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In this paper, we introduce a novel multi view-based method for completing high-resolution 3D point clouds of
partial object shapes obtained bymobile laser scanning (MLS) platforms. Our approach estimates both the geom-
etry and color cues of the missing or incomplete object segments, by projecting the 3D input point cloud bymul-
tiple virtual cameras, and performing 2D inpainting in the image domains of the different views. In contrast to
existing state-of-the-art methods, our method can generate point clouds consisting of a variable number of
points, depending on the detailedness of the input measurement, which property highly facilitates the efficient
processing of MLS data with inhomogeneous point density. For training and quantitative evaluation of the pro-
posedmethod, we provide a new point cloud dataset that consists of both synthetic point clouds of four different
street objects with accurate ground truth, and real MLS measurements of partially or fully scanned vehicles. The
quantitative and qualitative experiments on the provided dataset demonstrate that our method surpasses state-
of-the-art approaches in reconstructing the local fine geometric structures as well as in estimating the overall
shape and color pattern of the objects.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As a result of the rapid advancement of 3D data acquisition technol-
ogy and the decreasing prices of 3D sensors, point clouds have become
widely available formats for representing the three-dimensional envi-
ronment in various robotics, surveillance, and autonomous driving ap-
plications. On the other hand, point clouds collected by real scanners
frequently provide only partial shapes of the scanned items due to low
sensor resolution, occlusions, and the limited number of viewpoints
used during scanning. Therefore point cloud completion, i.e. the estima-
tion of an object’s full shape from point sets which only partially de-
scribe its geometry, is a fundamental key challenge in numerous
computer vision and robotic tasks, such as virtual reality (VR)/ aug-
mented reality (AR) applications [1], object tracking and simultaneous
localization and mapping (SLAM) [2,3].
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Mobile laser scanning (MLS) platforms equippedwith time synchro-
nized Lidar sensors and navigation units can produce very dense and
feature-rich point clouds for urban areas, as shown in Fig. 1(a). How-
ever, due to the fact that the scanning vehicle can only move on the
road, the point cloud models collected for many field objects have in-
complete shapes. For example, the sidewalk sides of the parking vehi-
cles are typically missing from the scanned scene models (Fig. 1).
Exploiting that available semantic point cloud segmentation methods
[4,5] can efficiently separate regions of different object classes in an
MLS scene, we address in this paper the task of filling the missing re-
gions of selected MLS object shapes to create a more realistic represen-
tation of the real environment. For example, from vehicle regions
segmented from the raw MLS point cloud (Fig. 1(b)), we aim to derive
completed vehicle point cloud models (Fig. 1(c)).

Existing point cloud completion methods apply various approaches
to address the underlying unstructured nature of the point clouds,
such as voxelization [6], intermediary 3Dgrids [7], or directly processing
the point cloud [8] with the PointNet encoder [5]. These techniques
have achieved remarkable success in terms of estimating complete geo-
metricmodels of various object shapes. However, the obtained 3D point
cloud models are often only roughly detailed, because the above
methods are restricted to provide outputswith a fixed constant number
of points, regardless of the size, shape complexity, or resolution of the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1.MLS data and our results on vehicle shape completion: (a) MLS data from a Buda-
pest street showing numerous incomplete car shapes, (b) Partial car shapes obtained by
semantic point cloud segmentation [4] from theMLS scene, (c) Our results for completing
the car shapes.
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input point cloud measurement segment corresponding to a given
object.

In order to apply the aforementioned techniques [6–8] to MLS data,
the input point cloud should be spatially downsampled, yielding as out-
put simplified object shape models with significantly lower point den-
sity and less geometric detailedness compared to the genuine Lidar
measurements. Moreover, a typically featured test scenario of these
methods focuses on generating realistic object shapes from only a few
(e.g. less than 15) measurement points, which task has a large degree
of freedom in terms of the possible acceptable solutions: these use-
cases are more connected to shape generation than shape completion.

In this paper, we introduce a point cloud completion algorithm that
can handle the unstructured nature, andmaintain the high resolution of
the MLS measurement data. To address the above challenges, we pro-
pose the Multi-View Based Point Cloud Completion Network (MVPCC-
Net), a network designed to generate dense and detailed 3D object
models from partial point cloud measurements. The algorithm encodes
the input 3D point cloud by a set of sparsely filledmulti-channel images
representing both geometry and color information available from the
sensor data. This approach allows us to use 2D Convolutional Neural
Networks (CNNs) for filling in themissing structural and color informa-
tion in the 2D image domain. Thereafter, the inpainted multi-view grid
maps are fused to produce dense 3D point clouds representing the com-
pleted object shapes.

The preliminary version of the proposed techniquewas presented in
[9]. In this article, we provide an extended model which can deal with
different types of synthetic and real MLS point cloud objects, mainly re-
lated to urban street scenarios. We also provide extensive ablation ex-
periments demonstrating the efficiency of various elements of our
proposed model, including the choice of the optimal number of views
used to encode the 3D objects, and our applied view-fusion strategy to
2

synthesize the 3D point cloud output. In addition, we present here a
novel point cloud dataset which consists in part of synthetic data, and
in part of real colored MLS point clouds of partially or fully scanned ve-
hicles, captured by a car-mounted mobile laser scanning system in Bu-
dapest, Hungary. Since by processing real MLS street measurements,
we cannot rely on accurate ground truth models, our method was
trained on the synthetic part of the dataset derived from ShapeNet
[10] for four street object classes. The ShapeNet-based point clouds
are used as well for quantitative comparison of our technique versus
various state-of-the-art methods. On the other hand, we also demon-
strate that with using an additional network component for orientation
adjustment of the input point clouds, theMVPCC-Net trained on purely
synthetic data can be directly applied for completing real MLS object
samples without the need of any additional fine-tuning step.

The contributions of this paper can be summarized as follows:

1. A novel multi-view image set-based deep neural network is pro-
posed for completing 3D point clouds of objects. Our approach di-
rectly uses 2D CNNs for geometry and color inpaiting, by exploiting
a new data structure, which represents the 3D incomplete point
cloud measurements by multiple 6-channel images (3 + 3 channels
for geometry and color, respectively) generated from various per-
spectives. As output, colored 3Dpoint cloudmodels of the completed
object shapes are provided, allowing a variable number of points, and
varying point density for efficient representation of the objects.

2. Extensive quantitative and qualitative tests on synthetic and real
MLS datasets demonstrate that our method outperforms the current
point cloud-based object completion networks for selected street ob-
ject classes.

3. Extensive ablation experiments are conducted for evaluating the
main system components and hyperparameter settings, including
the number of views by multi-view mapping, and the view fusion
process.

2. Related work

Numerous deep learning approaches have been developed for 3D
point cloud processing. In volumetric approaches, point clouds
are voxelized using a 3D grid which is taken as input of a three-
dimensional convolutional neural network. Multi-view techniques
project 3D point clouds to several planes from various perspectives
and extract view-wise information. The PointNetmethod [5] and its ex-
tensions [11] directly process the point clouds using a symmetric func-
tion, which allows the network to tolerate uncertainty in the order of
points, and accurately captures both global and local properties of a
point cloud.

In this section we provide a methodological review on state-of-the-
art algorithms used for 3D shape completion and on multi-view ap-
proaches for point cloud processing:

3D shape completion methods can be categorized into three main
groups: Geometry-based approaches [12] have effectively been utilized
to repair small holes on point clouds, using geometric restrictions such
as local surface or volumetric smoothness. Template-based approaches
[13] deform or reconstruct 3D point clouds that correspond to themost
similar templates detected in a 3D shape database.

Learning-based approaches have been widely adopted by 3D point
cloud completion techniques due to the availability of synthetic public
datasets like ShapeNet. PointNet is utilized as an encoder in multiple
state-of-the-art techniques [8,14–16] with various types of decoders:
FoldingNet’s decoder [16] warps a predefined 2D grid so that it fits the
input point cloud, by using two successive three-layer perceptrons.
The Point Completion Network (PCN) [8] employs two-stage decoders
that combine the advantages of fully-connected and folding-based de-
coders. Extending the PCN network, the Vehicle Points Completion-
Net (VPC-Net) [15] combines the partial inputs with the PCN’s decoder
outputs to construct more homogeneous point clouds with finer-
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grained information. TopNet [14] includes a decoder that generates
point clouds in a hierarchical structure, where each point operates as a
branch of a tree. SoftPoolNet [17] provides a two-stage, multi-
resolution architecture for completing point clouds by substituting
max pooling with softmax function in order to retain local information.
The 3D-Encoder-Predictor Network (3D-EPN) uses directly a volumet-
ric representation of 3D point clouds [6]. However, converting point
clouds to 3D volumes yields data quantization, which step can remove
many fine-grained details. For this reason, in the Gridding Residual Net-
work (GRNet) [7] 3D grids are proposed to regularize unstructured
point clouds while keeping their context and structure detailed.

The recent PoinTr [18] method and its extension called AdaPoinTr
[19] consider the point cloud completion issue as a set-to-set translation
problem, so they transform the point clouds into a sequence of point
proxies, then they use a Transformer encoder-decoder architecture for
point cloud completion. A topology-aware method called LAKeNet
[20] fills in the missing parts of the 3D point cloud’s structure by using
three steps: aligned keypoint localization, surface skeleton generation,
and shape refinement. SeedFormer [21] introduces a novel Upsample
Transformerwith a new shape representation (Patch Seeds) to preserve
both regional information and global structures. Snowflake Point
Deconvolution (SPD) is an approach developed by SnowflakeNet [22]
to complete the shape of the point cloud, where child points are gener-
ated progressively from selected parent points.

However, all of the above methods use Chamfer Distance (CD) as
training loss, thus that they minimize the mean of local point-to-point
distances between the predicted and the ground truth point clouds,
which process does not guarantee the effective characterization of
shape similarity [7].

Multi-view based approaches have recently shown their efficiency
in several tasks, including classification [23,24] and segmentation
[25–27], moreover, reconstructing 3D shapes from a single image or a
series of images is an active research area with different applications
in robotics, and in virtual/augmented reality. Existing approaches
adopt various output representations. A voxel-based output is provided
by [28], where a 2D convolutional neural network encodes 2D images
into a latent representation, which is subsequently decoded into 3D ob-
ject shapes by a 3D convolutional neural network. The Point Set Gener-
ation Network [29] derives a point-based output, so that a set of
unordered points is directly extracted from a single image. Lin et al.
[30] present pseudo-rendered depth images as output and construct
dense 3D objects by re-projecting them.

Image and point cloud fusion-based techniques have also been pro-
posed for 3D shape completion recently. The View-guided Point Cloud
completion method (ViPC) [31] relies on auxiliary RGB image data for
point cloud completion, assuming that the input image contains struc-
tural information for the missing shape part. Similarly, the Cross-
modal Shape-transfer model (CSDN) [32] combines the image and
point cloud information in expressing a full shape.

3. MVPCC-Net

The main goal of the proposed 3D point cloud completion approach
is to transform a point cloud segment representing only a portion of an
object into a point cloud describing the entire object shape. For uniform
treatment, we initially ensure that the incomplete input point cloud
segments are scaled and reshaped to fit inside a 3D unit bounding box
with point coordinates in the range of [-0.5, 0.5].

As shown in Fig. 2, our method implements three sequential
steps: (a) Calculation of a multi-view image-based representation
of the incomplete point cloud measurement, (b) Shape and color
completion in the 2D image domains using an inpainting network,
and (c) Re-projection of the inpainted multi-view images to obtain
a completed 3D point cloud model of the object of interest. The
three main steps are introduced in the following subsections in
detail.
3

3.1. Multi-view 3D representation

Let us denote byPin the input point cloud ofNin points, representing
a single, partially scanned scene object:

Pin ¼ fpngNin
n¼1,

where each point pn is associated to a 6D descriptor comprising three
location coordinates (XYZ) in the point cloud’s local Descartes coordi-
nate system, and three color coordinates (RGB).

In the first step, the point cloud Pin is mapped to different 2D grids
from a variety of perspectives: multi-view 2D images are captured by
a set of V virtual cameras located at predetermined positions around
the object’s 3D bounding box. Henceforward, v ∈ f1, . . . ,Vg refers to
the index of a selected view. Assuming that the position and orientation
of each virtual camera are known, the view-transformation for each
camera v can be described by a Rv rotation matrix and a tv translation
matrix, which can be analytically calculated. Thereafter, the input
point cloud Pin can be transformed to the reference coordinate system
of camera v as follows:

qvn ¼ Rv � pn þ tv, n ¼ 1, . . . ,Nin; v ¼ 1, . . . ,V ð1Þ

where qvn denotes vth the camera coordinates corresponding to point
pn ∈ Pin. Next, each point is projected onto the camera plane using
the virtual cameras’ projectionmatrix K, which is determined by the in-
trinsic camera parameters:

ðxvn, yvnÞ ¼ K � qvn n ¼ 1, . . . ,Nin; v ¼ 1, . . . ,V ð2Þ

The intrinsic settings of the cameras are adjusted to ensure that the
objects of the training dataset are entirely contained within the con-
sidered image windows, while the coverage rate of the projected re-
gions in the images is maximized. The result of Eq. (2) is a 2D pixel
position ðxvn, yvnÞ on the image plane of camera v. To keep the genuine
3D geometric (XYZ) and 3D color (RGB) information from in the orig-
inal point cloud Pin, we store the point projections in a six-channel
image Ivin associated with each view v. More specifically, if point pn
is projected to pixel ðxvn, yvnÞ in view v, the values of the different im-
age channels at the given pixel of Ivin are equal to the concerning
(XYZRGB) coordinates of pn.

Note that by projecting 3D point clouds to 2D images, multiple
points might be projected to the same pixel of a given image lattice.
We handle this issue by sorting these points by their distances from
the given camera, and we only retain the closest points, keeping only
the exposed portion of the object from the camera perspective. The
presence of multiple cameras from different directions will ensure
that the object points visible from any viewpoint will be represented
by one or multiple projected images.

On the other hand, following the above procedure, the different Ivin
camera images will be only sparsely filled, containing several pixels
without any point projections: by these pixels we set zero values for
all channels.

In summary, as shown in Fig. 2(a), this step derives a collection of
multichannel images, that can be directly processed by 2D CNN archi-
tectures (see Section 3.2). Each camera records a six-channel image,
comprising geometry (XYZ channels) and color (RGB channels) infor-
mation, however the geometry is directly stored in the point cloud’s
original Descartes coordinated system. As a result, a point projected to
multiple virtual camera planes will have the same geometrical coordi-
nates in each view image. We demonstrate later in Section 3.3 that
this property is highly beneficial during the 3D point cloud re-
projection phase of the process.



Fig. 2.Dataflowof our algorithm: (a)Multi-view projection: incomplete point cloudmeasurement is represented asmulti-view images, each view is recorded as a six-channel imagewith
RGB color information and XYZ geometry information; (b) Completion model: it completes the shape and color information in the 2D image domain; (c) Re-projection: the inpainted
multi-view images are reprojected into the 3D space to generate a completed 3D point cloud model of the object.

Y. Ibrahim and C. Benedek Image and Vision Computing 134 (2023) 104675
3.2. Completion model

The second main step of the proposed approach (see Fig. 2(b)) per-
forms structure and color inpainting of themissing object regions in the
domain of the six-channel Ivin images generated from different
viewpoints in the previous phase. The resulting inpainted images
will later guide the generation of the final 3D point cloud in the last
step (Section 3.3).

Our method uses a Generative Adversarial Network (GAN) [33]
architecture, that consists of the Generator (G) and Discriminator (D)
networks.

Our Generator implements three subsequent steps:

(i) First, we use a shared encoder for all views, which applies two-
stage downsampling followed by using eight residual blocks to
separately encode each of the six-channel images Ivin associated
with view v to its own view-level latent feature cube f v of size
64� 64� 256, for v ∈ f1, . . . ,Vg.

(ii) The intermediate feature fusion phase employs (3� 3) convolu-
tions, followed by a ReLUactivation function, to fuse all the view-
level features denoted by ½ f 1, f 2, . . . , f V � into a single global fea-
ture cube F of the same size as each f v. The global feature is ex-
pected to facilitate the transmission of shared characteristics
between distinct viewpoints.

(iii) In the third step, we take each view-level latent feature f v, and
concatenate it to the global feature F calculated in the previous

phase, obtaining a f̂ v ¼ ½ f v, F� extended feature cube of size of
size 64� 64� 512 for each view v ∈ f1, . . . ,Vg. Next, the

shared decoder processes thedifferent view’s f̂ v features sequen-

tially, so that each f̂ v is upsampled to the size of the original Ivin
image using dilated convolutions, with a dilation factor of two.
The output of the decoder is an inpainted Ivout image, with the
4

same size and six-channel format (i.e. XYZRGB channels) as
the encoder input Ivin. Let us observe, that although the decoder
generates the different Ivout images separately for the different
views, the decoder’s input features contain information from

all views via the F global feature component of f̂ v, thus cross-
view fusion is implicitly implemented at this step.

Next, the six-channel Ivout images predicted by the Generator are pre-
sented to the Shared Discriminator, whose task is to decidewhether they
are real or fake. The discriminator architecture is based on the 70� 70
PatchGAN [34], which determines whether overlapping image patches
of size 70� 70 are real or not.

For model training, we follow a supervised approach using Ground
Truth (GT) images projected from complete object models, as detailed
later in Section 4.1. In the training phase, we attempt to ensure that
for each view v the six-channel image Ivout ¼ GðIvinÞpredicted by the Gen-
erator, becomes as similar to the GT image Ivgt as feasible. The network is
trained using a combined loss function consisting of six subterms:
smooth L1 loss, adversarial loss, perceptual loss [35], style loss [36], bi-
nary cross entropy loss and Total Variation loss [37] as detailed in the
following.

The smooth L1 loss term ‘L1 is used to keep the distance low
between the algorithm’s six-channel image output and the corre-
sponding (GT) target image. Smooth L1 loss combines the benefits
of L1-loss and L2-loss by providing stable gradients when the dis-
tance is high, while it reduces the oscillations when the distance
is small [38].

The adversarial loss ‘adv is also applied to all channels of the gener-
ated Ivout image. It is presented as a zero-sum competition between the
generator and discriminator networks so that the generator attempts
to minimize the value defined by Eq. (3), while the discriminator at-
tempts to increase it:
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‘adv ¼ EfIvgtg log D
�
Ivgt

�� �h i
þþEfIvoutg log 1� D

�
G
�
Ivin
��� �h i

: ð3Þ

The perceptual loss ‘perc and style loss ‘sty terms are calculated exclu-
sively for the RGB color image channels to make them perceptually and
stylistically more similar to the GT’s coloring. The binary cross
entropy‘Lcro measures the difference between two binarymasks defined
by non-zero pixels in the output image Ivout and the ground truth Ivgt, re-
spectively. Finally, the Total Variation (TV) loss ‘TV - which promotes
spatially smooth output images - is utilized to smooth the geometric
output channels.

The Generator’s combined loss function ‘G is derived from the above
defined six subterms, with using λ1, . . . ,λ6 regularization parameters
discussed in Section 4.2:

‘G ¼ λ1‘L1 þ λ2‘adv þ λ3‘perc þþλ4‘sty þ λ5‘Lcro þ λ6‘TV ð4Þ

3.3. Re-projection

As a result of the previous step, a set of inpainted six-channel images
are available, which represent the projections of the object shape from
various viewpoints. Each non-zero pixel in each view image encodes a
3D point in the object’s coordinate system, where the geometry chan-
nels determine the given point’s normalized XYZ Descartes coordinates,
and the color channels define the associated RGB value. Consequently,
the completed point cloud of the object can be derived in a straightfor-
ward way by re-projecting all points stored in the V different views one
after another to the same 3D space (see Fig. 2(c)). Let us observe that
this process admits generating output point clouds that consist of a var-
iable number of points.More specifically, the number of points added to
the incomplete input point cloud is determined by the total number of
inpainted pixels in the view images.

During this stage of the algorithm, two post-processing steps are ap-
plied for enhancing the quality of the generated point cloud. First, since
we observed that re-projecting the boundary pixels of the objects from
the different image views results in noisy points surrounding the 3D
shape, we slightly erode the foreground regions of the inpainted images
before executing the re-projection. Second, we also employ a statistical
outlier filter [39] to eliminate further outliers from the final point cloud.

4. Experiments

4.1. Data generation

While supervised deep learning-based algorithms require extensive
training data, collecting proper 3D point cloud measurements for our
method from real-world environments – including both incomplete
and complete or manually completed object shapes – is highly challeng-
ing and resource intensive. To circumvent these limitations, we trained
and quantitatively evaluated our model using synthetic data, which con-
sists of pairs of partial and complete point cloudmodels of various 3D ob-
ject shapes, so that the incomplete point clouds can be used as input of
our method, while the complete shapes of the same objects as ground
truth. In addition, we extensively tested our trained shape completion
network on real-world (incomplete) Mobile Laser Scanning (MLS) mea-
surements. We provide access to both the synthetic and real data used
in our tests in a novel public dataset for the scientific community.

4.1.1. Synthetic data
Recent works [8,14,15] utilized ShapeNet [10], a large-scale 3D syn-

thetic dataset to construct the training data, deriving point clouds from
meshes available in ShapeNet by sampling a predefined number of
points. However, point cloudmodels generated in thisway often cannot
be considered as efficient references for real MLS data, since, for
5

example, they may also contain various internal object structures
which are occluded during an outdoor scanning process.

To address the above issue, we used the approach described by [40]
to generate the (Ground Truth) 3D point clouds of objects from their
complete mesh models. First we render a model based on projections
of the mesh to discrete 2D lattices from distinct viewpoints, which are
re-projected in the next step to the object’s coordinate system. We set
the resolution of the lattice of projection so that for each object we pro-
duce a dense, colored point cloud that accurately depicts even fine visi-
ble surfaces. Henceforwardwe refer to this point cloud as fine GT, where
the different object models may consist of a variable number of points
depending on the detailedness of the shape’s mesh model.

Next we generate incomplete point cloud models for the objects of
interest, which can be used as input of our algorithm during training
and also in the test phase for quantitative evaluation. Here the previ-
ously created point clouds models of the complete object shapes are
projected by a subset of the above defined virtual cameras, and the
views of the selected cameras are re-projected in the 3D space. In this
way we can synthesize partial object point cloud samples, that repre-
sent only points visible from the selected virtual cameras.

As processing urban MLS data is the primary goal of our approach,
we selected four object categories from ShapeNet, that are relevant for
street scenarios: car, bus,motorcycle, and train. Since aMLS system cap-
tures a scene from the top of a scanning vehicle, it often cannot capture
the bottom part of street objects. Therefore by simulated MLS point
cloud generation, we did not place upward looking virtual cameras to
the ground plane, we applied instead several side-view and downward
facing cameras around the object.

Our synthetic dataset contains in total 4918 distinct models, of
which 4580 objects are used to train our model and 338 ones are used
for evaluation. Twenty partial samples were generated for each com-
plete object shape using twenty distinct perspectives, yielding a training
set of 91,600 objects and a test set of 6760 samples. Some partial object
samples of the new dataset are shown in the first column of Fig. 3, while
the last column of the same figure demonstrates the corresponding
complete point clouds used as ground truth.

Technically, our deep neural network is trained using a set of 2D six-
channel images, which are derived from the partial and complete point
cloud samples by projections in advance. To prepare the data, in the pre-
processing phase, we generate twenty images from twenty distinct per-
spectives, while in the training phase, we follow a preliminary fixed
view selection strategy - presented in Section 6.1 - which ensures that
the selected views evenly surround all sides of the object.

4.1.2. MLS data
Apart from synthetic training and test data generation, we also cre-

ated a real-world test set that consists of (mostly partial) vehicle point
clouds extracted from measurements of a Riegl VMX-450 MLS scanner.
The rawMLS test data was provided by the City Council’s RoadManage-
ment Department (Budapest Közút Zrt.) in Budapest, Hungary. For en-
suring accurately segmented vehicles in the new test set, we utilized a
user friendly 3D point cloud annotator tool described in [4]. In the pre-
processing phase, each object sample was scaled and transformed to fit
within a 3D box with coordinates between−0.5 and 0.5.

Our real MLS data collection consists of 424 object samples in total.
On one hand, 370 point clouds represent partial vehicle shapes, where
the scans of the complete objects are not available in the MLS data,
thus they can only be used for qualitative analysis of the proposed tech-
nique (see Fig. 5). On the other hand, 54 samples depict almost entire
vehicle shapes (see Fig. 4 (g)), which can be also used as ground truth
similarly to the synthetic models presented in Section 4.1.1. Here we
generated four partial point cloud samples from each completeMLS ve-
hicle shape generating overall 216 samples, each one was created by
reprojecting an image created from a single virtual camera position,
which was located in the front, behind, to the right, or to the left of
the selected object of interest (see Fig. 4 (a)). Note that while the



Fig. 3. Qualitative results on the synthetic dataset, where we present the input partial point cloud, the results of the references methods, PCN, TopNet, GRNet, VPC-Net, SeedFormer,
SnowflakeNet, Our results, and the GT stands for the complete 3D object.
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synthetic dataset has a quite homogeneous point cloud characteristic,
we can observe notable point density variations within the set of real
MLS samples. In our dataset, an input MLS point cloud representing an
incomplete car shape consists of – in average – 31 K points, and their
size range varies between 2 K and 130 K points, while the complete
car point clouds contain 35 K points in average, spanning the range of
15 K–72 K points.

4.2. Model training setup and strategy

PyTorch is used to implement the proposed completion network,
which is trained on 256� 256 images. As an optimization algorithm,
we employ the Adam optimizer [41] with the settings β1 ¼ 0 and
β2 ¼ 0:9. The default batch size is 4, but when the number of selected
views is greater thanfive, the batch size is reduced to 1, so that the com-
putation can be completed on the GPU, and the weights are only up-
dated in every four iterations. The model is trained in three sessions in
which the learning rate parameter, that determines the step size at
each iteration while moving toward a minimum of the loss function, is
Fig. 4. Qualitative results on Real-world dataset, where we present the input partial point
SnowflakeNet, Our results, and the GT stands for the complete 3D object.
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gradually decreased: in each section, we train themodel until converge,

while using learning rates 10�4, 10�5, and 10�6 respectively. In the loss
function, the TV loss term is only used in the last two sections.

For our experiments, the following regularization hyper-
parameters of the loss function are used: λ1 ¼ 50;λ2 ¼ 0:1;λ3 ¼ 250;
λ4 ¼ 0:1;λ5 ¼ 0:1;λ6 ¼ 0:1=S, where S refers to the image size (here
S ¼ 256� 256). The first three parameters were chosen based on [42],
and the last three parameters were chosen to balance the impact of
each loss. In the re-projection stage, based on ablation experiments de-
tailed in Section 6, we use the erosion operator with 3� 3 rectangular
kernels as structural elements, and the statistical outlier removal filter
with the standard deviation parameter of 5 calculated among 20 neigh-
bors around each object point.

4.3. Evaluation methodology

Since the output of the proposedmethod is a colored point cloud,we
separately evaluate the quality of object geometry prediction and the
realistic nature of RGB color estimation.
cloud, and the results of the references methods, PCN, TopNet, VPC-Net, SeedFormer,
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We perform the geometric assessment of the object shapes against
various state-of-the-art 3D point cloud completion approaches in the
point cloud’s local 3D coordinate system, so that we compare each pre-
dicted point cloud (Ppred) to the corresponding ground-truth point
cloud (Pgt). For quantitative analysis, we rely on the Chamfer Distance
(CD) and the F1-score, which are two frequently used measures for
comparing the similarity of two sets of points [7,17]. The Chamfer Dis-
tance is calculated by searching for the closest point pairs between the
predicted point cloud Ppred and the corresponding ground truth Pgt in
two directions, as described by Eq. (5).

DCDðPpred,PgtÞ ¼ 1
2Npred

∑
p ∈ Ppred

min
q ∈ Pgt

‖p� q‖22

þ 1
2Ngt

∑
q ∈ Pgt

min
p ∈ Ppred

‖p� q‖22,
ð5Þ

where Npred and Ngt denote the number of points in Ppred and in Pgt,
respectively; and ‖p� q‖22 stands for the Euclidean distance between
the locations of points p and q.

For considering an alternative geometric accuracy measure of point
cloud completion, we also calculate the F1-score, which considers as a
match any pair of points whose distance is less than a given distance
threshold τ. The F1-score (F1) as a function of τ is computed as follows:

F1ðτÞ ¼ 2 � Prτ � Rcτ
Prτ þ Rcτ

, ð6Þ

where Prτ and Rcτ stand for Precision and Recall, for a given threshold τ:

Prτ ¼ 1
Npred

∑
p ∈ Ppred

min
q ∈ Pgt

‖p� q‖ < τ
� �

ð7Þ

Rcτ ¼ 1
Ngt

∑
q ∈ Pgt

min
p ∈ Ppred

‖p� q‖ < τ
� �

, ð8Þ

where based on [7]we adopted the threshold τ ¼ 0, 01, commonly used
for normalized point coordinates.

In contrast to 3D geometry analysis, we can mainly rely on qualita-
tive tests for evaluating the color prediction of the proposed method,
which can be performed either in the 3Dpoint cloud space (Section 5.2),
or in the 2D image domain of the individual views (Section 6). Since the
considered reference methods only deal with geometry completion,
they cannot be involved here in the comparative tests.

Generally, the assessment of RGB image inpainting is regarded as a
highly subjective process, where we cannot find any straightforward
numerical metric for evaluation of the results [43,44]. However, there
are a number of standard evaluation metrics used in literature which
we also adopt here, including the Peak Signal-to-Noise Ratio (PSNR),
the Structural Similarity Index (SSIM) [45], and the Relative L1 error
[44].Wewill calculate the later measures in the ablation experiments (-
Section 6), where we analyze their dependency on various settings of
the proposed model.

5. Results and discussions

We have trained and evaluated the proposed technique using our
new dataset introduced in Section 4.1, which consists of both synthetic
and real MLS object point cloud samples. In this section, we present a
detailed quantitative and qualitative performance analysis, and com-
parison versus various state-of-the-art reference methods.

5.1. Comparative evaluation on synthetic data

In the first part of the evaluation process, we use the synthetic
dataset presented in Section 4.1.1 for testing our method, and for com-
paring it to four recent state-of-the-art 3D point cloud completion
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algorithms: TopNet [14], GRNet [7], PCN [8], VPC-Net [15], SeedFormer
[21] and SnowflakeNet [22].

For providing a fair comparison, a number of careful considerations
should be taken. First, while our proposed model is able to process
and generate object point clouds that consist of a variable number of
points, the above mentioned reference methods are limited to produce
point cloud outputs with a fixed size of 16,384 points. For this reason,
apart from using the high density fine GT described in Section 4.1.1 for
training our proposed MVPCC-Net, we also generated a downsampled
version of each object’s ground truth point cloud using the Farthest
Point Sampling technique [46]. The downsampled point clouds - re-
ferred henceforward as coarse GT samples – consist of exactly 16,384
points, thus they can be used for training the reference approaches.

Second, since the referencemethods exclusively deal with geometry
information, in these experiments we also limited our model’s training
and evaluation only considering the XYZ channels. For this reason, dur-
ing this comparison,we ignored the RGB channels, andwe used the per-
ceptual loss and the style loss terms exceptionally for the XYZ channels

(with a learning rate of 10�4).
The qualities of the completed object shapes are characterized by

the geometric evaluation parameters defined in Section 4.3. Compar-
ative results are provided in Tables 1 and 2, using as quality measures
the mean Chamfer Distance and the mean F1-score over the test set,
respectively. Here we used the proposed MVPCC-Net model with
four views (V ¼ 4), which proved to be the most efficient settings
in our ablation experiments, as detailed later in Section 6.1. To dem-
onstrate that the relative performances of the considered techniques
are fairly stable regardless of how detailed reference point clouds are
used as ground truth, we calculated the geometric evaluationmetrics
for both the fine GT and coarse GT samples, which results are shown
side by side in Tables 1 and 2. Given that the denser fine GT samples
have more points than the coarse GT objects, it is evident that the
CD error rates associated with the fine GT are generally lower (and
the F1-scores are higher) than the results connected to the coarse
GT regarding each method.

The superiority of ourmethod’s coarse GT-related results demonstrates
its efficacy in recreating the global structure of the objects under study (i.e,
size and shape of theirmain components). On the other hand, ourMVPCC-
Net approach is also superior at reconstructing local features and fine geo-
metric structures appearing only in denser point clouds: This observation
is supported by our efficient fine GT-related numerical rates, and also by
comparative qualitative results shown in Fig. 3, which displays for various
sample objects the input partial point clouds, the results of all considered
techniques, and the fine GT as a reference.

5.2. Comparative evaluation on real MLS data

In the second phase of the experiments, we evaluate the perfor-
mance of the proposed approach and the reference techniques on real
MLS point cloud samples, presented in Section 4.1.2. Due to the lack of
sufficient number of (complete) training samples among the available
MLS object point clouds, we use here the MVPCC-Net with weight pa-
rameters trained on synthetic data in the previous test phase.

However, by replacing synthetic point cloud inputs with real MLS
measurementswe have to dealwith a practical issue:While in synthetic
datasets standardized objects alignments can be ensured (e.g. the for-
ward direction of vehicles is equal to one of the axes in their local Des-
cartes coordinate system), object fragments extracted from real MLS
data may have arbitrary orientations. For this reason, we proposed an
additional network component for re-aligning the input MLS point
cloud segments, enabling the direct application of our model for real
measurements without the need for any additional fine-tuning, al-
though the model had been trained on purely synthetic data. For this
purpose, we adopted a spatial transformer network (STN) [47], which
provides as output a 3� 3 rotation matrix, that can be used to rotate
an input point cloud sample around its vertical axis, so that it is



Table 1

Evaluation of our algorithm’s geometric accuracy compared to the state-of-the-art algorithms on the synthetic dataset using Chamfer Distance (�10�3)↓. By each object category, thefirst
column refers to the comparison with the coarse GT (16384 points), while the second column represents the comparison results to the fine GT, the best results are highlighted in bold.

Method Buses
1440 samples

Cars
4680 samples

Motorcycles
180 samples

Trains
480 samples

Overall
6780 samples

Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT
TopNet [14] 7.254 6.514 10.724 8.189 19.362 18.976 10.264 9.919 10.184 8.242
GRNeT [7] 7.776 7.153 8.596 7.807 9.077 8.675 7.149 7.544 8.332 7.672
PCN [8] 5.870 5.130 7.549 6.107 13.326 12.869 7.257 6.823 7.325 6.129
VPC-Net [15] 4.688 3.965 6.666 5.604 9.945 9.531 5.935 5.512 6.281 5.353
SeedFormer [21] 6.592 5.922 7.609 6.685 8.524 8.074 6.737 6.243 7.355 6.528
SnowflakeNet [22] 4.94 4.202 6.101 5.274 8.232 7.883 5.516 5.102 5.869 5.103
Ours 5.113 4.333 5.813 4.702 8.448 7.928 5.853 5.309 5.737 4.752
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transformed into a canonical orientation defined by ground truth sam-
ples in the training phase. The STN network segment was trained inde-
pendently of the other components of the MVPCC-Net with synthetic
vehicle shape models (described in Section 4.1.1). The input of this
training phase consists of partial object point clouds rotated with ran-
domly chosen angles around their vertical axes, and its reference out-
puts are the same point cloud segments with standard orientations,
facing in the direction of the x-axes of their local coordinate system.
The aim of this training phase is to learn the transform providing an ap-
propriate rotation matrix for new object samples with arbitrary initial
orientations.

After orientation adjustment, we tested the proposed MVPCC-Net
and the reference techniques on realMLS object samples, so that neither
our model nor other models were fine-tuned for the MLS measure-
ments. As mentioned in Section 4.1.2, we have 54 completely scanned
vehicle models in our MLS dataset which can be used for quantitative
evaluation in a similar manner to the synthetic data, while the remain-
ing 370MLS objects enable us to perform a qualitative study on awidely
diverse set of real vehicle point cloud measurements. Numerical and
qualitative evaluation results are shown in Table 3 and in Fig. 4 respec-
tively, which confirm that proposed MVPCC-Net outperforms the
reference methods, and it is capable of efficiently processing MLS mea-
surements. As demonstrated in Table 3, our model is clearly better than
the other techniques regarding the Chamfer Distance (2nd column of
the table), however, the F-scores of VPC-Net andMVPCC-Net are nearly
identical with the standard distance threshold settings τ ¼ 0:01 (see
the 3rd column). For this reason, we also calculated the F-score values
with a more strict threshold selection τ ¼ 0:005, which choice yielded
already a clear advantage of the proposed method (4th column). We
can also conclude based on Fig. 4 that our method is more capable of
producing dense and finely detailed point clouds which property is
highly advantageous by processing dense MLS data.

Although in Figs. 3 and 4we only visualized the geometry of the gen-
erated object point clouds, the MVPCC-Net method can also estimate
RGB color value for each point as described in Section 3. For selected
MLS objects, the input–output pairs of the proposed model are shown
as colored point clouds in Fig. 5. These qualitative results confirm, that
Table 2
Evaluation of our algorithm’s geometric accuracy compared to the state-of-the-art algorithms
coarse GT (16384 points), while the second number represents a comparison with the fine GT

Method Buses
1440 samples

Cars
4680 samples

Coarse GT Fine GT Coarse GT Fine GT Co
TopNet [14] 82.06 82.85 69.56 73.31 24
GRNeT [7] 76.73 78.42 72.25 75.37 69
PCN [8] 89.74 90.96 83.79 86.99 49
VPC-Net [15] 95.50 96.22 87.63 89.57 66
SeedFormer [21] 85.62 86.80 81.03 84.28 75
SnowflakeNet [22] 94.01 94.83 88.34 90.23 74
Ours 92.64 93.70 89.61 91.89 76
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in many different situations, both the vehicle’s global shape and its
color schema can be predicted in a realistic manner, and the generated
object segments fit well with the captured partial MLS measurements
both in geometry and in color. Exploiting that vehicles have in general
symmetric shapes, many components such as tail lamps or door tex-
tures are efficiently transformed from one side to the other one. On
the other hand, the proposed method is also successful in predicting
completely missing frontal or back regions, where symmetry-based
shape completion cannot be performed. As a limitation, some errone-
ously textured areas may appear in different vehicle regions, which
phenomenon is in part a consequence of texture errors in the raw
MLS measurements.

5.3. Completion results for asymmetric objects

While the objects investigated in the previous sections have sym-
metric geometry, the proposed method is not limited to dealing with
such object shapes. Since asymmetrical objects are usually considered
more challenging for shape completion methods, we also investigated
how our MVPCC-Net is able to complete partial point clouds of sofa ob-
jects. The sofa datasetwas generated fromShapeNet in a similarmanner
as described in Section 4.1.1 for vehicles. For this experiment, we used
2930 training objects and 43 test samples for validation.

The results of shape completion for three sample sofa objects are
displayed in Fig. 6, where each row shows the same input point cloud
from two different perspectives, alongside the predicted object shapes.
The results confirm at a proof-of-concept level that our model can also
generate realistic results for asymmetrically shaped items.

5.4. Computational time

In this section, we present an experimental study about the execu-
tion time of each individual step of the proposed algorithm. Our exper-
imentswere performed on a personal computer (PC)with AMDRyzen9
5900X 12-Core Processor, 32-GB RAM and a NVIDIA GeForce RTX 3060
Ti GPU. We run the proposed MVPCC-Net model with four views
(V ¼ 4) on 216 real MLS samples described in Section 4.1.2. The
on the synthetic testing dataset, F1-score (%)", The first number is a comparison with the
, the best results are highlighted in bold.

Motorcycles
180 samples

Trains
480 samples

Overall
6780 samples

arse GT Fine GT Coarse GT Fine GT Coarse GT Fine GT
.85 25.95 64.70 64.91 70.68 73.48
.20 70.75 77.68 78.70 73.50 76.13
.35 51.17 80.49 81.29 83.91 86.47
.89 68.23 87.56 88.12 88.75 90.31
.22 76.86 84.71 85.59 82.11 84.71
.85 75.89 89.79 90.12 89.28 90.77
.46 77.58 88.22 88.99 89.81 91.68



Table 3
Evaluation of our algorithm’s geometric accuracy compared to the state-of-the-art algo-

rithms on the real MLS object samples, using Chamfer Distance (CD,�10�3)↓, and F1-
score (%)".

Method ↓CD "F1-score (%) "F1-score (%)

(�10�3) τ ¼ 0:01 τ ¼ 0:005

TopNet [14] 12.725 52.87 14.10
GRNet [7] 10.185 67.73 31.47
PCN [8] 10.410 67.25 31.72
VPC-Net [15] 7.563 80.77 51.62
SeedFormer [21] 8.248 77.61 36.11
SnowflakeNet [22] 8.487 79,23 46.28
Ours 6.962 80.75 58.28
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completion model part was executed on the GPU, while the remaining
steps have been implemented for CPU. Table 4 presents the measured
average execution time per object in milliseconds (ms), for the consec-
utive steps of our proposed shape prediction workflow. As the results
show, with ourmethod themean total computing time for a sample ob-
ject was around 55 ms. As for the reference techniques, we tested two
methods [21,22] on the same PC configuration as our model, and their
execution time varied between 28–48 ms for the different MLS object
samples. Note that as shown in Table 4, almost half the processing ef-
forts in our model correspond to the statistical outlier filter [39],
which step can be significantly accelerated further by using a GPU-
based implementation [48]. The remaining considered reference
methods were tested on slightly different hardware platforms, never-
theless the experienced running times were largely similar to our
Fig. 5. Results of the proposed method with MLS point clo
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model. We should also emphasize, that in the targeted MLS data pro-
cessing application, real-time operation is usually not a strict require-
ment, thus we regard the speed of our algorithm adequate for
applicability.

6. Ablation studies

The proposed MVPCC-Net model consists of various components
and it contains a number of hyperparameterswhich influence its perfor-
mance. To support our decisions regarding model design, and provide
more information about parameter settings,we present ablation studies
in this section, wherein each experiment we train our model with the
car shape training dataset until the convergence (using a learning rate

of 10�4), and we validate themodel performance on the corresponding
test set.

6.1. Optimal settings of the number of views

In this section, we examine further the performance of the proposed
method on colored incomplete point cloud inputs, and study the impact
of changing the number of views with respect to the geometry and col-
oring of the completed point cloud output.

Fig. 7 displays the results per view as images for a sample vehicle ob-
ject, using a total of V ¼ 10 views in the proposed model. Each row dis-
plays the input, our model’s output, and the ground truth for the
corresponding view. ten views, including the inputs, our model’s out-
puts, and the GTs of the color and geometry images side-by-side. As
shown in the first three columns of Fig. 7, the results depict realistic
uds acquired using a Riegl VMX Mobile Laser Scanner.



Fig. 6. Results of the proposed approach on the Shapenet dataset’s asymmetrical sofa ob-
jects. For the same item, each row shows the input and our method’s output from two
viewing angles.

Fig. 7. Result of the XYZRGB channels from ten views for a partial input point cloud. For
each row: (a) RGB input, (b) RGB output, (c) RGB GT, (d) XYZ input, (e) XYZ output,
(f) XYZ GT.
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color predictions, with color characteristics matching on both sides of
the vehicle (see rows 9 and 10), while realistic tail lamps can be ob-
served on the vehicle’s rear end (see in rows 1, 2, and 5), and the textur-
ing style of the wheels also looks real (see rows 1–4). The color images
of the last three columns of Fig. 7 visualize the shape geometry, so that
the normalized XYZ coordinate values stored in the geometry channels
are displayed as pseudo geometry images. These results demonstrate that
themodel is able to accurately predict the shape of the car, and even de-
tails such as predicted wheels and mirrors are visible in the output.

In the next phase of the analysis, we trained and tested the proposed
model with increasing the number of views one by one from three to
ten. The views are chosen in the order indicated by the consecutive
rows in Fig. 7, for example, the four-view configuration uses the images
shown in the first four rows.

Table 5 presents quantitative results of our model with different
numbers of views for the whole car shape test dataset, using various
metrics for geometry and color evaluation defined in Section 4.3.
These experiments confirm thatwe can obtain themost accurate 3D ge-
ometry prediction by using in total four different viewpoints (following
the settings of the first four views in Fig. 7).While additional views yield
a higher point density output point cloud, they also cause additional
noisy points surrounding the object shape, reducing the accuracy of
shape estimation. This phenomenon is shown in Table 5, where the
Chamfer Distance increases (and the F-score decreases) in cases of
more than four viewpoints.

We can observe similar tendencies regarding color estimation based
on Table 5 and Fig. 8: Usingmore than four views yields weaker perfor-
mance rates, andwe can also see noisier texture by six or eight views via
visual verification (Fig. 8(d), (e)). Note that although according to
Table 5 the best color-based evaluation rates are obtained by three
views, such a configuration still generates incomplete object shapes
(Fig. 8(b)), leading to larger geometric error values (see CD and F1-
score rates in Table 5).

6.2. View fusion strategies

In this section, we compare the view fusion strategy introduced in
Section 3.2 to a straightforward early fusion technique used as baseline
model, where the Ivin images of all v views are concatenated into a single
Table 4
Execution Time for each step of our algorithm in milliseconds (ms). The time is measured on a

NO. views Projection Completion model

Encoder Fusion

4 views 6.311 10.493 0.132

10
input data cube for the encoder, while the decoder generates all output
views in one step. On the contrary, ourmethod implements a late fusion
approach, which generates first a separate feature representation f v for
each view v by a shared encoder, thereafter a Feature Fusion network
component generates a global feature F from the view-level features
which is used by a shared decoder to produce the inpainted images
per view in a sequential process. The block diagrams of the above de-
fined early and late fusion approaches are shown in Fig. 9.

Next, we conducted experiments for comparing the efficiency of the
early fusion to the late fusion strategies in the MVPCC-Net model. As
input, we considered on the one handmeasurementswith color and ge-
ometry channels (XYZRGB), and on the other hand, pure shape data
containing geometry channels only (XYZ). The obtained results
n NVIDIA GeForce RTX 3060 Ti GPU with batch size of 1.

Re-projection Filter Overall

Decoder

4.514 7.933 25.621 55.004



Table 5
Effects of view aggregation. Results on a test set of synthetic data (car shape), PSNR",
SSIM", MAE↓ on color channels, Chamfer Distance (10�3)↓, F1-score (%)" on geometric
accuracy.

No. views 2D Color Images 3D Geometry

PSNR" SSIM" MAE↓ CD (�10�3)↓ F1-score (%)"

3 views 25.03 0.9013 0.0860 6.937 81.31
4 views 24.95 0.8969 0.0892 6.585 83.07
5 views 22.67 0.7803 0.1768 7.45 80.67
6 views 21.44 0.7063 0.2340 8.28 76.03
7 views 20.11 0.6367 0.2768 11.214 65.08
8 views 19.42 0.5908 0.2968 9.19 73.16
10 views 18.40 0.5342 0.3689 13.697 63.54

Fig. 8. Effects of view aggregation. Results of the proposed method with different number
of views: (a) Input, our model results using three, four, six, and eight views are shown in
(b)-(e) respectively.

Fig. 9. Types of fusions, first represents the early fusionmethod, the second represents the
late fusion method.

Table 6
Effect of various fusion strategies, Results on a testing set of synthetic data (car shape),

Chamfer Distance (�10�3)↓, F1-score (%)" on geometric accuracy.

Fusion method CD (�10�3)↓ F1-score (%)"

Early fusion (XYZ) 5.735 87.33
Early fusion (XYZRGB) 11.792 69.29
Late fusion (XYZ) 5.315 89.04
Late fusion (XYZRGB) 6.585 83.07

Fig. 10. Effects of Fusion strategies. Results of the proposed method with different fusion
strategies: (a) Input, our model results using (b) early fusion method on geometry chan-
nels, (c) early fusion method on color and geometry channels, (d) late fusion method on
geometry channels, (e) late fusion method on color and geometry channels.
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regarding 3D geometric accuracy over the car shape set are presented in
Table 6, while Fig. 10 shows the results of the different fusion strategies
for two sample objects, where we present the point cloud results with-
out displaying RGB color for enabling better visual comparison of the
object geometries. The quantitative and qualitative results confirm
that the proposed late fusion approach outperforms the early fusion
baseline technique for both types of input data (XYZ and XYZRGB). Re-
garding the geometric parameters, the models purely considering XYZ
channels yield in general better results, which fact indicates that gener-
ating colored point clouds comes with some degradation of the shape
geometry. On the other hand, adding RGB information to the early fu-
sion approach yields a significantly larger reduction of the geometric ac-
curacy, than by using the late fusion technique, where we can only
observe a slight negative effect on the accuracy of the predicted object
shape.

6.3. Re-projection filter parameters

This section demonstrates the significance of applying the erosion
and outlier filters as post processing steps of the view re-projection
phase (Section 3.3), andwe also justify here the filters’ parameter selec-
tion strategy. In the following experiment, we test the proposed
MVPCC-Net model with four views, and purely geometric (XYZ) input
data, so that we calculate the geometric CD and F1-score values for
the output point clouds provided by the re-projection step with various
filter parameters.

We start with the analysis of using the erosion operator, where we
evaluate the results in four configurations: first without using the ero-
sion step, thereafterwith implementing the erosionwith square shaped
kernels of sizes 1� 1, 3� 3, and 5� 5, respectively. Based on the results
presented in Table 7 and Fig. 11, we can conclude that by applying the
erosion operator we can get a smoothed output point cloud, where sev-
eral noisy points around the investigated object’s shape are removed.
Since by increasing the kernel size to 5� 5, we can often observe the
removal of some real object components, we decided to use the 3� 3
kernel, which choice also corresponds to the best evaluation rates in
Table 7.

Next, we demonstrate the significance of the Statistical Outlier Filter
(SOF). Fig. 12(b) shows the resultswithout SOF,while Fig. 12(c)-(e) dis-
play the output point clouds using the statistical outlier filter with its
Table 7
Analysis of the effect of using erosion operation as a post-processing step with different
kernel sizes.

Kernel size CD (�10�3)↓ F1-score (%)"

Not used 5.583 88.69
(1� 1) 5.335 88.89
(3� 3) 5.315 89.04
(5� 5) 5.371 88.84



Fig. 11. Analysis of the effect of using the erosion operation in post-processing: (a) input
point cloud, (b) result without using the erosion operation, (c)-(e) results using erosion
operation with kernel sizes 1� 1, 3� 3 and 5� 5, respectively.

Fig. 12. Analysis of the effect of using Statistical Outlier Filter (SOF) as a post-processing
step: (a) input point cloud, (b) results without using SOF, (c)-(e) results using SOF with
standard deviation rates σ ¼ 8, 5 and 2, respectively.

Table 8
Analysis of the effect of using Statistical Outlier Filter (SOF) as a post-processing step with
different standard deviation (σ) parameters.

Settings CD (�10�3)↓ F1-score (%)"

No SOF 7.076 86.86
σ ¼ 8 5.311 88.99
σ ¼ 5 5.315 89.04
σ ¼ 2 5.349 89.05
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standard deviation parameter σ equal to 8, 5, and 2, respectively. We
can see that the filter can remove several noisy points around the object
boundary, while the number of the filtered points increases by decreas-
ing the standard deviation rate.

Applying the statistical outlier filter as the last step of our algo-
rithm has a significant impact on the geometric accuracy of the
final results: according to Table 8, both the CD ad F1-score rates can
be improved by around 2%. We can also observe that using SOF
with a standard deviation of σ ¼ 8 decreases the CD by removing a
large number of noisy points, whereas selecting a σ ¼ 5 improves
the F1-score while it maintains the CD nearly unchanged compared
to the case of σ ¼ 8. Using a standard deviation of σ ¼ 2 we experi-
ence a minor rise in the F1-score at the expense of a significant de-
crease in CD. Based on the above experiments, in our final model
we applied the statistical outlier filter with a standard deviation of
σ ¼ 5 in order to obtain a reasonable balance between the CD score
and the F1-score evaluation rates.

7. Conclusion

In this paper, we proposed a novel method for completing colored
3D point clouds representing various incomplete object shapes. We
focus on generating models of street objects based on Mobile Laser
Scanning measurements, where a key requirement is to keep the high
detailness of the input data. Ourmethod generates first multiple projec-
tions of the incomplete input point cloud by virtual cameras positioned
around the object of interest. Thereafter the sparsely filledmultichannel
view images are completed in the 2D domain, and they are reassembled
in the 3D space, resulting in dense point clouds of the whole object. It
has been demonstrated by quantitative and qualitative experiments
both on synthetic and on real-world MLS data that the new method is
applicable and it outperforms various state-of-the-art techniques in
terms of geometric shape accuracy, realistic RGB coloring, and preserv-
ing high resolution.
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