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Abstract 

In this paper, we continue the study of the quantum cryptographic GG02 protocol, performed 
using the approach based on the subcarrier waves. We modify the scheme via heterodyne detection 
and perform security analysis for the full trusted hardware noise model in the presence of 
collective attacks with finite-key effects. It is shown that the system can potentially distribute the 
key even if the level of losses in the channel is above 9 dB. This result is consistent with the 
general technical level and comply with modern standards of practical CV-QKD systems. Finally, 
the system under consideration fully meets the criterion of composability.  
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Introduction 

Quantum Key Distribution (QKD) [1] allows two 
(Alice and Bob) or more legitimate parties to exchange 
symmetric cryptographic (secure) keys. The essence of 
the method is to encode the classical information into 
quantum states and use an authentic classical 
communication channel for key processing.  

Theoretically, owing to the laws of quantum 
mechanics, QKD can be regarded as a reliable tool for 
distribution of unconditionally secure keys that cannot be 
intercepted by a third party (Eve). In practice, of course, 
the necessary technical clarifications are required. 
Importantly, the latter includes imperfections of the 
hardware used, whereas the equipment employed by an 
adversary is assumed to be perfect.  

All the QKD protocols can be divided into two 
groups: the protocols using discrete variables (DV) [2] 
and the protocols using continuous variables (CV) [3]. 
One of the key differences between these two groups is 
the detection system: the DV-QKD systems use single-
photon detectors, whereas the CV-QKD ones employ 
coherent receivers. The latter are implemented with 
balanced detectors used in classical fiber-optic 
communication systems, not technically complex and 
expensive single photon detectors. It also means that due 
to the designated standardization of optical equipment, 
CV-QKD can be more successfully integrated into the 
telecommunications infrastructure.  

Both approaches are quite diverse in the 
implementation and can be built on a variety of methods 
for encoding and decoding the information. One of these 
methods is the subcarrier wave method (SCW) where 
phase modulation is applied to encode information into the 
phases of subcarrier modes of weak multimode coherent 

states [4, 5]. This method has a number of advantages. In 
particular, it does not require an additional reference signal 
(the reference is provided by the carrier wave on the 
central frequency) and it provides a versatile means for 
multiplexing purposes [6, 7, 8]. This approach has been 
demonstrated to be effective in implementations of DV-
QKD in the fiber communication lines [9, 10] and in the 
free-space QKD [11]. In this paper, we are primarily 
concerned with the SCW implementation of CV-QKD 
protocols introduced in our previous studies [12, 13, 14].  

We are aimed to expand the framework of the SCW 
method in the context of Gaussian modulation (GG02) 
CV-QKD protocol [3]. This protocol is notable for the 
presence of a theoretical base in terms of security proof in 
exact analytical form. At the moment, it is also the only 
point-to-point CV-QKD protocol that has been proven to 
be secure against general attacks in the regime of finite 
keys [1]. For this purpose, it is essential to fill the gaps in 
the security model discussed in [14] by supplementing it 
with proof against collective attacks and taking in to 
account finite-key effects. Our key result is the finite 
secure key rate of the SCW CV-QKD protocol evaluated 
as a result of the security analysis that meets the criterion 
of composability. The composability criterion naturally 
came from classical cryptography to quantum key 
distribution [1]. The main idea of composable security is 
to define an ideal protocol and use it as a reference 
against which an existing realistic implementation can be 
compared. The problem can be formulated as a game 
played by a so-called "distinguisher" whose task is to 
guess whether Alice and Bob implement the real protocol 
or the ideal protocol. Thus, the criterion can be formed as 
follows:  ABE ABE,D     , where D(ꞏ, ꞏ) is a trace 
distance, ABE denotes the tripartite quantum state held by 
a distinguisher interacting with the real system and ABE  
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is the ideal where the registers "A" and "B" keep the final 
messages, and the register "E" only holds the state E 
resulting from an attack and attempts to steal the key. In 
the ideal case, there is no correlation between the register 
"E" and the pair of legitimate users’ registers "AB". It is 
also necessary to take in to account the finiteness of the 
samples and the finiteness of the output keys, which 
require appropriate corrections (finite-key effects 
mentioned above). In simpler, but unrealistic, asymptotic 
regime with infinite keys, such corrections are omitted.  

There are also several newly introduced effects. In 
particular, we show that in order to meet the 
symmetrization requirements of the described protocol 
[15] the detection scheme has to be changed homodyne to 
heterodyne. Another important point incorporated into 
our security analysis is that the trusted and untrusted 
noise and losses are explicitly separated. By trusted noise, 
we mean the noise that cannot be controlled by Eve. In 
turn, the so-called untrusted noise adjusted by Eve occurs 
exclusively in the quantum channel. The same applies to 
the losses: there are trusted losses that are set by the 
legitimate parties’ equipment and remain outside the 
access of Eve, while losses in the channel (untrusted) Eve 
can completely simulate.  

The paper is organized as follows. In section 1, we 
describe the GG02 protocol based on the SCW method

 and its modifications. In section 2, we provide the 
security analysis and evaluate the performance of the 
protocol. In section 3, we discuss our results and make 
concluding remarks.  

1. Gaussian modulation and detection using SCW 
1.1. CV-QKD protocol 

Fig. 1 presents a scheme of our setup where the SCW 
system is used to implement the GG02 protocol. In this 
setup, the laser on the Alice side generates pulses of 
duration T with the power P and the frequency 0 at the 

specified rate. So, the input state is 0
0 sb

vac  , 

where |vacsb indicates the vacuum state of the subcarrier 

modes and 0
0

  is the coherent state describing the 

radiation at the central frequency with the mean photon 
number 0 = |0|2 = PT / ħ0 (ħ is the Planck constant).  

In order to perform Gaussian modulation of the input 
state as required by the GG02 protocol Alice utilizes the 
electro-optic phase modulator. In the phase modulation 
process, the modulation index mA is assumed to be a 
small random variable governed by the Rayleigh 
probability distribution with the scale parameter AV , 
whereas the phase A is uniformly distributed in the 
range from zero to 2. 

 

 
Fig. 1. Simplified scheme of SCW CV-QKD GG02 setup. PM is the electro-optic phase modulator; C is the circulator; SF 

is the spectral filter that cuts off the carrier; BD is the balanced detector; PD is the photodiode; MD is the measurement device. 
Diagrams in the Alice’s block illustrate the quadrature distributions 

An accurate theoretical treatment of this process 
requires using a quantum model of the phase modulator. 
There is a number of differently formulated models put 
forward in [16, 17, 18, 19]. Our subsequent calculations 
are based on the model developed in [18].  

According to this model, there are 2S + 1 
interacting frequency modes with frequencies 0 + k, 
where k is the integer ranged from – S to S, and the 
multimode coherent state  

   A ,
S

k
kk S

       (1) 

with the amplitudes 

   A 0 0 A Aexp( ),S
k kd i k        (2) 

represents the modulated output state, where  0 A
S
kd   is 

the Wigner d-function [20]. In the limiting case with 
S, the latter can be simplified as follows  

   A A ,S
n knk

S
d J m


   (3) 

where Jn – k(mA) is the Bessel function of the first kind. 
This approximation is valid for the real SCW QKD 
systems [18, 10] in which standard fiber electro-optical 
modulators are used. It is generally accepted that standard 
fiber phase modulators (e.g. Thorlabs LN53S-FC) have 
sufficiently large values of output modes S [10] for the 
approximation to be valid.  

Since the modulation index, mA, is small, we have  
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  A
A ,

1

! 2

k

k

m
J m

k
   
 

 (4) 

and the probability density function for the complex 
amplitudes of the first-order sidebands with k ± 1 is given 
by the normal distribution with vanishing mean value and 
the variance VA. Note that the vacuum noise must be 
taken in to account and the resulting variance that enter 
the covariance matrix will be V = VA + 1 in shot noise 
units (SNU). 

In the bulk of previous studies, the above modulation 
procedure is carried out using two (amplitude and phase) 
modulators [21, 22, 23]. The subcarrier multiplexing 
technique with several phase modulators was also 
theoretically studied in [24] using the classical approach 
to phase modulation.  

The modulated signal passes through the Gaussian 
quantum channel [25] with the transmittance T and the 
excess noise  to the Bob side. This side implements the 
coherent detection procedure described in [13, 12]. It 
implies that Bob uses two modulators with the 
modulation index optimized for detection tasks of the 
SCW method (mB ≈ 1.13 in [13]). For the modulators in 
the first and second arms, he sets the values of the phase 
B = 0 and B =  / 2, respectively, thereby detecting both 
quadratures (in Fig. 1 p and q, respectively). Phase 
remodulation results in redistribution of the energy 
leading to a significant increase in the sidebands power. 
Information encoded into the transmitted signal is 
determined by the energy difference between the 
sidebands and the carrier wave.  

After the remodulation, the carrier wave and the 
sidebands are separated by spectral filtering and are 
collected by photodiodes placed in the arms of balanced 
detector. The photocurrents registered by the 
photodetectors are subtracted. At the output of the 
balanced detector, Bob receives valid values correlated 
with those prepared by Alice. The next involves the 
standard procedures of parameter estimation, error 
correction, and privacy amplification [1].  

Considering that we use the trusted hardware noise 
model, it is necessary to divide the scheme into blocks in 
order to clarify which noises they contain:  

 trusted preparation (Alice) noise prep (e.g., 
relative intensity noise and noise of digital-to-analog 
converter);  
 untrusted quantum channel noise ch (e.g., 
Raman noise if the quantum channel is wavelength-
multiplexed with a classical one);  
 trusted receiver (Bob) noise rec (e.g., balanced 
detector noise).  
It is usually assumed that various noise sources are 

independent of each other, so their variances are added to 
the total (separately trusted and untrusted) values. 
Various losses are distributed over the same blocks 
(Alice, channel, Bob).  

It should be emphasized that, by contrast to the 
previous version of the method [14], the scheme is 
modified so as to utilize the heterodyne detection [26]. 
This modification is essential for subsequent security 
analysis as it allows us to incorporate the symmetry 
needed for discussing general attacks. The possibility to 
achieve a security against general attacks was shown 
using the recently proposed Gaussian de Finetti reduction 
approach to the GG02 protocol [15] that employs its 
invariance with respect the unitary group rather than the 
symmetric group. The matrix chosen from the unitary 
group describes the passive linear transformation through 
the transformation of the annihilation operators. In 
practice, this translates into applying a certain kind of 
permutation to classical data, given the quadrature pairs 
of Alice and Bob. A random choice of one quadrature per 
state (so-called “sifting”) during homodyning leads to the 
information loss and breaks down the symmetry making 
impossible to apply the described analogy between 
classical data and quantum states. This means that, at the 
current state, it is impossible to analytically prove the 
security of CV-QKD protocol with homodyne detection 
against general attacks.  

1.2. Peculiarities of SCW approach 

There are two differences between the SCW approach 
and the standard method (see, e.g., [25, 27, 28]) that we 
need to take in to account [14]: a drop in the efficiency of 
the coherent detection scheme that results in reduction of 
the total trusted transmittance and the sideband-induced 
additional contributions to the channel excess noise.  

The efficiency of the SCW coherent detection scheme 
is given by the following expression [13]  

   
    

2 4
0 0

SCW
2 2
0 A 0 A

1 4 4
,

4 1

J m J m

J m J m

 
 


 (5) 

where m = mA + mB. As is shown in [14], averaging over 
the Alice’s modulation index mA gives the expected value 
of the efficiency SCW ≈ 0.9 that corresponds to the 
insertion loss of about 0.5 dB.  

Following the reasoning presented in [14] additional 
excess noise originated from high-order (k  2) sidebands 
can be written in the form  

2
2 1

2

SCW 20
2

1 2
2 .

(

e

2 !

xp( )

)

k

A

k
Ak

x
x

V
dx

k V


 



  
   
 
 
 

  (6) 

Fig. 2 presents the dependence of the excess noise (6) 
on the scale parameter 1/2

AV . It turned out that the values 
of SCW are of the same order as small contributions to the 
excess noise such as the relative intensity noise (RIN) and 
the noise of digital-to-analog-converter reported in 
Ref. [29].  
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Fig. 2. Dependence of the excess noise SCW induced 

 by the high-order sidebands on the scale parameter AV  

set on the electro-optic modulator 

2. Security analysis 
2.1. Asymptotic security 

In this section, we, following Refs. [30, 31], use the 
trusted noise scenario and obtain an accurate estimate of 
the Holevo bound [32] using an appropriately modified 
covariance matrix.  

The theoretical study of the GG02 security, by 
analogy with some DV-QKD protocols, is based on the 
concept of the virtual entanglement [33]. According to 
this concept, the event of sending a single-mode coherent 
state to the Gaussian quantum channel by Alice and the 
subsequent detection by Bob is completely analogous to 
the event in which modes of the two-mode squeezed 
vacuum state (TMSVS) are distributed between the 
legitimate users. Both events are described by the same 
covariance matrix up to some constants. In the considered 
trusted noise scenario, Eve can manipulate only the state in 
the channel, and purify it there. This means that the state of 
the system must be considered through three separate 
subsystems [31]: Alice (sender), Eve (adversary that may 
control the parameters of the channel), and Bob (receiver).  

In the SCW protocol, independent first-order 
sidebands are considered as separate single-mode states 
containing the same information [18, 24, 14].  

The mutual information between Alice and Bob can 
be calculated as follows [29]  

A

AB
2 2

1

log(1 SNR) log 1 ,
12 2 1

TV
I

 
       
    

 (7) 

where {1, 2} is the homo-/heterodyning parameter, 
SNR is the signal-to-noise ratio, T is the total 
transmittance, and  is the amount of total excess noise.  

Since the GG02 protocol uses Gaussian quantum 
channel and Gaussian modulated states, the optimal 
attack is known to be Gaussian [34, 35]. In this case, the 
Holevo bound can be estimated as follows  

EB E E|B ,S S    (8) 

2 2
1 1 1 1

log log ,
2 2 2 2

i i i i

i

v v v v
S

            
    

  (9) 

where S is the von Neumann entropy and vi is the 
symplectic eigenvalue of the corresponding covariance 
matrix. Subscripts show predestination: "A" stands for 
Alice, "B" stands for Bob, and "E" stands for Eve. 
Vertical bar determines the conditionality of entropy and 
sets the case after the measurement.  

Assuming that the Bob side is fully trusted, Trec and 
rec are out of Eve’s reach. The symplectic eigenvalues of 
the covariance matrix before Bob’s measurement (it is 
needed to calculate the von Neumann entropy SE) are  

   

  

2 2
1, 2 ch ch ch

ch ch

1
( ( 1 1 ) 4 1

2

1 1 ),

v V T V T V

T V V

       

     
 (10) 

where V = VA + 1.  
The conditional von Neumann entropy SE|B that 

determines Eve’s information after the measurement on 
the Bob side is estimated via the following symplectic 
eigenvalues  

   
 

2 2
1 3 2 3 1

3, 4

4
,

2 / 1 / 1A

e e e e e
v

TV

   


     
 (11) 

  
    

1 rec rec rec ch

ch ch rec rec

1 1

1 1 ,

e V T W T W

T W V T W

    

   
 (12) 

    2
2 ch ch rec rec rec1 1 1 ,e T W T V T W      (13) 

   3 rec ch rec rec ch ch rec ch1 1 ,e T W W T T VW T W      (14) 

where Wch = ch
 /(1 – Tch) + 1, Wrec = rec

 /(1 – Trec) + 1, and Tdet 
is the transmittance responsible for losses and the detector’s 
efficiency in the receiver module. For SCW coherent 
detection method, the parameter Tdet that enter Eqs. (11 – 14) 
should be replaced by the rescaled value given by  

'
det det SCW .T T   (15) 

Note that it is possible to introduce the model of 
trusted sender’s (Alice) noise can be introduced using 
substitution V with V + pr, where pr is the preparation 
excess noise [31]. It is however, demonstrated in [29] that 
the value of such noise is negligibly small. Losses Tpr in 
Alice’s block can be neglected, since she can always 
adjust the necessary attenuation.  

According to the Devetak-Winter bound [36], the 
asymptotic secure key fraction is  

  asympt
AB EBcoll 1 FER ,r I     (16) 

where FER is the frame error rate and  is the reverse 
reconciliation efficiency. Our next step is to consider the 
finite-key effects.  

2.2. Finite-key effects and composable security 

In order to take into account the finite-key effects and 
the composability criterion in the presence of collective 
attacks, we refine the secure key fraction bound using the 
result of Refs. [37, 38, 39, 40] that reads  
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     finite
AB EBcoll

states

1 FER
,AEPn

r I w w
n nn

   
     

 
(17) 

AEP 2 2 2 4

18
Δ 4log (2 1) log ,

(1 ) s

d
FER

 
     

 (18) 

  2
2 s 2 hΘ log 1 FER 1 / 3 2log 2 ,         (19) 

  pe cor s h2 1 FER ,           (20) 

where n is the number of symbols left to process the finite 
key, nstates is the number of states, AEP is the parameter 
according to the asymptotic equipartition property [41],  
combines the hash mismatch accounting after the privacy 
amplification and the error correction leak [37, 38], d is 
the effective alphabet size. j is the security parameter 
defining the tolerance for the security of the procedures 
being carried out and the composability of the QKD 
protocol: pe is responsible for accuracy of the parameter 
estimation from a finite sample, cor is an upper bound on 
the probability that strings are different after passing error 
correction procedure, S shows the allowable fluctuation 
of errors in the channel, and S is a parameter of the 
applied hash function. In real QKD systems -parameters 
are selected based on the security requirements set out in 
the relevant documents.  

Also, given the finiteness of the available sample for 
parameter estimation, it is necessary to introduce 
additional corrections related to the confidence intervals. 
These corrections are given by [42, 37]  

, Corr ,
2
j

j

pe

w
n


  




 (21) 

 , A peCorr 2 / / ,T j j jw V T n    (22) 

where subscript j indicate the QKD block (Alice’s 

preparation, Bob’s receiver, channel), pe2 ln(1/ ) w    

is the confidence [37], and npe is the number of states for 
parameter estimation.  

According to Ref. [37], the above corrections are 
implemented into the trusted noise scenario through the 
following substitutions:  

' '
det det , fullCorr ,TT T   (23) 

ch ch , chCorr ,TT T   (24) 

ch ch , chCorr .     (25) 

In our numerical calculations, we have used the 
following parameters:  = 2; VA = 6; Tch = 10–L, where L 
is the channel length and  is the attenuation in dB/km; 
ch,standart = 0.003Tch, ch,SCW = 0.0031Tch, rec = 0.1, 
Tdet = 10–0.725, FER = 0.03,  = 0.95, n = 2ꞏ108, 
nstates

 = 6ꞏ108, d = 24, s = h = 10–10,  = 5.6ꞏ10–9, 
npe = 6ꞏ107, w = 6.34. The parameters are taken in 
accordance with the general technical level and comply 
with modern trends of practical CV-QKD systems [1, 27, 
28, 29, 31, 37, 38].  

The results for the performance of both the SCW CV-
QKD system and the standard GG02 protocol computed 
from Eq. (17) are presented in Fig. 3. It can be seen that 
the difference between the limiting channel losses (under 
which the secure key fraction is still positive) for the 
standard and the SCW based GG02 protocols is about 
0.5 dB and its level cannot be regarded as critical.  

 
Fig. 3. Dependence of the secure key fraction on the losses  

in the fiber quantum channel 

Another point is that the performance of SCW CV-
QKD appears to be significantly improved as compared 
to the results reported in our previous study [14]. The 
latter is mainly due to the suitably modified trusted noise 
model in which the Holevo information decreases much 
faster than the mutual information with legitimate users’ 
insertion losses.  

Conclusion 

We have analyzed the security and performance of the 
GG02 protocol in the implementation through the SCW 
approach. We have shown that the differences from the 
standard approach are insignificant and substantiated 
security against collective attacks with the composability 
criterion and the finite-key effects taken in to account. 
The enhanced detection system allows to subsequently 
generalize the given analysis to the case of general 
attacks using the available symmetrization. As far as the 
merits of the SCW method briefly mentioned in 
Introduction are concerned, our concluding remark is that 
they will potentially far outweigh a slight performance hit 
we have demonstrated.  
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