. Ryan were funded by NIH 1R01AI136035-01 as
part of the joint NIH-NSF-USDA Ecology and Evolution
of Infectious Diseases program. Catherine A. Lippi,
Samuel Canfield, and Sadie J. Ryan were additionally
funded by CDC grant 1U01CK000510-01: Southeastern
Regional Center of Excellence in Vector-Borne Diseases:
The Gateway Program. Catherine A. Lippi and Sadie
J. Ryan were also funded by NSF 2016265. We thank
J. Matthew Flenniken for providing the Gulf Coast tick
distribution model output used in comparisons. This pub-
lication was supported by the cooperative agreement
number above from the Centers for Disease Control and
Prevention. Its contents are solely the responsibility of
the authors and do not necessarily represent the official
views of the Centers for Disease Control and Prevention.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The occurrence data used to build species distribution
models in this study are openly available on the Global

Biodiversity Information Facility (www.gbif.org), where
we pulled North American records of Oryzomys palustris
(https://doi.org/10.15468/dl.v9j4x5).

ORCID
Catherine A. Lippi https://orcid.org/0000-0002-7988-
0324
Holly D. Gaff https://orcid.org/0000-0002-4034-2684
Sadie J. Ryan https://orcid.org/0000-0002-4308-6321

REFERENCES
Aiello-Lammens, M. E., R. A. Boria, A. Radosavljevic, B. Vilela, and

R. P. Anderson. 2015. “spThin: An R Package for Spatial
Thinning of Species Occurrence Records for Use in Ecological
Niche Models.” Ecography 38: 541–5.

Baker, R. J., L. C. Bradley, R. D. Bradley, J. W. Dragoo, M. D.
Engstrom, R. S. Hoffmann, C. A. Jones, F. Reid, D. W. Rice,
and C. Jones. 2003. “Revised Checklist of North American
Mammals North of Mexico, 2003.” Occasional Papers, Museum
of Texas Tech University 229: 1–23.

Barbet-Massin, M., F. Jiguet, C. H. Albert, and W. Thuiller. 2012.
“Selecting Pseudo-Absences for Species Distribution Models:
How, where and how Many? How to Use Pseudo-Absences in
Niche Modelling?” Methods in Ecology and Evolution 3:
327–38.

CDC. 2021. “Lyme and Other Tickborne Diseases Increasing.”Centers
for Disease Control and Prevention. https://www.cdc.gov/
ncezid/dvbd/media/lyme-tickborne-diseases-increasing.html.

Cerasoli, F., M. Iannella, P. D’Alessandro, and M. Biondi. 2017.
“Comparing Pseudo-Absences Generation Techniques in
Boosted Regression Trees Models for Conservation Purposes:
A Case Study on Amphibians in a Protected Area.” PLoS One
12: e0187589.

Cumbie, A. N., C. D. Espada, R. M. Nadolny, R. K. Rose, R. D.
Dueser, W. L. Hynes, and H. D. Gaff. 2020. “Survey of
Rickettsia parkeri and Amblyomma maculatum Associated
with Small Mammals in Southeastern Virginia.” Ticks and
Tick-borne Diseases 11: 101550.

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl,
G. Carré, J. R. G. Marquéz, et al. 2013. “Collinearity: A Review
of Methods to Deal with it and a Simulation Study Evaluating
their Performance.” Ecography 36: 27–46.

Elith, J., J. R. Leathwick, and T. Hastie. 2008. “A Working Guide to
Boosted Regression Trees.” Journal of Animal Ecology 77:
802–13.

Eubanks, B. W., E. C. Hellgren, J. R. Nawrot, and R. D. Bluett.
2011. “Habitat Associations of the Marsh Rice Rat (Oryzomys
palustris) in Freshwater Wetlands of Southern Illinois.”
Journal of Mammalogy 92: 552–60.

Fick, S. E., and R. J. Hijmans. 2017. “WorldClim 2: New 1-km
Spatial Resolution Climate Surfaces for Global Land Areas.”
International Journal of Climatology 37: 4302–15.

Flenniken, J. M., H. C. Tuten, H. Rose Vineer, V. C. Phillips, C. M.
Stone, and B. F. Allan. 2022. “Environmental Drivers of Gulf
Coast Tick (Acari: Ixodidae) Range Expansion in the
United States.” Journal of Medical Entomology 59(5): 1625–35.

Fleshman, A. C., C. B. Graham, S. E. Maes, E. Foster, and R. J.
Eisen. 2021. “Reported County-Level Distribution of Lyme

ECOSPHERE 13 of 15

 21508925, 2023, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4445 by O

ld D
om

inion U
niversity, W

iley O
nline L

ibrary on [21/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.gbif.org/
https://doi.org/10.15468/dl.v9j4x5
https://orcid.org/0000-0002-7988-0324
https://orcid.org/0000-0002-7988-0324
https://orcid.org/0000-0002-7988-0324
https://orcid.org/0000-0002-4034-2684
https://orcid.org/0000-0002-4034-2684
https://orcid.org/0000-0002-4308-6321
https://orcid.org/0000-0002-4308-6321
https://www.cdc.gov/ncezid/dvbd/media/lyme-tickborne-diseases-increasing.html
https://www.cdc.gov/ncezid/dvbd/media/lyme-tickborne-diseases-increasing.html


Disease Spirochetes, Borrelia burgdorferi sensu stricto and
Borrelia mayonii (Spirochaetales: Spirochaetaceae), in
Host-Seeking Ixodes scapularis and Ixodes pacificus Ticks
(Acari: Ixodidae) in the Contiguous United States.” Journal of
Medical Entomology 58: 1219–33.

Fornadel, C. M., X. Zhang, J. D. Smith, C. D. Paddock, J. R. Arias, and
D. E. Norris. 2011. “High Rates of Rickettsia parkeri Infection in
Gulf Coast Ticks (Amblyomma maculatum) and Identification of
“Candidatus Rickettsia Andeanae” from Fairfax County,
Virginia.”Vector-Borne and Zoonotic Diseases 11: 1535–9.

Friedman, J. H. 2001. “Greedy Function Approximation:
A Gradient Boosting Machine.” The Annals of Statistics 29(5):
1189–232.

Galletti, M. F. B. M., A. Fujita, R. D. Rosa, L. A. Martins, H. S.
Soares, M. B. Labruna, S. Daffre, and A. C. Fogaça. 2016.
“Virulence Genes of Rickettsia rickettsii Are Differentially
Modulated by either Temperature Upshift or Blood-Feeding in
Tick Midgut and Salivary Glands.” Parasites & Vectors 9: 331.

Halsey, S. J., B. F. Allan, and J. R. Miller. 2018. “The Role of Ixodes
scapularis, Borrelia burgdorferi and Wildlife Hosts in Lyme
Disease Prevalence: A Quantitative Review.” Ticks and
Tick-borne Diseases 9(5): 1103–14.

Hanson, J. D., J. L. Indorf, V. J. Swier, and R. D. Bradley. 2010.
“Molecular Divergence within the Oryzomys palustris
Complex: Evidence for Multiple Species.” Journal of
Mammalogy 91: 336–47.

Hengl, T., J. Mendes de Jesus, G. B. Heuvelink, M. Ruiperez
Gonzalez, M. Kilibarda, A. Blagoti�c, W. Shangguan, M. N.
Wright, X. Geng, and B. Bauer-Marschallinger. 2017.
“SoilGrids250m: Global Gridded Soil Information Based on
Machine Learning.” PLoS One 12: e0169748.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis.
2005. “Very High Resolution Interpolated Climate Surfaces for
Global Land Areas.” International Journal of Climatology: A
Journal of the Royal Meteorological Society 25: 1965–78.

Humphrey, S. R., and H. W. Setzer. 1989. “Geographic Variation
and Taxonomic Revision of Rice Rats (Oryzomys palustris and
O. argentatus) of the United States.” Journal of Mammalogy
70: 557–70.

Jackson, D. J., and J. A. Cook. 2020. “A Precarious Future for
Distinctive Peripheral Populations of Meadow Voles (Microtus
pennsylvanicus).” Journal of Mammalogy 101: 36–51.

Johnson, C. R., L. Ponnusamy, A. L. Richards, and C. S. Apperson.
2022. “Analyses of Bloodmeal Hosts and Prevalence of Rickettsia
parkeri in the Gulf Coast Tick Amblyomma maculatum (Acari:
Ixodidae) from a Reconstructed Piedmont Prairie Ecosystem,
North Carolina.” Journal ofMedical Entomology 59: 1382–93.

Krawczak, F. S., and M. B. Labruna. 2018. “The Rice Rat
Euryoryzomys russatus, a Competent Amplifying Host of
Rickettsia parkeri Strain Atlantic Rainforest for the Tick
Amblyomma ovale.” Ticks and Tick-borne Diseases 9: 1133–6.

Krawczyk, A. I., G. L. A. van Duijvendijk, A. Swart, D. Heylen, R. I.
Jaarsma, F. H. H. Jacobs, M. Fonville, H. Sprong, and
W. Takken. 2020. “Effect of Rodent Density on Tick and
Tick-Borne Pathogen Populations: Consequences for
Infectious Disease Risk.” Parasites & Vectors 13: 34.

Kruchek, B. L. 2004. “Use of Tidal Marsh and Upland Habitats by
the Marsh Rice Rat (Oryzomys palustris).” Journal of
Mammalogy 85: 569–75.

Levi, T., A. M. Kilpatrick, M. Mangel, and C. C. Wilmers. 2012.
“Deer, Predators, and the Emergence of Lyme Disease.”
Proceedings of the National Academy of Sciences of the
United States of America 109: 10942–7.

Lippi, C. A., H. D. Gaff, A. L. White, and S. J. Ryan. 2021. “Scoping
Review of Distribution Models for Selected Amblyomma Ticks
and Rickettsial Group Pathogens.” PeerJ 9: e10596.

Lippi, C. A., H. D. Gaff, A. L. White, H. K. St. John, A. L. Richards,
and S. J. Ryan. 2021. “Exploring the Niche of Rickettsia
montanensis (Rickettsiales: Rickettsiaceae) Infection of the
American Dog Tick (Acari: Ixodidae), Using Multiple Species
Distribution Model Approaches.” Journal of Medical
Entomology 58: 1083–92.

Lippi, C. A., S. J. Ryan, A. L. White, H. D. Gaff, and C. J. Carlson.
2021. “Trends and Opportunities in Tick-Borne Disease
Geography.” Journal of Medical Entomology 58: 2021–9.

Madison-Antenucci, S., L. D. Kramer, L. L. Gebhardt, and
E. Kauffman. 2020. “Emerging Tick-Borne Diseases.” Clinical
Microbiology Reviews 33(2): e00083–18.

Maréchaux, I., A. S. L. Rodrigues, and A. Charpentier. 2017. “The
Value of Coarse Species Range Maps to Inform Local
Biodiversity Conservation in a Global Context.” Ecography 40:
1166–76.

Molaei, G., E. A. H. Little, N. Khalil, B. N. Ayres, W. L. Nicholson,
and C. D. Paddock. 2021. “Established Population of the Gulf
Coast Tick, Amblyomma maculatum (Acari: Ixodidae),
Infected with Rickettsia parkeri (Rickettsiales: Rickettsiaceae),
in Connecticut.” Journal of Medical Entomology 58: 1459–62.

Molnar, C. 2020. Interpretable Machine Learning: A Guide for
Making Black Box Methods Interpretable. Munich: Christoph
Molnar.

Moo-Llanes, D. A., A. C. Montes de Oca-Aguilar, D. Romero-Salas,
and S. Sanchez-Montes. 2021. “Inferring the Potential
Distribution of Emerging Rickettsiosis in America: The Case
of Rickettsia parkeri.” Pathogens 10(5): 592.

Moraru, G. M., J. Goddard, C. D. Paddock, and A. Varela-Stokes.
2013. “Experimental Infection of Cotton Rats and Bobwhite
Quail with Rickettsia parkeri.” Parasites & Vectors 6: 70.

Murphey, P. C., R. P. Guralnick, R. Glaubitz, D. Neufeld, and J. A.
Ryan. 2004. “Georeferencing of Museum Collections: A Review
of Problems and Automated Tools, and the Methodology
Developed by the Mountain and Plains Spatio-Temporal
Database-Informatics Initiative.” PhyloInformatics 3: 1–29.

Nadolny, R. M., and H. D. Gaff. 2018. “Natural History of
Amblyomma maculatum in Virginia.” Ticks and Tick-borne
Diseases 9: 188–95.

O’brien, R. M. 2007. “A Caution Regarding Rules of Thumb for
Variance Inflation Factors.” Quality & Quantity 41: 673–90.

Ogden, N. H., S. Mechai, and G. Margos. 2013. “Changing Geographic
Ranges of Ticks and Tick-Borne Pathogens: Drivers, Mechanisms
and Consequences for Pathogen Diversity.” Frontiers in Cellular
and InfectionMicrobiology 29(3): 46.

Ostfeld, R. S. 2012. Lyme Disease: The Ecology of a Complex System.
New York: Oxford University Press.

Otieno, F. T., J. Gachohi, P. Gikuma-Njuru, P. Kariuki, H. Oyas,
S. A. Canfield, J. K. Blackburn, M. K. Njenga, and B. Bett.
2021. “Modeling the Spatial Distribution of Anthrax in
Southern Kenya.” PLoS Neglected Tropical Diseases 15:
e0009301.

14 of 15 LIPPI ET AL.

 21508925, 2023, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4445 by O

ld D
om

inion U
niversity, W

iley O
nline L

ibrary on [21/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Paddock, C. D., and J. Goddard. 2015. “The Evolving Medical and
Veterinary Importance of the Gulf Coast Tick (Acari:
Ixodidae).” Journal of Medical Entomology 52: 230–52.

Paddock, C. D., J. W. Sumner, J. A. Comer, S. R. Zaki, C. S.
Goldsmith, J. Goddard, S. L. F. McLellan, C. L. Tamminga,
and C. A. Ohl. 2004. “Rickettsia parkeri: A Newly Recognized
Cause of Spotted Fever Rickettsiosis in the United States.”
Clinical Infectious Diseases 38: 805–11.

Padilha, A. F., C. L. Mafra, B. S. Milagres, M. B. Labruna, M. A. M.
Galvão, R. N. Freitas, C. E. Montandon, D. H. Walker, and
R. Pacheco. 2013. “Spotted Fever Group Rickettsia in Small
Rodents from Areas of Low Endemicity for Brazilian Spotted
Fever in the Eastern Region of Minas Gerais State, Brazil.”
The American Journal of Tropical Medicine and Hygiene 88:
937–9.

Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann,
J. Leathwick, and S. Ferrier. 2009. “Sample Selection Bias
and Presence-Only Distribution Models: Implications for
Background and Pseudo-Absence Data.” Ecological Applications
19: 181–97.

Phillips, V. C., E. A. Zieman, C.-H. Kim, C. M. Stone, H. C. Tuten,
and F. A. Jiménez. 2020. “Documentation of the Expansion of
the Gulf Coast Tick (Amblyomma maculatum) and Rickettsia
parkeri: First Report in Illinois.” Journal of Parasitology
106(1): 9–13.

Poggio, L., L. M. De Sousa, N. H. Batjes, G. Heuvelink, B. Kempen,
E. Ribeiro, and D. Rossiter. 2021. “SoilGrids 2.0: Producing
Soil Information for the Globe with Quantified Spatial
Uncertainty.” Soil 7: 217–40.

Ramírez-Garofalo, J. R., S. R. Curley, C. E. Field, C. E. Hart, and
S. Thangamani. 2022. “Established Populations of Rickettsia
parkeri- Infected Amblyomma maculatum Ticks in New York
City, New York, USA.” Vector-Borne and Zoonotic Diseases 22:
184–7.

Rochlin, I., and A. Toledo. 2020. “Emerging Tick-Borne Pathogens
of Public Health Importance: A Mini-Review.” Journal of
Medical Microbiology 69: 781–91.

Rose, R. K., and S. W. McGurk. 2006. “Year-Round Diet of the
Marsh Rice Rat, Oryzomys palustris, in Virginia Tidal
Marshes.” Virginia Journal of Science 57: 115–21.

Rosenberg, R., N. P. Lindsey, M. Fischer, C. J. Gregory, A. F.
Hinckley, P. S. Mead, G. Paz-Bailey, et al. 2018. “Vital Signs:
Trends in Reported Vectorborne Disease Cases—United States

and Territories, 2004–2016.” MMWR. Morbidity and Mortality
Weekly Report 67: 496–501.

Stokland, J. N., R. Halvorsen, and B. Støa. 2011. “Species
Distribution Modelling—Effect of Design and Sample Size of
Pseudo-Absence Observations.” Ecological Modelling 222:
1800–9.

Svihla, A. 1931. “Life History of the Texas Rice Rat (Oryzomys
palustris texensis).” Journal of Mammalogy 12: 238–42.

Thompson, C., A. Spielman, and P. J. Krause. 2001. “Coinfecting
Deer-Associated Zoonoses: Lyme Disease, Babesiosis, and
Ehrlichiosis.” Clinical Infectious Diseases 33: 676–85.

Tomassone, L., A. Portillo, M. Nov�akov�a, R. de Sousa, and J. A.
Oteo. 2018. “Neglected Aspects of Tick-Borne Rickettsioses.”
Parasites & Vectors 11: 263.

USGS. 2018. “Hispid Cotton Rat (Sigmodon Hispidus) mHCRAx_
CONUS_2001v1 Habitat Map.” United States Geological
Survey. https://doi.org/10.5066/F7M9071N.

Wilson, N., and L. A. Durden. 2003. “Ectoparasites of Terrestrial
Vertebrates Inhabiting the Georgia Barrier Islands, USA: An
Inventory and Preliminary Biogeographical Analysis:
Ectoparasites on the Georgia Barrier Islands.” Journal of
Biogeography 30: 1207–20.

Wojan, C., T. Thrasher, E. Lacey, and K. Clay. 2022. “Distribution,
Dynamics, and Diversity of Questing Ticks in the Lower
Midwest.” Journal of Medical Entomology 59: 273–82.

Wolfe, J. L. 1982. “Oryzomys palustris.”Mammalian Species 176: 1–5.

SUPPORTING INFORMATION
Additional supporting information can be found online
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