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Article

Application of Mixture Models for Doubly Inflated Count Data
Monika Arora 1 and N. Rao Chaganty 2,*

1 Department of Mathematics, Indraprastha Institute of Information Technology, Delhi 110020, India
2 Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529-0077, USA
* Correspondence: rchagant@odu.edu

Abstract: In health and social science and other fields where count data analysis is important, zero-
inflated models have been employed when the frequency of zero count is high (inflated). Due
to multiple reasons, there are scenarios in which an additional count value of k > 0 occurs with
high frequency. The zero- and k-inflated Poisson distribution model (ZkIP) is more appropriate
for such situations. The ZkIP model is a mixture distribution with three components: degenerate
distributions at 0 and k count and a Poisson distribution. In this article, we propose an alternative and
computationally fast expectation–maximization (EM) algorithm to obtain the parameter estimates
for grouped zero and k-inflated count data. The asymptotic standard errors are derived using the
complete data approach. We compare the zero- and k-inflated Poisson model with its zero-inflated
and non-inflated counterparts. The best model is selected based on commonly used criteria. The
theoretical results are supplemented with the analysis of two real-life datasets from health sciences.

Keywords: poisson regression; zero-inflated data; zero- and k-inflated data; EM algorithm; health
science

1. Introduction

A categorical variable deals with a set of categories which could be based on a mea-
surement scale. When there is natural ordering in the measurement scale, the categorical
variable is ordinal; otherwise, it is known as a nominal categorical variable. Categorical
variables arise not only in medical and social science but also in many other studies such as
travel, agriculture, education, finance, ecology, and others. A categorical random variable
with the number of counts as its categories is usually modeled by a Poisson distribution.
The Poisson distribution has one unknown parameter, λ > 0. This parameter is also the
mean and variance of the distribution. This property of Poisson distribution is known
as equi-dispersion. In real-life applications, the count data are often not equi-dispersed;
instead, they could be over- or under-dispersed. There could be different reasons for over-
dispersion, and one such reason is an excess number of zeros in the data. An appropriate
model for such count datasets is the zero-inflated Poisson (ZIP) distribution. In a seminal
paper, Lambert [1] studied the ZIP regression model. ZIP models and their applications
have been studied extensively in the literature. Ghosh et al. [2] and Agarwal et al. [3]
studied ZIP models using a Bayesian approach. Random effects ZIP models were studied
by Min and Agresti [4] and Yau and Lee [5]. Furthermore, Saffari and Adnan [6], Yang
and Simpson [7], and Nguyen and Dupuy [8] have applied ZIP models for censored data.
Recently, a review of various ZIP models was presented in [9,10]. Applications of the ZIP
model and its variations can be found in health science [11,12], manufacturing [1,2], and
transportation [13,14]. The models have made their mark in biology [15], ecology [16],
psychology [17,18], education [19], economics [20–22], and social networks [23].

In count data, besides zero, there could be another count k > 0 that is inflated. The
inflation could be due to various reasons such as the design of the study or types of
responses. For example, the number of pap smear tests performed on women had zero
and six inflated [24,25]. Similarly, the data on the number cigarettes smoked have zero
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(non-smokers) and 20 (a pack of cigarettes) inflated [25], while in a survey on the number
of divorces, counts zero and 1 are likely to be inflated. Arora and Chaganty [24] described
such situations where, besides zero, another count k > 0 is also inflated, and applied
zero- and k-inflated Poisson (ZkIP) models. The ZkIP model for count data is defined by a
mixture of three distributions, which assumes that each count observation is a draw from a
degenerate distribution at zero with probability π1, from a degenerate distribution at value
k > 0 with probability π2, or from a Poisson distribution with probability (1− π1 − π2).
The probabilities π1 and π2 can also be viewed as mixing weights. Lin and Tsai [25] studied
ZkIP models using the maximum likelihood estimation method. Sheth et al. [26] presented
two forms of the ZkIP model. A special case of ZkIP is when k = 1. The special case is
known as zero- and one-inflated Poisson (ZOIP). The other special case is π1 = 0; that is,
only k > 0 is inflated and the corresponding model is a k-inflated Poisson (kIP) model,
which also can be regarded as an extension of the ZIP model. Recently, Arora et al. [27]
studied the kIP models using traditional and data science approaches. For doubly censored
data, [28] studied zero and one inflation using power-normal distribution.

Most of these aforementioned articles deal with data that contain covariates besides
the response variable and study regression models. However, at times the data have
missing observations for the covariates. To build a regression model, a list-wise deletion
is performed or missing observations are imputed. The deletion of observations could
significantly reduce the sample size. On the other hand, the imputed observations could
lead to misleading inferences. There is a need to develop inferential methods for data
without covariates. These methods without covariates allow us to estimate the inflated
proportion for count 0 and k categories. Furthermore, they could also be used as a pre-
liminary step to detect the inflation before using the regression models. Models without
covariates are easier to apply and more efficient for large datasets. The proposed model
captures the double inflation and is parsimonious. The parameters are simple to interpret
and the corresponding analysis is straightforward.

In this article, we deal with the situation where the covariate data are absent and
develop an EM algorithm to obtain the estimates for the grouped count data with inflation
at zero and k > 0. The EM algorithm provides maximum likelihood (ML) estimates when
some data are missing or when latent variables are present. For the ZkIP data, the latent
variables are the zero’s and counts k > 0 coming from the degenerate distributions, as
opposed to the Poisson distribution. The EM algorithm takes into account the missing
information and allows us to obtain the ML estimates of the unknown parameters of the
ZkIP model. The standard errors are obtained using the method described by Louis [29].
Our methods include the ZOIP and kIP as special cases. We compare the ZkIP model
with the ZIP and Poisson models. We apply our methods on two real-life applications in
health sciences. The outline of the article is as follows. Section 2 describes the distributions
involved in detail. This includes the ZkIP distribution and its properties. For the grouped
data, we present the likelihood function for the ZkIP model in Section 3. In Section 3.1,
we present the mathematical details for the expectation–maximization (EM) method [30]
to obtain the maximum likelihood estimates. In Section 3.2, we describe the method first
described by Louis [29] on how to find the standard errors for the EM estimates for the
ZkIP model. Section 4 describes the hypothesis tests for the unknown parameters. It also
explains the methods used for model selection and measures to find a model that fits best.
In Section 5, we perform two simulation studies. We compare the ZkIP model to ZIP and
Poisson models using standardized bias and standarized mean squared error criteria. We
also evaluate the coverage probabilities for various confidence levels. Finally, Section 6
contains the analysis of two real-life datasets.
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2. Distributions

The Poisson distribution is normally used as a model for count data. The probability
mass function of a random variable Y distributed as Poisson with mean λ > 0 is given by

P(Y = y) =
e−λλy

y!
, y = 0, 1, 2, . . .

The probability mass function of a random variable Y following a zero-inflated Poisson
(ZIP) distribution with parameters λ > 0 and 0 < π1 < 1 is given by

P(Y = y) =


π1 + (1− π1) e−λ when y = 0

(1− π1)
λye−λ

y!
when y = 1, 2, . . .

(1)

A generalization of the ZIP model is the ZkIP model which accounts for inflated
frequencies at zero and at k > 0. The ZkIP distribution is also a mixture model, similar to
the ZIP. It is composed of mixing two degenerate distributions with a Poisson distribution.
The probability mass function of Y distributed as ZkIP (λ, π1, π2) is given by

P(Y = y) =



π1 + π3 e−λ when y = 0

π2 + π3
λke−λ

k!
when y = k

π3
λye−λ

y!
when y = 1, 2, . . ., y 6= k,

(2)

where π3 = (1− π1 − π2), λ > 0 and 0 < π1 + π2 < 1. The corresponding cumulative
distribution function (CDF) is given by

FY(y) =



0 when y < 0

π1 + π3

byc

∑
u=0

λue−λ

u!
when 0 ≤ y < k

π1 + π2 + π3

byc

∑
u=0

λue−λ

u!
when y ≥ k,

(3)

where byc is the floor function. Using (3), we can show that the probability generating
function of Y is GY(z) = E(zY) = π1 + π2 zk + π3 eλ(z−1). The moment generating function
is given by MY(t) = E(etY) = π1 + π2 etk + π3 eλ(et−1). The mean E(Y) = k π2 + π3 λ and
Var(Y) = k2π2(1− π2) + π3λ(1 + π1λ + π2λ− 2kπ2) can be obtained taking derivatives
of MY(t) with respect to t at t = 0.

The unknown parameters in a ZkIP distribution are λ, π1, and π2 with λ > 0 and
0 < π1 + π2 < 1. There are various methods for estimating the parameters and drawing
inferences. In the next section, we develop the expectation–maximization (EM) algorithm
to obtain the maximum likelihood estimates of the ZkIP model parameters and the corre-
sponding standard errors.

3. Methodology

Suppose that we have a vector y = (y1, y2, ..., yn) consisting of a random sample of n
observations potentially from a ZkIP distribution. The frequency distribution of the sample
can be organized in a table as

j 0 1 ... k ... K Total
Observed frequency n0 n1 ... nk ... nK nI I I I I I I 
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Here, nj = # of yi’s that are equal to j and K = max{yi}. If the observations are truly
from the ZkIP distribution, the values of n0 and nk will be large compared to the rest
of the frequencies. The vector of observed frequencies (n0, n1, . . . , nK) can be regarded
as incomplete data in the sense that n0 is actually na + nb and nk = nc + nd, where the
unknown na and nc are frequencies from degenerate distributions at 0 and k, respectively.
Using (3), we can write the likelihood function of the observed frequencies ni’s as

Lobs(π1, π2, λ|y) ∝ (π1 + π3e−λ)
n0

(
π2 + π3

λke−λ

k!

)nk K

∏
j 6=0,k

(
π3

λje−λ

j!

)nj

∝ (π1 + π3 p0)
n0(π2 + π3 pk)

nk
K

∏
j 6=0,k

(
π3 pj

)nj , (4)

where pj = (λje−λ)/j! and π3 = (1− π1 − π2). Note that when π2 = 0, the ZkIP reduces
to ZIP. Thus, the likelihood for the ZIP model is

Lobs(π1, λ|y) ∝ (π1 + (1− π1)e−λ)
n0

K

∏
j 6=0

(
(1− π1)

λje−λ

j!

)nj

.

If π1 = π2 = 0, the likelihood (4) becomes the likelihood function of the Poisson
distribution given by

Lobs(λ|y) =
K

∏
j=0

(
λje−λ

j!

)nj

.

3.1. EM Estimation

For the likelihood (4), the unknown parameter θ = (π1, π2, λ) can be estimated using
the maximum likelihood (ML) approach. A computationally simple approach to get an ML
estimate of θ is the expectation–maximum (EM) method, which was introduced by [30] in
a seminal paper. The EM algorithm is a simple modification of the maximum likelihood
and has become a popular alternative for ML estimation in cases where data are missing or
incomplete. We describe the EM approach to study the ZkIP model for grouped data.

The frequency vector (n0, n1, . . . , nk, . . . , nK) is the observed data. It can be viewed
as partially incomplete data, in the sense that n0 = na + nb and nk = nc + nd, since the
number, na, of zeros and the number, nc, of ks are missing. Here na and nc are the unknown
number of observations from degenerate distributions at 0 and k, respectively. Thus, the
complete data vector including the missing frequencies is (na, nb, n1, . . . , nc, nd, . . . , nK).
The likelihood function of this complete data vector is

Lcomp(π1, π2, λ|y) ∝ πna
1 πnc

2 π3
(n−na−nc) p0

nb pk
nd

K

∏
j 6=0,k

pj
nj (5)

where pj = (λje−λ)/j! and π3 = (1−π1−π2). Our interest is to maximize the likelihood (5)
or minimize the negative of the log-likelihood. The log-likelihood, `comp = log Lcomp, can be
written as
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`comp(π1, π2, λ|y) ∝ na log(π1) + nc log(π2) + (n− na − nc) log π3

+nb log p0 + nd log pk +
K

∑
j 6=0,k

nj log pj

∝ na log(π1) + nc log(π2) + (n− na − nc) log π3

−nbλ + nd(−λ + k log λ) +
K

∑
j 6=0,k

nj(−λ + j log λ), (6)

where the frequencies na and nc are unknown. The expectation step in the EM algorithm
replaces these frequencies with their expected values. To obtain the expected values, we
assume there is a latent variable z = (z1, z2, z3) distributed as a multinomial with parameter
vector (1, π1, π2, π3), where the number of trials is one. Here, z takes values (1, 0, 0) with
probability π1, (0, 1, 0) with probability π2, and (0, 0, 1) with probability π3. That is,

P(z = (z1, z2, z3)) =


π1 if z1 = 1, z2 = 0, z3 = 0

π2 if z1 = 0, z2 = 1, z3 = 0

π3 if z1 = 0, z2 = 0, z3 = 1.

(7)

Furthermore, assume the conditional distribution of Y|z is

P(Y = y|z = (z1, z2, z3)) =



1 for z1 = 1, y = 0

1 for z2 = 1, y = k

λye−λ

y!
for z3 = 1, y = 0, 1, . . .

(8)

Now, the joint distribution of (Y, z) obtained by multiplying (7) and (8) is

P(Y = y, z = (z1, z2, z3)) =



π1 for z1 = 1, y = 0

π2 for z2 = 1, y = k

π3
λye−λ

y!
for z3 = 1, y = 0, 1, . . .

(9)

The marginal of Y can be obtained from (9) by summing over the three possible values
of z. Thus, we obtain

P(Y = 0) = P(Y = 0, z1 = 1) + P(Y = 0, z2 = 1) + P(Y = 0, z3 = 1)

= π1 + π3 e−λ,

P(Y = k) = P(Y = k, z1 = 1) + P(Y = k, z2 = 1) + P(Y = k, z3 = 1)

= π2 + π3
λke−λ

k!
,

and

P(Y = y) = P(Y = y, z1 = 1) + P(Y = y, z2 = 1) + P(Y = y, z3 = 1)

= π3
λye−λ

y!
, for y = 1, 2, . . . , y 6= k,
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which is equivalent to the ZkIP distribution defined by (3). Now, the conditional expected
values can be computed by the posterior probabilities given in Table 1.

Table 1. P(z = (z1, z2, z3)|Y = y) for ZkIP model.

z = (z1, z2, z3) y = 0 y = k y 6= 0, k

(1, 0, 0) π1
π1 + π3 p0

0 0

(0, 1, 0) 0 π2
π2 + π3 pk

0

(0, 0, 1) π3 p0
π1 + π3 p0

π3 pk
π2 + π3 pk

1

The three latent variables zis are the indicator variables for the three distributions in
the ZkIP mixture model. More specifically,

n̂a = n0 E(z1|y = 0) = n0 P(z1 = 1|y = 0) = n0
π1

π1 + π3 p0
,

n̂c = nk E(z2|y = k) = nk P(z2 = 1|y = k) = nk
π2

π2 + π3 pk
. (10)

The maximization step or the M-step in the EM algorithm involves maximizing the log-
likelihood (6) after substituting these estimates for na and nc. However, this maximization
is easy since the score equations have closed-form solutions. Indeed, equating partial
derivatives with respect to the three parameters of (6) to zero we obtain,

∂`comp(π1, π2, λ)

∂π1
= 0 ⇐⇒ π̂1 =

na(1− π2)

n− nc
, (11)

∂`comp(π1, π2, λ)

∂π2
= 0 ⇐⇒ π̂2 =

nc(1− π1)

n− na
, (12)

∂`comp(π1, π2, λ)

∂λ
= 0 ⇐⇒ λ̂ =

∑K
j=0 jnj

n− na − nc
. (13)

We summarize the steps of the EM algorithm as follows:

1. Choose the initial values of π0
1, π0

2, and λ0 for π1, π2 and λ, respectively.
2. E-step: Calculate n̂a and n̂c using (10), and set n̂b = n0 − n̂a and n̂d = n1 − n̂c.
3. M-step: Update the estimates of π1, π2, and λ using the formulas in (11), (12), and

(13).
4. Iterate the E-step and M-step until the estimates π̂1, π̂2, and λ̂ converge.

We have developed an R code for this algorithm and used it for the two data analysis
examples in Section 6.

3.2. Standard Errors of EM Estimates

The optimization algorithms routinely output a numerically computed Hessian matrix
for the functions that are being optimized. However, calculation of the standard errors
will be more accurate if analytical expressions are available. To compute the standard
errors of the estimates obtained by the EM algorithm, we follow the approach described by
Louis [29]. The relation between the likelihood of complete, observed, and missing data is
given as

Lcomp(θ | y, z) = Lobs(θ|y) Lmiss(θ | (z|y)), (14)
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where y and z stand for the observed and missing data, respectively. From (14), taking logs
we obtain

`comp(θ | y, z) = `obs(θ|y) + `miss(θ | (z|y)). (15)

Taking second order partial derivatives, we can see that from Equation (15), the
information matrices for the complete, observed, and missing data satisfy the following
identity

Icomp = Iobs + Imiss

or

Iobs = Icomp − Imiss. (16)

Since the right hand side of Equation (16) depends on the missing data, Louis [29]
suggested to take the expected value of the missing data given the observed. This gives us
the identity

Iobs = E(Iobs|y) = E(Icomp|y)− E(Imiss|y). (17)

In other words, an estimate of the observed information matrix is given by

Îobs = E(Icomp|y)− E(Imiss|y). (18)

Regularity conditions under which these information matrices are non-singular are
given in [31]. Without going into technical details, we can say the salient regularity
conditions are (1) the ranges of the random variables do not depend on the parameter; (2)
the partial derivatives of the pdf with respect to the parameters exist; and (3) the integrals
of the partial derivatives are same as the partial derivatives of the integrals with respect
to the parameters. Under these conditions, the standard errors of the parameter estimates
can be obtained taking the square root of the diagonal elements of inverse of the observed
information matrix (18). Note that

Icomp =


−

∂2`comp

∂π2
1

−
∂2`comp

∂π1∂π2
−

∂2`comp

∂π1∂λ

−
∂2`comp

∂π2∂π1
−

∂2`comp

∂π2
2

−
∂2`comp

∂π2∂λ

−
∂2`comp

∂λ∂π1
−

∂2`comp

∂λ∂π2
−

∂2`comp

∂λ2


. (19)

From (6), the elements of the information matrix Icomp are

−
∂2`comp

∂π2
1

=
na

π1
2 +

n− na − nc

π2
3

−
∂2`comp

∂π1∂π2
= −

∂2`comp

∂π2∂π1
=

n− na − nc

π2
3

−
∂2`comp

∂π2
2

=
nc

π2
2
+

n− na − nc

π2
3

−
∂2`comp

∂λ2 =
ndk
λ2 +

∑K
j 6=0,k j nj

λ2 .
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The other elements −∂2`comp/∂π1∂λ and −∂2`comp/∂π2∂λ are equal to zero. Since na
and nc are missing, we replace them by their expected values

E(na|n0) =
n0π1

π1 + π3 p0
and E(nc|nk) =

nkπ2

π2 + π3 pk
.

Thus, the nonzero elements of E(Icomp|y) = E(Icomp|n0, nk) are

E

[
−

∂2`comp

∂π2
1

]
=

n
π2

3
+

n0

π1(π1 + π3 p0)
− n0π1

π2
3(π1 + π3 p0)

− nkπ2

π2
3(π2 + π3 pk)

and

E

[
−

∂2`comp

∂π1∂π2

]
= E

[
−

∂2`comp

∂π2∂π1

]
=

n
π2

3
− n0π1

π2
3(π1 + π3 p0)

− nkπ2

π2
3(π2 + π3 pk)

E

[
−

∂2`comp

∂π2
2

]
=

n
π2

3
− n0π1

π2
3(π1 + π3 p0)

+
nk

π2(π2 + π3 pk)
− nkπ2

π2
3(π2 + π3 pk)

E

[
−

∂2`comp

∂λ2

]
=

nkk
λ2 −

nkkπ2

λ2(π2 + π3 pk)
+

1
λ2

K

∑
j 6=0,k

jnj.

Next, to compute the second term, E(Imiss|y), in Equation (16), we proceed as follows.
The likelihood of the observed and complete data are given in (4) and (5), respectively.
Hence, the likelihood of the missing data is obtained taking the ratio of these likelihoods
and it is given by

Lmiss(π1, π2, λ|z) ∝ π1
na π2

nc (p0π3)
nb (pkπ3)

nd(
1

π1 + π3 p0

)n0
(

1
π2 + π3 pk

)nk

.

Thus, the log-likelihood of the missing data is

`miss(π1, π2, λ|y) ∝ na log(π1) + nc log(π2)− n0 log(π1 + π3 p0)

−nk log(π2 + π3 pk) + (nb + nd) log(π3)

−(nb + nd)λ + (ndk) log(λ). (20)

We can easily check that the first-order partial derivatives are

∂`miss
∂π1

=
na

π1
− n0

(
1− p0

π1 + π3 p0

)
− nb + nd

π3
+

nk pk
π2 + π3 pk

∂`miss
∂π2

=
nc

π2
+ n0

(
p0

π1 + π3 p0

)
− nb + nd

π3
− nk(1− pk)

π2 + π3 pk

∂`miss
∂λ

=
ndk
λ
− (nb + nd) + n0

(
π3 p0

π1 + π3 p0

)
− nkπ3 pk

π2 + π3 pk

(
k
λ
− 1
)

.
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and the negative of the second-order partial derivatives are

−∂2`miss

∂π2
1

=
na

π2
1
− n0(1− p0)

2

(π1 + π3 p0)2 −
nk p2

k
(π2 + π3 pk)2 +

(nb + nd)

π2
3

− ∂2`miss
∂π1∂π2

=
n0 p0(1− p0)
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Once again, using the expected values
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we obtain the elements of E(Imiss|y) = E(Imiss|n0, nk) as follows
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The remaining elements follow by symmetry. Matrices E(Icomp|y) and E(Imiss|y) are
positive definite and so they are non-singular [32,33].
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4. Goodness of Fit and Model Selection

Hypothesis testing usually follows parameter estimation to check the significance of
the parameters. In the presence of competing models, there is a need to compare and find
the best model. There are various measures useful for model comparisons, the most popular
being the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
It is also important to check the goodness of fit of the models. This is accomplished using
the Pearson chi-square statistic and the sum of absolute error. In this section, we will discuss
the aforementioned topics, namely hypothesis testing, model selection, and goodness of fit.

4.1. Hypothesis Testing and Measures of Model Selection

The unknown parameter in the ZkIP distribution is θ = (π1, π2, λ). The parameter λ
is the rate parameter of the Poisson distribution, and thus λ > 0, while π1 represents the
proportion of zeros, π2 is the proportion of k > 0 from the degenerate distributions, and
0 < π1 + π2 < 1. To study the statistical significance of the unknown parameter θ, we can
perform various hypothesis tests. Under standard regularity conditions, the EM estimate
θ̂ of θ is asymptotically normal with mean θ0 and a covariance matrix given by (Îobs)

−1,
where θ0 is its true value, which we assume lies in the interior of the parameter space. We
can use this result to construct a Wald’s test for the null hypothesis H0 : λ = λ0 versus
the alternative H0 : λ 6= λ0. The test statistic λ̂/SE(λ̂) is asymptotically normal. Similarly,
the Wald test could be used to test the hypotheses for a specified proportion π2 = π2

0 of
observations coming from a degenerate distribution at k or a specified proportion π1 = π1

0

coming from the degenerate distribution at zero.
The FMM and Countreg procedures in SAS use the parameters γ = log(π1/π3)

and δ = log(π2/π3) and test for the hypothesis H0 : (γ, δ) = (0, 0). This hypothesis is
equivalent to testing H0 : (π1, π2) = (π0

1 = 1/3, π0
2 = 1/3), which we could do using

Wald’s test because π0
1 = 1/3 and π0

2 = 1/3 are values in the interior of the respective
parameter spaces.

As mentioned in Section 3, when π2 = 0, ZkIP reduces to ZIP, and additionally if
π1 = 0, the model simply is a Poisson distribution. Thus, we can say ZkIP, ZIP, and
Poisson are nested models. We can perform likelihood ratio tests (LRT) for model reduction
for these nested models. To test the significance of inflation at k > 0, the appropriate
hypothesis would be H0 : π2 = 0 versus H1 : π2 > 0. Similarly, the significance of inflation
at zero could be tested by H0 : π1 = 0 versus H1 : π1 > 0. The problem is that the null
hypothesis is on the boundary of the parameter space in both scenarios, and therefore the
regularity conditions are not satisfied. However, Chant [34] and Shapiro [35] have shown
that the test statistic −2 log L(θ̂) is asymptotically distributed under the null hypothesis
as 0.5χ2

0 + 0.5χ2
1, a mixture of chi-square distributions. We could use this result to test

the hypotheses.
To find the best model we could use various criteria, the most popular being the Akaike

information criterion (AIC). It selects the best model based on the expected difference
between the hypothesized model and the observed data. The minimum difference, that is,
the model with minimum AIC, is considered as the best among the analyzed models. The
AIC is given by −2 log L(θ̂) + 2m. Here, log L(θ̂) is the log-likelihood of the model at the
ML estimates, while m is the number of parameters in the model. Recall that for a Poisson
model, there is only one parameter λ. In ZIP there are two parameters, λ and π1, and ZkIP
has an additional parameter π2. Akaike [36] has suggested not just the minimum value of
the AIC that is of relevance, but also the difference between the AICs of various models.
A rule of thumb to select the best model from a set of competing models for data, can be
based on the difference between the AICs as given in Table 2.
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Table 2. Rules of thumb [36] for ∆i = AICi − AICmin.

∆i Level of Empirical Support of Model i

0–2 Substantial
4–7 Considerably less
>10 Essentially none

The other popularly used measure to select the best model is Bayesian information
criterion (BIC). The BIC is given by −2 log L(θ̂) + m log n, where n is the sample size.
Similar to the AIC, the model with the minimum value of BIC among the competing
models is the best. The AIC and BIC both penalize for adding more parameters to the
model. The rules of thumb to study the difference between the BICs are given in Table 3.
To choose the best model, we select the model with the minimum BIC. When the difference,
∆i = BICi − BICmin, is high then there is sufficient evidence against the competing models
and the model with minimum BIC is the best.

Table 3. Rules of thumb [37] for ∆i = BICi − BICmin.

∆i
Evidence Against a Candidate Model to Be

the Best Model

0 ≤ ∆i ≤ 2 Not worth more than a bare mention
2 < ∆i ≤ 6 Positive
6 < ∆i ≤ 10 Strong

∆i > 10 Very strong

4.2. Model Checking

There is also a need to check how well the best model among completing models fits
the data. The goodness of fit of a model is studied using various measures. A commonly
used measure is the Pearson statistic χ2 = ∑(Oi − Ei)

2/Ei, where Oi is the observed
frequency and Ei is the expected frequency of the i-the count. This statistic, under the
null hypothesis, asymptotically follows a chi-square distribution with (κ − 1) degrees of
freedom, where κ is the total number of categories. Large values of the test statistic lead to
rejection of the null hypothesis. For inflated data, the χ2 values are usually high and thus
tend to reject the null hypothesis. In such scenarios, a better measure is the sum of absolute
errors (ABE) given by

sum ABE = ∑ |Oi − Ei|.

We employ these model checking criteria for the analysis of two real-life datasets in
Section 6.

5. Simulations

To study the performance of the proposed EM algorithm, we have conducted some
simulation studies. Data Y = (Y1, . . . , Yn) of sample size n are generated from the ZkIP
distribution with parameter vector θ = (π1, π2, λ). For varying values of θ and values of
n = 200, 500, 1000 and 2000, we simulated N = 10,000 datasets. Using these simulated data,
we compare the performance of the ZkIP model to ZIP and ordinary Poisson using the stan-
dardized bias (SBias), standardized mean squared error (SMSE), and coverage probability
criteria. The SBias and SMSE are more informative than Bias and MSE, respectively, and
thus are preferable [38]. The standardized bias is given by

SBias(θ) = E(θ̂− θ)/θ

≈
( N

∑
i=1

θ̂
i − θ

θ

)
/N
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The standardized mean squared error is given by

SMSE(θ) = E(θ̂− θ)
2
/θ2

≈
( N

∑
i=1

(θ̂
i − θ)2

θ2

)
/N

The coverage probability of the parameters θ is the proportion of times the confidence
interval contains the true value of the parameter. We considered 90%, 95%, and 99%
confidence intervals for all of the parameters and various sample sizes.

5.1. Simulation I

In our first simulation study, we generated data from ZkIP with λ = 2 and a probability
at zero of π1 = 0.2, and assumed that k = 2 is inflated with probability π2 = 0.4. The data
were independently generated N = 10,000 times for each value of n = 200, 500, 1000, and
2000. For ZIP and Poisson models, the standardized bias was negative for each sample
size. This indicates that the models underestimate the parameters. The SBias for ZkIP was
close to zero for all the parameters and all the sample sizes. Similarly, the SMSE was the
smallest for the parameters of the ZkIP model, irrespective of the sample size. As expected,
the SMSE decreased as the sample size increased. In this simulation exercise, we observed
that the mean estimated values of the ZkIP parameters are close to the true values, and
the SBias and SMSE are very close to zero (see Tables 4 and 5). Thus, we conclude that the
performance of the proposed EM algorithm is precise and accurate in this case.

To obtain the confidence intervals, we evaluated the EM estimates and SE of the pa-
rameters at each iteration using the methods proposed in Sections 3.1 and 3.2, respectively.
Table 6 shows that for all confidence levels (90%, 95%, and 99%), the coverage probabilities
are close to the nominal levels for all the parameters irrespective of the sample size.

Table 4. Comparison of standardized bias (SBias) of the simulated data. True values λ = 2, π1 = 0.2,
π2 = 0.4, and k = 2.

n Parameters ZkIP ZIP Poisson

2000 λ̂ −0.0002 −0.1076 −0.2007
π̂1 0.0020 −0.4785 –
π̂2 < 0.0001 – –

1000 λ̂ −0.0015 −0.1081 −0.2006
π̂1 −0.0016 −0.4825 –
π̂2 < 0.0001 – –

500 λ̂ 0.0014 −0.1070 −0.2002
π̂1 0.0009 −0.4798 –
π̂2 0.0021 – –

200 λ̂ 0.0025 −0.1063 −0.1987
π̂1 −0.0085 −0.4865 –
π̂2 0.0025 – –
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Table 5. Comparison of standardized MSE (SMSE) of the simulated data. True values λ = 2, π1 = 0.2,
π2 = 0.4, and k = 2.

n Parameters ZkIP ZIP Poisson

2000 λ̂ 0.0009 0.0118 0.0405
π̂1 0.0031 0.2329 –
π̂2 0.0013 – –

1000 λ̂ 0.0019 0.0121 0.0406
π̂1 0.0063 0.2408 –
π̂2 0.0025 – –

500 λ̂ 0.0037 0.0123 0.0408
π̂1 0.0122 0.2453 –
π̂2 0.0053 – –

200 λ̂ 0.0095 0.0135 0.0413
π̂1 0.0328 0.2769 –
π̂2 0.0125 – –

Table 6. Comparison of coverage probabilities of the simulated data. True values λ = 2, π1 = 0.2,
π2 = 0.4, and k = 2.

n Parameters 90% 95% 99%

2000 λ̂ 0.8920 0.9440 0.9890
π̂1 0.8970 0.9590 0.9930
π̂2 0.8910 0.9530 0.9930

1000 λ̂ 0.8950 0.9430 0.9860
π̂1 0.9070 0.9500 0.9890
π̂2 0.9070 0.9550 0.9880

500 λ̂ 0.9030 0.9600 0.9900
π̂1 0.9080 0.9630 0.9920
π̂2 0.8930 0.9540 0.9880

200 λ̂ 0.9090 0.9520 0.9850
π̂1 0.9110 0.9590 0.9940
π̂2 0.8970 0.9550 0.9950

5.2. Simulation II

In our second simulation study, we generated data from ZkIP (λ = 5, π1 = 0.4, and
π2 = 0.1), and the inflation points were zero and k = 3. For each sample size n = 200,
500, 1000, and 2000 we generated N = 10,000 datasets. The average estimated value of λ
for the N replications using our method for the ZkIP model is 4.9950 ≤ λ̂ ≤ 5.0024 for all
the sample sizes. Similarly, the ranges of the average estimated values of π1 and π2 for
N replications are 0.3995 ≤ π̂1 ≤ 0.4003, and 0.0994 ≤ π̂2 ≤ 0.1004, respectively. These
results clearly demonstrate that our method of estimation is very precise and accurate.
Table 7 contains the standard bias (SBias) calculated from the simulated data. The SBias
is at a minimum and close to zero for all the parameters of the ZkIP model and for all the
sample sizes. The SMSE values are also less for the ZkIP model compared to the ZIP and
Poisson models for all the parameters and for all the sample sizes, as shown in Table 8.
Thus, the proposed EM algorithm efficiently estimates the true parameters in this second
simulation study as well. This conclusion is also supported by the coverage probabilities,
which are close to nominal levels, especially for large sample sizes (see Table 9).
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Table 7. Comparison of standardized bias (SBias) of the simulated data. True values λ = 5, π1 = 0.4,
π2 = 0.1, and k = 3.

n Parameters ZkIP ZIP Poisson

2000 λ̂ <0.0001 −0.0707 −0.4397
π̂1 −0.0012 −0.0072 –
π̂2 0.0044 – –

1000 λ̂ 0.0005 −0.0698 −0.4399
π̂1 0.0008 −0.0052 –
π̂2 −0.0062 – –

500 λ̂ −0.0010 −0.0712 −0.4399
π̂1 −0.0013 −0.0073 –
π̂2 −0.0042 – –

200 λ̂ <0.0001 −0.0700 −0.4397
π̂1 <0.0001 −0.0061 –
π̂2 −0.0096 – –

Table 8. Comparison of standardized MSE (SMSE) of the simulated data. True values λ = 5, π1 = 0.4,
π2 = 0.1, and k = 3.

n Parameters ZkIP ZIP Poisson

2000 λ̂ 0.0002 0.0052 0.1935
π̂1 0.0007 0.0008 –
π̂2 0.0094 – –

1000 λ̂ 0.0005 0.0052 0.1938
π̂1 0.0016 0.0016 –
π̂2 0.0188 – –

500 λ̂ 0.0009 0.0057 0.1942
π̂1 0.0031 0.0031 –
π̂2 0.0352 – –

200 λ̂ 0.0024 0.0066 0.1950
π̂1 0.0073 0.0074 –
π̂2 0.0937 – –

Table 9. Comparison of coverage probabilities of the simulated data. True values λ = 5, π1 = 0.4,
π2 = 0.1, and k = 3.

n Parameters 90% 95% 99%

2000 λ̂ 0.9010 0.9560 0.9930
π̂1 0.9110 0.9500 0.9920
π̂2 0.9020 0.9510 0.9920

1000 λ̂ 0.9100 0.9500 0.9880
π̂1 0.8990 0.9510 0.9870
π̂2 0.9150 0.9610 0.9870

500 λ̂ 0.9080 0.9540 0.9900
π̂1 0.8950 0.9540 0.9920
π̂2 0.9260 0.9680 0.9900

200 λ̂ 0.9061 0.9566 0.9899
π̂1 0.9162 0.9626 0.9949
π̂2 0.9263 0.9636 0.9869

6. Applications

In this section, we illustrate the application of the zero- and k-inflated Poisson (ZkIP)
model to analyze two real-life dataset examples. The first example (sunburn data) has
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counts zero and one which are inflated, and the second example (off days data) has inflated
frequencies for zero and count k = 2. Both datasets were extracted from the National Health
Interview Survey (NHIS) conducted by the National Center for Health Sciences (NCHS)
in 2010. The NHIS has questionnaires and sampling designs for collecting data from US
residents. NHIS collects data annually on topics related to health such as immunizations,
depression, hepatitis, cancer, use of tobacco, and other variables related to the health and
demographics of the subjects.

6.1. Sunburn Data

In this example, we study the prevalence of sunburn in adults in the US. It has been
established that sunburn is one of the leading causes of developing skin cancer. Here, the
response variable is the number of times the sunburn has occurred in the last 12 months.
The sample data were collected on 3917 subjects. The mean and variance of the sample
are 0.69 and 1.60, respectively. There are 64.05% of zeros and 19.35% of ones. The zeros
are more than 50%, which strongly indicates the existence of inflation at zero, while one is
probably also inflated. We first fit the Poisson model to the data and its inflated extensions.
The results are shown in Table 10. All the unknown parameters (π1, π2, λ) are significant in
all of the models. The estimated proportion of inflation at zero for ZIP is 0.54 and for ZOIP
it is 0.61. From the ZOIP, the inflation at k = 1 is 0.13. The LRT statistic between ZIP and
Poisson is −2 log L = 977.16, and the p-value is <0.0001. Thus, we reject the null hypothesis
and conclude that the inflation at zero is significant or the ZIP model fits significantly better
than the simple Poisson distribution. Similarly, comparing the ZOIP model to the ZIP
model, the LRT statistic is −2 log L = 155.78 and the p-value is < 0.0001. The AIC is 8982.41
and the BIC is 9026.05 for the ZOIP model. The AIC difference between ZOIP and ZIP is
∆ZIPAIC = 153.78, while that between ZOIP and Poisson is ∆PoissonAIC = 1128.94. Similarly,
the BIC difference between ZOIP and ZIP is ∆ZIPBIC = 122.68 and ∆PoissonBIC = 1099.84.
According to the AIC and BIC rules of thumb mentioned in Tables 2 and 3, the ZOIP model
gives the best fit when compared to the ZIP and Poisson models.

Table 10. Parameter estimates for sunburn data.

Parameters ZOIP ZIP Poisson

λ̂ 2.1415 * 1.4868 * 0.6906 *
(0.0739) (0.0357) (0.0133)

π̂1 0.6096 * 0.5355 * –
(0.0093) (0.0104)

π̂2 0.1273 * – –
(0.0167)

−2 log L 8976.41 9132.19 10,109.35
AIC 8982.41 9136.19 10,111.35
BIC 9026.05 9148.73 10,125.89

* These estimates are significant.

A comparison between observed and expected frequencies from the ZOIP, ZIP, and
Poisson models is shown in Table 11. The expected frequencies from the Poisson model are
not close to the observed frequencies and thus the sum of absolute error and χ2 values are
very high. The ZIP model shows an improvement. It perfectly captures the inflation at zero
but it does not provide a good fit for counts 1 to 8. The ZOIP model captures the inflations
both at zero and at count one. The sum of absolute error is equal to 274.92 and χ2 = 309.22;
both these numbers are smaller when compared to the other two models. For these data,
the ZOIP model seems to be the best based on LRT, AIC, and BIC criteria. It also fits the
data best based on absolute error and chi-square goodness of fit measures. The estimated
inflation at zero is about 61% and at one is about 13%, and clearly both are significant.
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Table 11. Observed and expected frequencies of sunburn data.

Count Observed
Frequency ZOIP ZIP Poisson

0 2509 2508.87 2508.94 1963.53
1 758 757.90 611.63 1355.98
2 374 277.61 454.67 468.20
3 127 198.17 225.33 107.78
4 40 106.09 83.75 18.61
5 47 45.44 24.90 2.57
6 27 16.22 6.17 0.30
7 19 4.96 1.31 0.03
8 16 1.33 0.24 0.003

ABE – 274.92 445.56 1384.36
χ2 – 309.22 1462.95 117,569.90

6.2. Off Days Data

Back pain is a chronic disease among adults, and occasionally it can be severe, forcing
many to take days off from work. In these off days data, the count variable is the number
of days off taken due to back pain. The number of people surveyed was 2548. The sample
mean and variance are 0.37 and 0.88, respectively. In the data, the zeros are 83% and 10%
are equal to 2. Both these proportions are indicators of inflation and suggest that ZkIP
with k = 2 may be an appropriate model. We first fitted the simpler Poisson model for
comparison purposes. Due to the high proportions of zeros, we then implemented the
zero-inflated Poisson (ZIP) model. Furthermore, to test the significance of inflation at
two, we embarked on the zero- and k-inflated Poisson (ZkIP) model. The estimates and
standard errors of the parameters are in Table 12. The rate parameter, λ, is significant in all
three models. The ZIP and ZkIP models have a significant π1. The ZkIP model also has a
significant π2, indicating that along with the significant inflation at zero there is significant
inflation at count 2. Table 12 also lists the negative log-likelihood, AIC, and BIC values for
the models.

The comparison between ZIP and ZkIP models based on the LRT criterion gives a
p-value less than 0.0001. Thus, the ZkIP model is significantly better than the ZIP model.
The p-value for comparing Poisson and ZIP is also very small (< 0.0001). Thus, ZIP is
significantly better than Poisson. Since the models are nested, we can conclude that ZkIP
outperforms both the ZIP and the Poisson models. Now, using the AIC and BIC criteria, the
best model turns out to be ZkIP. Furthermore, the ∆ZIPAIC difference between the ZIP and
ZkIP model is 166.29, while ∆PoissonAIC = 1335.28. This clearly indicates that empirically
there is no significant support for the Poisson or ZIP models. Similarly, when comparing the
models using the BIC criterion, ∆PoissonBIC = 1339.28 >> 10 and ∆ZIPBIC = 168.29 >> 10.

Table 12. The model description of off days data.

Parameters ZkIP ZIP Poisson

λ̂ 2.0674 * 1.8569 * 0.3662 *
(0.1075) (0.0869) (0.0120)

π̂1 0.8204 * 0.8028 * –
(0.0075) (0.0089)

π̂2 0.0755 * – –
(0.0121)

−2 log L 3321.44 3489.73 4660.72
AIC 3327.44 3493.73 4662.72
BIC 3337.13 3505.42 4676.41

* These estimates are significant.
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The goodness of fit measures are shown in Table 13. The expected frequencies from
the Poisson model are nowhere close to the observed frequencies, resulting in a high sum
of absolute error and χ2 statistic. The ZIP model is able to capture the inflation at zero and
thus has a relatively low error when compared to the Poisson model. The ZkIP model,
along with inflation at zero, also captures the inflation at count two, thus it gives a good fit
to all the counts. The sum of absolute error and χ2 statistic is at a minimum for the ZkIP
model. Thus, the statistical significance of inflation parameters, π1 and π2, in Table 12, and
the minimum value for the sum of absolute errors indicates that the ZkIP model is a good
model for this off days dataset.

Table 13. Observed and expected frequencies of the off days dataset.

Count Observed
Frequency ZkIP ZIP Poisson

0 2124 2123.94 2123.99 1766.75
1 84 69.38 145.70 646.93
2 264 264.01 135.27 118.44
3 25 49.42 83.73 14.46
4 23 25.54 38.87 1.32
5 14 10.56 14.43 0.10

>5 14 3.64 4.47 0.06

ABE – 55.54 274.99 1125.86
χ2 – 46.02 216.65 36,207.74

7. Discussion

This article proposes a mixture model, ZkIP, for grouped count data with high fre-
quencies for zero and another count of k > 0. The ZIP and kIP models are special cases
of the ZkIP model. The ZkIP model has just one more parameter than ZIP and kIP, and it
captures both the inflation at zero and k. Hence, the ZkIP model is a parsimonious model
for studying doubly inflated count data. The model provides more accurate estimates of the
probabilities when compared to the model for ungrouped data. The estimated probabilities
at zero and k give the estimated count of zeros and ks in excess. The ZkIP model has
applications in manufacturing, transportation, econometrics, ecology, and other disciplines.
An algorithm is developed using the expectation–maximization (EM) approach to obtain
the ML estimates for the ZkIP model. This is a computationally fast approach and extends
the estimation method first proposed by Lambert [1] to study the ZIP model. To obtain the
standard errors, instead of using the Hessian matrix, we implement the method given by
Louis [29] that is based on complete data. We illustrate our algorithm and methodologies
on two simulated and two real-life examples from health science. Using various criteria,
we show that the ZkIP model is the most appropriate model for the sample data. We
are currently extending our methods for zero- and k-inflated Conway–Maxwell–Poisson
distributions for grouped and ungrouped data.

Author Contributions: Conceptualization, N.R.C.; data curation, M.A. and N.R.C.; writing—original
draft, M.A. and N.R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are openly available in
“Data Files” at https://www.cdc.gov/nchs/nhis/1997-2018.htm (accessed on 27 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.cdc.gov/nchs/nhis/1997-2018.htm


Analytics 2023, 2 282

References
1. Lambert, D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 1992, 34, 1–14.

[CrossRef]
2. Ghosh, S.K.; Mukhopadhyay, P.; Lu, J.C. Bayesian analysis of zero-inflated regression models. J. Stat. Plan. Inference 2006,

136, 1360–1375. [CrossRef]
3. Agarwal, D.K.; Gelfand, A.E.; Citron-Pousty, S. Zero-inflated models with application to spatial count data. Environ. Ecol. Stat.

2002, 9, 341–355. [CrossRef]
4. Min, Y.; Agresti, A. Random effect models for repeated measures of zero-inflated count data. Stat. Model. 2005, 5, 1–19. [CrossRef]
5. Yau, K.; Lee, A. Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention programme.

Stat. Med. 2001, 20, 2907–2920. [CrossRef] [PubMed]
6. Saffari, S.E.; Adnan, R. Zero-inflated Poisson regression models with right censored count data. Matematika 2011, 27, 21–29.
7. Yang, Y.; Simpson, D.G. Conditional decomposition diagnostics for regression analysis of zero-inflated and left-censored data.

Stat. Methods Med. Res. 2012, 21, 393–408. [CrossRef]
8. Nguyen, V.T.; Dupuy, J.F. Asymptotic results in censored zero-inflated Poisson regression. Commun. Stat. Theory Methods 2021,

50, 2759–2779. [CrossRef]
9. Altun, E. A new zero-inflated regression model with application. J. Stat. Stat. Actuar. Sci. 2018, 2, 73–80.
10. Bakouch, H.; Chesneau, C.; Karakaya, K.; Kuş, C. The Cos–Poisson model with a novel count regression analysis. Hacet. J. Math.

Stat. 2021, 50, 559 –578. [CrossRef]
11. Gupta, P.L.; Gupta, R.C.; Tripathi, R.C. Analysis of zero-adjusted count data. Comput. Stat. Data Anal. 1996, 23, 207–218.

[CrossRef]
12. Umbach, D. On inference for a mixture of a Poisson and a degenerate distribution. Commun. Stat. Theory Methods 1981,

10, 299–306. [CrossRef]
13. Lord, D.; Washington, S.P.; Ivan, J.N. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes:

Balancing statistical fit and theory. Accid. Anal. Prev. 2005, 37, 35–46. [CrossRef]
14. Qin, X.; Ivan, J.N.; Ravishanker, N. Selecting exposure measures in crash rate prediction for two-lane highway segments. Accid.

Anal. Prev. 2004, 36, 183–191. [CrossRef]
15. Ridout, M.; Demetrio, C.; Hinde, J. Models for count data with many zeros. In Proceedings of the International Biometric

Conference, Cape Town, South Africa, 14–18 December 1998.
16. Welsh, A.; Cunningham, R.; Donnelly, C.; Lindenmayer, D. Modelling the abundance of rare species: Statistical models for counts

with extra zeros. Ecol. Model. 1996, 88, 297–308. 10.1016/0304-3800(95)00113-1. [CrossRef]
17. Atkins, D.; Gallop, R. Rethinking how family researchers model infrequent outcomes: A tutorial on count regression and

zero-inflated models. J. Fam. Psychol. 2007, 21, 726–735. [CrossRef] [PubMed]
18. Loeys, T.; Moerkerke, B.; De Smet, O.; Buysse, A. The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.

Br. J. Math. Stat. Psychol. 2012, 65, 163–180. [CrossRef] [PubMed]
19. Salehi, M.; Roudbari, M. Zero-inflated Poisson and negative binomial regression models: application in education. Med. J. Islam.

Repub. Iran 2015, 29, 297.
20. Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data; Cambridge Press: London, UK, 2013.
21. Greene, W. Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models; Working Papers;

New York University: New York, NY, USA, 1994.
22. Gurmu, S.; Trivedi, P. Excess zeros in count models for recreational trips. J. Bus. Econ. Stat. 1996, 14, 469–477.
23. Motalebi, N.; Owlia, M.S.; Amiri, A.; Fallahnezhad, M.S. Monitoring social networks based on zero-inflated Poisson regression

model. Commun. Stat. Theory Methods 2023, 52, 2099–2115. [CrossRef]
24. Arora, M.; Chaganty, N.R. EM estimation for zero- and k-inflated Poisson regression model. Computation 2021, 9, 94. [CrossRef]
25. Lin, T.H.; Tsai, M.H. Modeling health survey data with excessive zero and k responses. Stat. Med. 2012, 32, 1572–1583. [CrossRef]

[PubMed]
26. Sheth-Chandra, M.; Chaganty, N.R.; Sabo, R.T. A Doubly Inflated Poisson Distribution and Regression Model; Springer International

Publishing: Berlin, Germany, 2019; pp. 131–145.
27. Arora, M.; Kalyani, Y.; Shanker, S. A comparative study on inflated and dispersed count data. In Proceedings of the 10th

International Conference on Data Science, Technology and Applications (DATA 2021), Online, 6–8 July 2021; Volume 1, pp. 29–38.
28. Martínez-Flórez, G.; Bolfarine, H.; Gómez, H.W. Doubly censored power-normal regression models with inflation. TEST 2015,

24, 265–286. [CrossRef]
29. Louis, T.A. Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. (Methodol.) 1982,

44, 226–233.
30. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser.

(Methodol.) 1977, 39, 1–22.
31. Schervish, M.J. Theory of Statistics; Springer: New York, NY, USA, 1995.
32. Rao, C.R. Linear Statistical Inference and Its Applications; John Wiley and Sons Inc.: New York, NY, USA, 1965.
33. Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am.

Math. Soc. 1943, 54, 426–482. [CrossRef]

http://doi.org/10.2307/1269547
http://dx.doi.org/10.1016/j.jspi.2004.10.008
http://dx.doi.org/10.1023/A:1020910605990
http://dx.doi.org/10.1191/1471082X05st084oa
http://dx.doi.org/10.1002/sim.860
http://www.ncbi.nlm.nih.gov/pubmed/11568948
http://dx.doi.org/10.1177/0962280210387525
http://dx.doi.org/10.1080/03610926.2019.1676442
http://dx.doi.org/10.15672/hujms.740872
http://dx.doi.org/10.1016/S0167-9473(96)00032-1
http://dx.doi.org/10.1080/03610928108828039
http://dx.doi.org/10.1016/j.aap.2004.02.004
http://dx.doi.org/10.1016/S0001-4575(02)00148-3
http://dx.doi.org/10.1016/0304-3800(95)00113-1
http://dx.doi.org/10.1037/0893-3200.21.4.726
http://www.ncbi.nlm.nih.gov/pubmed/18179344
http://dx.doi.org/10.1111/j.2044-8317.2011.02031.x
http://www.ncbi.nlm.nih.gov/pubmed/21950803
http://dx.doi.org/10.1080/03610926.2021.1945103
http://dx.doi.org/10.3390/computation9090094
http://dx.doi.org/10.1002/sim.5650
http://www.ncbi.nlm.nih.gov/pubmed/23055240
http://dx.doi.org/10.1007/s11749-014-0406-2
http://dx.doi.org/10.1090/S0002-9947-1943-0012401-3


Analytics 2023, 2 283

34. Chant, D. On asymptotic tests of composite hypotheses in nonstandard conditions. Biometrika 1974, 61, 291–298. [CrossRef]
35. Shapiro, A. Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika

1985, 72, 133–144. [CrossRef]
36. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
37. Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [CrossRef]
38. Mallick, A.; Joshi, R. Parameter Estimation and Application of Generalized Inflated Geometric Distribution. J. Stat. Theory Appl.

2018, 17, 491. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/biomet/61.2.291
http://dx.doi.org/10.1093/biomet/72.1.133
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.2991/jsta.2018.17.3.7

	Application of Mixture Models for Doubly Inflated Count Data
	Original Publication Citation

	Introduction
	Distributions
	Methodology
	EM Estimation
	Standard Errors of EM Estimates

	Goodness of Fit and Model Selection
	Hypothesis Testing and Measures of Model Selection
	Model Checking

	Simulations
	Simulation I
	Simulation II

	Applications
	Sunburn Data
	Off Days Data

	Discussion
	References

