
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Faculty
Publications Electrical & Computer Engineering

2020

Distributed Strategy for Power Re-Allocation in High Performance Distributed Strategy for Power Re-Allocation in High Performance

Applications Applications

Vaibhav Sundriyal
Old Dominion University, vsundriy@odu.edu

Masha Sosonkina
Old Dominion University, msosonki@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs

 Part of the Power and Energy Commons, and the Theory and Algorithms Commons

Original Publication Citation Original Publication Citation
Sundriyal, V., & Sosonkina, M. (2020). Distributed strategy for power re-allocation in high performance
applications. Journal of Computer and Communications, 8(12), 142-158. https://doi.org/10.4236/
jcc.2020.812014

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4236/jcc.2020.812014
https://doi.org/10.4236/jcc.2020.812014
mailto:digitalcommons@odu.edu

Journal of Computer and Communications, 2020, 8, 142-158
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2020.812014 Dec. 25, 2020 142 Journal of Computer and Communications

Distributed Strategy for Power Re-Allocation in
High Performance Applications

Vaibhav Sundriyal, Masha Sosonkina

Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia, USA

Abstract
To improve the power consumption of parallel applications at the runtime,
modern processors provide frequency scaling and power limiting capabilities.
In this work, a runtime strategy is proposed to distribute a given power allo-
cation among the cluster nodes assigned to the application while balancing
their performance change. The strategy operates in a timeslice-based manner
to estimate the current application performance and power usage per node
followed by power redistribution across the nodes. Experiments, performed
on four nodes (112 cores) of a modern computing platform interconnected
with Infiniband showed that even a significant power budget reduction of
20% may result in a performance degradation of as low as 1% under the pro-
posed strategy compared with the execution in the unlimited power case.

Keywords
Multinode Power Allocation, RAPL, UFS, DVFS, Maximizing Performance,
Component Power

1. Introduction

Power and the subsequent energy consumptions pose major challenges in de-
signing large-scale systems. With the advent of exascale machines, efficient power
use, at both software and hardware levels, has become imperative for managing
operating costs and failure rates. Maximizing the performance-per-watt value
for multinode architectures means that the available power should be appro-
priately distributed among nodes for optimal performance. All modern exascale
computing platforms feature multinode configuration. For example, one of the
world fastest supercomputers Summit has more than 4600 compute nodes, each
containing several processors (CPUs) and graphics processing units (GPUs) [1].
During computation, CPUs offload highly parallelizable code segments to GPUs

How to cite this paper: Sundriyal, V. and
Sosonkina, M. (2020) Distributed Strategy
for Power Re-Allocation in High Perfor-
mance Applications. Journal of Computer
and Communications, 8, 142-158.
https://doi.org/10.4236/jcc.2020.812014

Received: September 2, 2020
Accepted: December 22, 2020
Published: December 25, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

~
,..♦!+♦ Scientific
....,; ~♦ Research
~♦•♦ Publishing

Email: vsundriy@odu.edu, msosonki@odu.edu

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.812014
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.812014
http://creativecommons.org/licenses/by/4.0/

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 143 Journal of Computer and Communications

for further acceleration.
In order to operate a system under a given power allocation, it should have

components with a capability to regulate their individual power consumption.
For example, modern generations of Intel processors enable dynamic voltage
and frequency scaling (DVFS) and throttling (idle cycles) to control the power
consumption of the processor. Additionally, Intel processors since the Sandy
Bridge model have capabilities for both on-board power meters and power
clamping through the Intel Running Average Power Limit (RAPL) [2] interface.
Beginning from the Intel Haswell microarchitecture, the core and uncore pro-
cessor subsystems have been decoupled into PP0 and PP1 domains, respectively,
so that the uncore frequency can be modified independently of the core fre-
quency in the entire package (PKG) domain. Note that the uncore subsystem
contains “non-computational” processor functions, such as quick path inter-
connect (QPI) controllers, L3 cache, and on-die memory controller.

This work proposes a runtime strategy that redistributes a given power alloca-
tion among the compute nodes on which an application runs in a cluster such
that the application experiences a minimal performance degradation. The strat-
egy operates in a manner transparent to the application and utilizes a timeslice
based approach to periodically monitor application performance and power usage
per node. The strategy equalizes power usage among the participating nodes af-
ter each timeslice. Note that the network components have not been considered
in this work as power re-allocation in the switch for multinode exascale systems
is not possible whereas the local network interface card, such as the Infiniband
host channel adapter (HCA), has minimal power consumption. In a nutshell, the
contributions of this work include
 Proposed a runtime strategy that distributes a given power budget among

nodes such that the performance change per node is equalized.
 Developed an algorithm that implements the strategy and chooses appropri-

ate operating frequencies to accommodate the redistributed power budget.
 Shown that the developed algorithm has a low parallel overhead incurred by

its communication mechanism proposed here.
 Established a novel usage of the performance and power models to equalize

the performance change due to varying workloads per node in distributed
computing environments.

The rest of the paper is organized as follows. Section 2 provides the related
work. Section 3 discusses the hardware capabilities of the CPU devices used in
this work with respect to the frequency scaling and power capping. Section 4
deals with power and performance models utilized in the runtime strategy. Sec-
tion 5 provides details of the implementation of the runtime strategy. Section 6
shows experimental results and Section 7 concludes the paper.

2. Related Work

Much research has been already conducted to measure, model, and budget pow-
er on computer components and systems. For budgeting the power in modern

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 144 Journal of Computer and Communications

computing systems, the strategies primarily come in two forms: 1) DVFS and/or
CPU throttling for processor and memory and 2) hardware-enforced power
bounds using RAPL [2]. The work in [3] proposes a multi-input multi-output
(MIMO) power control algorithm for distributing a specified power budget be-
tween the PKG and DRAM domains to maximize the application performance.
Machine learning to determine the sensitivity of application performance with
respect to PKG and DRAM power capping was studied in [4] to devise a strategy
for power budgeting. A strategy termed conductor was proposed in [5] that,
given a power budget, utilized configuration space exploration and adaptive
power balancing for maximizing application performance. The work [6] pro-
poses a multilevel power distribution framework termed CLIP that estimates a
per-node power cap by utilizing the workload characteristics and memory ac-
cesses to determine processor and memory affinity.

An interpolation method is proposed in [7] that characterizes the effects of
strong scaling on an application with varying power distribution between pro-
cessor and memory. The method is then tested in an overprovisioned system to
obtain significant speedups compared to an uncapped system. The work in [8]
discusses a hardware-level power capping strategy for limiting DRAM power
consumption. Authors in [9] propose a design of a power scheduler capable of
enforcing power bounds by using dynamic system-wide power reallocation. Au-
thors in [10] propose Uncore Power Scavenger, a runtime system that dynami-
cally detects phase changes in application and determines the best uncore fre-
quency for every phase to save power without significant impact on the perfor-
mance. [11] proposes a daemon process DUF, which dynamically adapts the
uncore frequency to reduce an application power consumption with a user-given
performance degradation. Authors in [12] develop a multi-domain power man-
agement framework SysScale to improve the energy efficiency of mobile devices
by using DVFS and domain specific parameters. Although [10] [11] [12] con-
sider the uncore domain, they do so by relying on heuristics rather than on spe-
cific performance and power models as done in the present work. In addition,
the uncore domain is investigated in the multinode setting here.

3. CPU and Communication Capabilities for Power
Reallocation

The components of an Intel processor can belong either to the “core” or the
“uncore” subsystem in a chip. The core subsystem consists of compute cores
along with the caches (L1 and L2). The uncore subsystem comprises the rest of
the components such as L3 cache, memory controller, and the Intel Quickpath
interconnect (QPI). Prior to the Intel Haswell generation, the core and uncore
subsystems ran at the same frequency. Since the Haswell generation, the Intel
processors have separate frequency domains for the core and uncore subsystems.
In general, the Intel Running Average Power Limit (RAPL) interface [2] pro-
vides model-specific registers (MSR)’s containing energy consumption estimates
for up to four power domains of a machine as follows:

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 145 Journal of Computer and Communications

 PKG: for the entire package,
 PP0: for the core subsystem,
 PP1: for the uncore subsystem (available in client-type platforms only, main-

ly used for general-purpose applications),
 DRAM: main memory (available in server-type machines only).

Intel has also introduced a mechanism, termed uncore frequency scaling
(UFS), which allows the user to change the uncore frequency on-the-fly. A pro-
cedure of modifying the uncore frequency at the runtime via the MSR 0x620 has
been described in authors’ previous work [13]. Note that, a UFS procedure has
to be used to adjust the uncore power consumption on the Intel server-type
platforms since, at present, they do not have a dedicated interface to the PP1
(uncore) power domain as opposed to the PP0 (core) one. For the work in this
paper, only the server-type platforms have been considered since they enable
power adjustments of DRAM, which is critical for the proposed strategy and ef-
ficient application execution, in general as explained in Section 4. In a nutshell,
the proposed strategy first—similarly to the work in [14]—aims at shifting pow-
er between the PP0 and PP1 domains in a node once the power needs of the
DRAM domain are fulfilled. Next, the power re-allocation is performed across
the nodes using the platform communication subsystem, which is typically Infi-
niband [15] in modern computing platforms. Infiniband features high-bandwidth
low-latency interconnect across which it provides direct memory-to-memory
transfers with no intermediate buffering or copying. The latest Infiniband type,
EDR—which is used here—features bandwdith and latency of 100 Gb/s and 0.5
μs, respectively. It also has kernel bypass, which facilitates direct user-level access
to the hardware Host Channel Adapter (HCA) with no CPU intervention during
data transfers.

4. Intranode Performance and Power Modeling

In general, an application cannot be either compute- or memory-intensive in its
entirety especially since the workload behavior of an application varies throughout
its execution. Hence, for effective distribution of the given power budget, a
fine-grained performance and power modeling approach is needed, which con-
siders small segments of execution, termed timeslices. Timeslices of equal dura-
tion on the order of frequency scaling overhead, such as 250 ms intervals, have
proven to be a good choice in the earlier work (see e.g., [16]) and are considered
here for power allocation. Without a timely detection of memory- or com-
pute-intensive workload, the application performance degradation may increase
way beyond the 10% of a commonly acceptable performance loss for ener-
gy-saving purposes [17]. For example, a more than 600% increase in the execu-
tion time was observed for a memory-intensive NAS parallel benchmark CG
when the DRAM power was clamped below its maximal usage of 8 W [18]. Due
to a possibility of such a disastrous effect on the performance from reducing the
DRAM power allocation, the DRAM domain should given the highest priority in

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 146 Journal of Computer and Communications

power allocation among all the components/domains within a node once the
power budget for that particular node has been determined. Then, the remaining
power budget is apportioned within PKG (core and uncore components) in ac-
cordance with performance and power models developed by the authors earlier
in [14]. A similar power redistribution has been performed recently in the work
of Gholkar et al. [10]. For the sake of completeness and reference, the rest of
Section 4 reproduces nearly verbatim the performance and power models from
[14], which are used as a backbone in the runtime strategy described in Section
5.

4.1. Performance Model

The model in Equation (1) correlates the application performance, expressed in
micro-operations retired, with particular core ()cf i and uncore ()uf j fre-
quencies expressed by their corresponding levels, from the highest to lowest,
, 1, ,i i N= and , 1, ,j j M= .

() ()
()
() ()exe

, ,
CPM MAPM

1

c

c
j

c

f i
i j

f i
f

µτ
α β

=
+ × ×

 (1)

where
(),i jµτ is the number of micro-operations retired per second at core fre-

quency ()cf i and uncore frequency ()uf j .

exeCPM is the number of cycles per micro-operation retired barring the
memory accesses in a second.

α (0 1α≤ ≤) is the out-of-core (OOO) overlap factor, which determines the
extent of the memory access stalls overlapped with the execution cycles.

MAPM is the number of memory accesses per micro-operation retired in a
second.

jβ is the number of cycles corresponding to the memory access latency at the
uncore frequency ()uf j .

4.2. Power Model

The processor power consumption, denoted (),TP i j , can be expressed as:

 () () ()3 3
1 2 3, ,T s c uP i j P k f i k f j k= + × + × + (2)

where 1k , 2k , and 3k are constants and ()cf i and ()uf j are the core and
uncore frequencies, respectively. sP stands for the processor static power con-
sumption, which was measured as 134 W through RAPL. Since uncore (PP1)
power limiting is not supported in Intel server processors, the power model in
Equation (2) is required to relate the power consumption of core/uncore do-
mains to the corresponding levels of core/uncore frequencies. Parameters 1k
and 2k were determined by a regression analysis of the processor power ob-
tained through the RAPL registers at different core and uncore frequencies for
several benchmarks. The values 1k and 2k were found to be 0.94 and 0.48,

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 147 Journal of Computer and Communications

respectively, indicating that changes in the core frequency affect the processor
power consumption more than those in the uncore frequency do so.

Given a power budget for the three domains—PP0, PP1, and DRAM—in a
server-type platform, the shifting of power between the core and uncore do-
mains is essentially done by first modifying the uncore frequency and then
shifting the corresponding reduction in power to increase the power limit for the
core domain to maximize the performance. Equation (3) shows how the power is
transferred to the core domain (within the PKG domain) through UFS:

 () () ()()PKG RAPL-MEM 1 21, 1, .B T TP P P P j P j= − + − (3)

Specifically, Equation (3) sets the PKG power allocation PKGP as the sum of the
total power budget BP minus the DRAM power consumption RAPL-MEMP and
the difference in processor power consumption when the uncore frequency is
switched from level 1j to 2j . In this manner, the reduction in power obtained
through UFS is transferred to the PKG power allocation to increase the core
frequency. It can be noted here that this work considers the power budgeting for
only PP0, PP1, and DRAM domains rather than that for the entire node because
it is assumed here that the application execution does not concern the power
consumption of the other node components.

5. Design and Implementation of the Runtime Strategy

This section first outlines the proposed novel runtime strategy for power allo-
cating among cluster nodes executing a high-performance application. Then, it
describes in detail the algorithmic steps implementing the strategy.

The proposed strategy employs a hierarchical approach for maximizing per-
formance of a parallel application on a cluster. First, it divides equally the given
power budget among the distributed nodes. Then, within a node, it allocates the
power among three power domains, such as core, uncore, and DRAM. In each
timeslice, the strategy gathers performance counter information for each partic-
ipating core. Then, by utilizing the established power and performance models,
the strategy determines the maximal core and uncore frequencies for each node.
Next, the performance change in each node is determined for the case when the
core/uncore frequency may be switched to these maximal frequency admissible
by the given power budget. The average of these performance changes is consi-
dered in shifting the power allocation across the nodes to the extent that the
performance changes become similar. Such a performance-difference based
power allocation essentially means that application threads within a node will
receive a power budget according to their joint workload behavior and that none
of the application nodes will fall behind due to a lack of power allocation.

Communication mechanism. To implement the proposed strategy, several
processes are spawned such that their number is equal to the number of sockets
across the nodes involved in executing the application. Note that the strategy
processes share the cores with the application threads, which is acceptable due to
the low parallel overhead of the strategy implementation (shown in Section 6

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 148 Journal of Computer and Communications

experiments). The message passing interface (MPI) was chosen for the imple-
mentation and its processes assigned ranks in a standard fashion with rank 0
being a manager process. Figure 1 presents a sample scenario of K application
nodes. Each of the K nodes has two sockets (shown as rectangular boxes) and
four cores per socket. The cores are numbered contiguously across all the K
nodes, from 0 to 8K − 1. The placement of strategy processor ranks is hig-
hlighted in color: pink for the worker processes and cyan for the manager. The
strategy communications are indicated by arrows. The first step (see Figure 1(a))
is intranode and involves the higher worker rank sending its information to the
lower one. In the second step (see Figure 1(b)), all the lower worker ranks in a
node communicate their information to the manager rank 0 a single MPI_Gather
from all the K nodes.

Algorithm detailed. Figure 2 specifies the algorithmic steps of the proposed
strategy executed in each rank while a high-level overview of the strategy is given
in Figure 3 to emphasize its distributed nature. In Figure 2, Step 1 divides a
given power allocation PB equally across all K nodes and between PKG and
DRAM domains in a node, i.e., among 2K entities. In Step 2, each rank profiles
the application for the first timeslice duration and obtains the relevant parame-
ter values from the performance counters. In Step 3, the operating core frequen-
cy ()c cf o is determined by using the APERF and MPERF MSRs [19] accord-
ing to the following relation, which has been first stated in [14]:

 () () APERF1 ,
MPERFc c cf o f ∆

= ×
∆

 (4)

where APERF∆ and MPERF∆ signify the change in the values of the respec-
tive registers over a given time period. Next, from performance counters, Step 4
initializes the micro-operations retired (),c uo oµτ , at the operating core fre-
quency ()c cf o and the highest uncore frequency ()1uf (i.e., 1uo =) for the
first timeslice of the application execution. The corresponding exeCPM is cal-
culated from Equation (1) as follows:

()
()

()
()exe 1CPM MAPM ,

,1 1
c c c c

c c

f o f o
o f

α β
µτ

= − × × × (5)

Figure 1. Rank assignment and communications of the strategy implementation in a sample K
application node scenario. Worker ranks communicating information: (a) Intranode commu-
nications. (b) Internode collective communication with the manager rank 0.

Node 1[I J; 0 (I) (D 11 l ® (D 0 I]

Node2 [1 l ® @ ® 11 l @) @ @ I J

NodeK

(a)

0 000 1• 0001

e @S§ l e ©§© I
(b)

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 149 Journal of Computer and Communications

Figure 2. Per-rank algorithmic steps of the proposed distributed strategy.

and MAPM is obtained directly from the processor performance counters. Note
that Equation (5) has been developed in the authors’ prior work [14]. For 1r > ,
Step 5 determines the values of exeCPM and MAPM through the histo-
ry-window prediction mechanism [14] by using a simple averaging function,
which calculates the future value as an average of the past values. If the registers
CPR and MPR have not been completely filled, then the last values of exeCPM
and MAPM are used as the next values. In Step 6, (),i jµτ is determined for all
of the available core and uncore frequencies using the values of exeCPM and
MAPM from Step 5. Next (Step 7), a temporary core-uncore frequency pair

() ()(),c c u uf t f t is determined in each node, such that the predicted (),c ut tµτ

is at a maximum with the PKG power consumption not exceeding RAPL-MEM
BP P

K
−

in a node. In Step 8, the performance change value, termed qθ , is calculated in
each node 1, ,q K= as

Input P aram eters:
J(: Number of nodes
V : Number of timeslices
f c(l), ... , fc(N) : Available core frequencies (N)
f u(l), ... , f u(M) : Available uncore frequencies (M)
P8 : Total power budget for PKG and DRAM on f(nodes
PPK G : Package power limit
P M EM : Memory power limit
PnAPL-PK G : PKG power consumption
PnAPL-MEM : Memory power consumption
CPR, MPR: CPMexe and MAPM registers, respectively, of length L = 3 each
e = 1 : counter for fi lled positions in CPR and MPR

Algorithm:
Step 1. Set package and memory power limits as P PKc= P MeM=P 8 / (2I<)
Step 2. Sleep while applicat ion executes during timeslice r = 1
Step 3. Calculate operating core frequency f c(oc) from APERF and MPERF as in Eq. (4);

Set operating uncore frequency level Ou = 1
Step 4. Initialize µr (oc, ou), CPR[£], and MPR[e] for r = 1 from performance counters and Eq. (5)

For (r = 2, r :<::: V, r ++) do
Step 5. Calculate CPMexe and MAP M as

If (e > 0 and e :'::: L - 1) then
CPMexe CPR [€ - l]
MAPM MPR[e - l]

else
CPMexe avg(CPR[l], CPR[2], .. ,CPR[L])
MAPM avg(MPR[l], MPR[2], . .. ,MPR[L])

Step 6. Calculate µr(i,j) for all i = 1, ... , N and j = 1, ... , M
Step 7. Calculate temporary core f c(tc) and uncore f u(tu) frequency such that

l!T (t c, tu)= . max [µr(i , j)] and P nAPL- PKG :'o 1i?- - PnAPL-MEM
t=l, . . . ,1V
j=l, ... ,M

Step 8. Determine the performance change 0 per Eq. (6)
Step 9. Gather 0's at manager rank 0
Step 10. Rank O determines the average performance change 0av across all 0's and broadcasts 0av
Step 11. Save operating uncore frequency level W u = o,,,;

Determine new operating core- uncore frequency pair Uc(oc), f u(ou)) per Eq. (7) and Eq. (1)
Step 12. Set PM E M = Pn.APL- M EM and Ppgc from Eq. (3) wit h j 1 = w,,, and J2 = o,.

Step 13. If(€== L) then
Shift CPR and MPR left by one posit ion
C= O

Ste p 14. Sleep while application executes duirng current timeslice r
Ste p 15. Update 11r(oc, ou) , CPR[£], and MPR[e] from performance counters and Eq. (l);

€=€+ 1
EndFor

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 150 Journal of Computer and Communications

Figure 3. Overview of the proposed distributed strategy that considers application execu-
tion time as V consecutive timeslices.

() ()

()
, ,

.
,

c u c u
q

c u

t t o o
o o

µτ µτ
θ

µτ
−

= (6)

In Step 9, worker ranks send their respective performance change values to
the manager rank 0. Next, the manager rank calculates their average avθ across
all the qθ ’s received (Step 10). The rationale behind averaging the performance
change across all the nodes is to keep all the application threads running in tan-
dem when the power budget changes in a node. This is especially beneficial for
that applications the workload behavior of which differ greatly across the nodes.
The manager rank then broadcasts the avθ to all the nodes. In Step 11, by subs-
tituting avθ into qθ in Equation (6), each node determines the value of the
predicted micro-operations retired at the core and uncore frequencies that bal-
ance the performance per node as follows:

 ()(), 1 .c u avo oµτ µτ θ= + (7)

The base performance model (Equation (1)) is then utilized to determine the
new operating core-uncore frequency pair () ()(),c c u uf o f o in the following
way. First, the left-hand side (LHS) in Equation (1) is set to µτ from Equation
(7). Next, the right-hand side (RHS) is evaluated for all the combinations of the
available core and uncore frequency levels. Finally, the RHS value closest to the

Start of timeslice

Divide given power budget
equally among nodes

Profile application,
Find operating frequency

Set current CPM and MAPM
values from past occurrences

Find core/uncore frequencies per
node to maximize performance

Calculate performance change
in each node

Manager rank sends average
performance change to each node

Each node sets power budget per
average performance change

End of timeslice

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 151 Journal of Computer and Communications

LHS is taken to provide the new operating core-uncore frequency level pair
(),c uo o , from which the corresponding frequencies ()c cf o and ()u uf o are
determined.

In Step 12, the power limit for DRAM is set as the measured DRAM power
consumption, while the PKG power limit is set as in Equation (3). In Step 13, if
the CPR and MPR registers are completely filled, they are shifted left by one to
discard the old values. In Step 14, the application executes the current timeslice r
at the chosen PKG and DRAM power limits and the frequencies chosen in Step 7.
Step 15 prepares for the next timeslice by updating the values of (),c uo oµτ
and MPR[ℓ] from the performance counters and CPR[ℓ] is calculated by rear-
ranging Equation (1) with the newly set (),c uo o , similarly to the procedures in
Step 4.

MPI barrier operations were used after specific steps which require synchro-
nization among the ranks on different nodes. The first barrier operation comes
after Step 4 since the ranks need to synchronize after the first timeslice Then, the
next barrier operation is needed after Step 10 because all the ranks have to re-
ceive their average performance change values before the new core-uncore fre-
quency can be determined. Finally, a barrier operation is needed after Step 12
when all the ranks are synchronized after setting the appropriate power limits
and frequencies. The communication overhead of the strategy involves an
MPI_Gather (Step 9) and MPI_Broadcast (Step 10) operation per timeslice For a
total of K nodes and S sockets per node, the time complexity of the two opera-
tions is roughly 2log 2K . A detailed experimental analysis of the overall over-
head incurred by the strategy is provided in Section 6.

6. Experimental Results

The experiments were performed on four compute nodes of the Turing cluster at
Old Dominion University. Each node has two Intel Xeon E5-2695 v3 14-core
Haswell-EP processors and 32 GB (4 × 8GB) of DDR4. The core and uncore
frequency ranges are 1.2 - 2.3 GHz and 1.1 - 2.9 GHz, respectively. The proces-
sor supports 12 levels of core frequency and 19 levels of uncore frequency.
Hence 228 level combinations are considered in Step 11 of the algorithm in Fig-
ure 2.

NAS parallel benchmark suite (NPB) [20] and a package for electronic struc-
ture calculations GAMESS [21] were used for evaluating the efficacy of the pro-
posed runtime strategy. Three chosen class D benchmarks, EP.D, BT.D, and
FT.D, from NPB provide a good mix of compute- and memory-intensive bench-
marks for thorough testing of cluster and node power budgeting, while GAMESS
features real-world calculations that are performed by the state-of-the-art algo-
rithms and implementations [22]. A wide range of quantum chemistry compu-
tations may be accomplished using GAMESS: Starting from the basic Hart-
ree-Fock Self Consistent Field (SCF) calculations, further improved on by elec-
tron-correlated methods, such as second-order Mø ller-Plesset perturbation
theory (MP2) and Density Functional Theory (DFT) computations, and provid-

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 152 Journal of Computer and Communications

ing high-accuracy multi-reference and coupled-cluster (CC) computations. Re-
cent advancements in GAMESS [22] provide LibCChem (C++ CPU/GPU li-
brary), fragmentation methods such as the fragment molecular orbital, effective
fragment potential and effective fragment molecular orbital methods, hybrid
MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second
order perturbation theory. Two GAMESS calculations were chosen. The first is a
self consistent field (SCF) computation on an adenosine monophosphate mole-
cule using the cc-pVDZ basis set. The second one is more advanced and re-
source-intensive. It performs an MP2 calculation on 16 water molecules at the
MP2/6-31G(d,p) level of theory. These calculations are referred to as scf-camp
and h2o-16, respectively, in the rest of the paper.

To compare the performance of the five chosen inputs under the proposed
strategy, a baseline execution mode that does not restrict power consumption,
termed all high, was considered here. In the all high mode, the frequency and
power limits for all CPU components were raised to their maximum values. A
most commonly used power allocation strategy is the one that allocates power
among the components based on their respective thermal design power (TDP)
[23] limits. For this strategy, termed naïve here, a particular power allocation is
observed with RAPL, which mainly reduces the core frequency through DVFS.
When the power consumption cannot be reduced by RAPL any further down to
the desired limit, a manual lowering of the uncore frequency follows.

Table 1 shows the average power consumption in the all high mode for the
five inputs run on the Turing cluster. It can be observed from Table 1 that the
compute-intensive inputs, EP and the two GAMESS calculations, as judged by
the MAPM value, consume much less power on average compared with the
BT.D and FT.D, which are more memory intensive. (This phenomenon has been
also observed by the authors [16] where compute- and memory-intensive appli-
cations were compared.) In particular, the average power consumption ranges
greatly, from 170 to 240 W. Hence, no single power allocation value (set) will
accommodate accurate testing of the proposed strategy on all the inputs here.
Instead, for each input, the power budgets are chosen as certain percentages of
its average power consumption (Table 1). Specifically, the values of 90%, 80%,
and 70% were considered here, representing a progressive decrease in the power
consumed by the inputs in the all high mode.

If the execution time T is given (as inverse of the application performance),
then the percentage sδ of performance degradation of a strategy s relative to
the all high mode may be calculated as

Table 1. Average power consumption and MAPM values of NPB and GAMESS inputs for
the allhigh mode.

 EP.D FT.D BT.D scf-camp h2o-16

Power, (W) 170 240 220 160 150

MAPM, (×10−6) 1 280 248 35 27

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 153 Journal of Computer and Communications

() ()
()s

s allhigh
.

s
T T

T
δ

−
= (8)

Figure 4 shows the performance degradation percentage naiveδ for the five
inputs operating under the naïve strategy for the three chosen power budgets
with respect to the all high mode. As expected, for all the inputs, the highest
power budget of 90% results in the least amount of performance degradation, of
46.8% on average. When the power budget is at 80% level, the average perfor-
mance degradation for the five inputs increases to 57.3%. This increase came
primarily from the reduction in the CPU frequency to its lowest (1.2 GHz) using
power limiting through RAPL. Further reduction in the power budget to the
70% level, degrades the performance further, to an average of 60%, which is due
to the uncore frequency being reduced to 1.1 GHz to force this power level in
addition to the RAPL power limiting. The largest degradation is seen for the
memory-intensive FT.D and BT.D inputs. Uncore frequency has no effect on the
compute-intensive EP.D benchmark and effects only minimally GAMESS, which
was also noted in [14].

Figure 5 shows the performance degradation percentage proposedδ for the five
inputs operating under the proposed strategy with respect to the all high mode.
The average performance degradation is 4.3% for the 90% power budget while a
very little degradation of 0.15% is observed for the EP benchmark. This remark-
able occurrence is due primarily to ability of the proposed strategy to determine
that the uncore power is not being used by the compute-intensive EP.D and
make this power available it to the cores. Specifically, for EP.D the uncore fre-
quency is scaled down to 1.1 GHz throughout the execution and, after the initial
step, when the strategy algorithm equalizes the budget among the nodes, no
other transfer of the power budget among the nodes takes place. This essentially

Figure 4. Performance degradation with respect to the allhigh mode for the five inputs
operating under the naïve strategy and power budget levels of 90%, 80%, and 70%.

120

■ 90%
100

~ e.....
C:

80 0
.:. cu
"O
cu ...
C) 60 Q)

C
Q)
(J
C:
cu 40 E ...
.E ...
Q)
a. 20

0
EP.D FT.D BT.D scf-camp h2o-16

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 154 Journal of Computer and Communications

Figure 5. Performance degradation with respect to the allhigh mode for the five inputs
operating under the proposed strategy and power budget levels of 90%, 80%, and 70%.

means that while Steps 8 - 12 from Figure 2 execute for EP.D, no difference in
values of avθ are observed after the first iteration the algorithm.

In the case of BT.D and FT.D (Figure 5), their MAPM values vary greatly,
each on the order of 20 and 5, respectively. The BT.D benchmark alternates
swiftly between compute- and memory-intensive behavior, which does not allow
shifting of power from uncore to core while also restricting the ability of the
proposed strategy to timely react to the switches between compute- and memo-
ry-intensive workloads. This, in turn, results in degrading significantly its per-
formance. For BT.D, the core and uncore frequencies are pulled down to 1.5
GHz and 1.6 GHz, respectively. Conversely, FT.D remains primarily memo-
ry-intensive, thereby allowing the proposed strategy to scale the core frequency
down to 1.4 GHz for a good portion of its execution. The transfer of power
among the nodes takes place several times for BT.D and FT.D inputs because
application threads in different nodes tend to behave differently and equalizing
performance change across those requires that. Specifically, the strategy algo-
rithm redistributed power among nodes 7 and 10 times for FT.D and BT.D in-
puts, respectively, during their execution for either of the three power-allocation
levels. Given the 90% power budget, the performance degradations are 0.91%
and 13.56%, for FT.D and BT.D, respectively.

The scf-camp and h2o-16 inputs remain largely compute-intensive with some
heavy I/O activity in-between, which pushes the power consumption to the sys-
tem idle power, at which point any change in frequency is not reflected in the
power consumption. For the most part, these inputs execute at the lowest uncore
frequency and incur the performance degradation of 4.5% for scf-camp and
2.3% for h2o-16. The average performance degradation under for the 80% budg-
et is 9.87% as seen in Figure 5, which is still relatively low because the proposed

45

40 ■ 90%

- ■ 80%
~ 35 ~ 70%
C:
0

30 ..
nl
'O
nl ... 25 Cl
Cl)

C
Cl) 20 u
C:
nl
E 15 ...
0 -... Cl) 10 a.

5

0
EP.D FT.D BT.D set-camp h2o-16

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 155 Journal of Computer and Communications

strategy is still able to find opportunities for uncore and core frequency scaling
for the compute- and memory-intensive inputs, respectively, as expected. Note
that, similarly to the EP.D benchmark execution, no power allocation was trans-
ferred across the nodes running the two GAMESS inputs.

When the power budget is at its lowest (70% here), more reductions in power
start to come from the excessive core frequency scaling, which much degrades
the performance of the compute-intensive inputs. In particular, EP.D suffers
from the degradation of 19.4%. However, even in this case of a very low power
allocation, the proposed strategy outperforms the naïve strategy by incurring an
average performance degradation of 22.25% for all the inputs, which is about
2.7x less than the penalty incurred by the latter. Moreover, this large perfor-
mance degradation of 22.25% is still smaller than an average degradation in-
curred by the naïve for either 90% or 80% levels. Comparing the average

proposedδ and naiveδ within in each power level of 90% and 80%, the former is
about 10.8x and 5.8x better, respectively, than the latter.

Power allocation without performance degradation. The proposed strategy
may be also used to optimize the power allocation while maintaining a given
performance. In Table 2, such an optimal power budget is provided—as per-
centage of the power consumed in the all high mode—when now performance
degradation incurred. Notice that the EP.D benchmark tolerates the most reduc-
tion in the budget (15%) without sacrificing any performance. This is because
the reduction in the uncore frequency does not hurt its performance. The BT.D
input, on the other hand, admits only 4.7% of the reduction in power because its
workload characteristics oscillate much between compute and memory intensity.
Recall (Figure 5) that the performance degradation of BT.D was the largest
among the five inputs under the proposed strategy across all three power alloca-
tion levels. Overall, on average across all the five inputs, the utilization of the
proposed strategy saves 9.4% of power without compromising the performance
(see Table 2).

The proposed strategy overhead is analyzed next. It may be attributed to two
sources. The first source is due to the MPI_Gather and MPI_Broadcast opera-
tions that collect in the manager process the information from the distributed
worker processes followed by the broadcast from the manager to workers. Both
collectives (MPI_Gather and MPI_Bcast) were observed to consume very little
time compared with the timeslice duration used here (250 ms). In particular on
the four nodes of Turing, the combined overhead of these collective communi-
cations was found to be 5.7 μs, which is a small fraction of the timeslice. The
second source of the overhead is from the intra-process operations as described

Table 2. Minimum power budget as percentage of the power in allhigh mode such that
there is no performance degradation.

 EP.D FT.D BT.D scf-camp h2o-16

Power fraction (%) 85 89.2 95.3 92 92.3

https://doi.org/10.4236/jcc.2020.812014

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 156 Journal of Computer and Communications

in Figure 2, which include reading performance counters and applying the per-
formance and power models. On Turing, these operations were observed to
consume about 50 cycles (4 μs), which is negligible compared with the duration
of the timeslice. Such an overall low overhead of the proposed strategy admits a
seamless oversubscription of the application cores by the strategy processes.
Therefore, it can be concluded that the utilization of the proposed strategy does
not hinder the underlying application performance.

7. Conclusions and Future Work

This paper proposed a runtime strategy that redistributes a given power budget
such that the performance differences across the nodes running an HPC applica-
tion are equalized. This strategy features a manager-worker distributed commu-
nication pattern, the lightweight processes of which may oversubscribe applica-
tion cores. An algorithm has been developed in this paper to implement the
strategy that employs timeslice-based power and performance models and ap-
plies power limiting to PKG and DRAM power domains along with the UFS in a
user-transparent manner.

Experiments with the NAS parallel benchmarks and a real-world quantum
chemistry package GAMESS were conducted on four 28-core nodes of a compu-
ting platform. They showed that the proposed strategy substantially outper-
formed a TDP-based power allocation strategy. For instance, the compute-intensive
EP.D benchmark incurred, respectively, 1% and 100% performance penalty for
the second highest (80%) power allocation considered. Future work will focus on
devising performance and power models to compute an optimal number of
nodes such that the application performance penalty is minimized under a given
power allocation. In addition, the proposed distributed strategy will also be ex-
tended to multi-GPU platforms.

Acknowledgements

The authors are grateful to the reviewers for their helpful and constructive com-
ments This work was supported in part by the U.S. Department of Energy (DOE)
Office of Science, Office of Basic Energy Sciences, Computational Chemical
Sciences (CCS) Research Program under work proposal number AL-18-380-057
and the Exascale Computing Project (ECP) through the Ames Laboratory, oper-
ated by Iowa State University under contract No. DE-AC00-07CH11358, and by
the National Science Foundation under grant CNS-1828593.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Top 500 List. https://www.top500.org/lists/2019/06/

https://doi.org/10.4236/jcc.2020.812014
https://www.top500.org/lists/2019/06/

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 157 Journal of Computer and Communications

[2] Intel Software Developer Manual.
https://software.intel.com/en-us/articles/intel-sdm

[3] Chen, M., Wang, X. and Li, X. (2011) Coordinating Processor and Main Memory
for Efficient Server Power Control. In: Proceedings of the International Conference
on Supercomputing, ACM, New York, 130-140.
https://doi.org/10.1145/1995896.1995917

[4] Tiwari, A., Schulz, M. and Carrington, L. (2015) Predicting Optimal Power Alloca-
tion for CPU and Dram Domains. 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, Hyderabad, 25-29 May 2015, 951-959.
https://doi.org/10.1109/IPDPSW.2015.146

[5] Marathe, A., Bailey, P.E., Lowenthal, D.K., Rountree, B., Schulz, M. and de Supinski,
B.R. (2015) A Run-Time System for Power-Constrained HPC Applications. In:
Kunkel, J. and Ludwig, T., Eds., High Performance Computing. ISC High Perfor-
mance 2015. Lecture Notes in Computer Science, Vol. 9137, Springer, Cham, 394-408.
https://doi.org/10.1007/978-3-319-20119-1_28

[6] Zou, P., Allen, T., Davis, C.H., Feng, X. and Ge, R. (2017) CLIP: Cluster-Level Intel-
ligent Power Coordination for Power-Bounded Systems. 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Honolulu, 5-8 September 2017,
541-551. https://doi.org/10.1109/CLUSTER.2017.98

[7] Sarood, O., Langer, A., Kalé, L., Rountree, B. and de Supinski, B. (2013) Optimizing
Power Allocation to CPU and Memory Subsystems in Overprovisioned HPC Sys-
tems. 2013 IEEE International Conference on Cluster Computing (CLUSTER), In-
dianapolis, 23-27 September 2013, 1-8.
https://doi.org/10.1109/CLUSTER.2013.6702684

[8] David, H., Gorbatov, E., Hanebutte, U.R., Khannal, R. and Le, C. (2010) Rapl: Memo-
ry Power Estimation and Capping. In: Proceedings of the 16th ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design, ACM, New York, 189-194.
https://doi.org/10.1145/1840845.1840883

[9] Ellsworth, D.A., Malony, A.D., Rountree, B. and Schulz, M. (2015) POW: Sys-
tem-Wide Dynamic Reallocation of Limited Power in HPC. In: Proceedings of the
24th International Symposium on High-Performance Parallel and Distributed Com-
puting, ACM, New York, 145-148. https://doi.org/10.1145/2749246.2749277

[10] Gholkar, N., Mueller, F. and Rountree, B. (2019) Uncore Power Scavenger: A Run-
time for Uncore Power Conservation on HPC Systems. In: Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, Association for Computing Machinery, New York, Article No. 27.
https://doi.org/10.1145/3295500.3356150

[11] André, E., Dulong, R., Guermouche, A. and Trahay, F. (2020) DUF: Dynamic Un-
core Frequency Scaling to Reduce Power Consumption. Working Paper or Preprint.
https://hal.archives-ouvertes.fr/hal-02401796v2

[12] Haj-Yahya, J., Alser, M., Kim, J., Yaglikci, A.G., Vijaykumar, N., Rotem, E. and Mutlu,
O. (2020) SysScale: Exploiting Multi-Domain Dynamic Voltage and Frequency Scal-
ing for Energy Efficient Mobile Processors. 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), Valencia, 30 May-3 June 2020,
227-240. https://doi.org/10.1109/ISCA45697.2020.00029

[13] Sundriyal, V., Sosonkina, M., Westheimer, B. and Gordon, M. (2018) Comparisons
of Core and Uncore Frequency Scaling Modes in Quantum Chemistry Application
Games. In: Proceedings of the High Performance Computing Symposium, Society for
Computer Simulation International, San Diego, 13:1-13:11.

https://doi.org/10.4236/jcc.2020.812014
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1145/1995896.1995917
https://doi.org/10.1109/IPDPSW.2015.146
https://doi.org/10.1007/978-3-319-20119-1_28
https://doi.org/10.1109/CLUSTER.2017.98
https://doi.org/10.1109/CLUSTER.2013.6702684
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/2749246.2749277
https://doi.org/10.1145/3295500.3356150
https://hal.archives-ouvertes.fr/hal-02401796v2
https://doi.org/10.1109/ISCA45697.2020.00029

V. Sundriyal, M. Sosonkina

DOI: 10.4236/jcc.2020.812014 158 Journal of Computer and Communications

[14] Sundriyal, V., Sosonkina, M., Westheimer, B. and Gordon, M. (2018) Core and Un-
core Joint Frequency Scaling Strategy. Journal of Computer and Communication, 6,
184-201. https://doi.org/10.4236/jcc.2018.612018

[15] Shanley, T. and Winkles, J. (2002) InfiniBand Network Architecture. Addison-Wesley
Professional, Boston.

[16] Sundriyal, V. and Sosonkina, M. (2016) Joint Frequency Scaling of Processor and
DRAM. The Journal of Supercomputing, 72, 1549-1569.
https://doi.org/10.1007/s11227-016-1680-4

[17] Ioannou, N., Kauschke, M., Gries, M. and Cintra, M. (2011) Phase-Based Appli-
cation-Driven Hierarchical Power Management on the Single-Chip Cloud Com-
puter. International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), Galveston, 10-14 October 2011, 131-142.
https://doi.org/10.1109/PACT.2011.19

[18] Sundriyal, V., Sosonkina, M. and Gordon, M.S. (2019) Maximizing Performance
under a Power Constraint on Modern Multicore Systems. Journal of Computer and
Communications, 7, 252-266. https://doi.org/10.4236/jcc.2019.77021

[19] Intel 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes
3A, 3B, and 3C: System Programming Guide.
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html#co
mbined

[20] Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., et al.
(1991) The NAS Parallel Benchmarks—Summary and Preliminary Results. In: Pro-
ceedings of the 1991 ACM/IEEE Conference on Supercomputing, ACM, New York,
158-165. https://doi.org/10.1145/125826.125925

[21] Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H.,
Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Mont-
gomery Jr., J.A. (1993) General Atomic and Molecular Electronic Structure System.
Journal of Computational Chemistry, 14, 1347-1363.
https://doi.org/10.1002/jcc.540141112

[22] Barca, G.M.J., Bertoni, C., Carrington, L., Datta, D., De Silva, N., Deustua, J.E., et al.
(2020) Recent Developments in the General Atomic and Molecular Electronic Struc-
ture System. Journal of Chemical Physics, 152, 154102.
https://doi.org/10.1063/5.0005188

[23] Thermal Design Power (TDP) in Intel® Processors, 2019.
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.
html

https://doi.org/10.4236/jcc.2020.812014
https://doi.org/10.4236/jcc.2018.612018
https://doi.org/10.1007/s11227-016-1680-4
https://doi.org/10.1109/PACT.2011.19
https://doi.org/10.4236/jcc.2019.77021
https://doi.org/10.1145/125826.125925
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1063/5.0005188
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html

	Distributed Strategy for Power Re-Allocation in High Performance Applications
	Original Publication Citation

	Distributed Strategy for Power Re-Allocation in High Performance Applications
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. CPU and Communication Capabilities for Power Reallocation
	4. Intranode Performance and Power Modeling
	4.1. Performance Model
	4.2. Power Model

	5. Design and Implementation of the Runtime Strategy
	6. Experimental Results
	7. Conclusions and Future Work
	Acknowledgements
	Conflicts of Interest
	References

